2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
Commit Graph

745 Commits

Author SHA1 Message Date
Liang Zhang
6f3c1fc53d KVM: x86/mmu: make apf token non-zero to fix bug
In current async pagefault logic, when a page is ready, KVM relies on
kvm_arch_can_dequeue_async_page_present() to determine whether to deliver
a READY event to the Guest. This function test token value of struct
kvm_vcpu_pv_apf_data, which must be reset to zero by Guest kernel when a
READY event is finished by Guest. If value is zero meaning that a READY
event is done, so the KVM can deliver another.
But the kvm_arch_setup_async_pf() may produce a valid token with zero
value, which is confused with previous mention and may lead the loss of
this READY event.

This bug may cause task blocked forever in Guest:
 INFO: task stress:7532 blocked for more than 1254 seconds.
       Not tainted 5.10.0 #16
 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
 task:stress          state:D stack:    0 pid: 7532 ppid:  1409
 flags:0x00000080
 Call Trace:
  __schedule+0x1e7/0x650
  schedule+0x46/0xb0
  kvm_async_pf_task_wait_schedule+0xad/0xe0
  ? exit_to_user_mode_prepare+0x60/0x70
  __kvm_handle_async_pf+0x4f/0xb0
  ? asm_exc_page_fault+0x8/0x30
  exc_page_fault+0x6f/0x110
  ? asm_exc_page_fault+0x8/0x30
  asm_exc_page_fault+0x1e/0x30
 RIP: 0033:0x402d00
 RSP: 002b:00007ffd31912500 EFLAGS: 00010206
 RAX: 0000000000071000 RBX: ffffffffffffffff RCX: 00000000021a32b0
 RDX: 000000000007d011 RSI: 000000000007d000 RDI: 00000000021262b0
 RBP: 00000000021262b0 R08: 0000000000000003 R09: 0000000000000086
 R10: 00000000000000eb R11: 00007fefbdf2baa0 R12: 0000000000000000
 R13: 0000000000000002 R14: 000000000007d000 R15: 0000000000001000

Signed-off-by: Liang Zhang <zhangliang5@huawei.com>
Message-Id: <20220222031239.1076682-1-zhangliang5@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-24 13:04:46 -05:00
Sean Christopherson
1bbc60d0c7 KVM: x86/mmu: Remove MMU auditing
Remove mmu_audit.c and all its collateral, the auditing code has suffered
severe bitrot, ironically partly due to shadow paging being more stable
and thus not benefiting as much from auditing, but mostly due to TDP
supplanting shadow paging for non-nested guests and shadowing of nested
TDP not heavily stressing the logic that is being audited.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-18 13:46:23 -05:00
David Matlack
cb00a70bd4 KVM: x86/mmu: Split huge pages mapped by the TDP MMU during KVM_CLEAR_DIRTY_LOG
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.

Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:43 -05:00
David Matlack
a3fe5dbda0 KVM: x86/mmu: Split huge pages mapped by the TDP MMU when dirty logging is enabled
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.

Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.

Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:

 1. Splitting on the vCPU thread interrupts vCPUs execution and is
    disruptive to customers whereas splitting on VM ioctl threads can
    run in parallel with vCPU execution.

 2. Splitting all huge pages at once is more efficient because it does
    not require performing VM-exit handling or walking the page table for
    every 4KiB page in the memslot, and greatly reduces the amount of
    contention on the mmu_lock.

For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.

Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.

Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:42 -05:00
David Matlack
315d86da89 KVM: x86/mmu: Move restore_acc_track_spte() to spte.h
restore_acc_track_spte() is pure SPTE bit manipulation, making it a good
fit for spte.h. And now that the WARN_ON_ONCE() calls have been removed,
there isn't any good reason to not inline it.

This move also prepares for a follow-up commit that will need to call
restore_acc_track_spte() from spte.c

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-11-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:40 -05:00
David Matlack
77c23c77f9 KVM: x86/mmu: Drop new_spte local variable from restore_acc_track_spte()
The new_spte local variable is unnecessary. Deleting it can save a line
of code and simplify the remaining lines a bit.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-10-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:39 -05:00
David Matlack
59940e76d1 KVM: x86/mmu: Remove unnecessary warnings from restore_acc_track_spte()
The warnings in restore_acc_track_spte() can be removed because the only
caller checks is_access_track_spte(), and is_access_track_spte() checks
!spte_ad_enabled(). In other words, the warning can never be triggered.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-9-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:39 -05:00
David Matlack
1346bbb6b4 KVM: x86/mmu: Rename __rmap_write_protect() to rmap_write_protect()
The function formerly known as rmap_write_protect() has been renamed to
kvm_vcpu_write_protect_gfn(), so we can get rid of the double
underscores in front of __rmap_write_protect().

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:37 -05:00
David Matlack
cf48f9e286 KVM: x86/mmu: Rename rmap_write_protect() to kvm_vcpu_write_protect_gfn()
rmap_write_protect() is a poor name because it also write-protects SPTEs
in the TDP MMU, not just SPTEs in the rmap. It is also confusing that
rmap_write_protect() is not a simple wrapper around
__rmap_write_protect(), since that is the common pattern for functions
with double-underscore names.

Rename rmap_write_protect() to kvm_vcpu_write_protect_gfn() to convey
that KVM is write-protecting a specific gfn in the context of a vCPU.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:36 -05:00
David Matlack
02844ac1eb KVM: x86/mmu: Consolidate comments about {Host,MMU}-writable
Consolidate the large comment above DEFAULT_SPTE_HOST_WRITABLE with the
large comment above is_writable_pte() into one comment. This comment
explains the different reasons why an SPTE may be non-writable and KVM
keeps track of that with the {Host,MMU}-writable bits.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230723.1701061-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:33 -05:00
David Matlack
1ca87e015d KVM: x86/mmu: Rename DEFAULT_SPTE_MMU_WRITEABLE to DEFAULT_SPTE_MMU_WRITABLE
Both "writeable" and "writable" are valid, but we should be consistent
about which we use. DEFAULT_SPTE_MMU_WRITEABLE was the odd one out in
the SPTE code, so rename it to DEFAULT_SPTE_MMU_WRITABLE.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230713.1700406-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:33 -05:00
David Matlack
115111efd9 KVM: x86/mmu: Check SPTE writable invariants when setting leaf SPTEs
Check SPTE writable invariants when setting SPTEs rather than in
spte_can_locklessly_be_made_writable(). By the time KVM checks
spte_can_locklessly_be_made_writable(), the SPTE has long been since
corrupted.

Note that these invariants only apply to shadow-present leaf SPTEs (i.e.
not to MMIO SPTEs, non-leaf SPTEs, etc.). Add a comment explaining the
restriction and only instrument the code paths that set shadow-present
leaf SPTEs.

To account for access tracking, also check the SPTE writable invariants
when marking an SPTE as an access track SPTE. This also lets us remove
a redundant WARN from mark_spte_for_access_track().

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230518.1697048-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:32 -05:00
Sean Christopherson
e27bc0440e KVM: x86: Rename kvm_x86_ops pointers to align w/ preferred vendor names
Rename a variety of kvm_x86_op function pointers so that preferred name
for vendor implementations follows the pattern <vendor>_<function>, e.g.
rename .run() to .vcpu_run() to match {svm,vmx}_vcpu_run().  This will
allow vendor implementations to be wired up via the KVM_X86_OP macro.

In many cases, VMX and SVM "disagree" on the preferred name, though in
reality it's VMX and x86 that disagree as SVM blindly prepended _svm to
the kvm_x86_ops name.  Justification for using the VMX nomenclature:

  - set_{irq,nmi} => inject_{irq,nmi} because the helper is injecting an
    event that has already been "set" in e.g. the vIRR.  SVM's relevant
    VMCB field is even named event_inj, and KVM's stat is irq_injections.

  - prepare_guest_switch => prepare_switch_to_guest because the former is
    ambiguous, e.g. it could mean switching between multiple guests,
    switching from the guest to host, etc...

  - update_pi_irte => pi_update_irte to allow for matching match the rest
    of VMX's posted interrupt naming scheme, which is vmx_pi_<blah>().

  - start_assignment => pi_start_assignment to again follow VMX's posted
    interrupt naming scheme, and to provide context for what bit of code
    might care about an otherwise undescribed "assignment".

The "tlb_flush" => "flush_tlb" creates an inconsistency with respect to
Hyper-V's "tlb_remote_flush" hooks, but Hyper-V really is the one that's
wrong.  x86, VMX, and SVM all use flush_tlb, and even common KVM is on a
variant of the bandwagon with "kvm_flush_remote_tlbs", e.g. a more
appropriate name for the Hyper-V hooks would be flush_remote_tlbs.  Leave
that change for another time as the Hyper-V hooks always start as NULL,
i.e. the name doesn't matter for using kvm-x86-ops.h, and changing all
names requires an astounding amount of churn.

VMX and SVM function names are intentionally left as is to minimize the
diff.  Both VMX and SVM will need to rename even more functions in order
to fully utilize KVM_X86_OPS, i.e. an additional patch for each is
inevitable.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:17 -05:00
Jinrong Liang
e8f6e7383c KVM: x86/mmu: Remove unused "vcpu" of reset_{tdp,ept}_shadow_zero_bits_mask()
The "struct kvm_vcpu *vcpu" parameter of reset_ept_shadow_zero_bits_mask()
and reset_tdp_shadow_zero_bits_mask() is not used, so remove it.

No functional change intended.

Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-4-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:10 -05:00
Jinrong Liang
a0e72cd1e9 KVM: x86/mmu: Remove unused "kvm" of __rmap_write_protect()
The "struct kvm *kvm" parameter of __rmap_write_protect()
is not used, so remove it. No functional change intended.

Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-3-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:10 -05:00
Jinrong Liang
61827671ca KVM: x86/mmu: Remove unused "kvm" of kvm_mmu_unlink_parents()
The "struct kvm *kvm" parameter of kvm_mmu_unlink_parents()
is not used, so remove it. No functional change intended.

Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-2-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:09 -05:00
David Matlack
6ff94f27fd KVM: x86/mmu: Improve TLB flush comment in kvm_mmu_slot_remove_write_access()
Rewrite the comment in kvm_mmu_slot_remove_write_access() that explains
why it is safe to flush TLBs outside of the MMU lock after
write-protecting SPTEs for dirty logging. The current comment is a long
run-on sentence that was difficult to understand. In addition it was
specific to the shadow MMU (mentioning mmu_spte_update()) when the TDP
MMU has to handle this as well.

The new comment explains:
 - Why the TLB flush is necessary at all.
 - Why it is desirable to do the TLB flush outside of the MMU lock.
 - Why it is safe to do the TLB flush outside of the MMU lock.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-5-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-19 12:09:07 -05:00
Paolo Bonzini
855fb0384a Merge remote-tracking branch 'kvm/master' into HEAD
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU").  In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-21 12:51:09 -05:00
Sean Christopherson
18c841e1f4 KVM: x86: Retry page fault if MMU reload is pending and root has no sp
Play nice with a NULL shadow page when checking for an obsolete root in
the page fault handler by flagging the page fault as stale if there's no
shadow page associated with the root and KVM_REQ_MMU_RELOAD is pending.
Invalidating memslots, which is the only case where _all_ roots need to
be reloaded, requests all vCPUs to reload their MMUs while holding
mmu_lock for lock.

The "special" roots, e.g. pae_root when KVM uses PAE paging, are not
backed by a shadow page.  Running with TDP disabled or with nested NPT
explodes spectaculary due to dereferencing a NULL shadow page pointer.

Skip the KVM_REQ_MMU_RELOAD check if there is a valid shadow page for the
root.  Zapping shadow pages in response to guest activity, e.g. when the
guest frees a PGD, can trigger KVM_REQ_MMU_RELOAD even if the current
vCPU isn't using the affected root.  I.e. KVM_REQ_MMU_RELOAD can be seen
with a completely valid root shadow page.  This is a bit of a moot point
as KVM currently unloads all roots on KVM_REQ_MMU_RELOAD, but that will
be cleaned up in the future.

Fixes: a955cad84c ("KVM: x86/mmu: Retry page fault if root is invalidated by memslot update")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211209060552.2956723-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-19 19:38:58 +01:00
Lai Jiangshan
bb3b394d35 KVM: X86: Rename gpte_is_8_bytes to has_4_byte_gpte and invert the direction
This bit is very close to mean "role.quadrant is not in use", except that
it is false also when the MMU is mapping guest physical addresses
directly.  In that case, role.quadrant is indeed not in use, but there
are no guest PTEs at all.

Changing the name and direction of the bit removes the special case,
since a guest with paging disabled, or not considering guest paging
structures as is the case for two-dimensional paging, does not have
to deal with 4-byte guest PTEs.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:13 -05:00
Lai Jiangshan
cc022ae144 KVM: X86: Add parameter huge_page_level to kvm_init_shadow_ept_mmu()
The level of supported large page on nEPT affects the rsvds_bits_mask.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:12 -05:00
Lai Jiangshan
84ea5c09a6 KVM: X86: Add huge_page_level to __reset_rsvds_bits_mask_ept()
Bit 7 on pte depends on the level of supported large page.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:11 -05:00
Lai Jiangshan
c59a0f57fa KVM: X86: Remove mmu->translate_gpa
Reduce an indirect function call (retpoline) and some intialization
code.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:11 -05:00
Lai Jiangshan
1f5a21ee84 KVM: X86: Add parameter struct kvm_mmu *mmu into mmu->gva_to_gpa()
The mmu->gva_to_gpa() has no "struct kvm_mmu *mmu", so an extra
FNAME(gva_to_gpa_nested) is needed.

Add the parameter can simplify the code.  And it makes it explicit that
the walk is upon vcpu->arch.walk_mmu for gva and vcpu->arch.mmu for L2
gpa in translate_nested_gpa() via the new parameter.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:10 -05:00
Lai Jiangshan
b46a13cb7e KVM: X86: Calculate quadrant when !role.gpte_is_8_bytes
role.quadrant is only valid when gpte size is 4 bytes and only be
calculated when gpte size is 4 bytes.

Although "vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL" also means
gpte size is 4 bytes, but using "!role.gpte_is_8_bytes" is clearer

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-15-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:10 -05:00
Lai Jiangshan
41e35604ea KVM: X86: Remove useless code to set role.gpte_is_8_bytes when role.direct
role.gpte_is_8_bytes is unused when role.direct; there is no
point in changing a bit in the role, the value that was set
when the MMU is initialized is just fine.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-14-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:09 -05:00
Lai Jiangshan
84432316cd KVM: X86: Fix comment in __kvm_mmu_create()
The allocation of special roots is moved to mmu_alloc_special_roots().

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-12-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:08 -05:00
Lai Jiangshan
27f4fca29f KVM: X86: Skip allocating pae_root for vcpu->arch.guest_mmu when !tdp_enabled
It is never used.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:08 -05:00
Vihas Mak
98a26b69d8 KVM: x86: change TLB flush indicator to bool
change 0 to false and 1 to true to fix following cocci warnings:

        arch/x86/kvm/mmu/mmu.c:1485:9-10: WARNING: return of 0/1 in function 'kvm_set_pte_rmapp' with return type bool
        arch/x86/kvm/mmu/mmu.c:1636:10-11: WARNING: return of 0/1 in function 'kvm_test_age_rmapp' with return type bool

Signed-off-by: Vihas Mak <makvihas@gmail.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Message-Id: <20211114164312.GA28736@makvihas>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:44 -05:00
Ben Gardon
8283e36abf KVM: x86/mmu: Propagate memslot const qualifier
In preparation for implementing in-place hugepage promotion, various
functions will need to be called from zap_collapsible_spte_range, which
has the const qualifier on its memslot argument. Propagate the const
qualifier to the various functions which will be needed. This just serves
to simplify the following patch.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:43 -05:00
Ben Gardon
4d78d0b39a KVM: x86/mmu: Remove need for a vcpu from mmu_try_to_unsync_pages
The vCPU argument to mmu_try_to_unsync_pages is now only used to get a
pointer to the associated struct kvm, so pass in the kvm pointer from
the beginning to remove the need for a vCPU when calling the function.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:42 -05:00
Ben Gardon
9d395a0a7a KVM: x86/mmu: Remove need for a vcpu from kvm_slot_page_track_is_active
kvm_slot_page_track_is_active only uses its vCPU argument to get a
pointer to the assoicated struct kvm, so just pass in the struct KVM to
remove the need for a vCPU pointer.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:42 -05:00
Maciej S. Szmigiero
f4209439b5 KVM: Optimize gfn lookup in kvm_zap_gfn_range()
Introduce a memslots gfn upper bound operation and use it to optimize
kvm_zap_gfn_range().
This way this handler can do a quick lookup for intersecting gfns and won't
have to do a linear scan of the whole memslot set.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <ef242146a87a335ee93b441dcf01665cb847c902.1638817641.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:35 -05:00
Maciej S. Szmigiero
a54d806688 KVM: Keep memslots in tree-based structures instead of array-based ones
The current memslot code uses a (reverse gfn-ordered) memslot array for
keeping track of them.

Because the memslot array that is currently in use cannot be modified
every memslot management operation (create, delete, move, change flags)
has to make a copy of the whole array so it has a scratch copy to work on.

Strictly speaking, however, it is only necessary to make copy of the
memslot that is being modified, copying all the memslots currently present
is just a limitation of the array-based memslot implementation.

Two memslot sets, however, are still needed so the VM continues to run
on the currently active set while the requested operation is being
performed on the second, currently inactive one.

In order to have two memslot sets, but only one copy of actual memslots
it is necessary to split out the memslot data from the memslot sets.

The memslots themselves should be also kept independent of each other
so they can be individually added or deleted.

These two memslot sets should normally point to the same set of
memslots. They can, however, be desynchronized when performing a
memslot management operation by replacing the memslot to be modified
by its copy.  After the operation is complete, both memslot sets once
again point to the same, common set of memslot data.

This commit implements the aforementioned idea.

For tracking of gfns an ordinary rbtree is used since memslots cannot
overlap in the guest address space and so this data structure is
sufficient for ensuring that lookups are done quickly.

The "last used slot" mini-caches (both per-slot set one and per-vCPU one),
that keep track of the last found-by-gfn memslot, are still present in the
new code.

Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <17c0cf3663b760a0d3753d4ac08c0753e941b811.1638817641.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:34 -05:00
Maciej S. Szmigiero
f5756029ee KVM: x86: Use nr_memslot_pages to avoid traversing the memslots array
There is no point in recalculating from scratch the total number of pages
in all memslots each time a memslot is created or deleted.  Use KVM's
cached nr_memslot_pages to compute the default max number of MMU pages.

Note that even with nr_memslot_pages capped at ULONG_MAX we can't safely
multiply it by KVM_PERMILLE_MMU_PAGES (20) since this operation can
possibly overflow an unsigned long variable.

Write this "* 20 / 1000" operation as "/ 50" instead to avoid such
overflow.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
[sean: use common KVM field and rework changelog accordingly]
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <d14c5a24535269606675437d5602b7dac4ad8c0e.1638817640.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:29 -05:00
Sean Christopherson
a955cad84c KVM: x86/mmu: Retry page fault if root is invalidated by memslot update
Bail from the page fault handler if the root shadow page was obsoleted by
a memslot update.  Do the check _after_ acuiring mmu_lock, as the TDP MMU
doesn't rely on the memslot/MMU generation, and instead relies on the
root being explicit marked invalid by kvm_mmu_zap_all_fast(), which takes
mmu_lock for write.

For the TDP MMU, inserting a SPTE into an obsolete root can leak a SP if
kvm_tdp_mmu_zap_invalidated_roots() has already zapped the SP, i.e. has
moved past the gfn associated with the SP.

For other MMUs, the resulting behavior is far more convoluted, though
unlikely to be truly problematic.  Installing SPs/SPTEs into the obsolete
root isn't directly problematic, as the obsolete root will be unloaded
and dropped before the vCPU re-enters the guest.  But because the legacy
MMU tracks shadow pages by their role, any SP created by the fault can
can be reused in the new post-reload root.  Again, that _shouldn't_ be
problematic as any leaf child SPTEs will be created for the current/valid
memslot generation, and kvm_mmu_get_page() will not reuse child SPs from
the old generation as they will be flagged as obsolete.  But, given that
continuing with the fault is pointess (the root will be unloaded), apply
the check to all MMUs.

Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-02 04:12:12 -05:00
Sean Christopherson
f47491d7f3 KVM: x86/mmu: Handle "default" period when selectively waking kthread
Account for the '0' being a default, "let KVM choose" period, when
determining whether or not the recovery worker needs to be awakened in
response to userspace reducing the period.  Failure to do so results in
the worker not being awakened properly, e.g. when changing the period
from '0' to any small-ish value.

Fixes: 4dfe4f40d8 ("kvm: x86: mmu: Make NX huge page recovery period configurable")
Cc: stable@vger.kernel.org
Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120015706.3830341-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:27 -05:00
Paolo Bonzini
28f091bc2f KVM: MMU: shadow nested paging does not have PKU
Initialize the mask for PKU permissions as if CR4.PKE=0, avoiding
incorrect interpretations of the nested hypervisor's page tables.

Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:26 -05:00
Sean Christopherson
4b85c921cd KVM: x86/mmu: Remove spurious TLB flushes in TDP MMU zap collapsible path
Drop the "flush" param and return values to/from the TDP MMU's helper for
zapping collapsible SPTEs.  Because the helper runs with mmu_lock held
for read, not write, it uses tdp_mmu_zap_spte_atomic(), and the atomic
zap handles the necessary remote TLB flush.

Similarly, because mmu_lock is dropped and re-acquired between zapping
legacy MMUs and zapping TDP MMUs, kvm_mmu_zap_collapsible_sptes() must
handle remote TLB flushes from the legacy MMU before calling into the TDP
MMU.

Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:25 -05:00
Lai Jiangshan
05b29633c7 KVM: X86: Use vcpu->arch.walk_mmu for kvm_mmu_invlpg()
INVLPG operates on guest virtual address, which are represented by
vcpu->arch.walk_mmu.  In nested virtualization scenarios,
kvm_mmu_invlpg() was using the wrong MMU structure; if L2's invlpg were
emulated by L0 (in practice, it hardly happen) when nested two-dimensional
paging is enabled, the call to ->tlb_flush_gva() would be skipped and
the hardware TLB entry would not be invalidated.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-5-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:21 -05:00
Lai Jiangshan
12ec33a705 KVM: X86: Fix when shadow_root_level=5 && guest root_level<4
If the is an L1 with nNPT in 32bit, the shadow walk starts with
pae_root.

Fixes: a717a780fc ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host)
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:20 -05:00
Vitaly Kuznetsov
feb627e8d6 KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN
Commit 63f5a1909f ("KVM: x86: Alert userspace that KVM_SET_CPUID{,2}
after KVM_RUN is broken") officially deprecated KVM_SET_CPUID{,2} ioctls
after first successful KVM_RUN and promissed to make this sequence forbiden
in 5.16. It's time to fulfil the promise.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211122175818.608220-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:20 -05:00
Hou Wenlong
8ed716ca7d KVM: x86/mmu: Pass parameter flush as false in kvm_tdp_mmu_zap_collapsible_sptes()
Since tlb flush has been done for legacy MMU before
kvm_tdp_mmu_zap_collapsible_sptes(), so the parameter flush
should be false for kvm_tdp_mmu_zap_collapsible_sptes().

Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <21453a1d2533afb6e59fb6c729af89e771ff2e76.1637140154.git.houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 07:05:58 -05:00
Hou Wenlong
c7785d85b6 KVM: x86/mmu: Skip tlb flush if it has been done in zap_gfn_range()
If the parameter flush is set, zap_gfn_range() would flush remote tlb
when yield, then tlb flush is not needed outside. So use the return
value of zap_gfn_range() directly instead of OR on it in
kvm_unmap_gfn_range() and kvm_tdp_mmu_unmap_gfn_range().

Fixes: 3039bcc744 ("KVM: Move x86's MMU notifier memslot walkers to generic code")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <5e16546e228877a4d974f8c0e448a93d52c7a5a9.1637140154.git.houwenlong93@linux.alibaba.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 07:05:57 -05:00
Paolo Bonzini
817506df9d Merge branch 'kvm-5.16-fixes' into kvm-master
* Fixes for Xen emulation

* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache

* Fixes for migration of 32-bit nested guests on 64-bit hypervisor

* Compilation fixes

* More SEV cleanups
2021-11-18 02:11:57 -05:00
Maxim Levitsky
b8453cdcf2 KVM: x86/mmu: include EFER.LMA in extended mmu role
Incorporate EFER.LMA into kvm_mmu_extended_role, as it used to compute the
guest root level and is not reflected in kvm_mmu_page_role.level when TDP
is in use.  When simply running the guest, it is impossible for EFER.LMA
and kvm_mmu.root_level to get out of sync, as the guest cannot transition
from PAE paging to 64-bit paging without toggling CR0.PG, i.e. without
first bouncing through a different MMU context.  And stuffing guest state
via KVM_SET_SREGS{,2} also ensures a full MMU context reset.

However, if KVM_SET_SREGS{,2} is followed by KVM_SET_NESTED_STATE, e.g. to
set guest state when migrating the VM while L2 is active, the vCPU state
will reflect L2, not L1.  If L1 is using TDP for L2, then root_mmu will
have been configured using L2's state, despite not being used for L2.  If
L2.EFER.LMA != L1.EFER.LMA, and L2 is using PAE paging, then root_mmu will
be configured for guest PAE paging, but will match the mmu_role for 64-bit
paging and cause KVM to not reconfigure root_mmu on the next nested VM-Exit.

Alternatively, the root_mmu's role could be invalidated after a successful
KVM_SET_NESTED_STATE that yields vcpu->arch.mmu != vcpu->arch.root_mmu,
i.e. that switches the active mmu to guest_mmu, but doing so is unnecessarily
tricky, and not even needed if L1 and L2 do have the same role (e.g., they
are both 64-bit guests and run with the same CR4).

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:03:42 -05:00
Paolo Bonzini
f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Junaid Shahid
10c30de019 kvm: mmu: Use fast PF path for access tracking of huge pages when possible
The fast page fault path bails out on write faults to huge pages in
order to accommodate dirty logging. This change adds a check to do that
only when dirty logging is actually enabled, so that access tracking for
huge pages can still use the fast path for write faults in the common
case.

Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211104003359.2201967-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:20 -05:00
Linus Torvalds
d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Sean Christopherson
21fa324654 KVM: x86/mmu: Extract zapping of rmaps for gfn range to separate helper
Extract the zapping of rmaps, a.k.a. legacy MMU, for a gfn range to a
separate helper to clean up the unholy mess that kvm_zap_gfn_range() has
become.  In addition to deep nesting, the rmaps zapping spreads out the
declaration of several variables and is generally a mess.  Clean up the
mess now so that future work to improve the memslots implementation
doesn't need to deal with it.

Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:52 -04:00
Sean Christopherson
e8be2a5ba8 KVM: x86/mmu: Drop a redundant remote TLB flush in kvm_zap_gfn_range()
Remove an unnecessary remote TLB flush in kvm_zap_gfn_range() now that
said function holds mmu_lock for write for its entire duration.  The
flush was added by the now-reverted commit to allow TDP MMU to flush while
holding mmu_lock for read, as the transition from write=>read required
dropping the lock and thus a pending flush needed to be serviced.

Fixes: 5a324c24b6 ("Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:46 -04:00
Sean Christopherson
bc3b3c1002 KVM: x86/mmu: Drop a redundant, broken remote TLB flush
A recent commit to fix the calls to kvm_flush_remote_tlbs_with_address()
in kvm_zap_gfn_range() inadvertantly added yet another flush instead of
fixing the existing flush.  Drop the redundant flush, and fix the params
for the existing flush.

Cc: stable@vger.kernel.org
Fixes: 2822da4466 ("KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:30 -04:00
Lai Jiangshan
61b05a9fd4 KVM: X86: Don't unload MMU in kvm_vcpu_flush_tlb_guest()
kvm_mmu_unload() destroys all the PGD caches.  Use the lighter
kvm_mmu_sync_roots() and kvm_mmu_sync_prev_roots() instead.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:44:43 -04:00
Lai Jiangshan
264d3dc1d3 KVM: X86: pair smp_wmb() of mmu_try_to_unsync_pages() with smp_rmb()
The commit 578e1c4db2 ("kvm: x86: Avoid taking MMU lock
in kvm_mmu_sync_roots if no sync is needed") added smp_wmb() in
mmu_try_to_unsync_pages(), but the corresponding smp_load_acquire() isn't
used on the load of SPTE.W.  smp_load_acquire() orders _subsequent_
loads after sp->is_unsync; it does not order _earlier_ loads before
the load of sp->is_unsync.

This has no functional change; smp_rmb() is a NOP on x86, and no
compiler barrier is required because there is a VMEXIT between the
load of SPTE.W and kvm_mmu_snc_roots.

Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:43:21 -04:00
Junaid Shahid
4dfe4f40d8 kvm: x86: mmu: Make NX huge page recovery period configurable
Currently, the NX huge page recovery thread wakes up every minute and
zaps 1/nx_huge_pages_recovery_ratio of the total number of split NX
huge pages at a time. This is intended to ensure that only a
relatively small number of pages get zapped at a time. But for very
large VMs (or more specifically, VMs with a large number of
executable pages), a period of 1 minute could still result in this
number being too high (unless the ratio is changed significantly,
but that can result in split pages lingering on for too long).

This change makes the period configurable instead of fixing it at
1 minute. Users of large VMs can then adjust the period and/or the
ratio to reduce the number of pages zapped at one time while still
maintaining the same overall duration for cycling through the
entire list. By default, KVM derives a period from the ratio such
that a page will remain on the list for 1 hour on average.

Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20211020010627.305925-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
David Matlack
610265ea3d KVM: x86/mmu: Rename slot_handle_leaf to slot_handle_level_4k
slot_handle_leaf is a misnomer because it only operates on 4K SPTEs
whereas "leaf" is used to describe any valid terminal SPTE (4K or
large page). Rename slot_handle_leaf to slot_handle_level_4k to
avoid confusion.

Making this change makes it more obvious there is a benign discrepency
between the legacy MMU and the TDP MMU when it comes to dirty logging.
The legacy MMU only iterates through 4K SPTEs when zapping for
collapsing and when clearing D-bits. The TDP MMU, on the other hand,
iterates through SPTEs on all levels.

The TDP MMU behavior of zapping SPTEs at all levels is technically
overkill for its current dirty logging implementation, which always
demotes to 4k SPTES, but both the TDP MMU and legacy MMU zap if and only
if the SPTE can be replaced by a larger page, i.e. will not spuriously
zap 2m (or larger) SPTEs. Opportunistically add comments to explain this
discrepency in the code.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20211019162223.3935109-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:27 -04:00
Paolo Bonzini
2839180ce5 KVM: x86/mmu: clean up prefetch/prefault/speculative naming
"prefetch", "prefault" and "speculative" are used throughout KVM to mean
the same thing.  Use a single name, standardizing on "prefetch" which
is already used by various functions such as direct_pte_prefetch,
FNAME(prefetch_gpte), FNAME(pte_prefetch), etc.

Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:26 -04:00
David Stevens
1e76a3ce0d KVM: cleanup allocation of rmaps and page tracking data
Unify the flags for rmaps and page tracking data, using a
single flag in struct kvm_arch and a single loop to go
over all the address spaces and memslots.  This avoids
code duplication between alloc_all_memslots_rmaps and
kvm_page_track_enable_mmu_write_tracking.

Signed-off-by: David Stevens <stevensd@chromium.org>
[This patch is the delta between David's v2 and v3, with conflicts
 fixed and my own commit message. - Paolo]
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:25 -04:00
Chenyi Qiang
a3ca5281bb KVM: MMU: Reset mmu->pkru_mask to avoid stale data
When updating mmu->pkru_mask, the value can only be added but it isn't
reset in advance. This will make mmu->pkru_mask keep the stale data.
Fix this issue.

Fixes: 2d344105f5 ("KVM, pkeys: introduce pkru_mask to cache conditions")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20211021071022.1140-1-chenyi.qiang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-21 11:09:29 -04:00
Andrei Vagin
a7cc099f2e KVM: x86/mmu: kvm_faultin_pfn has to return false if pfh is returned
This looks like a typo in 8f32d5e563. This change didn't intend to do
any functional changes.

The problem was caught by gVisor tests.

Fixes: 8f32d5e563 ("KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Message-Id: <20211015163221.472508-1-avagin@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 08:19:18 -04:00
David Stevens
deae4a10f1 KVM: x86: only allocate gfn_track when necessary
Avoid allocating the gfn_track arrays if nothing needs them. If there
are no external to KVM users of the API (i.e. no GVT-g), then page
tracking is only needed for shadow page tables. This means that when tdp
is enabled and there are no external users, then the gfn_track arrays
can be lazily allocated when the shadow MMU is actually used. This avoid
allocations equal to .05% of guest memory when nested virtualization is
not used, if the kernel is compiled without GVT-g.

Signed-off-by: David Stevens <stevensd@chromium.org>
Message-Id: <20210922045859.2011227-3-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:58 -04:00
David Matlack
53597858db KVM: x86/mmu: Avoid memslot lookup in make_spte and mmu_try_to_unsync_pages
mmu_try_to_unsync_pages checks if page tracking is active for the given
gfn, which requires knowing the memslot. We can pass down the memslot
via make_spte to avoid this lookup.

The memslot is also handy for make_spte's marking of the gfn as dirty:
we can test whether dirty page tracking is enabled, and if so ensure that
pages are mapped as writable with 4K granularity.  Apart from the warning,
no functional change is intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
David Matlack
8a9f566ae4 KVM: x86/mmu: Avoid memslot lookup in rmap_add
Avoid the memslot lookup in rmap_add, by passing it down from the fault
handling code to mmu_set_spte and then to rmap_add.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
Paolo Bonzini
a12f43818b KVM: MMU: pass struct kvm_page_fault to mmu_set_spte
mmu_set_spte is called for either PTE prefetching or page faults.  The
three boolean arguments write_fault, speculative and host_writable are
always respectively false/true/true for prefetching and coming from
a struct kvm_page_fault for page faults.

Let mmu_set_spte distinguish these two situation by accepting a
possibly NULL struct kvm_page_fault argument.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
Paolo Bonzini
7158bee4b4 KVM: MMU: pass kvm_mmu_page struct to make_spte
The level and A/D bit support of the new SPTE can be found in the role,
which is stored in the kvm_mmu_page struct.  This merges two arguments
into one.

For the TDP MMU, the kvm_mmu_page was not used (kvm_tdp_mmu_map does
not use it if the SPTE is already present) so we fetch it just before
calling make_spte.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:55 -04:00
Paolo Bonzini
eb5cd7ffe1 KVM: MMU: remove unnecessary argument to mmu_set_spte
The level of the new SPTE can be found in the kvm_mmu_page struct; there
is no need to pass it down.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:55 -04:00
Paolo Bonzini
ad67e4806e KVM: MMU: clean up make_spte return value
Now that make_spte is called directly by the shadow MMU (rather than
wrapped by set_spte), it only has to return one boolean value.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
Paolo Bonzini
4758d47e0d KVM: MMU: inline set_spte in FNAME(sync_page)
Since the two callers of set_spte do different things with the results,
inlining it actually makes the code simpler to reason about.  For example,
FNAME(sync_page) already has a struct kvm_mmu_page *, but set_spte had to
fish it back out of sptep's private page data.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
Paolo Bonzini
d786c7783b KVM: MMU: inline set_spte in mmu_set_spte
Since the two callers of set_spte do different things with the results,
inlining it actually makes the code simpler to reason about.  For example,
mmu_set_spte looks quite like tdp_mmu_map_handle_target_level, but the
similarity is hidden by set_spte.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
David Matlack
888104138c KVM: x86/mmu: Avoid memslot lookup in page_fault_handle_page_track
Now that kvm_page_fault has a pointer to the memslot it can be passed
down to the page tracking code to avoid a redundant slot lookup.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
David Matlack
e710c5f6be KVM: x86/mmu: Pass the memslot around via struct kvm_page_fault
The memslot for the faulting gfn is used throughout the page fault
handling code, so capture it in kvm_page_fault as soon as we know the
gfn and use it in the page fault handling code that has direct access
to the kvm_page_fault struct.  Replace various tests using is_noslot_pfn
with more direct tests on fault->slot being NULL.

This, in combination with the subsequent patch, improves "Populate
memory time" in dirty_log_perf_test by 5% when using the legacy MMU.
There is no discerable improvement to the performance of the TDP MMU.

No functional change intended.

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
Paolo Bonzini
bcc4f2bc50 KVM: MMU: mark page dirty in make_spte
This simplifies set_spte, which we want to remove, and unifies code
between the shadow MMU and the TDP MMU.  The warning will be added
back later to make_spte as well.

There is a small disadvantage in the TDP MMU; it may unnecessarily mark
a page as dirty twice if two vCPUs end up mapping the same page twice.
However, this is a very small cost for a case that is already rare.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
David Matlack
68be1306ca KVM: x86/mmu: Fold rmap_recycle into rmap_add
Consolidate rmap_recycle and rmap_add into a single function since they
are only ever called together (and only from one place). This has a nice
side effect of eliminating an extra kvm_vcpu_gfn_to_memslot(). In
addition it makes mmu_set_spte(), which is a very long function, a
little shorter.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Sean Christopherson
b1a429fb18 KVM: x86/mmu: Verify shadow walk doesn't terminate early in page faults
WARN and bail if the shadow walk for faulting in a SPTE terminates early,
i.e. doesn't reach the expected level because the walk encountered a
terminal SPTE.  The shadow walks for page faults are subtle in that they
install non-leaf SPTEs (zapping leaf SPTEs if necessary!) in the loop
body, and consume the newly created non-leaf SPTE in the loop control,
e.g. __shadow_walk_next().  In other words, the walks guarantee that the
walk will stop if and only if the target level is reached by installing
non-leaf SPTEs to guarantee the walk remains valid.

Opportunistically use fault->goal-level instead of it.level in
FNAME(fetch) to further clarify that KVM always installs the leaf SPTE at
the target level.

Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210906122547.263316-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Paolo Bonzini
f0066d94c9 KVM: MMU: change tracepoints arguments to kvm_page_fault
Pass struct kvm_page_fault to tracepoints instead of extracting the
arguments from the struct.  This also lets the kvm_mmu_spte_requested
tracepoint pick the gfn directly from fault->gfn, instead of using
the address.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Paolo Bonzini
536f0e6ace KVM: MMU: change disallowed_hugepage_adjust() arguments to kvm_page_fault
Pass struct kvm_page_fault to disallowed_hugepage_adjust() instead of
extracting the arguments from the struct.  Tweak a bit the conditions
to avoid long lines.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini
73a3c65947 KVM: MMU: change kvm_mmu_hugepage_adjust() arguments to kvm_page_fault
Pass struct kvm_page_fault to kvm_mmu_hugepage_adjust() instead of
extracting the arguments from the struct; the results are also stored
in the struct, so the callers are adjusted consequently.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini
3c8ad5a675 KVM: MMU: change fast_page_fault() arguments to kvm_page_fault
Pass struct kvm_page_fault to fast_page_fault() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini
2f6305dd56 KVM: MMU: change kvm_tdp_mmu_map() arguments to kvm_page_fault
Pass struct kvm_page_fault to kvm_tdp_mmu_map() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:50 -04:00
Paolo Bonzini
43b74355ef KVM: MMU: change __direct_map() arguments to kvm_page_fault
Pass struct kvm_page_fault to __direct_map() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:50 -04:00
Paolo Bonzini
3a13f4fea3 KVM: MMU: change handle_abnormal_pfn() arguments to kvm_page_fault
Pass struct kvm_page_fault to handle_abnormal_pfn() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
3647cd04b7 KVM: MMU: change kvm_faultin_pfn() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to outputs of
kvm_faultin_pfn().  For now they have to be extracted again from struct
kvm_page_fault in the subsequent steps, but this is temporary until
other functions in the chain are switched over as well.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
b8a5d55115 KVM: MMU: change page_fault_handle_page_track() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to the arguments
of page_fault_handle_page_track().  The fields are initialized in the
callers, and page_fault_handle_page_track() receives a struct
kvm_page_fault instead of having to extract the arguments out of it.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
4326e57ef4 KVM: MMU: change direct_page_fault() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to
the arguments of direct_page_fault().  The fields are
initialized in the callers, and direct_page_fault()
receives a struct kvm_page_fault instead of having to
extract the arguments out of it.

Also adjust FNAME(page_fault) to store the max_level in
struct kvm_page_fault, to keep it similar to the direct
map path.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
c501040abc KVM: MMU: change mmu->page_fault() arguments to kvm_page_fault
Pass struct kvm_page_fault to mmu->page_fault() instead of
extracting the arguments from the struct.  FNAME(page_fault) can use
the precomputed bools from the error code.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:48 -04:00
Paolo Bonzini
d055f028a5 KVM: MMU: pass unadulterated gpa to direct_page_fault
Do not bother removing the low bits of the gpa.  This masking dates back
to the very first commit of KVM but it is unnecessary, as exemplified
by the other call in kvm_tdp_page_fault.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:48 -04:00
Lai Jiangshan
3e44dce4d0 KVM: X86: Move PTE present check from loop body to __shadow_walk_next()
So far, the loop bodies already ensure the PTE is present before calling
__shadow_walk_next():  Some loop bodies simply exit with a !PRESENT
directly and some other loop bodies, i.e. FNAME(fetch) and __direct_map()
do not currently guard their walks with is_shadow_present_pte, but only
because they install present non-leaf SPTEs in the loop itself.

But checking pte present in __shadow_walk_next() (which is called from
shadow_walk_okay()) is more prudent; walking past a !PRESENT SPTE
would lead to attempting to read a the next level SPTE from a garbage
iter->shadow_addr.  It also allows to remove the is_shadow_present_pte()
checks from the loop bodies.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210906122547.263316-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Lai Jiangshan
f1c4a88c41 KVM: X86: Don't unsync pagetables when speculative
We'd better only unsync the pagetable when there just was a really
write fault on a level-1 pagetable.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:10 -04:00
Lai Jiangshan
5591c0694d KVM: X86: Zap the invalid list after remote tlb flushing
In mmu_sync_children(), it can zap the invalid list after remote tlb flushing.
Emptifying the invalid list ASAP might help reduce a remote tlb flushing
in some cases.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan
c3e5e415bc KVM: X86: Change kvm_sync_page() to return true when remote flush is needed
Currently kvm_sync_page() returns true when there is any present spte.
But the return value is ignored in the callers.

Changing kvm_sync_page() to return true when remote flush is needed and
changing mmu->sync_page() not to directly flush can combine and reduce
remote flush requests.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan
06152b2dec KVM: X86: Remove kvm_mmu_flush_or_zap()
Because local_flush is useless, kvm_mmu_flush_or_zap() can be removed
and kvm_mmu_remote_flush_or_zap is used instead.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan
bd047e5440 KVM: X86: Don't flush current tlb on shadow page modification
After any shadow page modification, flushing tlb only on current VCPU
is weird due to other VCPU's tlb might still be stale.

In other words, if there is any mandatory tlb-flushing after shadow page
modification, SET_SPTE_NEED_REMOTE_TLB_FLUSH or remote_flush should be
set and the tlbs of all VCPUs should be flushed.  There is not point to
only flush current tlb except when the request is from vCPU's or pCPU's
activities.

If there was any bug that mandatory tlb-flushing is required and
SET_SPTE_NEED_REMOTE_TLB_FLUSH/remote_flush is failed to set, this patch
would expose the bug in a more destructive way.  The related code paths
are checked and no missing SET_SPTE_NEED_REMOTE_TLB_FLUSH is found yet.

Currently, there is no optional tlb-flushing after sync page related code
is changed to flush tlb timely.  So we can just remove these local flushing
code.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Sean Christopherson
c6cecc4b93 KVM: x86/mmu: Complete prefetch for trailing SPTEs for direct, legacy MMU
Make a final call to direct_pte_prefetch_many() if there are "trailing"
SPTEs to prefetch, i.e. SPTEs for GFNs following the faulting GFN.  The
call to direct_pte_prefetch_many() in the loop only handles the case
where there are !PRESENT SPTEs preceding a PRESENT SPTE.

E.g. if the faulting GFN is a multiple of 8 (the prefetch size) and all
SPTEs for the following GFNs are !PRESENT, the loop will terminate with
"start = sptep+1" and not prefetch any SPTEs.

Prefetching trailing SPTEs as intended can drastically reduce the number
of guest page faults, e.g. accessing the first byte of every 4kb page in
a 6gb chunk of virtual memory, in a VM with 8gb of preallocated memory,
the number of pf_fixed events observed in L0 drops from ~1.75M to <0.27M.

Note, this only affects memory that is backed by 4kb pages as KVM doesn't
prefetch when installing hugepages.  Shadow paging prefetching is not
affected as it does not batch the prefetches due to the need to process
the corresponding guest PTE.  The TDP MMU is not affected because it
doesn't have prefetching, yet...

Fixes: 957ed9effd ("KVM: MMU: prefetch ptes when intercepted guest #PF")
Cc: Sergey Senozhatsky <senozhatsky@google.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210818235615.2047588-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:08 -04:00
Lai Jiangshan
65855ed8b0 KVM: X86: Synchronize the shadow pagetable before link it
If gpte is changed from non-present to present, the guest doesn't need
to flush tlb per SDM.  So the host must synchronze sp before
link it.  Otherwise the guest might use a wrong mapping.

For example: the guest first changes a level-1 pagetable, and then
links its parent to a new place where the original gpte is non-present.
Finally the guest can access the remapped area without flushing
the tlb.  The guest's behavior should be allowed per SDM, but the host
kvm mmu makes it wrong.

Fixes: 4731d4c7a0 ("KVM: MMU: out of sync shadow core")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 11:01:00 -04:00
Paolo Bonzini
4ac214574d KVM: MMU: mark role_regs and role accessors as maybe unused
It is reasonable for these functions to be used only in some configurations,
for example only if the host is 64-bits (and therefore supports 64-bit
guests).  It is also reasonable to keep the role_regs and role accessors
in sync even though some of the accessors may be used only for one of the
two sets (as is the case currently for CR4.LA57)..

Because clang reports warnings for unused inlines declared in a .c file,
mark both sets of accessors as __maybe_unused.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:56:38 -04:00
Sean Christopherson
e7177339d7 Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
Revert a misguided illegal GPA check when "translating" a non-nested GPA.
The check is woefully incomplete as it does not fill in @exception as
expected by all callers, which leads to KVM attempting to inject a bogus
exception, potentially exposing kernel stack information in the process.

 WARNING: CPU: 0 PID: 8469 at arch/x86/kvm/x86.c:525 exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 CPU: 1 PID: 8469 Comm: syz-executor531 Not tainted 5.14.0-rc7-syzkaller #0
 RIP: 0010:exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 Call Trace:
  x86_emulate_instruction+0xef6/0x1460 arch/x86/kvm/x86.c:7853
  kvm_mmu_page_fault+0x2f0/0x1810 arch/x86/kvm/mmu/mmu.c:5199
  handle_ept_misconfig+0xdf/0x3e0 arch/x86/kvm/vmx/vmx.c:5336
  __vmx_handle_exit arch/x86/kvm/vmx/vmx.c:6021 [inline]
  vmx_handle_exit+0x336/0x1800 arch/x86/kvm/vmx/vmx.c:6038
  vcpu_enter_guest+0x2a1c/0x4430 arch/x86/kvm/x86.c:9712
  vcpu_run arch/x86/kvm/x86.c:9779 [inline]
  kvm_arch_vcpu_ioctl_run+0x47d/0x1b20 arch/x86/kvm/x86.c:10010
  kvm_vcpu_ioctl+0x49e/0xe50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3652

The bug has escaped notice because practically speaking the GPA check is
useless.  The GPA check in question only comes into play when KVM is
walking guest page tables (or "translating" CR3), and KVM already handles
illegal GPA checks by setting reserved bits in rsvd_bits_mask for each
PxE, or in the case of CR3 for loading PTDPTRs, manually checks for an
illegal CR3.  This particular failure doesn't hit the existing reserved
bits checks because syzbot sets guest.MAXPHYADDR=1, and IA32 architecture
simply doesn't allow for such an absurd MAXPHYADDR, e.g. 32-bit paging
doesn't define any reserved PA bits checks, which KVM emulates by only
incorporating the reserved PA bits into the "high" bits, i.e. bits 63:32.

Simply remove the bogus check.  There is zero meaningful value and no
architectural justification for supporting guest.MAXPHYADDR < 32, and
properly filling the exception would introduce non-trivial complexity.

This reverts commit ec7771ab47.

Fixes: ec7771ab47 ("KVM: x86: mmu: Add guest physical address check in translate_gpa()")
Cc: stable@vger.kernel.org
Reported-by: syzbot+200c08e88ae818f849ce@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210831164224.1119728-2-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:18:02 -04:00
Sean Christopherson
a717a780fc KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
Include pml5_root in the set of special roots if and only if the host,
and thus NPT, is using 5-level paging.  mmu_alloc_special_roots() expects
special roots to be allocated as a bundle, i.e. they're either all valid
or all NULL.  But for pml5_root, that expectation only holds true if the
host uses 5-level paging, which causes KVM to WARN about pml5_root being
NULL when the other special roots are valid.

The silver lining of 4-level vs. 5-level NPT being tied to the host
kernel's paging level is that KVM's shadow root level is constant; unlike
VMX's EPT, KVM can't choose 4-level NPT based on guest.MAXPHYADDR.  That
means KVM can still expect pml5_root to be bundled with the other special
roots, it just needs to be conditioned on the shadow root level.

Fixes: cb0f722aff ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210824005824.205536-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 05:56:38 -04:00
Wei Huang
cb0f722aff KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host
When the 5-level page table CPU flag is set in the host, but the guest
has CR4.LA57=0 (including the case of a 32-bit guest), the top level of
the shadow NPT page tables will be fixed, consisting of one pointer to
a lower-level table and 511 non-present entries.  Extend the existing
code that creates the fixed PML4 or PDP table, to provide a fixed PML5
table if needed.

This is not needed on EPT because the number of layers in the tables
is specified in the EPTP instead of depending on the host CR4.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-3-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:07:48 -04:00
Wei Huang
746700d21f KVM: x86: Allow CPU to force vendor-specific TDP level
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:44 -04:00
Paolo Bonzini
ec607a564f KVM: x86: clamp host mapping level to max_level in kvm_mmu_max_mapping_level
This change started as a way to make kvm_mmu_hugepage_adjust a bit simpler,
but it does fix two bugs as well.

One bug is in zapping collapsible PTEs.  If a large page size is
disallowed but not all of them, kvm_mmu_max_mapping_level will return the
host mapping level and the small PTEs will be zapped up to that level.
However, if e.g. 1GB are prohibited, we can still zap 4KB mapping and
preserve the 2MB ones. This can happen for example when NX huge pages
are in use.

The second would happen when userspace backs guest memory
with a 1gb hugepage but only assign a subset of the page to
the guest.  1gb pages would be disallowed by the memslot, but
not 2mb.  kvm_mmu_max_mapping_level() would fall through to the
host_pfn_mapping_level() logic, see the 1gb hugepage, and map the whole
thing into the guest.

Fixes: 2f57b7051f ("KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_level")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:41 -04:00
Mingwei Zhang
71f51d2c32 KVM: x86/mmu: Add detailed page size stats
Existing KVM code tracks the number of large pages regardless of their
sizes. Therefore, when large page of 1GB (or larger) is adopted, the
information becomes less useful because lpages counts a mix of 1G and 2M
pages.

So remove the lpages since it is easy for user space to aggregate the info.
Instead, provide a comprehensive page stats of all sizes from 4K to 512G.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Jing Zhang <jingzhangos@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20210803044607.599629-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Mingwei Zhang
4293ddb788 KVM: x86/mmu: Remove redundant spte present check in mmu_set_spte
Drop an unnecessary is_shadow_present_pte() check when updating the rmaps
after installing a non-MMIO SPTE.  set_spte() is used only to create
shadow-present SPTEs, e.g. MMIO SPTEs are handled early on, mmu_set_spte()
runs with mmu_lock held for write, i.e. the SPTE can't be zapped between
writing the SPTE and updating the rmaps.

Opportunistically combine the "new SPTE" logic for large pages and rmaps.

No functional change intended.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20210803044607.599629-2-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Maxim Levitsky
9cc13d60ba KVM: x86/mmu: allow APICv memslot to be enabled but invisible
on AMD, APIC virtualization needs to dynamicaly inhibit the AVIC in a
response to some events, and this is problematic and not efficient to do by
enabling/disabling the memslot that covers APIC's mmio range.

Plus due to SRCU locking, it makes it more complex to
request AVIC inhibition.

Instead, the APIC memslot will be always enabled, but be invisible
to the guest, such as the MMU code will not install a SPTE for it,
when it is inhibited and instead jump straight to emulating the access.

When inhibiting the AVIC, this SPTE will be zapped.

This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:22 -04:00
Maxim Levitsky
8f32d5e563 KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code
This will allow it to return RET_PF_EMULATE for APIC mmio
emulation.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky
33a5c0009d KVM: x86/mmu: rename try_async_pf to kvm_faultin_pfn
try_async_pf is a wrong name for this function, since this code
is used when asynchronous page fault is not enabled as well.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky
edb298c663 KVM: x86/mmu: bump mmu notifier count in kvm_zap_gfn_range
This together with previous patch, ensures that
kvm_zap_gfn_range doesn't race with page fault
running on another vcpu, and will make this page fault code
retry instead.

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:19 -04:00
Maxim Levitsky
88f585358b KVM: x86/mmu: add comment explaining arguments to kvm_zap_gfn_range
This comment makes it clear that the range of gfns that this
function receives is non inclusive.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:18 -04:00
Maxim Levitsky
2822da4466 KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address
kvm_flush_remote_tlbs_with_address expects (start gfn, number of pages),
and not (start gfn, end gfn)

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:16 -04:00
Sean Christopherson
5a324c24b6 Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"
This together with the next patch will fix a future race between
kvm_zap_gfn_range and the page fault handler, which will happen
when AVIC memslot is going to be only partially disabled.

The performance impact is minimal since kvm_zap_gfn_range is only
called by users, update_mtrr() and kvm_post_set_cr0().

Both only use it if the guest has non-coherent DMA, in order to
honor the guest's UC memtype.

MTRR and CD setup only happens at boot, and generally in an area
where the page tables should be small (for CD) or should not
include the affected GFNs at all (for MTRRs).

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:15 -04:00
Peter Xu
3bcd0662d6 KVM: X86: Introduce mmu_rmaps_stat per-vm debugfs file
Use this file to dump rmap statistic information.  The statistic is done by
calculating the rmap count and the result is log-2-based.

An example output of this looks like (idle 6GB guest, right after boot linux):

Rmap_Count:     0       1       2-3     4-7     8-15    16-31   32-63   64-127  128-255 256-511 512-1023
Level=4K:       3086676 53045   12330   1272    502     121     76      2       0       0       0
Level=2M:       5947    231     0       0       0       0       0       0       0       0       0
Level=1G:       32      0       0       0       0       0       0       0       0       0       0

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-5-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:11 -04:00
Paolo Bonzini
9a63b4517c Merge branch 'kvm-tdpmmu-fixes' into HEAD
Merge topic branch with fixes for 5.14-rc6 and 5.15 merge window.
2021-08-13 03:35:01 -04:00
Sean Christopherson
ce25681d59 KVM: x86/mmu: Protect marking SPs unsync when using TDP MMU with spinlock
Add yet another spinlock for the TDP MMU and take it when marking indirect
shadow pages unsync.  When using the TDP MMU and L1 is running L2(s) with
nested TDP, KVM may encounter shadow pages for the TDP entries managed by
L1 (controlling L2) when handling a TDP MMU page fault.  The unsync logic
is not thread safe, e.g. the kvm_mmu_page fields are not atomic, and
misbehaves when a shadow page is marked unsync via a TDP MMU page fault,
which runs with mmu_lock held for read, not write.

Lack of a critical section manifests most visibly as an underflow of
unsync_children in clear_unsync_child_bit() due to unsync_children being
corrupted when multiple CPUs write it without a critical section and
without atomic operations.  But underflow is the best case scenario.  The
worst case scenario is that unsync_children prematurely hits '0' and
leads to guest memory corruption due to KVM neglecting to properly sync
shadow pages.

Use an entirely new spinlock even though piggybacking tdp_mmu_pages_lock
would functionally be ok.  Usurping the lock could degrade performance when
building upper level page tables on different vCPUs, especially since the
unsync flow could hold the lock for a comparatively long time depending on
the number of indirect shadow pages and the depth of the paging tree.

For simplicity, take the lock for all MMUs, even though KVM could fairly
easily know that mmu_lock is held for write.  If mmu_lock is held for
write, there cannot be contention for the inner spinlock, and marking
shadow pages unsync across multiple vCPUs will be slow enough that
bouncing the kvm_arch cacheline should be in the noise.

Note, even though L2 could theoretically be given access to its own EPT
entries, a nested MMU must hold mmu_lock for write and thus cannot race
against a TDP MMU page fault.  I.e. the additional spinlock only _needs_ to
be taken by the TDP MMU, as opposed to being taken by any MMU for a VM
that is running with the TDP MMU enabled.  Holding mmu_lock for read also
prevents the indirect shadow page from being freed.  But as above, keep
it simple and always take the lock.

Alternative #1, the TDP MMU could simply pass "false" for can_unsync and
effectively disable unsync behavior for nested TDP.  Write protecting leaf
shadow pages is unlikely to noticeably impact traditional L1 VMMs, as such
VMMs typically don't modify TDP entries, but the same may not hold true for
non-standard use cases and/or VMMs that are migrating physical pages (from
L1's perspective).

Alternative #2, the unsync logic could be made thread safe.  In theory,
simply converting all relevant kvm_mmu_page fields to atomics and using
atomic bitops for the bitmap would suffice.  However, (a) an in-depth audit
would be required, (b) the code churn would be substantial, and (c) legacy
shadow paging would incur additional atomic operations in performance
sensitive paths for no benefit (to legacy shadow paging).

Fixes: a2855afc7e ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181815.3378104-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:32:14 -04:00
Paolo Bonzini
c3e9434c98 Merge branch 'kvm-vmx-secctl' into HEAD
Merge common topic branch for 5.14-rc6 and 5.15 merge window.
2021-08-10 13:45:26 -04:00
David Matlack
93e083d4f4 KVM: x86/mmu: Rename __gfn_to_rmap to gfn_to_rmap
gfn_to_rmap was removed in the previous patch so there is no need to
retain the double underscore on __gfn_to_rmap.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-06 07:52:58 -04:00
David Matlack
601f8af01e KVM: x86/mmu: Leverage vcpu->last_used_slot for rmap_add and rmap_recycle
rmap_add() and rmap_recycle() both run in the context of the vCPU and
thus we can use kvm_vcpu_gfn_to_memslot() to look up the memslot. This
enables rmap_add() and rmap_recycle() to take advantage of
vcpu->last_used_slot and avoid expensive memslot searching.

This change improves the performance of "Populate memory time" in
dirty_log_perf_test with tdp_mmu=N. In addition to improving the
performance, "Populate memory time" no longer scales with the number
of memslots in the VM.

Command                         | Before           | After
------------------------------- | ---------------- | -------------
./dirty_log_perf_test -v64 -x1  | 15.18001570s     | 14.99469366s
./dirty_log_perf_test -v64 -x64 | 18.71336392s     | 14.98675076s

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-06 07:52:29 -04:00
Sean Christopherson
d5aaad6f83 KVM: x86/mmu: Fix per-cpu counter corruption on 32-bit builds
Take a signed 'long' instead of an 'unsigned long' for the number of
pages to add/subtract to the total number of pages used by the MMU.  This
fixes a zero-extension bug on 32-bit kernels that effectively corrupts
the per-cpu counter used by the shrinker.

Per-cpu counters take a signed 64-bit value on both 32-bit and 64-bit
kernels, whereas kvm_mod_used_mmu_pages() takes an unsigned long and thus
an unsigned 32-bit value on 32-bit kernels.  As a result, the value used
to adjust the per-cpu counter is zero-extended (unsigned -> signed), not
sign-extended (signed -> signed), and so KVM's intended -1 gets morphed to
4294967295 and effectively corrupts the counter.

This was found by a staggering amount of sheer dumb luck when running
kvm-unit-tests on a 32-bit KVM build.  The shrinker just happened to kick
in while running tests and do_shrink_slab() logged an error about trying
to free a negative number of objects.  The truly lucky part is that the
kernel just happened to be a slightly stale build, as the shrinker no
longer yells about negative objects as of commit 18bb473e50 ("mm:
vmscan: shrink deferred objects proportional to priority").

 vmscan: shrink_slab: mmu_shrink_scan+0x0/0x210 [kvm] negative objects to delete nr=-858993460

Fixes: bc8a3d8925 ("kvm: mmu: Fix overflow on kvm mmu page limit calculation")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210804214609.1096003-1-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-05 03:33:56 -04:00
Peter Xu
a75b540451 KVM: X86: Optimize zapping rmap
Using rmap_get_first() and rmap_remove() for zapping a huge rmap list could be
slow.  The easy way is to travers the rmap list, collecting the a/d bits and
free the slots along the way.

Provide a pte_list_destroy() and do exactly that.

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220605.26377-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Peter Xu
13236e25eb KVM: X86: Optimize pte_list_desc with per-array counter
Add a counter field into pte_list_desc, so as to simplify the add/remove/loop
logic.  E.g., we don't need to loop over the array any more for most reasons.

This will make more sense after we've switched the array size to be larger
otherwise the counter will be a waste.

Initially I wanted to store a tail pointer at the head of the array list so we
don't need to traverse the list at least for pushing new ones (if without the
counter we traverse both the list and the array).  However that'll need
slightly more change without a huge lot benefit, e.g., after we grow entry
numbers per array the list traversing is not so expensive.

So let's be simple but still try to get as much benefit as we can with just
these extra few lines of changes (not to mention the code looks easier too
without looping over arrays).

I used the same a test case to fork 500 child and recycle them ("./rmap_fork
500" [1]), this patch further speeds up the total fork time of about 4%, which
is a total of 33% of vanilla kernel:

        Vanilla:      473.90 (+-5.93%)
        3->15 slots:  366.10 (+-4.94%)
        Add counter:  351.00 (+-3.70%)

[1] 825436f825

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220602.26327-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Peter Xu
dc1cff9691 KVM: X86: MMU: Tune PTE_LIST_EXT to be bigger
Currently rmap array element only contains 3 entries.  However for EPT=N there
could have a lot of guest pages that got tens of even hundreds of rmap entry.

A normal distribution of a 6G guest (even if idle) shows this with rmap count
statistics:

Rmap_Count:     0       1       2-3     4-7     8-15    16-31   32-63   64-127  128-255 256-511 512-1023
Level=4K:       3089171 49005   14016   1363    235     212     15      7       0       0       0
Level=2M:       5951    227     0       0       0       0       0       0       0       0       0
Level=1G:       32      0       0       0       0       0       0       0       0       0       0

If we do some more fork some pages will grow even larger rmap counts.

This patch makes PTE_LIST_EXT bigger so it'll be more efficient for the general
use case of EPT=N as we do list reference less and the loops over PTE_LIST_EXT
will be slightly more efficient; but still not too large so less waste when
array not full.

It should not affecting EPT=Y since EPT normally only has zero or one rmap
entry for each page, so no array is even allocated.

With a test case to fork 500 child and recycle them ("./rmap_fork 500" [1]),
this patch speeds up fork time of about 29%.

    Before: 473.90 (+-5.93%)
    After:  366.10 (+-4.94%)

[1] 825436f825

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-6-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Hamza Mahfooz
269e9552d2 KVM: const-ify all relevant uses of struct kvm_memory_slot
As alluded to in commit f36f3f2846 ("KVM: add "new" argument to
kvm_arch_commit_memory_region"), a bunch of other places where struct
kvm_memory_slot is used, needs to be refactored to preserve the
"const"ness of struct kvm_memory_slot across-the-board.

Signed-off-by: Hamza Mahfooz <someguy@effective-light.com>
Message-Id: <20210713023338.57108-1-someguy@effective-light.com>
[Do not touch body of slot_rmap_walk_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-03 06:04:24 -04:00
David Matlack
6e8eb2060c KVM: x86/mmu: fast_page_fault support for the TDP MMU
Make fast_page_fault interoperate with the TDP MMU by leveraging
walk_shadow_page_lockless_{begin,end} to acquire the RCU read lock and
introducing a new helper function kvm_tdp_mmu_fast_pf_get_last_sptep to
grab the lowest level sptep.

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:47 -04:00
David Matlack
c5c8c7c530 KVM: x86/mmu: Make walk_shadow_page_lockless_{begin,end} interoperate with the TDP MMU
Acquire the RCU read lock in walk_shadow_page_lockless_begin and release
it in walk_shadow_page_lockless_end when the TDP MMU is enabled.  This
should not introduce any functional changes but is used in the following
commit to make fast_page_fault interoperate with the TDP MMU.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-4-dmatlack@google.com>
[Use if...else instead of if(){return;}]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:47 -04:00
David Matlack
76cd325ea7 KVM: x86/mmu: Rename cr2_or_gpa to gpa in fast_page_fault
fast_page_fault is only called from direct_page_fault where we know the
address is a gpa.

Fixes: 736c291c9f ("KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM")
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:46 -04:00
Peter Xu
ec1cf69c37 KVM: X86: Add per-vm stat for max rmap list size
Add a new statistic max_mmu_rmap_size, which stores the maximum size of rmap
for the vm.

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210625153214.43106-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson
7fa2a34751 KVM: x86/mmu: Return old SPTE from mmu_spte_clear_track_bits()
Return the old SPTE when clearing a SPTE and push the "old SPTE present"
check to the caller.  Private shadow page support will use the old SPTE
in rmap_remove() to determine whether or not there is a linked private
shadow page.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <b16bac1fd1357aaf39e425aab2177d3f89ee8318.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson
03fffc5493 KVM: x86/mmu: Refactor shadow walk in __direct_map() to reduce indentation
Employ a 'continue' to reduce the indentation for linking a new shadow
page during __direct_map() in preparation for linking private pages.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <702419686d5700373123f6ea84e7a946c2cad8b4.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson
19025e7bc5 KVM: x86/mmu: Mark VM as bugged if page fault returns RET_PF_INVALID
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <298980aa5fc5707184ac082287d13a800cd9c25f.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:36 -04:00
Linus Torvalds
405386b021 * Allow again loading KVM on 32-bit non-PAE builds
* Fixes for host SMIs on AMD
 
 * Fixes for guest SMIs on AMD
 
 * Fixes for selftests on s390 and ARM
 
 * Fix memory leak
 
 * Enforce no-instrumentation area on vmentry when hardware
   breakpoints are in use.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDwRi4UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOt4AgAl6xEkMwDC74d/QFIOA7s2GD3ugfa
 z5XqGN1qz/nmEMnuIg6/tjTXDPmn/dfLMqy8RGZfyUv6xbgPcv/7JuFMRILvwGTb
 SbOVrGnR/QOhMdlfWH34qDkXeEsthTXSgQgVm/iiED0TttvQYVcZ/E9mgzaWQXor
 T1yTug2uAUXJ1EBxY0ZBo2kbh+BvvdmhEF0pksZOuwqZdH3zn3QCXwAwkL/OtUYE
 M6nNn3j1LU38C4OK1niXOZZVOuMIdk/l7LyFpjUQTFlIqitQAPtBE5MD+K+A9oC2
 Yocxyj2tId1e6o8bLic/oN8/LpdORTvA/wDMj5M1DcMzvxQuQIpGYkcVGg==
 =gjVA
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Allow again loading KVM on 32-bit non-PAE builds

 - Fixes for host SMIs on AMD

 - Fixes for guest SMIs on AMD

 - Fixes for selftests on s390 and ARM

 - Fix memory leak

 - Enforce no-instrumentation area on vmentry when hardware breakpoints
   are in use.

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
  KVM: selftests: smm_test: Test SMM enter from L2
  KVM: nSVM: Restore nested control upon leaving SMM
  KVM: nSVM: Fix L1 state corruption upon return from SMM
  KVM: nSVM: Introduce svm_copy_vmrun_state()
  KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUN
  KVM: nSVM: Check the value written to MSR_VM_HSAVE_PA
  KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilities
  KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header fails
  KVM: SVM: add module param to control the #SMI interception
  KVM: SVM: remove INIT intercept handler
  KVM: SVM: #SMI interception must not skip the instruction
  KVM: VMX: Remove vmx_msr_index from vmx.h
  KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()
  KVM: selftests: Address extra memslot parameters in vm_vaddr_alloc
  kvm: debugfs: fix memory leak in kvm_create_vm_debugfs
  KVM: x86/pmu: Clear anythread deprecated bit when 0xa leaf is unsupported on the SVM
  KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio
  KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
  KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
  KVM: x86: Use kernel's x86_phys_bits to handle reduced MAXPHYADDR
  ...
2021-07-15 11:56:07 -07:00
Sean Christopherson
fc9bf2e087 KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks.  The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".

For non-SEV guests, not dropping bits is the correct behavior.  Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits.  And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.

For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted.  Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM.  The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.

Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-5-seanjc@google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-14 12:17:56 -04:00
Linus Torvalds
36824f198c ARM:
- Add MTE support in guests, complete with tag save/restore interface
 
 - Reduce the impact of CMOs by moving them in the page-table code
 
 - Allow device block mappings at stage-2
 
 - Reduce the footprint of the vmemmap in protected mode
 
 - Support the vGIC on dumb systems such as the Apple M1
 
 - Add selftest infrastructure to support multiple configuration
   and apply that to PMU/non-PMU setups
 
 - Add selftests for the debug architecture
 
 - The usual crop of PMU fixes
 
 PPC:
 
 - Support for the H_RPT_INVALIDATE hypercall
 
 - Conversion of Book3S entry/exit to C
 
 - Bug fixes
 
 S390:
 
 - new HW facilities for guests
 
 - make inline assembly more robust with KASAN and co
 
 x86:
 
 - Allow userspace to handle emulation errors (unknown instructions)
 
 - Lazy allocation of the rmap (host physical -> guest physical address)
 
 - Support for virtualizing TSC scaling on VMX machines
 
 - Optimizations to avoid shattering huge pages at the beginning of live migration
 
 - Support for initializing the PDPTRs without loading them from memory
 
 - Many TLB flushing cleanups
 
 - Refuse to load if two-stage paging is available but NX is not (this has
   been a requirement in practice for over a year)
 
 - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
   CR0/CR4/EFER, using the MMU mode everywhere once it is computed
   from the CPU registers
 
 - Use PM notifier to notify the guest about host suspend or hibernate
 
 - Support for passing arguments to Hyper-V hypercalls using XMM registers
 
 - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap on
   AMD processors
 
 - Hide Hyper-V hypercalls that are not included in the guest CPUID
 
 - Fixes for live migration of virtual machines that use the Hyper-V
   "enlightened VMCS" optimization of nested virtualization
 
 - Bugfixes (not many)
 
 Generic:
 
 - Support for retrieving statistics without debugfs
 
 - Cleanups for the KVM selftests API
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDV9UYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOIRgf/XX8fKLh24RnTOs2ldIu2AfRGVrT4
 QMrr8MxhmtukBAszk2xKvBt8/6gkUjdaIC3xqEnVjxaDaUvZaEtP7CQlF5JV45rn
 iv1zyxUKucXrnIOr+gCioIT7qBlh207zV35ArKioP9Y83cWx9uAs22pfr6g+7RxO
 h8bJZlJbSG6IGr3voANCIb9UyjU1V/l8iEHqRwhmr/A5rARPfD7g8lfMEQeGkzX6
 +/UydX2fumB3tl8e2iMQj6vLVdSOsCkehvpHK+Z33EpkKhan7GwZ2sZ05WmXV/nY
 QLAYfD10KegoNWl5Ay4GTp4hEAIYVrRJCLC+wnLdc0U8udbfCuTC31LK4w==
 =NcRh
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This covers all architectures (except MIPS) so I don't expect any
  other feature pull requests this merge window.

  ARM:

   - Add MTE support in guests, complete with tag save/restore interface

   - Reduce the impact of CMOs by moving them in the page-table code

   - Allow device block mappings at stage-2

   - Reduce the footprint of the vmemmap in protected mode

   - Support the vGIC on dumb systems such as the Apple M1

   - Add selftest infrastructure to support multiple configuration and
     apply that to PMU/non-PMU setups

   - Add selftests for the debug architecture

   - The usual crop of PMU fixes

  PPC:

   - Support for the H_RPT_INVALIDATE hypercall

   - Conversion of Book3S entry/exit to C

   - Bug fixes

  S390:

   - new HW facilities for guests

   - make inline assembly more robust with KASAN and co

  x86:

   - Allow userspace to handle emulation errors (unknown instructions)

   - Lazy allocation of the rmap (host physical -> guest physical
     address)

   - Support for virtualizing TSC scaling on VMX machines

   - Optimizations to avoid shattering huge pages at the beginning of
     live migration

   - Support for initializing the PDPTRs without loading them from
     memory

   - Many TLB flushing cleanups

   - Refuse to load if two-stage paging is available but NX is not (this
     has been a requirement in practice for over a year)

   - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
     CR0/CR4/EFER, using the MMU mode everywhere once it is computed
     from the CPU registers

   - Use PM notifier to notify the guest about host suspend or hibernate

   - Support for passing arguments to Hyper-V hypercalls using XMM
     registers

   - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
     on AMD processors

   - Hide Hyper-V hypercalls that are not included in the guest CPUID

   - Fixes for live migration of virtual machines that use the Hyper-V
     "enlightened VMCS" optimization of nested virtualization

   - Bugfixes (not many)

  Generic:

   - Support for retrieving statistics without debugfs

   - Cleanups for the KVM selftests API"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
  KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
  kvm: x86: disable the narrow guest module parameter on unload
  selftests: kvm: Allows userspace to handle emulation errors.
  kvm: x86: Allow userspace to handle emulation errors
  KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
  KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
  KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
  KVM: x86: Enhance comments for MMU roles and nested transition trickiness
  KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
  KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
  KVM: x86/mmu: Use MMU's role to determine PTTYPE
  KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
  KVM: x86/mmu: Add a helper to calculate root from role_regs
  KVM: x86/mmu: Add helper to update paging metadata
  KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
  KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
  KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
  KVM: x86/mmu: Get nested MMU's root level from the MMU's role
  ...
2021-06-28 15:40:51 -07:00
Linus Torvalds
8e4d7a78f0 Misc cleanups & removal of obsolete code.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZejQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hKCg//a0wiOyJBiWLAW0uiOucF2ICVQZj5rKgi
 M4HRJZ9jNkFUFVQ/eXYI7uedSqJ6B4hwoUqU6Yp6e05CF/Jgxe2OQXnknearjtDp
 xs8yBsnLolCrtHzWvuJAZL8InXwvUYrsxu1A8kWKd1ezZQ2V2aFEI4KtYcPVoBBi
 hRNMy1JVJbUoCG5s/CbsMpTKH0ehQFGsG46rCLQJ4s9H3rcYaCv9NY2q1EYKBrha
 ZiZjPSFBKaTAVEoc3tUbqsNZAqgyuwRcBQL0K5VDI9p92fudvKgsTI7erbmp+Lij
 mLhjjoPQK1C07kj0HpCPyoGMiTbJ2piag/jZnxSEiQnNxmZjqjRUhDuDhp6uc/SE
 98CEYWPoVbU7N6QLEurHVRAfaQ/ZC7PfiR7lhkoJHizaszFY1NFRxplsU1rzTwGq
 YZdr+y49tJTCU1wIvWF2eFBZHBEgfA6fP4TRGgVsQ7r8IhugR1nCLcnTfMLYXt2t
 9Fe57M7cBgZMgNf5AgvraowugJrTLX7240YPKxHnv5yLjIBt4bulm8X4Lq/MKgc+
 UbRfB7Trd2c9T4EVDy26rQ7qk+VC8rIbzEp4kvlDpV8u7BtLYhVonxVz6qPong5b
 NxOczaFsfL5gWJmfGU+vfc+RFl2lNhQQMLo/gdEn89qZL8nxL/4byejwfCs0YfC2
 wgDXNwRJb+g=
 =YqZp
 -----END PGP SIGNATURE-----

Merge tag 'x86-cleanups-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cleanups from Ingo Molnar:
 "Misc cleanups & removal of obsolete code"

* tag 'x86-cleanups-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sgx: Correct kernel-doc's arg name in sgx_encl_release()
  doc: Remove references to IBM Calgary
  x86/setup: Document that Windows reserves the first MiB
  x86/crash: Remove crash_reserve_low_1M()
  x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
  x86/alternative: Align insn bytes vertically
  x86: Fix leftover comment typos
  x86/asm: Simplify __smp_mb() definition
  x86/alternatives: Make the x86nops[] symbol static
2021-06-28 13:10:25 -07:00
Sean Christopherson
27de925044 KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
Let the guest use 1g hugepages if TDP is enabled and the host supports
GBPAGES, KVM can't actively prevent the guest from using 1g pages in this
case since they can't be disabled in the hardware page walker.  While
injecting a page fault if a bogus 1g page is encountered during a
software page walk is perfectly reasonable since KVM is simply honoring
userspace's vCPU model, doing so arguably doesn't provide any meaningful
value, and at worst will be horribly confusing as the guest will see
inconsistent behavior and seemingly spurious page faults.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-55-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:48 -04:00
Sean Christopherson
f82fdaf536 KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
Drop the extra reset of shadow_zero_bits in the nested NPT flow now
that shadow_mmu_init_context computes the correct level for nested NPT.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-52-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:47 -04:00
Sean Christopherson
7cd138db5c KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
Drop the pre-computed last_nonleaf_level, which is arguably wrong and at
best confusing.  Per the comment:

  Can have large pages at levels 2..last_nonleaf_level-1.

the intent of the variable would appear to be to track what levels can
_legally_ have large pages, but that intent doesn't align with reality.
The computed value will be wrong for 5-level paging, or if 1gb pages are
not supported.

The flawed code is not a problem in practice, because except for 32-bit
PSE paging, bit 7 is reserved if large pages aren't supported at the
level.  Take advantage of this invariant and simply omit the level magic
math for 64-bit page tables (including PAE).

For 32-bit paging (non-PAE), the adjustments are needed purely because
bit 7 is ignored if PSE=0.  Retain that logic as is, but make
is_last_gpte() unique per PTTYPE so that the PSE check is avoided for
PAE and EPT paging.  In the spirit of avoiding branches, bump the "last
nonleaf level" for 32-bit PSE paging by adding the PSE bit itself.

Note, bit 7 is ignored or has other meaning in CR3/EPTP, but despite
FNAME(walk_addr_generic) briefly grabbing CR3/EPTP in "pte", they are
not PTEs and will blow up all the other gpte helpers.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-51-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:47 -04:00
Sean Christopherson
961f84457c KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
Extract the reserved SPTE check and print helpers in get_mmio_spte() to
new helpers so that KVM can also WARN on reserved badness when making a
SPTE.

Tag the checking helper with __always_inline to improve the probability
of the compiler generating optimal code for the checking loop, e.g. gcc
appears to avoid using %rbp when the helper is tagged with a vanilla
"inline".

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-48-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson
36f267871e KVM: x86/mmu: Use MMU's role to determine PTTYPE
Use the MMU's role instead of vCPU state or role_regs to determine the
PTTYPE, i.e. which helpers to wire up.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-47-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson
fe660f7244 KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
Skip paging32E_init_context() and paging64_init_context_common() and go
directly to paging64_init_context() (was the common version) now that
the relevant flows don't need to distinguish between 64-bit PAE and
32-bit PAE for other reasons.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-46-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson
f4bd6f7376 KVM: x86/mmu: Add a helper to calculate root from role_regs
Add a helper to calculate the level for non-EPT page tables from the
MMU's role_regs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
533f9a4b38 KVM: x86/mmu: Add helper to update paging metadata
Consolidate MMU guest metadata updates into a common helper for TDP,
shadow, and nested MMUs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
af0eb17e99 KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
Don't bother updating the bitmasks and last-leaf information if paging is
disabled as the metadata will never be used.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
fa4b558802 KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
Move calls to reset_rsvds_bits_mask() out of the various mode statements
and under a more generic CR0.PG=1 check.  This will allow for additional
code consolidation in the future.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
87e99d7d70 KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
Get LA57 from the role_regs, which are initialized from the vCPU even
though TDP is enabled, instead of pulling the value directly from the
vCPU when computing the guest's root_level for TDP MMUs.  Note, the check
is inside an is_long_mode() statement, so that requirement is not lost.

Use role_regs even though the MMU's role is available and arguably
"better".  A future commit will consolidate the guest root level logic,
and it needs access to EFER.LMA, which is not tracked in the role (it
can't be toggled on VM-Exit, unlike LA57).

Drop is_la57_mode() as there are no remaining users, and to discourage
pulling MMU state from the vCPU (in the future).

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
5472fcd4c6 KVM: x86/mmu: Get nested MMU's root level from the MMU's role
Initialize the MMU's (guest) root_level using its mmu_role instead of
redoing the calculations.  The role_regs used to calculate the mmu_role
are initialized from the vCPU, i.e. this should be a complete nop.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
a4c93252fe KVM: x86/mmu: Drop "nx" from MMU context now that there are no readers
Drop kvm_mmu.nx as there no consumers left.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
90599c2801 KVM: x86/mmu: Use MMU's role to get EFER.NX during MMU configuration
Get the MMU's effective EFER.NX from its role instead of using the
one-off, dedicated flag.  This will allow dropping said flag in a
future commit.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
84a1622604 KVM: x86/mmu: Use MMU's role/role_regs to compute context's metadata
Use the MMU's role and role_regs to calculate the MMU's guest root level
and NX bit.  For some flows, the vCPU state may not be correct (or
relevant), e.g. EPT doesn't interact with EFER.NX and nested NPT will
configure the guest_mmu with possibly-stale vCPU state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
b67a93a87e KVM: x86/mmu: Use MMU's roles to compute last non-leaf level
Use the MMU's role to get CR4.PSE when determining the last level at
which the guest _cannot_ create a non-leaf PTE, i.e. cannot create a
huge page.

Note, the existing logic is arguably wrong when considering 5-level
paging and the case where 1gb pages aren't supported.  In practice, the
logic is confusing but not broken, because except for 32-bit non-PAE
paging, bit 7 (_PAGE_PSE) bit is reserved when a huge page isn't supported at
that level.  I.e. setting bit 7 will terminate the guest walk one way or
another.  Furthermore, last_nonleaf_level is only consulted after KVM has
verified there are no reserved bits set.

All that confusion will be addressed in a future patch by dropping
last_nonleaf_level entirely.  For now, massage the code to continue the
march toward using mmu_role for (almost) all MMU computations.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson
2e4c06618d KVM: x86/mmu: Use MMU's role to compute PKRU bitmask
Use the MMU's role to calculate the Protection Keys (Restrict Userspace)
bitmask instead of pulling bits from current vCPU state.  For some flows,
the vCPU state may not be correct (or relevant), e.g. EPT doesn't
interact with PKRU.  Case in point, the "ept" param simply disappears.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson
c596f1470a KVM: x86/mmu: Use MMU's role to compute permission bitmask
Use the MMU's role to generate the permission bitmasks for the MMU.
For some flows, the vCPU state may not be correct (or relevant), e.g.
the nested NPT MMU can be initialized with incoherent vCPU state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson
b705a277b7 KVM: x86/mmu: Drop vCPU param from reserved bits calculator
Drop the vCPU param from __reset_rsvds_bits_mask() as it's now unused,
and ideally will remain unused in the future.  Any information that's
needed by the low level helper should be explicitly provided as it's used
for both shadow/host MMUs and guest MMUs, i.e. vCPU state may be
meaningless or simply wrong.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson
4e9c0d80db KVM: x86/mmu: Use MMU's role to get CR4.PSE for computing rsvd bits
Use the MMU's role to get CR4.PSE when calculating reserved bits for the
guest's PTEs.  Practically speaking, this is a glorified nop as the role
always come from vCPU state for the relevant flows, but converting to
the roles will provide consistency once everything else is converted, and
will Just Work if the "always comes from vCPU" behavior were ever to
change (unlikely).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson
8c985b2d8e KVM: x86/mmu: Don't grab CR4.PSE for calculating shadow reserved bits
Unconditionally pass pse=false when calculating reserved bits for shadow
PTEs.  CR4.PSE is only relevant for 32-bit non-PAE paging, which KVM does
not use for shadow paging (including nested NPT).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson
18db1b1790 KVM: x86/mmu: Always set new mmu_role immediately after checking old role
Refactor shadow MMU initialization to immediately set its new mmu_role
after verifying it differs from the old role, and so that all flavors
of MMU initialization share the same check-and-set pattern.  Immediately
setting the role will allow future commits to use mmu_role to configure
the MMU without consuming stale state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson
84c679f5f5 KVM: x86/mmu: Set CR4.PKE/LA57 in MMU role iff long mode is active
Don't set cr4_pke or cr4_la57 in the MMU role if long mode isn't active,
which is required for protection keys and 5-level paging to be fully
enabled.  Ignoring the bit avoids unnecessary reconfiguration on reuse,
and also means consumers of mmu_role don't need to manually check for
long mode.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
ca8d664f50 KVM: x86/mmu: Do not set paging-related bits in MMU role if CR0.PG=0
Don't set CR0/CR4/EFER bits in the MMU role if paging is disabled, paging
modifiers are irrelevant if there is no paging in the first place.
Somewhat arbitrarily clear gpte_is_8_bytes for shadow paging if paging is
disabled in the guest.  Again, there are no guest PTEs to process, so the
size is meaningless.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
6066772455 KVM: x86/mmu: Add accessors to query mmu_role bits
Add accessors via a builder macro for all mmu_role bits that track a CR0,
CR4, or EFER bit, abstracting whether the bits are in the base or the
extended role.

Future commits will switch to using mmu_role instead of vCPU state to
configure the MMU, i.e. there are about to be a large number of users.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
167f8a5cae KVM: x86/mmu: Rename "nxe" role bit to "efer_nx" for macro shenanigans
Rename "nxe" to "efer_nx" so that future macro magic can use the pattern
<reg>_<bit> for all CR0, CR4, and EFER bits that included in the role.
Using "efer_nx" also makes it clear that the role bit reflects EFER.NX,
not the NX bit in the corresponding PTE.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
8626c120ba KVM: x86/mmu: Use MMU's role_regs, not vCPU state, to compute mmu_role
Use the provided role_regs to calculate the mmu_role instead of pulling
bits from current vCPU state.  For some flows, e.g. nested TDP, the vCPU
state may not be correct (or relevant).

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
cd6767c334 KVM: x86/mmu: Ignore CR0 and CR4 bits in nested EPT MMU role
Do not incorporate CR0/CR4 bits into the role for the nested EPT MMU, as
EPT behavior is not influenced by CR0/CR4.  Note, this is the guest_mmu,
(L1's EPT), not nested_mmu (L2's IA32 paging); the nested_mmu does need
CR0/CR4, and is initialized in a separate flow.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
af09897229 KVM: x86/mmu: Consolidate misc updates into shadow_mmu_init_context()
Consolidate the MMU metadata update calls to deduplicate code, and to
prep for future cleanup.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
594e91a100 KVM: x86/mmu: Add struct and helpers to retrieve MMU role bits from regs
Introduce "struct kvm_mmu_role_regs" to hold the register state that is
incorporated into the mmu_role.  For nested TDP, the register state that
is factored into the MMU isn't vCPU state; the dedicated struct will be
used to propagate the correct state throughout the flows without having
to pass multiple params, and also provides helpers for the various flag
accessors.

Intentionally make the new helpers cumbersome/ugly by prepending four
underscores.  In the not-too-distant future, it will be preferable to use
the mmu_role to query bits as the mmu_role can drop irrelevant bits
without creating contradictions, e.g. clearing CR4 bits when CR0.PG=0.
Reserve the clean helper names (no underscores) for the mmu_role.

Add a helper for vCPU conversion, which is the common case.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
d555f7057e KVM: x86/mmu: Grab shadow root level from mmu_role for shadow MMUs
Use the mmu_role to initialize shadow root level instead of assuming the
level of KVM's shadow root (host) is the same as that of the guest root,
or in the case of 32-bit non-PAE paging where KVM forces PAE paging.
For nested NPT, the shadow root level cannot be adapted to L1's NPT root
level and is instead always the TDP root level because NPT uses the
current host CR0/CR4/EFER, e.g. 64-bit KVM can't drop into 32-bit PAE to
shadow L1's NPT.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
16be1d1292 KVM: x86/mmu: Move nested NPT reserved bit calculation into MMU proper
Move nested NPT's invocation of reset_shadow_zero_bits_mask() into the
MMU proper and unexport said function.  Aside from dropping an export,
this is a baby step toward eliminating the call entirely by fixing the
shadow_root_level confusion.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
20f632bd00 KVM: x86: Read and pass all CR0/CR4 role bits to shadow MMU helper
Grab all CR0/CR4 MMU role bits from current vCPU state when initializing
a non-nested shadow MMU.  Extract the masks from kvm_post_set_cr{0,4}(),
as the CR0/CR4 update masks must exactly match the mmu_role bits, with
one exception (see below).  The "full" CR0/CR4 will be used by future
commits to initialize the MMU and its role, as opposed to the current
approach of pulling everything from vCPU, which is incorrect for certain
flows, e.g. nested NPT.

CR4.LA57 is an exception, as it can be toggled on VM-Exit (for L1's MMU)
but can't be toggled via MOV CR4 while long mode is active.  I.e. LA57
needs to be in the mmu_role, but technically doesn't need to be checked
by kvm_post_set_cr4().  However, the extra check is completely benign as
the hardware restrictions simply mean LA57 will never be _the_ cause of
a MMU reset during MOV CR4.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
18feaad3c6 KVM: x86/mmu: Drop smep_andnot_wp check from "uses NX" for shadow MMUs
Drop the smep_andnot_wp role check from the "uses NX" calculation now
that all non-nested shadow MMUs treat NX as used via the !TDP check.

The shadow MMU for nested NPT, which shares the helper, does not need to
deal with SMEP (or WP) as NPT walks are always "user" accesses and WP is
explicitly noted as being ignored:

  Table walks for guest page tables are always treated as user writes at
  the nested page table level.

  A table walk for the guest page itself is always treated as a user
  access at the nested page table level

  The host hCR0.WP bit is ignored under nested paging.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
dbc4739b6b KVM: x86: Fix sizes used to pass around CR0, CR4, and EFER
When configuring KVM's MMU, pass CR0 and CR4 as unsigned longs, and EFER
as a u64 in various flows (mostly MMU).  Passing the params as u32s is
functionally ok since all of the affected registers reserve bits 63:32 to
zero (enforced by KVM), but it's technically wrong.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson
0337f585f5 KVM: x86/mmu: Rename unsync helper and update related comments
Rename mmu_need_write_protect() to mmu_try_to_unsync_pages() and update
a variety of related, stale comments.  Add several new comments to call
out subtle details, e.g. that upper-level shadow pages are write-tracked,
and that can_unsync is false iff KVM is in the process of synchronizing
pages.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson
479a1efc81 KVM: x86/mmu: Drop the intermediate "transient" __kvm_sync_page()
Nove the kvm_unlink_unsync_page() call out of kvm_sync_page() and into
it's sole caller, and fold __kvm_sync_page() into kvm_sync_page() since
the latter becomes a pure pass-through.  There really should be no reason
for code to do a complete sync of a shadow page outside of the full
kvm_mmu_sync_roots(), e.g. the one use case that creeped in turned out to
be flawed and counter-productive.

Drop the stale comment about @sp->gfn needing to be write-protected, as
it directly contradicts the kvm_mmu_get_page() usage.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson
07dc4f35a4 KVM: x86/mmu: comment on kvm_mmu_get_page's syncing of pages
Explain the usage of sync_page() in kvm_mmu_get_page(), which is
subtle in how and why it differs from mmu_sync_children().

Signed-off-by: Sean Christopherson <seanjc@google.com>
[Split out of a different patch by Sean. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
2640b08653 KVM: x86/mmu: WARN and zap SP when sync'ing if MMU role mismatches
When synchronizing a shadow page, WARN and zap the page if its mmu role
isn't compatible with the current MMU context, where "compatible" is an
exact match sans the bits that have no meaning in the overall MMU context
or will be explicitly overwritten during the sync.  Many of the helpers
used by sync_page() are specific to the current context, updating a SMM
vs. non-SMM shadow page would use the wrong memslots, updating L1 vs. L2
PTEs might work but would be extremely bizaree, and so on and so forth.

Drop the guard with respect to 8-byte vs. 4-byte PTEs in
__kvm_sync_page(), it was made useless when kvm_mmu_get_page() stopped
trying to sync shadow pages irrespective of the current MMU context.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
00a669780f KVM: x86/mmu: Use MMU role to check for matching guest page sizes
Originally, __kvm_sync_page used to check the cr4_pae bit in the role
to avoid zapping 4-byte kvm_mmu_pages when guest page size are 8-byte
or the other way round.  However, in commit 47c42e6b41 ("KVM: x86: fix
handling of role.cr4_pae and rename it to 'gpte_size'", 2019-03-28) it
was observed that this did not work for nested EPT, where the page table
size would be 8 bytes even if CR4.PAE=0.  (Note that the check still
has to be done for nested *NPT*, so it is not possible to use tdp_enabled
or similar).

Therefore, a hack was introduced to identify nested EPT shadow pages
and unconditionally call __kvm_sync_page() on them.  However, it is
possible to do without the hack to identify nested EPT shadow pages:
if EPT is active, there will be no shadow pages in non-EPT format,
and all of them will have gpte_is_8_bytes set to true; we can just
check the MMU role directly, and the test will always be true.

Even for non-EPT shadow MMUs, this test should really always be true
now that __kvm_sync_page() is called if and only if the role is an
exact match (kvm_mmu_get_page()) or is part of the current MMU context
(kvm_mmu_sync_roots()).  A future commit will convert the likely-pointless
check into a meaningful WARN to enforce that the mmu_roles of the current
context and the shadow page are compatible.

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
ddc16abbba KVM: x86/mmu: Unconditionally zap unsync SPs when creating >4k SP at GFN
When creating a new upper-level shadow page, zap unsync shadow pages at
the same target gfn instead of attempting to sync the pages.  This fixes
a bug where an unsync shadow page could be sync'd with an incompatible
context, e.g. wrong smm, is_guest, etc... flags.  In practice, the bug is
relatively benign as sync_page() is all but guaranteed to fail its check
that the guest's desired gfn (for the to-be-sync'd page) matches the
current gfn associated with the shadow page.  I.e. kvm_sync_page() would
end up zapping the page anyways.

Alternatively, __kvm_sync_page() could be modified to explicitly verify
the mmu_role of the unsync shadow page is compatible with the current MMU
context.  But, except for this specific case, __kvm_sync_page() is called
iff the page is compatible, e.g. the transient sync in kvm_mmu_get_page()
requires an exact role match, and the call from kvm_sync_mmu_roots() is
only synchronizing shadow pages from the current MMU (which better be
compatible or KVM has problems).  And as described above, attempting to
sync shadow pages when creating an upper-level shadow page is unlikely
to succeed, e.g. zero successful syncs were observed when running Linux
guests despite over a million attempts.

Fixes: 9f1a122f97 ("KVM: MMU: allow more page become unsync at getting sp time")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-10-seanjc@google.com>
[Remove WARN_ON after __kvm_sync_page. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
6c032f12dd Revert "KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"
Drop MAXPHYADDR from mmu_role now that all MMUs have their role
invalidated after a CPUID update.  Invalidating the role forces all MMUs
to re-evaluate the guest's MAXPHYADDR, and the guest's MAXPHYADDR can
only be changed only through a CPUID update.

This reverts commit de3ccd26fa.

Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
63f5a1909f KVM: x86: Alert userspace that KVM_SET_CPUID{,2} after KVM_RUN is broken
Warn userspace that KVM_SET_CPUID{,2} after KVM_RUN "may" cause guest
instability.  Initialize last_vmentry_cpu to -1 and use it to detect if
the vCPU has been run at least once when its CPUID model is changed.

KVM does not correctly handle changes to paging related settings in the
guest's vCPU model after KVM_RUN, e.g. MAXPHYADDR, GBPAGES, etc...  KVM
could theoretically zap all shadow pages, but actually making that happen
is a mess due to lock inversion (vcpu->mutex is held).  And even then,
updating paging settings on the fly would only work if all vCPUs are
stopped, updated in concert with identical settings, then restarted.

To support running vCPUs with different vCPU models (that affect paging),
KVM would need to track all relevant information in kvm_mmu_page_role.
Note, that's the _page_ role, not the full mmu_role.  Updating mmu_role
isn't sufficient as a vCPU can reuse a shadow page translation that was
created by a vCPU with different settings and thus completely skip the
reserved bit checks (that are tied to CPUID).

Tracking CPUID state in kvm_mmu_page_role is _extremely_ undesirable as
it would require doubling gfn_track from a u16 to a u32, i.e. would
increase KVM's memory footprint by 2 bytes for every 4kb of guest memory.
E.g. MAXPHYADDR (6 bits), GBPAGES, AMD vs. INTEL = 1 bit, and SEV C-BIT
would all need to be tracked.

In practice, there is no remotely sane use case for changing any paging
related CPUID entries on the fly, so just sweep it under the rug (after
yelling at userspace).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
49c6f8756c KVM: x86: Force all MMUs to reinitialize if guest CPUID is modified
Invalidate all MMUs' roles after a CPUID update to force reinitizliation
of the MMU context/helpers.  Despite the efforts of commit de3ccd26fa
("KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"),
there are still a handful of CPUID-based properties that affect MMU
behavior but are not incorporated into mmu_role.  E.g. 1gb hugepage
support, AMD vs. Intel handling of bit 8, and SEV's C-Bit location all
factor into the guest's reserved PTE bits.

The obvious alternative would be to add all such properties to mmu_role,
but doing so provides no benefit over simply forcing a reinitialization
on every CPUID update, as setting guest CPUID is a rare operation.

Note, reinitializing all MMUs after a CPUID update does not fix all of
KVM's woes.  Specifically, kvm_mmu_page_role doesn't track the CPUID
properties, which means that a vCPU can reuse shadow pages that should
not exist for the new vCPU model, e.g. that map GPAs that are now illegal
(due to MAXPHYADDR changes) or that set bits that are now reserved
(PAGE_SIZE for 1gb pages), etc...

Tracking the relevant CPUID properties in kvm_mmu_page_role would address
the majority of problems, but fully tracking that much state in the
shadow page role comes with an unpalatable cost as it would require a
non-trivial increase in KVM's memory footprint.  The GBPAGES case is even
worse, as neither Intel nor AMD provides a way to disable 1gb hugepage
support in the hardware page walker, i.e. it's a virtualization hole that
can't be closed when using TDP.

In other words, resetting the MMU after a CPUID update is largely a
superficial fix.  But, it will allow reverting the tracking of MAXPHYADDR
in the mmu_role, and that case in particular needs to mostly work because
KVM's shadow_root_level depends on guest MAXPHYADDR when 5-level paging
is supported.  For cases where KVM botches guest behavior, the damage is
limited to that guest.  But for the shadow_root_level, a misconfigured
MMU can cause KVM to incorrectly access memory, e.g. due to walking off
the end of its shadow page tables.

Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
f71a53d118 Revert "KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack"
Restore CR4.LA57 to the mmu_role to fix an amusing edge case with nested
virtualization.  When KVM (L0) is using TDP, CR4.LA57 is not reflected in
mmu_role.base.level because that tracks the shadow root level, i.e. TDP
level.  Normally, this is not an issue because LA57 can't be toggled
while long mode is active, i.e. the guest has to first disable paging,
then toggle LA57, then re-enable paging, thus ensuring an MMU
reinitialization.

But if L1 is crafty, it can load a new CR4 on VM-Exit and toggle LA57
without having to bounce through an unpaged section.  L1 can also load a
new CR3 on exit, i.e. it doesn't even need to play crazy paging games, a
single entry PML5 is sufficient.  Such shenanigans are only problematic
if L0 and L1 use TDP, otherwise L1 and L2 share an MMU that gets
reinitialized on nested VM-Enter/VM-Exit due to mmu_role.base.guest_mode.

Note, in the L2 case with nested TDP, even though L1 can switch between
L2s with different LA57 settings, thus bypassing the paging requirement,
in that case KVM's nested_mmu will track LA57 in base.level.

This reverts commit 8053f924ca.

Fixes: 8053f924ca ("KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
112022bdb5 KVM: x86/mmu: Treat NX as used (not reserved) for all !TDP shadow MMUs
Mark NX as being used for all non-nested shadow MMUs, as KVM will set the
NX bit for huge SPTEs if the iTLB mutli-hit mitigation is enabled.
Checking the mitigation itself is not sufficient as it can be toggled on
at any time and KVM doesn't reset MMU contexts when that happens.  KVM
could reset the contexts, but that would require purging all SPTEs in all
MMUs, for no real benefit.  And, KVM already forces EFER.NX=1 when TDP is
disabled (for WP=0, SMEP=1, NX=0), so technically NX is never reserved
for shadow MMUs.

Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:35 -04:00
Colin Ian King
31c6565700 KVM: x86/mmu: Fix uninitialized boolean variable flush
In the case where kvm_memslots_have_rmaps(kvm) is false the boolean
variable flush is not set and is uninitialized.  If is_tdp_mmu_enabled(kvm)
is true then the call to kvm_tdp_mmu_zap_collapsible_sptes passes the
uninitialized value of flush into the call. Fix this by initializing
flush to false.

Addresses-Coverity: ("Uninitialized scalar variable")
Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622150912.23429-1-colin.king@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 04:31:16 -04:00
David Matlack
0485cf8dbe KVM: x86/mmu: Remove redundant root_hpa checks
The root_hpa checks below the top-level check in kvm_mmu_page_fault are
theoretically redundant since there is no longer a way for the root_hpa
to be reset during a page fault. The details of why are described in
commit ddce620821 ("KVM: x86/mmu: Move root_hpa validity checks to top
of page fault handler")

__direct_map, kvm_tdp_mmu_map, and get_mmio_spte are all only reachable
through kvm_mmu_page_fault, therefore their root_hpa checks are
redundant.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-18 06:45:47 -04:00
David Matlack
63c0cac938 KVM: x86/mmu: Refactor is_tdp_mmu_root into is_tdp_mmu
This change simplifies the call sites slightly and also abstracts away
the implementation detail of looking at root_hpa as the mechanism for
determining if the mmu is the TDP MMU.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-18 06:45:46 -04:00
David Matlack
0b873fd7fb KVM: x86/mmu: Remove redundant is_tdp_mmu_enabled check
This check is redundant because the root shadow page will only be a TDP
MMU page if is_tdp_mmu_enabled() returns true, and is_tdp_mmu_enabled()
never changes for the lifetime of a VM.

It's possible that this check was added for performance reasons but it
is unlikely that it is useful in practice since to_shadow_page() is
cheap. That being said, this patch also caches the return value of
is_tdp_mmu_root() in direct_page_fault() since there's no reason to
duplicate the call so many times, so performance is not a concern.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-18 06:45:46 -04:00
Sean Christopherson
ade74e1433 KVM: x86/mmu: Grab nx_lpage_splits as an unsigned long before division
Snapshot kvm->stats.nx_lpage_splits into a local unsigned long to avoid
64-bit division on 32-bit kernels.  Casting to an unsigned long is safe
because the maximum number of shadow pages, n_max_mmu_pages, is also an
unsigned long, i.e. KVM will start recycling shadow pages before the
number of splits can exceed a 32-bit value.

  ERROR: modpost: "__udivdi3" [arch/x86/kvm/kvm.ko] undefined!

Fixes: 7ee093d4f3f5 ("KVM: switch per-VM stats to u64")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210615162905.2132937-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:10:18 -04:00
Sean Christopherson
c906066288 KVM: x86: Drop pointless @reset_roots from kvm_init_mmu()
Remove the @reset_roots param from kvm_init_mmu(), the one user,
kvm_mmu_reset_context() has already unloaded the MMU and thus freed and
invalidated all roots.  This also happens to be why the reset_roots=true
paths doesn't leak roots; they're already invalid.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:54 -04:00
Sean Christopherson
25b62c6274 KVM: nVMX: Free only guest_mode (L2) roots on INVVPID w/o EPT
When emulating INVVPID for L1, free only L2+ roots, using the guest_mode
tag in the MMU role to identify L2+ roots.  From L1's perspective, its
own TLB entries use VPID=0, and INVVPID is not requied to invalidate such
entries.  Per Intel's SDM, INVVPID _may_ invalidate entries with VPID=0,
but it is not required to do so.

Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:53 -04:00
Sean Christopherson
b512910039 KVM: x86: Drop skip MMU sync and TLB flush params from "new PGD" helpers
Drop skip_mmu_sync and skip_tlb_flush from __kvm_mmu_new_pgd() now that
all call sites unconditionally skip both the sync and flush.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:52 -04:00
Sean Christopherson
d2e5601907 KVM: nSVM: Move TLB flushing logic (or lack thereof) to dedicated helper
Introduce nested_svm_transition_tlb_flush() and use it force an MMU sync
and TLB flush on nSVM VM-Enter and VM-Exit instead of sneaking the logic
into the __kvm_mmu_new_pgd() call sites.  Add a partial todo list to
document issues that need to be addressed before the unconditional sync
and flush can be modified to look more like nVMX's logic.

In addition to making nSVM's forced flushing more overt (guess who keeps
losing track of it), the new helper brings further convergence between
nSVM and nVMX, and also sets the stage for dropping the "skip" params
from __kvm_mmu_new_pgd().

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:52 -04:00
Ben Gardon
d501f747ef KVM: x86/mmu: Lazily allocate memslot rmaps
If the TDP MMU is in use, wait to allocate the rmaps until the shadow
MMU is actually used. (i.e. a nested VM is launched.) This saves memory
equal to 0.2% of guest memory in cases where the TDP MMU is used and
there are no nested guests involved.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:27 -04:00
Ben Gardon
e2209710cc KVM: x86/mmu: Skip rmap operations if rmaps not allocated
If only the TDP MMU is being used to manage the memory mappings for a VM,
then many rmap operations can be skipped as they are guaranteed to be
no-ops. This saves some time which would be spent on the rmap operation.
It also avoids acquiring the MMU lock in write mode for many operations.

This makes it safe to run the VM without rmaps allocated, when only
using the TDP MMU and sets the stage for waiting to allocate the rmaps
until they're needed.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:26 -04:00
Ben Gardon
a255740876 KVM: x86/mmu: Add a field to control memslot rmap allocation
Add a field to control whether new memslots should have rmaps allocated
for them. As of this change, it's not safe to skip allocating rmaps, so
the field is always set to allocate rmaps. Future changes will make it
safe to operate without rmaps, using the TDP MMU. Then further changes
will allow the rmaps to be allocated lazily when needed for nested
oprtation.

No functional change expected.

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:26 -04:00
Keqian Zhu
8921291980 KVM: x86: Do not write protect huge page in initially-all-set mode
Currently, when dirty logging is started in initially-all-set mode,
we write protect huge pages to prepare for splitting them into
4K pages, and leave normal pages untouched as the logging will
be enabled lazily as dirty bits are cleared.

However, enabling dirty logging lazily is also feasible for huge pages.
This not only reduces the time of start dirty logging, but it also
greatly reduces side-effect on guest when there is high dirty rate.

Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210429034115.35560-3-zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:25 -04:00
Keqian Zhu
3ad9356209 KVM: x86: Support write protecting only large pages
Prepare for write protecting large page lazily during dirty log tracking,
for which we will only need to write protect gfns at large page
granularity.

No functional or performance change expected.

Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210429034115.35560-2-zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:25 -04:00
Shaokun Zhang
a9d6496d66 KVM: x86/mmu: Make is_nx_huge_page_enabled an inline function
Function 'is_nx_huge_page_enabled' is called only by kvm/mmu, so make
it as inline fucntion and remove the unnecessary declaration.

Cc: Ben Gardon <bgardon@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Message-Id: <1622102271-63107-1-git-send-email-zhangshaokun@hisilicon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:23 -04:00
Sean Christopherson
654430efde KVM: x86/mmu: Calculate and check "full" mmu_role for nested MMU
Calculate and check the full mmu_role when initializing the MMU context
for the nested MMU, where "full" means the bits and pieces of the role
that aren't handled by kvm_calc_mmu_role_common().  While the nested MMU
isn't used for shadow paging, things like the number of levels in the
guest's page tables are surprisingly important when walking the guest
page tables.  Failure to reinitialize the nested MMU context if L2's
paging mode changes can result in unexpected and/or missed page faults,
and likely other explosions.

E.g. if an L1 vCPU is running both a 32-bit PAE L2 and a 64-bit L2, the
"common" role calculation will yield the same role for both L2s.  If the
64-bit L2 is run after the 32-bit PAE L2, L0 will fail to reinitialize
the nested MMU context, ultimately resulting in a bad walk of L2's page
tables as the MMU will still have a guest root_level of PT32E_ROOT_LEVEL.

  WARNING: CPU: 4 PID: 167334 at arch/x86/kvm/vmx/vmx.c:3075 ept_save_pdptrs+0x15/0xe0 [kvm_intel]
  Modules linked in: kvm_intel]
  CPU: 4 PID: 167334 Comm: CPU 3/KVM Not tainted 5.13.0-rc1-d849817d5673-reqs #185
  Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
  RIP: 0010:ept_save_pdptrs+0x15/0xe0 [kvm_intel]
  Code: <0f> 0b c3 f6 87 d8 02 00f
  RSP: 0018:ffffbba702dbba00 EFLAGS: 00010202
  RAX: 0000000000000011 RBX: 0000000000000002 RCX: ffffffff810a2c08
  RDX: ffff91d7bc30acc0 RSI: 0000000000000011 RDI: ffff91d7bc30a600
  RBP: ffff91d7bc30a600 R08: 0000000000000010 R09: 0000000000000007
  R10: 0000000000000000 R11: 0000000000000000 R12: ffff91d7bc30a600
  R13: ffff91d7bc30acc0 R14: ffff91d67c123460 R15: 0000000115d7e005
  FS:  00007fe8e9ffb700(0000) GS:ffff91d90fb00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000000 CR3: 000000029f15a001 CR4: 00000000001726e0
  Call Trace:
   kvm_pdptr_read+0x3a/0x40 [kvm]
   paging64_walk_addr_generic+0x327/0x6a0 [kvm]
   paging64_gva_to_gpa_nested+0x3f/0xb0 [kvm]
   kvm_fetch_guest_virt+0x4c/0xb0 [kvm]
   __do_insn_fetch_bytes+0x11a/0x1f0 [kvm]
   x86_decode_insn+0x787/0x1490 [kvm]
   x86_decode_emulated_instruction+0x58/0x1e0 [kvm]
   x86_emulate_instruction+0x122/0x4f0 [kvm]
   vmx_handle_exit+0x120/0x660 [kvm_intel]
   kvm_arch_vcpu_ioctl_run+0xe25/0x1cb0 [kvm]
   kvm_vcpu_ioctl+0x211/0x5a0 [kvm]
   __x64_sys_ioctl+0x83/0xb0
   do_syscall_64+0x40/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Fixes: bf627a9288 ("x86/kvm/mmu: check if MMU reconfiguration is needed in init_kvm_nested_mmu()")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210610220026.1364486-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-11 11:54:49 -04:00
Ingo Molnar
c43426334b x86: Fix leftover comment typos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-05-12 20:00:51 +02:00
Sean Christopherson
03ca4589fa KVM: x86: Prevent KVM SVM from loading on kernels with 5-level paging
Disallow loading KVM SVM if 5-level paging is supported.  In theory, NPT
for L1 should simply work, but there unknowns with respect to how the
guest's MAXPHYADDR will be handled by hardware.

Nested NPT is more problematic, as running an L1 VMM that is using
2-level page tables requires stacking single-entry PDP and PML4 tables in
KVM's NPT for L2, as there are no equivalent entries in L1's NPT to
shadow.  Barring hardware magic, for 5-level paging, KVM would need stack
another layer to handle PML5.

Opportunistically rename the lm_root pointer, which is used for the
aforementioned stacking when shadowing 2-level L1 NPT, to pml4_root to
call out that it's specifically for PML4.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210505204221.1934471-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:21 -04:00
Linus Torvalds
152d32aa84 ARM:
- Stage-2 isolation for the host kernel when running in protected mode
 
 - Guest SVE support when running in nVHE mode
 
 - Force W^X hypervisor mappings in nVHE mode
 
 - ITS save/restore for guests using direct injection with GICv4.1
 
 - nVHE panics now produce readable backtraces
 
 - Guest support for PTP using the ptp_kvm driver
 
 - Performance improvements in the S2 fault handler
 
 x86:
 
 - Optimizations and cleanup of nested SVM code
 
 - AMD: Support for virtual SPEC_CTRL
 
 - Optimizations of the new MMU code: fast invalidation,
   zap under read lock, enable/disably dirty page logging under
   read lock
 
 - /dev/kvm API for AMD SEV live migration (guest API coming soon)
 
 - support SEV virtual machines sharing the same encryption context
 
 - support SGX in virtual machines
 
 - add a few more statistics
 
 - improved directed yield heuristics
 
 - Lots and lots of cleanups
 
 Generic:
 
 - Rework of MMU notifier interface, simplifying and optimizing
 the architecture-specific code
 
 - Some selftests improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
 y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
 c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
 Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
 +2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
 M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
 =AXUi
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This is a large update by KVM standards, including AMD PSP (Platform
  Security Processor, aka "AMD Secure Technology") and ARM CoreSight
  (debug and trace) changes.

  ARM:

   - CoreSight: Add support for ETE and TRBE

   - Stage-2 isolation for the host kernel when running in protected
     mode

   - Guest SVE support when running in nVHE mode

   - Force W^X hypervisor mappings in nVHE mode

   - ITS save/restore for guests using direct injection with GICv4.1

   - nVHE panics now produce readable backtraces

   - Guest support for PTP using the ptp_kvm driver

   - Performance improvements in the S2 fault handler

  x86:

   - AMD PSP driver changes

   - Optimizations and cleanup of nested SVM code

   - AMD: Support for virtual SPEC_CTRL

   - Optimizations of the new MMU code: fast invalidation, zap under
     read lock, enable/disably dirty page logging under read lock

   - /dev/kvm API for AMD SEV live migration (guest API coming soon)

   - support SEV virtual machines sharing the same encryption context

   - support SGX in virtual machines

   - add a few more statistics

   - improved directed yield heuristics

   - Lots and lots of cleanups

  Generic:

   - Rework of MMU notifier interface, simplifying and optimizing the
     architecture-specific code

   - a handful of "Get rid of oprofile leftovers" patches

   - Some selftests improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
  KVM: selftests: Speed up set_memory_region_test
  selftests: kvm: Fix the check of return value
  KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
  KVM: SVM: Skip SEV cache flush if no ASIDs have been used
  KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
  KVM: SVM: Drop redundant svm_sev_enabled() helper
  KVM: SVM: Move SEV VMCB tracking allocation to sev.c
  KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
  KVM: SVM: Unconditionally invoke sev_hardware_teardown()
  KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
  KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
  KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
  KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
  KVM: SVM: Move SEV module params/variables to sev.c
  KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
  KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
  KVM: SVM: Zero out the VMCB array used to track SEV ASID association
  x86/sev: Drop redundant and potentially misleading 'sev_enabled'
  KVM: x86: Move reverse CPUID helpers to separate header file
  KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
  ...
2021-05-01 10:14:08 -07:00
Linus Torvalds
ea5bc7b977 Trivial cleanups and fixes all over the place.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
 VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
 +HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
 /uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
 4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
 lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
 LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
 sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
 kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
 dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
 wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
 Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
 =bO1i
 -----END PGP SIGNATURE-----

Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull misc x86 cleanups from Borislav Petkov:
 "Trivial cleanups and fixes all over the place"

* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  MAINTAINERS: Remove me from IDE/ATAPI section
  x86/pat: Do not compile stubbed functions when X86_PAT is off
  x86/asm: Ensure asm/proto.h can be included stand-alone
  x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
  x86/msr: Make locally used functions static
  x86/cacheinfo: Remove unneeded dead-store initialization
  x86/process/64: Move cpu_current_top_of_stack out of TSS
  tools/turbostat: Unmark non-kernel-doc comment
  x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
  x86/fpu/math-emu: Fix function cast warning
  x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
  x86: Fix various typos in comments, take #2
  x86: Remove unusual Unicode characters from comments
  x86/kaslr: Return boolean values from a function returning bool
  x86: Fix various typos in comments
  x86/setup: Remove unused RESERVE_BRK_ARRAY()
  stacktrace: Move documentation for arch_stack_walk_reliable() to header
  x86: Remove duplicate TSC DEADLINE MSR definitions
2021-04-26 09:25:47 -07:00
Ben Gardon
4c6654bd16 KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns
To avoid saddling a vCPU thread with the work of tearing down an entire
paging structure, take a reference on each root before they become
obsolete, so that the thread initiating the fast invalidation can tear
down the paging structure and (most likely) release the last reference.
As a bonus, this teardown can happen under the MMU lock in read mode so
as not to block the progress of vCPU threads.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:45 -04:00
Ben Gardon
b7cccd397f KVM: x86/mmu: Fast invalidation for TDP MMU
Provide a real mechanism for fast invalidation by marking roots as
invalid so that their reference count will quickly fall to zero
and they will be torn down.

One negative side affect of this approach is that a vCPU thread will
likely drop the last reference to a root and be saddled with the work of
tearing down an entire paging structure. This issue will be resolved in
a later commit.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-13-bgardon@google.com>
[Move the loop to tdp_mmu.c, otherwise compilation fails on 32-bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:35 -04:00
Ben Gardon
24ae4cfaaa KVM: x86/mmu: Allow enabling/disabling dirty logging under MMU read lock
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU functions which enable and disable dirty logging
to operate under the MMU read lock.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
2db6f772b5 KVM: x86/mmu: Allow zapping collapsible SPTEs to use MMU read lock
To reduce the impact of disabling dirty logging, change the TDP MMU
function which zaps collapsible SPTEs to run under the MMU read lock.
This way, page faults on zapped SPTEs can proceed in parallel with
kvm_mmu_zap_collapsible_sptes.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
6103bc0740 KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU function to zap a GFN range to operate under the MMU
read lock.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
2bdb3d84ce KVM: x86/mmu: Merge TDP MMU put and free root
kvm_tdp_mmu_put_root and kvm_tdp_mmu_free_root are always called
together, so merge the functions to simplify TDP MMU root refcounting /
freeing.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00
Ben Gardon
76eb54e7e7 KVM: x86/mmu: Move kvm_mmu_(get|put)_root to TDP MMU
The TDP MMU is almost the only user of kvm_mmu_get_root and
kvm_mmu_put_root. There is only one use of put_root in mmu.c for the
legacy / shadow MMU. Open code that one use and move the get / put
functions to the TDP MMU so they can be extended in future commits.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00
Ben Gardon
8ca6f063b7 KVM: x86/mmu: Re-add const qualifier in kvm_tdp_mmu_zap_collapsible_sptes
kvm_tdp_mmu_zap_collapsible_sptes unnecessarily removes the const
qualifier from its memlsot argument, leading to a compiler warning. Add
the const annotation and pass it to subsequent functions.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:23 -04:00
Sean Christopherson
3039bcc744 KVM: Move x86's MMU notifier memslot walkers to generic code
Move the hva->gfn lookup for MMU notifiers into common code.  Every arch
does a similar lookup, and some arch code is all but identical across
multiple architectures.

In addition to consolidating code, this will allow introducing
optimizations that will benefit all architectures without incurring
multiple walks of the memslots, e.g. by taking mmu_lock if and only if a
relevant range exists in the memslots.

The use of __always_inline to avoid indirect call retpolines, as done by
x86, may also benefit other architectures.

Consolidating the lookups also fixes a wart in x86, where the legacy MMU
and TDP MMU each do their own memslot walks.

Lastly, future enhancements to the memslot implementation, e.g. to add an
interval tree to track host address, will need to touch far less arch
specific code.

MIPS, PPC, and arm64 will be converted one at a time in future patches.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:06 -04:00
Paolo Bonzini
6c9dd6d262 KVM: constify kvm_arch_flush_remote_tlbs_memslot
memslots are stored in RCU and there should be no need to
change them.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:04 -04:00
Paolo Bonzini
dbb6964e4c KVM: MMU: protect TDP MMU pages only down to required level
When using manual protection of dirty pages, it is not necessary
to protect nested page tables down to the 4K level; instead KVM
can protect only hugepages in order to split them lazily, and
delay write protection at 4K-granularity until KVM_CLEAR_DIRTY_LOG.
This was overlooked in the TDP MMU, so do it there as well.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Reviewed-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:04 -04:00
Sean Christopherson
6dfbd6b5d5 KVM: x86/mmu: Drop trace_kvm_age_page() tracepoint
Remove x86's trace_kvm_age_page() tracepoint.  It's mostly redundant with
the common trace_kvm_age_hva() tracepoint, and if there is a need for the
extra details, e.g. gfn, referenced, etc... those details should be added
to the common tracepoint so that all architectures and MMUs benefit from
the info.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:56 -04:00
Sean Christopherson
2b9663d8a1 KVM: x86/mmu: Pass address space ID to __kvm_tdp_mmu_zap_gfn_range()
Pass the address space ID to TDP MMU's primary "zap gfn range" helper to
allow the MMU notifier paths to iterate over memslots exactly once.
Currently, both the legacy MMU and TDP MMU iterate over memslots when
looking for an overlapping hva range, which can be quite costly if there
are a large number of memslots.

Add a "flush" parameter so that iterating over multiple address spaces
in the caller will continue to do the right thing when yielding while a
flush is pending from a previous address space.

Note, this also has a functional change in the form of coalescing TLB
flushes across multiple address spaces in kvm_zap_gfn_range(), and also
optimizes the TDP MMU to utilize range-based flushing when running as L1
with Hyper-V enlightenments.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-6-seanjc@google.com>
[Keep separate for loops to prepare for other incoming patches. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:54 -04:00
Sean Christopherson
1a61b7db7a KVM: x86/mmu: Coalesce TLB flushes across address spaces for gfn range zap
Gather pending TLB flushes across both address spaces when zapping a
given gfn range.  This requires feeding "flush" back into subsequent
calls, but on the plus side sets the stage for further batching
between the legacy MMU and TDP MMU.  It also allows refactoring the
address space iteration to cover the legacy and TDP MMUs without
introducing truly ugly code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:54 -04:00
Sean Christopherson
142ccde1f7 KVM: x86/mmu: Coalesce TLB flushes when zapping collapsible SPTEs
Gather pending TLB flushes across both the legacy and TDP MMUs when
zapping collapsible SPTEs to avoid multiple flushes if both the legacy
MMU (for nested guests) and TDP MMU have mappings for the memslot.

Note, this also optimizes the TDP MMU to flush only the relevant range
when running as L1 with Hyper-V enlightenments.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:54 -04:00
Sean Christopherson
302695a574 KVM: x86/mmu: Move flushing for "slot" handlers to caller for legacy MMU
Place the onus on the caller of slot_handle_*() to flush the TLB, rather
than handling the flush in the helper, and rename parameters accordingly.
This will allow future patches to coalesce flushes between address spaces
and between the legacy and TDP MMUs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:53 -04:00
Paolo Bonzini
4a38162ee9 KVM: MMU: load PDPTRs outside mmu_lock
On SVM, reading PDPTRs might access guest memory, which might fault
and thus might sleep.  On the other hand, it is not possible to
release the lock after make_mmu_pages_available has been called.

Therefore, push the call to make_mmu_pages_available and the
mmu_lock critical section within mmu_alloc_direct_roots and
mmu_alloc_shadow_roots.

Reported-by: Wanpeng Li <wanpengli@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:52 -04:00
Paolo Bonzini
315f02c60d KVM: x86/mmu: preserve pending TLB flush across calls to kvm_tdp_mmu_zap_sp
Right now, if a call to kvm_tdp_mmu_zap_sp returns false, the caller
will skip the TLB flush, which is wrong.  There are two ways to fix
it:

- since kvm_tdp_mmu_zap_sp will not yield and therefore will not flush
  the TLB itself, we could change the call to kvm_tdp_mmu_zap_sp to
  use "flush |= ..."

- or we can chain the flush argument through kvm_tdp_mmu_zap_sp down
  to __kvm_tdp_mmu_zap_gfn_range.  Note that kvm_tdp_mmu_zap_sp will
  neither yield nor flush, so flush would never go from true to
  false.

This patch does the former to simplify application to stable kernels,
and to make it further clearer that kvm_tdp_mmu_zap_sp will not flush.

Cc: seanjc@google.com
Fixes: 048f49809c ("KVM: x86/mmu: Ensure TLBs are flushed for TDP MMU during NX zapping")
Cc: <stable@vger.kernel.org> # 5.10.x: 048f49809c: KVM: x86/mmu: Ensure TLBs are flushed for TDP MMU during NX zapping
Cc: <stable@vger.kernel.org> # 5.10.x: 33a3164161: KVM: x86/mmu: Don't allow TDP MMU to yield when recovering NX pages
Cc: <stable@vger.kernel.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-08 07:48:18 -04:00
Paolo Bonzini
57e45ea487 Merge branch 'kvm-tdp-fix-flushes' into HEAD 2021-04-02 07:24:54 -04:00
Sean Christopherson
33a3164161 KVM: x86/mmu: Don't allow TDP MMU to yield when recovering NX pages
Prevent the TDP MMU from yielding when zapping a gfn range during NX
page recovery.  If a flush is pending from a previous invocation of the
zapping helper, either in the TDP MMU or the legacy MMU, but the TDP MMU
has not accumulated a flush for the current invocation, then yielding
will release mmu_lock with stale TLB entries.

That being said, this isn't technically a bug fix in the current code, as
the TDP MMU will never yield in this case.  tdp_mmu_iter_cond_resched()
will yield if and only if it has made forward progress, as defined by the
current gfn vs. the last yielded (or starting) gfn.  Because zapping a
single shadow page is guaranteed to (a) find that page and (b) step
sideways at the level of the shadow page, the TDP iter will break its loop
before getting a chance to yield.

But that is all very, very subtle, and will break at the slightest sneeze,
e.g. zapping while holding mmu_lock for read would break as the TDP MMU
wouldn't be guaranteed to see the present shadow page, and thus could step
sideways at a lower level.

Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210325200119.1359384-4-seanjc@google.com>
[Add lockdep assertion. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-30 13:19:56 -04:00
Sean Christopherson
048f49809c KVM: x86/mmu: Ensure TLBs are flushed for TDP MMU during NX zapping
Honor the "flush needed" return from kvm_tdp_mmu_zap_gfn_range(), which
does the flush itself if and only if it yields (which it will never do in
this particular scenario), and otherwise expects the caller to do the
flush.  If pages are zapped from the TDP MMU but not the legacy MMU, then
no flush will occur.

Fixes: 29cf0f5007 ("kvm: x86/mmu: NX largepage recovery for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210325200119.1359384-3-seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-30 13:19:55 -04:00
Ingo Molnar
d9f6e12fb0 x86: Fix various typos in comments
Fix ~144 single-word typos in arch/x86/ code comments.

Doing this in a single commit should reduce the churn.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-18 15:31:53 +01:00
Sean Christopherson
4a98623d5d KVM: x86/mmu: Mark the PAE roots as decrypted for shadow paging
Set the PAE roots used as decrypted to play nice with SME when KVM is
using shadow paging.  Explicitly skip setting the C-bit when loading
CR3 for PAE shadow paging, even though it's completely ignored by the
CPU.  The extra documentation is nice to have.

Note, there are several subtleties at play with NPT.  In addition to
legacy shadow paging, the PAE roots are used for SVM's NPT when either
KVM is 32-bit (uses PAE paging) or KVM is 64-bit and shadowing 32-bit
NPT.  However, 32-bit Linux, and thus KVM, doesn't support SME.  And
64-bit KVM can happily set the C-bit in CR3.  This also means that
keeping __sme_set(root) for 32-bit KVM when NPT is enabled is
conceptually wrong, but functionally ok since SME is 64-bit only.
Leave it as is to avoid unnecessary pollution.

Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210309224207.1218275-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:08 -04:00
Sean Christopherson
c834e5e44f KVM: x86/mmu: Use '0' as the one and only value for an invalid PAE root
Use '0' to denote an invalid pae_root instead of '0' or INVALID_PAGE.
Unlike root_hpa, the pae_roots hold permission bits and thus are
guaranteed to be non-zero.  Having to deal with both values leads to
bugs, e.g. failing to set back to INVALID_PAGE, warning on the wrong
value, etc...

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210309224207.1218275-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:07 -04:00
Sean Christopherson
bb4cdf3af9 KVM: x86/mmu: Dump reserved bits if they're detected on non-MMIO SPTE
Debugging unexpected reserved bit page faults sucks.  Dump the reserved
bits that (likely) caused the page fault to make debugging suck a little
less.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:55 -04:00
Sean Christopherson
5fc3424f8b KVM: x86/mmu: Make Host-writable and MMU-writable bit locations dynamic
Make the location of the HOST_WRITABLE and MMU_WRITABLE configurable for
a given KVM instance.  This will allow EPT to use high available bits,
which in turn will free up bit 11 for a constant MMU_PRESENT bit.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:49 -04:00
Sean Christopherson
d6b87f2565 KVM: x86/mmu: Co-locate code for setting various SPTE masks
Squish all the code for (re)setting the various SPTE masks into one
location.  With the split code, it's not at all clear that the masks are
set once during module initialization.  This will allow a future patch to
clean up initialization of the masks without shuffling code all over
tarnation.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:47 -04:00
Sean Christopherson
ec761cfd35 KVM: x86/mmu: Move initial kvm_mmu_set_mask_ptes() call into MMU proper
Move kvm_mmu_set_mask_ptes() into mmu.c as prep for future cleanup of the
mask initialization code.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:46 -04:00
Sean Christopherson
8120337a4c KVM: x86/mmu: Stop using software available bits to denote MMIO SPTEs
Stop tagging MMIO SPTEs with specific available bits and instead detect
MMIO SPTEs by checking for their unique SPTE value.  The value is
guaranteed to be unique on shadow paging and NPT as setting reserved
physical address bits on any other type of SPTE would consistute a KVM
bug.  Ditto for EPT, as creating a WX non-MMIO would also be a bug.

Note, this approach is also future-compatibile with TDX, which will need
to reflect MMIO EPT violations as #VEs into the guest.  To create an EPT
violation instead of a misconfig, TDX EPTs will need to have RWX=0,  But,
MMIO SPTEs will also be the only case where KVM clears SUPPRESS_VE, so
MMIO SPTEs will still be guaranteed to have a unique value within a given
MMU context.

The main motivation is to make it easier to reason about which types of
SPTEs use which available bits.  As a happy side effect, this frees up
two more bits for storing the MMIO generation.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:41 -04:00
Sean Christopherson
c236d9623f KVM: x86/mmu: Rename 'mask' to 'spte' in MMIO SPTE helpers
The value returned by make_mmio_spte() is a SPTE, it is not a mask.
Name it accordingly.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:40 -04:00
Sean Christopherson
a54aa15c6b KVM: x86/mmu: Handle MMIO SPTEs directly in mmu_set_spte()
Now that it should be impossible to convert a valid SPTE to an MMIO SPTE,
handle MMIO SPTEs early in mmu_set_spte() without going through
set_spte() and all the logic for removing an existing, valid SPTE.
The other caller of set_spte(), FNAME(sync_page)(), explicitly handles
MMIO SPTEs prior to calling set_spte().

This simplifies mmu_set_spte() and set_spte(), and also "fixes" an oddity
where MMIO SPTEs are traced by both trace_kvm_mmu_set_spte() and
trace_mark_mmio_spte().

Note, mmu_spte_set() will WARN if this new approach causes KVM to create
an MMIO SPTE overtop a valid SPTE.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:38 -04:00
Sean Christopherson
30ab5901da KVM: x86/mmu: Don't install bogus MMIO SPTEs if MMIO caching is disabled
If MMIO caching is disabled, e.g. when using shadow paging on CPUs with
52 bits of PA space, go straight to MMIO emulation and don't install an
MMIO SPTE.  The SPTE will just generate a !PRESENT #PF, i.e. can't
actually accelerate future MMIO.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:38 -04:00
Sean Christopherson
e0c378684b KVM: x86/mmu: Retry page faults that hit an invalid memslot
Retry page faults (re-enter the guest) that hit an invalid memslot
instead of treating the memslot as not existing, i.e. handling the
page fault as an MMIO access.  When deleting a memslot, SPTEs aren't
zapped and the TLBs aren't flushed until after the memslot has been
marked invalid.

Handling the invalid slot as MMIO means there's a small window where a
page fault could replace a valid SPTE with an MMIO SPTE.  The legacy
MMU handles such a scenario cleanly, but the TDP MMU assumes such
behavior is impossible (see the BUG() in __handle_changed_spte()).
There's really no good reason why the legacy MMU should allow such a
scenario, and closing this hole allows for additional cleanups.

Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:37 -04:00
Sean Christopherson
ec89e64386 KVM: x86/mmu: Bail from fast_page_fault() if SPTE is not shadow-present
Bail from fast_page_fault() if the SPTE is not a shadow-present SPTE.
Functionally, this is not strictly necessary as the !is_access_allowed()
check will eventually reject the fast path, but an early check on
shadow-present skips unnecessary checks and will allow a future patch to
tweak the A/D status auditing to warn if KVM attempts to query A/D bits
without first ensuring the SPTE is a shadow-present SPTE.

Note, is_shadow_present_pte() is quite expensive at this time, i.e. this
might be a net negative in the short term.  A future patch will optimize
is_shadow_present_pte() to a single AND operation and remedy the issue.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:35 -04:00
Sean Christopherson
c1b91493ed KVM: x86/mmu: Add typedefs for rmap/iter handlers
Add typedefs for the MMU handlers that are invoked when walking the MMU
SPTEs (rmaps in legacy MMU) to act on a host virtual address range.

No functional change intended.

Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210226010329.1766033-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:32 -04:00
Sean Christopherson
a3322d5cd8 KVM: nSVM: Set the shadow root level to the TDP level for nested NPT
Override the shadow root level in the MMU context when configuring
NPT for shadowing nested NPT.  The level is always tied to the TDP level
of the host, not whatever level the guest happens to be using.

Fixes: 096586fda5 ("KVM: nSVM: Correctly set the shadow NPT root level in its MMU role")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:27 -04:00
Sean Christopherson
73ad160693 KVM: x86/mmu: WARN on NULL pae_root or lm_root, or bad shadow root level
WARN if KVM is about to dereference a NULL pae_root or lm_root when
loading an MMU, and convert the BUG() on a bad shadow_root_level into a
WARN (now that errors are handled cleanly).  With nested NPT, botching
the level and sending KVM down the wrong path is all too easy, and the
on-demand allocation of pae_root and lm_root means bugs crash the host.
Obviously, KVM could unconditionally allocate the roots, but that's
arguably a worse failure mode as it would potentially corrupt the guest
instead of crashing it.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:25 -04:00
Sean Christopherson
a91f387b4b KVM: x86/mmu: Sync roots after MMU load iff load as successful
For clarity, explicitly skip syncing roots if the MMU load failed
instead of relying on the !VALID_PAGE check in kvm_mmu_sync_roots().

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:24 -04:00
Sean Christopherson
61a1773e2e KVM: x86/mmu: Unexport MMU load/unload functions
Unexport the MMU load and unload helpers now that they are no longer
used (incorrectly) in vendor code.

Opportunistically move the kvm_mmu_sync_roots() declaration into mmu.h,
it should not be exposed to vendor code.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:23 -04:00
Sean Christopherson
17e368d94a KVM: x86/mmu: Set the C-bit in the PDPTRs and LM pseudo-PDPTRs
Set the C-bit in SPTEs that are set outside of the normal MMU flows,
specifically the PDPDTRs and the handful of special cased "LM root"
entries, all of which are shadow paging only.

Note, the direct-mapped-root PDPTR handling is needed for the scenario
where paging is disabled in the guest, in which case KVM uses a direct
mapped MMU even though TDP is disabled.

Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:21 -04:00
Sean Christopherson
e49e0b7bf3 KVM: x86/mmu: Fix and unconditionally enable WARNs to detect PAE leaks
Exempt NULL PAE roots from the check to detect leaks, since
kvm_mmu_free_roots() doesn't set them back to INVALID_PAGE.  Stop hiding
the WARNs to detect PAE root leaks behind MMU_WARN_ON, the hidden WARNs
obviously didn't do their job given the hilarious number of bugs that
could lead to PAE roots being leaked, not to mention the above false
positive.

Opportunistically delete a warning on root_hpa being valid, there's
nothing special about 4/5-level shadow pages that warrants a WARN.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:20 -04:00
Sean Christopherson
6e0918aec4 KVM: x86/mmu: Check PDPTRs before allocating PAE roots
Check the validity of the PDPTRs before allocating any of the PAE roots,
otherwise a bad PDPTR will cause KVM to leak any previously allocated
roots.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:19 -04:00
Sean Christopherson
6e6ec58485 KVM: x86/mmu: Ensure MMU pages are available when allocating roots
Hold the mmu_lock for write for the entire duration of allocating and
initializing an MMU's roots.  This ensures there are MMU pages available
and thus prevents root allocations from failing.  That in turn fixes a
bug where KVM would fail to free valid PAE roots if a one of the later
roots failed to allocate.

Add a comment to make_mmu_pages_available() to call out that the limit
is a soft limit, e.g. KVM will temporarily exceed the threshold if a
page fault allocates multiple shadow pages and there was only one page
"available".

Note, KVM _still_ leaks the PAE roots if the guest PDPTR checks fail.
This will be addressed in a future commit.

Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:18 -04:00
Sean Christopherson
748e52b9b7 KVM: x86/mmu: Allocate pae_root and lm_root pages in dedicated helper
Move the on-demand allocation of the pae_root and lm_root pages, used by
nested NPT for 32-bit L1s, into a separate helper.  This will allow a
future patch to hold mmu_lock while allocating the non-special roots so
that make_mmu_pages_available() can be checked once at the start of root
allocation, and thus avoid having to deal with failure in the middle of
root allocation.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:17 -04:00
Sean Christopherson
ba0a194ffb KVM: x86/mmu: Allocate the lm_root before allocating PAE roots
Allocate lm_root before the PAE roots so that the PAE roots aren't
leaked if the memory allocation for the lm_root happens to fail.

Note, KVM can still leak PAE roots if mmu_check_root() fails on a guest's
PDPTR, or if mmu_alloc_root() fails due to MMU pages not being available.
Those issues will be fixed in future commits.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:16 -04:00
Sean Christopherson
b37233c911 KVM: x86/mmu: Capture 'mmu' in a local variable when allocating roots
Grab 'mmu' and do s/vcpu->arch.mmu/mmu to shorten line lengths and yield
smaller diffs when moving code around in future cleanup without forcing
the new code to use the same ugly pattern.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:15 -04:00
Sean Christopherson
04d45551a1 KVM: x86/mmu: Alloc page for PDPTEs when shadowing 32-bit NPT with 64-bit
Allocate the so called pae_root page on-demand, along with the lm_root
page, when shadowing 32-bit NPT with 64-bit NPT, i.e. when running a
32-bit L1.  KVM currently only allocates the page when NPT is disabled,
or when L0 is 32-bit (using PAE paging).

Note, there is an existing memory leak involving the MMU roots, as KVM
fails to free the PAE roots on failure.  This will be addressed in a
future commit.

Fixes: ee6268ba3a ("KVM: x86: Skip pae_root shadow allocation if tdp enabled")
Fixes: b6b80c78af ("KVM: x86/mmu: Allocate PAE root array when using SVM's 32-bit NPT")
Cc: stable@vger.kernel.org
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:42:14 -04:00
David Stevens
4a42d848db KVM: x86/mmu: Consider the hva in mmu_notifier retry
Track the range being invalidated by mmu_notifier and skip page fault
retries if the fault address is not affected by the in-progress
invalidation. Handle concurrent invalidations by finding the minimal
range which includes all ranges being invalidated. Although the combined
range may include unrelated addresses and cannot be shrunk as individual
invalidation operations complete, it is unlikely the marginal gains of
proper range tracking are worth the additional complexity.

The primary benefit of this change is the reduction in the likelihood of
extreme latency when handing a page fault due to another thread having
been preempted while modifying host virtual addresses.

Signed-off-by: David Stevens <stevensd@chromium.org>
Message-Id: <20210222024522.1751719-3-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-22 13:16:53 -05:00
Sean Christopherson
5f8a7cf25a KVM: x86/mmu: Skip mmu_notifier check when handling MMIO page fault
Don't retry a page fault due to an mmu_notifier invalidation when
handling a page fault for a GPA that did not resolve to a memslot, i.e.
an MMIO page fault.  Invalidations from the mmu_notifier signal a change
in a host virtual address (HVA) mapping; without a memslot, there is no
HVA and thus no possibility that the invalidation is relevant to the
page fault being handled.

Note, the MMIO vs. memslot generation checks handle the case where a
pending memslot will create a memslot overlapping the faulting GPA.  The
mmu_notifier checks are orthogonal to memslot updates.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210222024522.1751719-2-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-22 13:13:30 -05:00
Sean Christopherson
96ad91ae4e KVM: x86/mmu: Remove a variety of unnecessary exports
Remove several exports from the MMU that are no longer necessary.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Sean Christopherson
a1419f8b5b KVM: x86: Fold "write-protect large" use case into generic write-protect
Drop kvm_mmu_slot_largepage_remove_write_access() and refactor its sole
caller to use kvm_mmu_slot_remove_write_access().  Remove the now-unused
slot_handle_large_level() and slot_handle_all_level() helpers.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Sean Christopherson
b6e16ae5d9 KVM: x86/mmu: Don't set dirty bits when disabling dirty logging w/ PML
Stop setting dirty bits for MMU pages when dirty logging is disabled for
a memslot, as PML is now completely disabled when there are no memslots
with dirty logging enabled.

This means that spurious PML entries will be created for memslots with
dirty logging disabled if at least one other memslot has dirty logging
enabled.  However, spurious PML entries are already possible since
dirty bits are set only when a dirty logging is turned off, i.e. memslots
that are never dirty logged will have dirty bits cleared.

In the end, it's faster overall to eat a few spurious PML entries in the
window where dirty logging is being disabled across all memslots.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Sean Christopherson
a018eba538 KVM: x86: Move MMU's PML logic to common code
Drop the facade of KVM's PML logic being vendor specific and move the
bits that aren't truly VMX specific into common x86 code.  The MMU logic
for dealing with PML is tightly coupled to the feature and to VMX's
implementation, bouncing through kvm_x86_ops obfuscates the code without
providing any meaningful separation of concerns or encapsulation.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:34 -05:00
Sean Christopherson
6dd03800b1 KVM: x86/mmu: Make dirty log size hook (PML) a value, not a function
Store the vendor-specific dirty log size in a variable, there's no need
to wrap it in a function since the value is constant after
hardware_setup() runs.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:33 -05:00
Sean Christopherson
9eba50f8d7 KVM: x86/mmu: Consult max mapping level when zapping collapsible SPTEs
When zapping SPTEs in order to rebuild them as huge pages, use the new
helper that computes the max mapping level to detect whether or not a
SPTE should be zapped.  Doing so avoids zapping SPTEs that can't
possibly be rebuilt as huge pages, e.g. due to hardware constraints,
memslot alignment, etc...

This also avoids zapping SPTEs that are still large, e.g. if migration
was canceled before write-protected huge pages were shattered to enable
dirty logging.  Note, such pages are still write-protected at this time,
i.e. a page fault VM-Exit will still occur.  This will hopefully be
addressed in a future patch.

Sadly, TDP MMU loses its const on the memslot, but that's a pervasive
problem that's been around for quite some time.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:28 -05:00
Sean Christopherson
0a234f5dd0 KVM: x86/mmu: Pass the memslot to the rmap callbacks
Pass the memslot to the rmap callbacks, it will be used when zapping
collapsible SPTEs to verify the memslot is compatible with hugepages
before zapping its SPTEs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:12 -05:00
Sean Christopherson
1b6d9d9ed5 KVM: x86/mmu: Split out max mapping level calculation to helper
Factor out the logic for determining the maximum mapping level given a
memslot and a gpa.  The helper will be used when zapping collapsible
SPTEs when disabling dirty logging, e.g. to avoid zapping SPTEs that
can't possibly be rebuilt as hugepages.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:11 -05:00
Maciej S. Szmigiero
8f5c44f953 KVM: x86/mmu: Make HVA handler retpoline-friendly
When retpolines are enabled they have high overhead in the inner loop
inside kvm_handle_hva_range() that iterates over the provided memory area.

Let's mark this function and its TDP MMU equivalent __always_inline so
compiler will be able to change the call to the actual handler function
inside each of them into a direct one.

This significantly improves performance on the unmap test on the existing
kernel memslot code (tested on a Xeon 8167M machine):
30 slots in use:
Test       Before   After     Improvement
Unmap      0.0353s  0.0334s   5%
Unmap 2M   0.00104s 0.000407s 61%

509 slots in use:
Test       Before   After     Improvement
Unmap      0.0742s  0.0740s   None
Unmap 2M   0.00221s 0.00159s  28%

Looks like having an indirect call in these functions (and, so, a
retpoline) might have interfered with unrolling of the whole loop in the
CPU.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <732d3fe9eb68aa08402a638ab0309199fa89ae56.1612810129.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:42:09 -05:00
Paolo Bonzini
897218ff7c KVM: x86: compile out TDP MMU on 32-bit systems
The TDP MMU assumes that it can do atomic accesses to 64-bit PTEs.
Rather than just disabling it, compile it out completely so that it
is possible to use for example 64-bit xchg.

To limit the number of stubs, wrap all accesses to tdp_mmu_enabled
or tdp_mmu_page with a function.  Calls to all other functions in
tdp_mmu.c are eliminated and do not even reach the linker.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-08 14:49:01 -05:00
Sean Christopherson
6f8e65a601 KVM: x86/mmu: Add helper to generate mask of reserved HPA bits
Add a helper to generate the mask of reserved PA bits in the host.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Sean Christopherson
5b7f575ccd KVM: x86: Use reserved_gpa_bits to calculate reserved PxE bits
Use reserved_gpa_bits, which accounts for exceptions to the maxphyaddr
rule, e.g. SEV's C-bit, for the page {table,directory,etc...} entry (PxE)
reserved bits checks.  For SEV, the C-bit is ignored by hardware when
walking pages tables, e.g. the APM states:

  Note that while the guest may choose to set the C-bit explicitly on
  instruction pages and page table addresses, the value of this bit is a
  don't-care in such situations as hardware always performs these as
  private accesses.

Such behavior is expected to hold true for other features that repurpose
GPA bits, e.g. KVM could theoretically emulate SME or MKTME, which both
allow non-zero repurposed bits in the page tables.  Conceptually, KVM
should apply reserved GPA checks universally, and any features that do
not adhere to the basic rule should be explicitly handled, i.e. if a GPA
bit is repurposed but not allowed in page tables for whatever reason.

Refactor __reset_rsvds_bits_mask() to take the pre-generated reserved
bits mask, and opportunistically clean up its code, e.g. to align lines
and comments.

Practically speaking, this is change is a likely a glorified nop given
the current KVM code base.  SEV's C-bit is the only repurposed GPA bit,
and KVM doesn't support shadowing encrypted page tables (which is
theoretically possible via SEV debug APIs).

Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Ben Gardon
a2855afc7e KVM: x86/mmu: Allow parallel page faults for the TDP MMU
Make the last few changes necessary to enable the TDP MMU to handle page
faults in parallel while holding the mmu_lock in read mode.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-24-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:45 -05:00
Ben Gardon
531810caa9 KVM: x86/mmu: Use an rwlock for the x86 MMU
Add a read / write lock to be used in place of the MMU spinlock on x86.
The rwlock will enable the TDP MMU to handle page faults, and other
operations in parallel in future commits.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-19-bgardon@google.com>
[Introduce virt/kvm/mmu_lock.h - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:43 -05:00
Ben Gardon
8d1a182ea7 KVM: x86/mmu: Fix braces in kvm_recover_nx_lpages
No functional change intended.

Fixes: 29cf0f5007 ("kvm: x86/mmu: NX largepage recovery for TDP MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:39 -05:00
Stephen Zhang
805a0f8390 KVM: x86/mmu: Add '__func__' in rmap_printk()
Given the common pattern:

rmap_printk("%s:"..., __func__,...)

we could improve this by adding '__func__' in rmap_printk().

Signed-off-by: Stephen Zhang <stephenzhangzsd@gmail.com>
Message-Id: <1611713325-3591-1-git-send-email-stephenzhangzsd@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:36 -05:00
Jason Baron
b3646477d4 KVM: x86: use static calls to reduce kvm_x86_ops overhead
Convert kvm_x86_ops to use static calls. Note that all kvm_x86_ops are
covered here except for 'pmu_ops and 'nested ops'.

Here are some numbers running cpuid in a loop of 1 million calls averaged
over 5 runs, measured in the vm (lower is better).

Intel Xeon 3000MHz:

           |default    |mitigations=off
-------------------------------------
vanilla    |.671s      |.486s
static call|.573s(-15%)|.458s(-6%)

AMD EPYC 2500MHz:

           |default    |mitigations=off
-------------------------------------
vanilla    |.710s      |.609s
static call|.664s(-6%) |.609s(0%)

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Message-Id: <e057bf1b8a7ad15652df6eeba3f907ae758d3399.1610680941.git.jbaron@akamai.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:30 -05:00
Sean Christopherson
c5e2184d15 KVM: x86/mmu: Remove the defunct update_pte() paging hook
Remove the update_pte() shadow paging logic, which was obsoleted by
commit 4731d4c7a0 ("KVM: MMU: out of sync shadow core"), but never
removed.  As pointed out by Yu, KVM never write protects leaf page
tables for the purposes of shadow paging, and instead marks their
associated shadow page as unsync so that the guest can write PTEs at
will.

The update_pte() path, which predates the unsync logic, optimizes COW
scenarios by refreshing leaf SPTEs when they are written, as opposed to
zapping the SPTE, restarting the guest, and installing the new SPTE on
the subsequent fault.  Since KVM no longer write-protects leaf page
tables, update_pte() is unreachable and can be dropped.

Reported-by: Yu Zhang <yu.c.zhang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210115004051.4099250-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:17 -05:00
Sean Christopherson
8fc517267f KVM: x86: Zap the oldest MMU pages, not the newest
Walk the list of MMU pages in reverse in kvm_mmu_zap_oldest_mmu_pages().
The list is FIFO, meaning new pages are inserted at the head and thus
the oldest pages are at the tail.  Using a "forward" iterator causes KVM
to zap MMU pages that were just added, which obliterates guest
performance once the max number of shadow MMU pages is reached.

Fixes: 6b82ef2c9c ("KVM: x86/mmu: Batch zap MMU pages when recycling oldest pages")
Reported-by: Zdenek Kaspar <zkaspar82@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210113205030.3481307-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:15 -05:00
Paolo Bonzini
bc351f0726 Merge branch 'kvm-master' into kvm-next
Fixes to get_mmio_spte, destined to 5.10 stable branch.
2021-01-07 18:06:52 -05:00
Sean Christopherson
9aa418792f KVM: x86/mmu: Optimize not-present/MMIO SPTE check in get_mmio_spte()
Check only the terminal leaf for a "!PRESENT || MMIO" SPTE when looking
for reserved bits on valid, non-MMIO SPTEs.  The get_walk() helpers
terminate their walks if a not-present or MMIO SPTE is encountered, i.e.
the non-terminal SPTEs have already been verified to be regular SPTEs.
This eliminates an extra check-and-branch in a relatively hot loop.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:27 -05:00
Sean Christopherson
dde81f9477 KVM: x86/mmu: Use raw level to index into MMIO walks' sptes array
Bump the size of the sptes array by one and use the raw level of the
SPTE to index into the sptes array.  Using the SPTE level directly
improves readability by eliminating the need to reason out why the level
is being adjusted when indexing the array.  The array is on the stack
and is not explicitly initialized; bumping its size is nothing more than
a superficial adjustment to the stack frame.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-4-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:26 -05:00
Sean Christopherson
39b4d43e60 KVM: x86/mmu: Get root level from walkers when retrieving MMIO SPTE
Get the so called "root" level from the low level shadow page table
walkers instead of manually attempting to calculate it higher up the
stack, e.g. in get_mmio_spte().  When KVM is using PAE shadow paging,
the starting level of the walk, from the callers perspective, is not
the CR3 root but rather the PDPTR "root".  Checking for reserved bits
from the CR3 root causes get_mmio_spte() to consume uninitialized stack
data due to indexing into sptes[] for a level that was not filled by
get_walk().  This can result in false positives and/or negatives
depending on what garbage happens to be on the stack.

Opportunistically nuke a few extra newlines.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Reported-by: Richard Herbert <rherbert@sympatico.ca>
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:24 -05:00
Sean Christopherson
2aa078932f KVM: x86/mmu: Use -1 to flag an undefined spte in get_mmio_spte()
Return -1 from the get_walk() helpers if the shadow walk doesn't fill at
least one spte, which can theoretically happen if the walk hits a
not-present PDPTR.  Returning the root level in such a case will cause
get_mmio_spte() to return garbage (uninitialized stack data).  In
practice, such a scenario should be impossible as KVM shouldn't get a
reserved-bit page fault with a not-present PDPTR.

Note, using mmu->root_level in get_walk() is wrong for other reasons,
too, but that's now a moot point.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:23 -05:00
Vitaly Kuznetsov
9a2a0d3ca1 kvm: x86/mmu: Fix get_mmio_spte() on CPUs supporting 5-level PT
Commit 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU") caused
the following WARNING on an Intel Ice Lake CPU:

 get_mmio_spte: detect reserved bits on spte, addr 0xb80a0, dump hierarchy:
 ------ spte 0xb80a0 level 5.
 ------ spte 0xfcd210107 level 4.
 ------ spte 0x1004c40107 level 3.
 ------ spte 0x1004c41107 level 2.
 ------ spte 0x1db00000000b83b6 level 1.
 WARNING: CPU: 109 PID: 10254 at arch/x86/kvm/mmu/mmu.c:3569 kvm_mmu_page_fault.cold.150+0x54/0x22f [kvm]
...
 Call Trace:
  ? kvm_io_bus_get_first_dev+0x55/0x110 [kvm]
  vcpu_enter_guest+0xaa1/0x16a0 [kvm]
  ? vmx_get_cs_db_l_bits+0x17/0x30 [kvm_intel]
  ? skip_emulated_instruction+0xaa/0x150 [kvm_intel]
  kvm_arch_vcpu_ioctl_run+0xca/0x520 [kvm]

The guest triggering this crashes. Note, this happens with the traditional
MMU and EPT enabled, not with the newly introduced TDP MMU. Turns out,
there was a subtle change in the above mentioned commit. Previously,
walk_shadow_page_get_mmio_spte() was setting 'root' to 'iterator.level'
which is returned by shadow_walk_init() and this equals to
'vcpu->arch.mmu->shadow_root_level'. Now, get_mmio_spte() sets it to
'int root = vcpu->arch.mmu->root_level'.

The difference between 'root_level' and 'shadow_root_level' on CPUs
supporting 5-level page tables is that in some case we don't want to
use 5-level, in particular when 'cpuid_maxphyaddr(vcpu) <= 48'
kvm_mmu_get_tdp_level() returns '4'. In case upper layer is not used,
the corresponding SPTE will fail '__is_rsvd_bits_set()' check.

Revert to using 'shadow_root_level'.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201126110206.2118959-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-27 11:14:27 -05:00
Peter Xu
044c59c409 KVM: Don't allocate dirty bitmap if dirty ring is enabled
Because kvm dirty rings and kvm dirty log is used in an exclusive way,
Let's avoid creating the dirty_bitmap when kvm dirty ring is enabled.
At the meantime, since the dirty_bitmap will be conditionally created
now, we can't use it as a sign of "whether this memory slot enabled
dirty tracking".  Change users like that to check against the kvm
memory slot flags.

Note that there still can be chances where the kvm memory slot got its
dirty_bitmap allocated, _if_ the memory slots are created before
enabling of the dirty rings and at the same time with the dirty
tracking capability enabled, they'll still with the dirty_bitmap.
However it should not hurt much (e.g., the bitmaps will always be
freed if they are there), and the real users normally won't trigger
this because dirty bit tracking flag should in most cases only be
applied to kvm slots only before migration starts, that should be far
latter than kvm initializes (VM starts).

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012226.5868-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15 09:49:16 -05:00
Peter Xu
fb04a1eddb KVM: X86: Implement ring-based dirty memory tracking
This patch is heavily based on previous work from Lei Cao
<lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1]

KVM currently uses large bitmaps to track dirty memory.  These bitmaps
are copied to userspace when userspace queries KVM for its dirty page
information.  The use of bitmaps is mostly sufficient for live
migration, as large parts of memory are be dirtied from one log-dirty
pass to another.  However, in a checkpointing system, the number of
dirty pages is small and in fact it is often bounded---the VM is
paused when it has dirtied a pre-defined number of pages. Traversing a
large, sparsely populated bitmap to find set bits is time-consuming,
as is copying the bitmap to user-space.

A similar issue will be there for live migration when the guest memory
is huge while the page dirty procedure is trivial.  In that case for
each dirty sync we need to pull the whole dirty bitmap to userspace
and analyse every bit even if it's mostly zeros.

The preferred data structure for above scenarios is a dense list of
guest frame numbers (GFN).  This patch series stores the dirty list in
kernel memory that can be memory mapped into userspace to allow speedy
harvesting.

This patch enables dirty ring for X86 only.  However it should be
easily extended to other archs as well.

[1] https://patchwork.kernel.org/patch/10471409/

Signed-off-by: Lei Cao <lei.cao@stratus.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012222.5767-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15 09:49:15 -05:00
Li RongQing
c6c4f961cb KVM: x86/mmu: fix counting of rmap entries in pte_list_add
Fix an off-by-one style bug in pte_list_add() where it failed to
account the last full set of SPTEs, i.e. when desc->sptes is full
and desc->more is NULL.

Merge the two "PTE_LIST_EXT-1" checks as part of the fix to avoid
an extra comparison.

Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <1601196297-24104-1-git-send-email-lirongqing@baidu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-08 04:41:26 -05:00
Paolo Bonzini
8a967d655e KVM: x86: replace static const variables with macros
Even though the compiler is able to replace static const variables with
their value, it will warn about them being unused when Linux is built with W=1.
Use good old macros instead, this is not C++.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-30 13:39:55 -04:00
Ben Gardon
29cf0f5007 kvm: x86/mmu: NX largepage recovery for TDP MMU
When KVM maps a largepage backed region at a lower level in order to
make it executable (i.e. NX large page shattering), it reduces the TLB
performance of that region. In order to avoid making this degradation
permanent, KVM must periodically reclaim shattered NX largepages by
zapping them and allowing them to be rebuilt in the page fault handler.

With this patch, the TDP MMU does not respect KVM's rate limiting on
reclaim. It traverses the entire TDP structure every time. This will be
addressed in a future patch.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-21-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:16 -04:00
Ben Gardon
daa5b6c123 kvm: x86/mmu: Don't clear write flooding count for direct roots
Direct roots don't have a write flooding count because the guest can't
affect that paging structure. Thus there's no need to clear the write
flooding count on a fast CR3 switch for direct roots.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-20-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:15 -04:00
Ben Gardon
95fb5b0258 kvm: x86/mmu: Support MMIO in the TDP MMU
In order to support MMIO, KVM must be able to walk the TDP paging
structures to find mappings for a given GFN. Support this walk for
the TDP MMU.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

v2: Thanks to Dan Carpenter and kernel test robot for finding that root
was used uninitialized in get_mmio_spte.

Signed-off-by: Ben Gardon <bgardon@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Message-Id: <20201014182700.2888246-19-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:15 -04:00
Ben Gardon
46044f72c3 kvm: x86/mmu: Support write protection for nesting in tdp MMU
To support nested virtualization, KVM will sometimes need to write
protect pages which are part of a shadowed paging structure or are not
writable in the shadowed paging structure. Add a function to write
protect GFN mappings for this purpose.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:14 -04:00
Ben Gardon
1488199856 kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
Dirty logging ultimately breaks down MMU mappings to 4k granularity.
When dirty logging is no longer needed, these granaular mappings
represent a useless performance penalty. When dirty logging is disabled,
search the paging structure for mappings that could be re-constituted
into a large page mapping. Zap those mappings so that they can be
faulted in again at a higher mapping level.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-17-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:14 -04:00
Ben Gardon
a6a0b05da9 kvm: x86/mmu: Support dirty logging for the TDP MMU
Dirty logging is a key feature of the KVM MMU and must be supported by
the TDP MMU. Add support for both the write protection and PML dirty
logging modes.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:13 -04:00
Ben Gardon
1d8dd6b3f1 kvm: x86/mmu: Support changed pte notifier in tdp MMU
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
a hook and handle the change_pte MMU notifier.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-15-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:12 -04:00
Ben Gardon
f8e144971c kvm: x86/mmu: Add access tracking for tdp_mmu
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. The
main Linux MM uses the access tracking MMU notifiers for swap and other
features. Add hooks to handle the test/flush HVA (range) family of
MMU notifiers.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:12 -04:00
Ben Gardon
063afacd87 kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
hooks to handle the invalidate range family of MMU notifiers.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:11 -04:00
Ben Gardon
bb18842e21 kvm: x86/mmu: Add TDP MMU PF handler
Add functions to handle page faults in the TDP MMU. These page faults
are currently handled in much the same way as the x86 shadow paging
based MMU, however the ordering of some operations is slightly
different. Future patches will add eager NX splitting, a fast page fault
handler, and parallel page faults.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-23 03:42:04 -04:00
Ben Gardon
7d94531249 kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
In order to avoid creating executable hugepages in the TDP MMU PF
handler, remove the dependency between disallowed_hugepage_adjust and
the shadow_walk_iterator. This will open the function up to being used
by the TDP MMU PF handler in a future patch.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:17:02 -04:00
Ben Gardon
faaf05b00a kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
Add functions to zap SPTEs to the TDP MMU. These are needed to tear down
TDP MMU roots properly and implement other MMU functions which require
tearing down mappings. Future patches will add functions to populate the
page tables, but as for this patch there will not be any work for these
functions to do.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:17:02 -04:00
Ben Gardon
2f2fad0897 kvm: x86/mmu: Add functions to handle changed TDP SPTEs
The existing bookkeeping done by KVM when a PTE is changed is spread
around several functions. This makes it difficult to remember all the
stats, bitmaps, and other subsystems that need to be updated whenever a
PTE is modified. When a non-leaf PTE is marked non-present or becomes a
leaf PTE, page table memory must also be freed. To simplify the MMU and
facilitate the use of atomic operations on SPTEs in future patches, create
functions to handle some of the bookkeeping required as a result of
a change.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:17:01 -04:00
Ben Gardon
02c00b3a2f kvm: x86/mmu: Allocate and free TDP MMU roots
The TDP MMU must be able to allocate paging structure root pages and track
the usage of those pages. Implement a similar, but separate system for root
page allocation to that of the x86 shadow paging implementation. When
future patches add synchronization model changes to allow for parallel
page faults, these pages will need to be handled differently from the
x86 shadow paging based MMU's root pages.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:17:00 -04:00
Ben Gardon
fe5db27d36 kvm: x86/mmu: Init / Uninit the TDP MMU
The TDP MMU offers an alternative mode of operation to the x86 shadow
paging based MMU, optimized for running an L1 guest with TDP. The TDP MMU
will require new fields that need to be initialized and torn down. Add
hooks into the existing KVM MMU initialization process to do that
initialization / cleanup. Currently the initialization and cleanup
fucntions do not do very much, however more operations will be added in
future patches.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:17:00 -04:00
Paolo Bonzini
5a9624affe KVM: mmu: extract spte.h and spte.c
The SPTE format will be common to both the shadow and the TDP MMU.

Extract code that implements the format to a separate module, as a
first step towards adding the TDP MMU and putting mmu.c on a diet.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:16:59 -04:00
Paolo Bonzini
cb3eedab45 KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
The TDP MMU's own function for the changed-PTE notifier will need to be
update a PTE in the exact same way as the shadow MMU.  Rather than
re-implementing this logic, factor the SPTE creation out of kvm_set_pte_rmapp.

Extracted out of a patch by Ben Gardon. <bgardon@google.com>

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:16:59 -04:00
Ben Gardon
799a4190e7 kvm: x86/mmu: Separate making SPTEs from set_spte
Separate the functions for generating leaf page table entries from the
function that inserts them into the paging structure. This refactoring
will facilitate changes to the MMU sychronization model to use atomic
compare / exchanges (which are not guaranteed to succeed) instead of a
monolithic MMU lock.

No functional change expected.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This commit introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:16:58 -04:00
Ben Gardon
cc4674d0de kvm: mmu: Separate making non-leaf sptes from link_shadow_page
The TDP MMU page fault handler will need to be able to create non-leaf
SPTEs to build up the paging structures. Rather than re-implementing the
function, factor the SPTE creation out of link_shadow_page.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20200925212302.3979661-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 18:16:58 -04:00
Joe Perches
d5d6c18dc4 kvm x86/mmu: Make struct kernel_param_ops definitions const
These should be const, so make it so.

Signed-off-by: Joe Perches <joe@perches.com>
Message-Id: <ed95eef4f10fc1317b66936c05bc7dd8f943a6d5.1601770305.git.joe@perches.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 17:36:33 -04:00
Sean Christopherson
04d28e3752 KVM: x86/mmu: Move individual kvm_mmu initialization into common helper
Move initialization of 'struct kvm_mmu' fields into alloc_mmu_pages() to
consolidate code, and rename the helper to __kvm_mmu_create().

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923163314.8181-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:54 -04:00
Sean Christopherson
e88b809369 KVM: x86/mmu: Track write/user faults using bools
Use bools to track write and user faults throughout the page fault paths
and down into mmu_set_spte().  The actual usage is purely boolean, but
that's not obvious without digging into all paths as the current code
uses a mix of bools (TDP and try_async_pf) and ints (shadow paging and
mmu_set_spte()).

No true functional change intended (although the pgprintk() will now
print 0/1 instead of 0/PFERR_WRITE_MASK).

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-9-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:43 -04:00
Sean Christopherson
dcc7065170 KVM: x86/mmu: Hoist ITLB multi-hit workaround check up a level
Move the "ITLB multi-hit workaround enabled" check into the callers of
disallowed_hugepage_adjust() to make it more obvious that the helper is
specific to the workaround, and to be consistent with the accounting,
i.e. account_huge_nx_page() is called if and only if the workaround is
enabled.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:43 -04:00
Sean Christopherson
5bcaf3e171 KVM: x86/mmu: Account NX huge page disallowed iff huge page was requested
Condition the accounting of a disallowed huge NX page on the original
requested level of the page being greater than the current iterator
level.  This does two things: accounts the page if and only if a huge
page was actually disallowed, and accounts the shadow page if and only
if it was the level at which the huge page was disallowed.  For the
latter case, the previous logic would account all shadow pages used to
create the translation for the forced small page, e.g. even PML4, which
can't be a huge page on current hardware, would be accounted as having
been a disallowed huge page when using 5-level EPT.

The overzealous accounting is purely a performance issue, i.e. the
recovery thread will spuriously zap shadow pages, but otherwise the bad
behavior is harmless.

Cc: Junaid Shahid <junaids@google.com>
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:41 -04:00
Sean Christopherson
3cf066127e KVM: x86/mmu: Capture requested page level before NX huge page workaround
Apply the "huge page disallowed" adjustment of the max level only after
capturing the original requested level.  The requested level will be
used in a future patch to skip adding pages to the list of disallowed
huge pages if a huge page wasn't possible anyways, e.g. if the page
isn't mapped as a huge page in the host.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:41 -04:00
Sean Christopherson
6c2fd34f5c KVM: x86/mmu: Move "huge page disallowed" calculation into mapping helpers
Calculate huge_page_disallowed in __direct_map() and FNAME(fetch) in
preparation for reworking the calculation so that it preserves the
requested map level and eventually to avoid flagging a shadow page as
being disallowed for being used as a large/huge page when it couldn't
have been huge in the first place, e.g. because the backing page in the
host is not large.

Pass the error code into the helpers and use it to recalcuate exec and
write_fault instead adding yet more booleans to the parameters.

Opportunistically use huge_page_disallowed instead of lpage_disallowed
to match the nomenclature used within the mapping helpers (though even
they have existing inconsistencies).

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:40 -04:00
Sean Christopherson
7d919c7a38 KVM: x86/mmu: Refactor the zap loop for recovering NX lpages
Refactor the zap loop in kvm_recover_nx_lpages() to be a for loop that
iterates on to_zap and drop the !to_zap check that leads to the in-loop
calling of kvm_mmu_commit_zap_page().  The in-loop commit when to_zap
hits zero is superfluous now that there's an unconditional commit after
the loop to handle the case where lpage_disallowed_mmu_pages is emptied.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:39 -04:00
Sean Christopherson
e89505698c KVM: x86/mmu: Commit zap of remaining invalid pages when recovering lpages
Call kvm_mmu_commit_zap_page() after exiting the "prepare zap" loop in
kvm_recover_nx_lpages() to finish zapping pages in the unlikely event
that the loop exited due to lpage_disallowed_mmu_pages being empty.
Because the recovery thread drops mmu_lock() when rescheduling, it's
possible that lpage_disallowed_mmu_pages could be emptied by a different
thread without to_zap reaching zero despite to_zap being derived from
the number of disallowed lpages.

Fixes: 1aa9b9572b ("kvm: x86: mmu: Recovery of shattered NX large pages")
Cc: Junaid Shahid <junaids@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:39 -04:00
Sean Christopherson
127037591c KVM: x86/mmu: Bail early from final #PF handling on spurious faults
Detect spurious page faults, e.g. page faults that occur when multiple
vCPUs simultaneously access a not-present page, and skip the SPTE write,
prefetch, and stats update for spurious faults.

Note, the performance benefits of skipping the write and prefetch are
likely negligible, and the false positive stats adjustment is probably
lost in the noise.  The primary motivation is to play nice with TDX's
SEPT in the long term.  SEAMCALLs (to program SEPT entries) are quite
costly, e.g. thousands of cycles, and a spurious SEPT update will result
in a SEAMCALL error (which KVM will ideally treat as fatal).

Reported-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:37 -04:00
Sean Christopherson
c4371c2a68 KVM: x86/mmu: Return unique RET_PF_* values if the fault was fixed
Introduce RET_PF_FIXED and RET_PF_SPURIOUS to provide unique return
values instead of overloading RET_PF_RETRY.  In the short term, the
unique values add clarity to the code and RET_PF_SPURIOUS will be used
by set_spte() to avoid unnecessary work for spurious faults.

In the long term, TDX will use RET_PF_FIXED to deterministically map
memory during pre-boot.  The page fault flow may bail early for benign
reasons, e.g. if the mmu_notifier fires for an unrelated address.  With
only RET_PF_RETRY, it's impossible for the caller to distinguish between
"cool, page is mapped" and "darn, need to try again", and thus cannot
handle benign cases like the mmu_notifier retry.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:36 -04:00
Sean Christopherson
83a2ba4cb2 KVM: x86/mmu: Invert RET_PF_* check when falling through to emulation
Explicitly check for RET_PF_EMULATE instead of implicitly doing the same
by checking for !RET_PF_RETRY (RET_PF_INVALID is handled earlier).  This
will adding new RET_PF_ types in future patches without breaking the
emulation path.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:36 -04:00
Sean Christopherson
7b367bc9a6 KVM: x86/mmu: Return -EIO if page fault returns RET_PF_INVALID
Exit to userspace with an error if the MMU is buggy and returns
RET_PF_INVALID when servicing a page fault.  This will allow a future
patch to invert the emulation path, i.e. emulate only on RET_PF_EMULATE
instead of emulating on anything but RET_PF_RETRY.  This technically
means that KVM will exit to userspace instead of emulating on
RET_PF_INVALID, but practically speaking it's a nop as the MMU never
returns RET_PF_INVALID.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:35 -04:00
Ben Gardon
2de4085ccc KVM: x86/MMU: Recursively zap nested TDP SPs when zapping last/only parent
Recursively zap all to-be-orphaned children, unsynced or otherwise, when
zapping a shadow page for a nested TDP MMU.  KVM currently only zaps the
unsynced child pages, but not the synced ones.  This can create problems
over time when running many nested guests because it leaves unlinked
pages which will not be freed until the page quota is hit. With the
default page quota of 20 shadow pages per 1000 guest pages, this looks
like a memory leak and can degrade MMU performance.

In a recent benchmark, substantial performance degradation was observed:
An L1 guest was booted with 64G memory.
2G nested Windows guests were booted, 10 at a time for 20
iterations. (200 total boots)
Windows was used in this benchmark because they touch all of their
memory on startup.
By the end of the benchmark, the nested guests were taking ~10% longer
to boot. With this patch there is no degradation in boot time.
Without this patch the benchmark ends with hundreds of thousands of
stale EPT02 pages cluttering up rmaps and the page hash map. As a
result, VM shutdown is also much slower: deleting memslot 0 was
observed to take over a minute. With this patch it takes just a
few miliseconds.

Cc: Peter Shier <pshier@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923221406.16297-3-sean.j.christopherson@intel.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:35 -04:00
Sean Christopherson
ace569e015 KVM: x86/mmu: Move flush logic from mmu_page_zap_pte() to FNAME(invlpg)
Move the logic that controls whether or not FNAME(invlpg) needs to flush
fully into FNAME(invlpg) so that mmu_page_zap_pte() doesn't return a
value.  This allows a future patch to redefine the return semantics for
mmu_page_zap_pte() so that it can recursively zap orphaned child shadow
pages for nested TDP MMUs.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923221406.16297-2-sean.j.christopherson@intel.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:34 -04:00
Sean Christopherson
4d710de964 KVM: x86/mmu: Stash 'kvm' in a local variable in kvm_mmu_free_roots()
To make kvm_mmu_free_roots() a bit more readable, capture 'kvm' in a
local variable instead of doing vcpu->kvm over and over (and over).

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923191204.8410-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:32 -04:00
Sean Christopherson
dc46515cf8 KVM: x86: Move illegal GPA helper out of the MMU code
Rename kvm_mmu_is_illegal_gpa() to kvm_vcpu_is_illegal_gpa() and move it
to cpuid.h so that's it's colocated with cpuid_maxphyaddr().  The helper
is not MMU specific and will gain a user that is completely unrelated to
the MMU in a future patch.

No functional change intended.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200924194250.19137-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:27 -04:00
Sean Christopherson
09e3e2a1cc KVM: x86: Add kvm_x86_ops hook to short circuit emulation
Replace the existing kvm_x86_ops.need_emulation_on_page_fault() with a
more generic is_emulatable(), and unconditionally call the new function
in x86_emulate_instruction().

KVM will use the generic hook to support multiple security related
technologies that prevent emulation in one way or another.  Similar to
the existing AMD #NPF case where emulation of the current instruction is
not possible due to lack of information, AMD's SEV-ES and Intel's SGX
and TDX will introduce scenarios where emulation is impossible due to
the guest's register state being inaccessible.  And again similar to the
existing #NPF case, emulation can be initiated by kvm_mmu_page_fault(),
i.e. outside of the control of vendor-specific code.

While the cause and architecturally visible behavior of the various
cases are different, e.g. SGX will inject a #UD, AMD #NPF is a clean
resume or complete shutdown, and SEV-ES and TDX "return" an error, the
impact on the common emulation code is identical: KVM must stop
emulation immediately and resume the guest.

Query is_emulatable() in handle_ud() as well so that the
force_emulation_prefix code doesn't incorrectly modify RIP before
calling emulate_instruction() in the absurdly unlikely scenario that
KVM encounters forced emulation in conjunction with "do not emulate".

Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200915232702.15945-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:19 -04:00
Paolo Bonzini
bf3c0e5e71 Merge branch 'x86-seves-for-paolo' of https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into HEAD 2020-09-22 06:43:17 -04:00
Lai Jiangshan
f6f6195b88 kvm x86/mmu: use KVM_REQ_MMU_SYNC to sync when needed
When kvm_mmu_get_page() gets a page with unsynced children, the spt
pagetable is unsynchronized with the guest pagetable. But the
guest might not issue a "flush" operation on it when the pagetable
entry is changed from zero or other cases. The hypervisor has the
responsibility to synchronize the pagetables.

KVM behaved as above for many years, But commit 8c8560b833
("KVM: x86/mmu: Use KVM_REQ_TLB_FLUSH_CURRENT for MMU specific flushes")
inadvertently included a line of code to change it without giving any
reason in the changelog. It is clear that the commit's intention was to
change KVM_REQ_TLB_FLUSH -> KVM_REQ_TLB_FLUSH_CURRENT, so we don't
needlessly flush other contexts; however, one of the hunks changed
a nearby KVM_REQ_MMU_SYNC instead.  This patch changes it back.

Link: https://lore.kernel.org/lkml/20200320212833.3507-26-sean.j.christopherson@intel.com/
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20200902135421.31158-1-jiangshanlai@gmail.com>
fixes: 8c8560b833 ("KVM: x86/mmu: Use KVM_REQ_TLB_FLUSH_CURRENT for MMU specific flushes")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-11 13:16:55 -04:00
Gustavo A. R. Silva
df561f6688 treewide: Use fallthrough pseudo-keyword
Replace the existing /* fall through */ comments and its variants with
the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary
fall-through markings when it is the case.

[1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2020-08-23 17:36:59 -05:00
Will Deacon
fdfe7cbd58 KVM: Pass MMU notifier range flags to kvm_unmap_hva_range()
The 'flags' field of 'struct mmu_notifier_range' is used to indicate
whether invalidate_range_{start,end}() are permitted to block. In the
case of kvm_mmu_notifier_invalidate_range_start(), this field is not
forwarded on to the architecture-specific implementation of
kvm_unmap_hva_range() and therefore the backend cannot sensibly decide
whether or not to block.

Add an extra 'flags' parameter to kvm_unmap_hva_range() so that
architectures are aware as to whether or not they are permitted to block.

Cc: <stable@vger.kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Message-Id: <20200811102725.7121-2-will@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-08-21 18:03:47 -04:00
Linus Torvalds
921d2597ab s390: implement diag318
x86:
 * Report last CPU for debugging
 * Emulate smaller MAXPHYADDR in the guest than in the host
 * .noinstr and tracing fixes from Thomas
 * nested SVM page table switching optimization and fixes
 
 Generic:
 * Unify shadow MMU cache data structures across architectures
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl8pC+oUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNcOwgAjomqtEqQNlp7DdZT7VyyklzbxX1/
 ud7v+oOJ8K4sFlf64lSthjPo3N9rzZCcw+yOXmuyuITngXOGc3tzIwXpCzpLtuQ1
 WO1Ql3B/2dCi3lP5OMmsO1UAZqy9pKLg1dfeYUPk48P5+p7d/NPmk+Em5kIYzKm5
 JsaHfCp2EEXomwmljNJ8PQ1vTjIQSSzlgYUBZxmCkaaX7zbEUMtxAQCStHmt8B84
 33LczwXBm3viSWrzsoBV37I70+tseugiSGsCfUyupXOvq55d6D9FCqtCb45Hn4Vh
 Ik8ggKdalsk/reiGEwNw1/3nr6mRMkHSbl+Mhc4waOIFf9dn0urgQgOaDg==
 =YVx0
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "s390:
   - implement diag318

  x86:
   - Report last CPU for debugging
   - Emulate smaller MAXPHYADDR in the guest than in the host
   - .noinstr and tracing fixes from Thomas
   - nested SVM page table switching optimization and fixes

  Generic:
   - Unify shadow MMU cache data structures across architectures"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
  KVM: SVM: Fix sev_pin_memory() error handling
  KVM: LAPIC: Set the TDCR settable bits
  KVM: x86: Specify max TDP level via kvm_configure_mmu()
  KVM: x86/mmu: Rename max_page_level to max_huge_page_level
  KVM: x86: Dynamically calculate TDP level from max level and MAXPHYADDR
  KVM: VXM: Remove temporary WARN on expected vs. actual EPTP level mismatch
  KVM: x86: Pull the PGD's level from the MMU instead of recalculating it
  KVM: VMX: Make vmx_load_mmu_pgd() static
  KVM: x86/mmu: Add separate helper for shadow NPT root page role calc
  KVM: VMX: Drop a duplicate declaration of construct_eptp()
  KVM: nSVM: Correctly set the shadow NPT root level in its MMU role
  KVM: Using macros instead of magic values
  MIPS: KVM: Fix build error caused by 'kvm_run' cleanup
  KVM: nSVM: remove nonsensical EXITINFO1 adjustment on nested NPF
  KVM: x86: Add a capability for GUEST_MAXPHYADDR < HOST_MAXPHYADDR support
  KVM: VMX: optimize #PF injection when MAXPHYADDR does not match
  KVM: VMX: Add guest physical address check in EPT violation and misconfig
  KVM: VMX: introduce vmx_need_pf_intercept
  KVM: x86: update exception bitmap on CPUID changes
  KVM: x86: rename update_bp_intercept to update_exception_bitmap
  ...
2020-08-06 12:59:31 -07:00
Linus Torvalds
99ea1521a0 Remove uninitialized_var() macro for v5.9-rc1
- Clean up non-trivial uses of uninitialized_var()
 - Update documentation and checkpatch for uninitialized_var() removal
 - Treewide removal of uninitialized_var()
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl8oYLQWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJsfjEACvf0D3WL3H7sLHtZ2HeMwOgAzq
 il08t6vUscINQwiIIK3Be43ok3uQ1Q+bj8sr2gSYTwunV2IYHFferzgzhyMMno3o
 XBIGd1E+v1E4DGBOiRXJvacBivKrfvrdZ7AWiGlVBKfg2E0fL1aQbe9AYJ6eJSbp
 UGqkBkE207dugS5SQcwrlk1tWKUL089lhDAPd7iy/5RK76OsLRCJFzIerLHF2ZK2
 BwvA+NWXVQI6pNZ0aRtEtbbxwEU4X+2J/uaXH5kJDszMwRrgBT2qoedVu5LXFPi8
 +B84IzM2lii1HAFbrFlRyL/EMueVFzieN40EOB6O8wt60Y4iCy5wOUzAdZwFuSTI
 h0xT3JI8BWtpB3W+ryas9cl9GoOHHtPA8dShuV+Y+Q2bWe1Fs6kTl2Z4m4zKq56z
 63wQCdveFOkqiCLZb8s6FhnS11wKtAX4czvXRXaUPgdVQS1Ibyba851CRHIEY+9I
 AbtogoPN8FXzLsJn7pIxHR4ADz+eZ0dQ18f2hhQpP6/co65bYizNP5H3h+t9hGHG
 k3r2k8T+jpFPaddpZMvRvIVD8O2HvJZQTyY6Vvneuv6pnQWtr2DqPFn2YooRnzoa
 dbBMtpon+vYz6OWokC5QNWLqHWqvY9TmMfcVFUXE4AFse8vh4wJ8jJCNOFVp8On+
 drhmmImUr1YylrtVOw==
 =xHmk
 -----END PGP SIGNATURE-----

Merge tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull uninitialized_var() macro removal from Kees Cook:
 "This is long overdue, and has hidden too many bugs over the years. The
  series has several "by hand" fixes, and then a trivial treewide
  replacement.

   - Clean up non-trivial uses of uninitialized_var()

   - Update documentation and checkpatch for uninitialized_var() removal

   - Treewide removal of uninitialized_var()"

* tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  compiler: Remove uninitialized_var() macro
  treewide: Remove uninitialized_var() usage
  checkpatch: Remove awareness of uninitialized_var() macro
  mm/debug_vm_pgtable: Remove uninitialized_var() usage
  f2fs: Eliminate usage of uninitialized_var() macro
  media: sur40: Remove uninitialized_var() usage
  KVM: PPC: Book3S PR: Remove uninitialized_var() usage
  clk: spear: Remove uninitialized_var() usage
  clk: st: Remove uninitialized_var() usage
  spi: davinci: Remove uninitialized_var() usage
  ide: Remove uninitialized_var() usage
  rtlwifi: rtl8192cu: Remove uninitialized_var() usage
  b43: Remove uninitialized_var() usage
  drbd: Remove uninitialized_var() usage
  x86/mm/numa: Remove uninitialized_var() usage
  docs: deprecated.rst: Add uninitialized_var()
2020-08-04 13:49:43 -07:00
Sean Christopherson
83013059bd KVM: x86: Specify max TDP level via kvm_configure_mmu()
Capture the max TDP level during kvm_configure_mmu() instead of using a
kvm_x86_ops hook to do it at every vCPU creation.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-30 18:18:08 -04:00
Sean Christopherson
1d92d2e8e7 KVM: x86/mmu: Rename max_page_level to max_huge_page_level
Rename max_page_level to explicitly call out that it tracks the max huge
page level so as to avoid confusion when a future patch moves the max
TDP level, i.e. max root level, into the MMU and kvm_configure_mmu().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-9-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-30 18:17:58 -04:00
Sean Christopherson
d468d94b7b KVM: x86: Dynamically calculate TDP level from max level and MAXPHYADDR
Calculate the desired TDP level on the fly using the max TDP level and
MAXPHYADDR instead of doing the same when CPUID is updated.  This avoids
the hidden dependency on cpuid_maxphyaddr() in vmx_get_tdp_level() and
also standardizes the "use 5-level paging iff MAXPHYADDR > 48" behavior
across x86.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-30 18:17:16 -04:00
Sean Christopherson
59505b55aa KVM: x86/mmu: Add separate helper for shadow NPT root page role calc
Refactor the shadow NPT role calculation into a separate helper to
better differentiate it from the non-nested shadow MMU, e.g. the NPT
variant is never direct and derives its root level from the TDP level.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-3-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-30 18:14:34 -04:00
Sean Christopherson
096586fda5 KVM: nSVM: Correctly set the shadow NPT root level in its MMU role
Move the initialization of shadow NPT MMU's shadow_root_level into
kvm_init_shadow_npt_mmu() and explicitly set the level in the shadow NPT
MMU's role to be the TDP level.  This ensures the role and MMU levels
are synchronized and also initialized before __kvm_mmu_new_pgd(), which
consumes the level when attempting a fast PGD switch.

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 9fa72119b2 ("kvm: x86: Introduce kvm_mmu_calc_root_page_role()")
Fixes: a506fdd223 ("KVM: nSVM: implement nested_svm_load_cr3() and use it for host->guest switch")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-2-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-30 18:13:23 -04:00
Kees Cook
3f649ab728 treewide: Remove uninitialized_var() usage
Using uninitialized_var() is dangerous as it papers over real bugs[1]
(or can in the future), and suppresses unrelated compiler warnings
(e.g. "unused variable"). If the compiler thinks it is uninitialized,
either simply initialize the variable or make compiler changes.

In preparation for removing[2] the[3] macro[4], remove all remaining
needless uses with the following script:

git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \
	xargs perl -pi -e \
		's/\buninitialized_var\(([^\)]+)\)/\1/g;
		 s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;'

drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid
pathological white-space.

No outstanding warnings were found building allmodconfig with GCC 9.3.0
for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64,
alpha, and m68k.

[1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/
[2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/
[4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/

Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5
Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB
Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers
Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs
Signed-off-by: Kees Cook <keescook@chromium.org>
2020-07-16 12:35:15 -07:00
Mohammed Gamal
ec7771ab47 KVM: x86: mmu: Add guest physical address check in translate_gpa()
Intel processors of various generations have supported 36, 39, 46 or 52
bits for physical addresses.  Until IceLake introduced MAXPHYADDR==52,
running on a machine with higher MAXPHYADDR than the guest more or less
worked, because software that relied on reserved address bits (like KVM)
generally used bit 51 as a marker and therefore the page faults where
generated anyway.

Unfortunately this is not true anymore if the host MAXPHYADDR is 52,
and this can cause problems when migrating from a MAXPHYADDR<52
machine to one with MAXPHYADDR==52.  Typically, the latter are machines
that support 5-level page tables, so they can be identified easily from
the LA57 CPUID bit.

When that happens, the guest might have a physical address with reserved
bits set, but the host won't see that and trap it.  Hence, we need
to check page faults' physical addresses against the guest's maximum
physical memory and if it's exceeded, we need to add the PFERR_RSVD_MASK
bits to the page fault error code.

This patch does this for the MMU's page walks.  The next patches will
ensure that the correct exception and error code is produced whenever
no host-reserved bits are set in page table entries.

Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200710154811.418214-4-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-10 13:09:59 -04:00
Mohammed Gamal
cd313569f5 KVM: x86: mmu: Move translate_gpa() to mmu.c
Also no point of it being inline since it's always called through
function pointers. So remove that.

Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200710154811.418214-3-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-10 13:09:40 -04:00
Vitaly Kuznetsov
fe9304d318 KVM: x86: drop superfluous mmu_check_root() from fast_pgd_switch()
The mmu_check_root() check in fast_pgd_switch() seems to be
superfluous: when GPA is outside of the visible range
cached_root_available() will fail for non-direct roots
(as we can't have a matching one on the list) and we don't
seem to care for direct ones.

Also, raising #TF immediately when a non-existent GFN is written to CR3
doesn't seem to mach architectural behavior. Drop the check.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200710141157.1640173-10-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-10 13:03:12 -04:00
Vitaly Kuznetsov
a506fdd223 KVM: nSVM: implement nested_svm_load_cr3() and use it for host->guest switch
Undesired triple fault gets injected to L1 guest on SVM when L2 is
launched with certain CR3 values. #TF is raised by mmu_check_root()
check in fast_pgd_switch() and the root cause is that when
kvm_set_cr3() is called from nested_prepare_vmcb_save() with NPT
enabled CR3 points to a nGPA so we can't check it with
kvm_is_visible_gfn().

Using generic kvm_set_cr3() when switching to nested guest is not
a great idea as we'll have to distinguish between 'real' CR3s and
'nested' CR3s to e.g. not call kvm_mmu_new_pgd() with nGPA. Following
nVMX implement nested-specific nested_svm_load_cr3() doing the job.

To support the change, nested_svm_load_cr3() needs to be re-ordered
with nested_svm_init_mmu_context().

Note: the current implementation is sub-optimal as we always do TLB
flush/MMU sync but this is still an improvement as we at least stop doing
kvm_mmu_reset_context().

Fixes: 7c390d350f ("kvm: x86: Add fast CR3 switch code path")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200710141157.1640173-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-10 12:57:37 -04:00
Paolo Bonzini
8c008659aa KVM: MMU: stop dereferencing vcpu->arch.mmu to get the context for MMU init
kvm_init_shadow_mmu() was actually the only function that could be called
with different vcpu->arch.mmu values.  Now that kvm_init_shadow_npt_mmu()
is separated from kvm_init_shadow_mmu(), we always know the MMU context
we need to use and there is no need to dereference vcpu->arch.mmu pointer.

Based on a patch by Vitaly Kuznetsov <vkuznets@redhat.com>.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200710141157.1640173-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-10 12:53:58 -04:00
Vitaly Kuznetsov
0f04a2ac4f KVM: nSVM: split kvm_init_shadow_npt_mmu() from kvm_init_shadow_mmu()
As a preparatory change for moving kvm_mmu_new_pgd() from
nested_prepare_vmcb_save() to nested_svm_init_mmu_context() split
kvm_init_shadow_npt_mmu() from kvm_init_shadow_mmu(). This also makes
the code look more like nVMX (kvm_init_shadow_ept_mmu()).

No functional change intended.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200710141157.1640173-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-10 12:53:27 -04:00
Sean Christopherson
6926f95acc KVM: Move x86's MMU memory cache helpers to common KVM code
Move x86's memory cache helpers to common KVM code so that they can be
reused by arm64 and MIPS in future patches.

Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-16-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:42 -04:00
Sean Christopherson
94ce87ef81 KVM: x86/mmu: Prepend "kvm_" to memory cache helpers that will be global
Rename the memory helpers that will soon be moved to common code and be
made globaly available via linux/kvm_host.h.  "mmu" alone is not a
sufficient namespace for globally available KVM symbols.

Opportunistically add "nr_" in mmu_memory_cache_free_objects() to make
it clear the function returns the number of free objects, as opposed to
freeing existing objects.

Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-14-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:41 -04:00
Sean Christopherson
378f5cd64a KVM: x86/mmu: Skip filling the gfn cache for guaranteed direct MMU topups
Don't bother filling the gfn array cache when the caller is a fully
direct MMU, i.e. won't need a gfn array for shadow pages.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-13-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:41 -04:00
Sean Christopherson
9688088378 KVM: x86/mmu: Zero allocate shadow pages (outside of mmu_lock)
Set __GFP_ZERO for the shadow page memory cache and drop the explicit
clear_page() from kvm_mmu_get_page().  This moves the cost of zeroing a
page to the allocation time of the physical page, i.e. when topping up
the memory caches, and thus avoids having to zero out an entire page
while holding mmu_lock.

Cc: Peter Feiner <pfeiner@google.com>
Cc: Peter Shier <pshier@google.com>
Cc: Junaid Shahid <junaids@google.com>
Cc: Jim Mattson <jmattson@google.com>
Suggested-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-12-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:40 -04:00
Sean Christopherson
5f6078f9f1 KVM: x86/mmu: Make __GFP_ZERO a property of the memory cache
Add a gfp_zero flag to 'struct kvm_mmu_memory_cache' and use it to
control __GFP_ZERO instead of hardcoding a call to kmem_cache_zalloc().
A future patch needs such a flag for the __get_free_page() path, as
gfn arrays do not need/want the allocator to zero the memory.  Convert
the kmem_cache paths to __GFP_ZERO now so as to avoid a weird and
inconsistent API in the future.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:40 -04:00
Sean Christopherson
171a90d70f KVM: x86/mmu: Separate the memory caches for shadow pages and gfn arrays
Use separate caches for allocating shadow pages versus gfn arrays.  This
sets the stage for specifying __GFP_ZERO when allocating shadow pages
without incurring extra cost for gfn arrays.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:40 -04:00
Sean Christopherson
531281ad98 KVM: x86/mmu: Clean up the gorilla math in mmu_topup_memory_caches()
Clean up the minimums in mmu_topup_memory_caches() to document the
driving mechanisms behind the minimums.  Now that encountering an empty
cache is unlikely to trigger BUG_ON(), it is less dangerous to be more
precise when defining the minimums.

For rmaps, the logic is 1 parent PTE per level, plus a single rmap, and
prefetched rmaps.  The extra objects in the current '8 + PREFETCH'
minimum came about due to an abundance of paranoia in commit
c41ef344de ("KVM: MMU: increase per-vcpu rmap cache alloc size"),
i.e. it could have increased the minimum to 2 rmaps.  Furthermore, the
unexpected extra rmap case was killed off entirely by commits
f759e2b4c7 ("KVM: MMU: avoid pte_list_desc running out in
kvm_mmu_pte_write") and f5a1e9f895 ("KVM: MMU: remove call to
kvm_mmu_pte_write from walk_addr").

For the so called page cache, replace '8' with 2*PT64_ROOT_MAX_LEVEL.
The 2x multiplier is needed because the cache is used for both shadow
pages and gfn arrays for indirect MMUs.

And finally, for page headers, replace '4' with PT64_ROOT_MAX_LEVEL.

Note, KVM now supports 5-level paging, i.e. the old minimums that used a
baseline derived from 4-level paging were technically wrong.  But, KVM
always allocates roots in a separate flow, e.g. it's impossible in the
current implementation to actually need 5 new shadow pages in a single
flow.  Use PT64_ROOT_MAX_LEVEL unmodified instead of subtracting 1, as
the direct usage is likely more intuitive to uninformed readers, and the
inflated minimum is unlikely to affect functionality in practice.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-9-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:39 -04:00
Sean Christopherson
832914452a KVM: x86/mmu: Move fast_page_fault() call above mmu_topup_memory_caches()
Avoid refilling the memory caches and potentially slow reclaim/swap when
handling a fast page fault, which does not need to allocate any new
objects.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:39 -04:00
Sean Christopherson
53a3f48771 KVM: x86/mmu: Try to avoid crashing KVM if a MMU memory cache is empty
Attempt to allocate a new object instead of crashing KVM (and likely the
kernel) if a memory cache is unexpectedly empty.  Use GFP_ATOMIC for the
allocation as the caches are used while holding mmu_lock.  The immediate
BUG_ON() makes the code unnecessarily explosive and led to confusing
minimums being used in the past, e.g. allocating 4 objects where 1 would
suffice.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:38 -04:00
Sean Christopherson
284aa86868 KVM: x86/mmu: Remove superfluous gotos from mmu_topup_memory_caches()
Return errors directly from mmu_topup_memory_caches() instead of
branching to a label that does the same.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:38 -04:00
Sean Christopherson
356ec69adf KVM: x86/mmu: Use consistent "mc" name for kvm_mmu_memory_cache locals
Use "mc" for local variables to shorten line lengths and provide
consistent names, which will be especially helpful when some of the
helpers are moved to common KVM code in future patches.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:37 -04:00
Sean Christopherson
45177cccd9 KVM: x86/mmu: Consolidate "page" variant of memory cache helpers
Drop the "page" variants of the topup/free memory cache helpers, using
the existence of an associated kmem_cache to select the correct alloc
or free routine.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:37 -04:00
Sean Christopherson
5962bfb748 KVM: x86/mmu: Track the associated kmem_cache in the MMU caches
Track the kmem_cache used for non-page KVM MMU memory caches instead of
passing in the associated kmem_cache when filling the cache.  This will
allow consolidating code and other cleanups.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 13:29:37 -04:00
Vitaly Kuznetsov
995decb6c4 KVM: x86: take as_id into account when checking PGD
OVMF booted guest running on shadow pages crashes on TRIPLE FAULT after
enabling paging from SMM. The crash is triggered from mmu_check_root() and
is caused by kvm_is_visible_gfn() searching through memslots with as_id = 0
while vCPU may be in a different context (address space).

Introduce kvm_vcpu_is_visible_gfn() and use it from mmu_check_root().

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200708140023.1476020-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-09 07:08:37 -04:00
Sean Christopherson
e47c4aee5b KVM: x86/mmu: Rename page_header() to to_shadow_page()
Rename KVM's accessor for retrieving a 'struct kvm_mmu_page' from the
associated host physical address to better convey what the function is
doing.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-08 16:21:55 -04:00
Sean Christopherson
573546820b KVM: x86/mmu: Add sptep_to_sp() helper to wrap shadow page lookup
Introduce sptep_to_sp() to reduce the boilerplate code needed to get the
shadow page associated with a spte pointer, and to improve readability
as it's not immediately obvious that "page_header" is a KVM-specific
accessor for retrieving a shadow page.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-08 16:21:55 -04:00
Sean Christopherson
6ca9a6f3ad KVM: x86/mmu: Add MMU-internal header
Add mmu/mmu_internal.h to hold declarations and definitions that need
to be shared between various mmu/ files, but should not be used by
anything outside of the MMU.

Begin populating mmu_internal.h with declarations of the helpers used by
page_track.c.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-08 16:21:54 -04:00
Sean Christopherson
afe8d7e611 KVM: x86/mmu: Move kvm_mmu_available_pages() into mmu.c
Move kvm_mmu_available_pages() from mmu.h to mmu.c, it has a single
caller and has no business being exposed via mmu.h.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-08 16:21:53 -04:00
Sean Christopherson
7bd7ded642 KVM: x86/mmu: Exit to userspace on make_mmu_pages_available() error
Propagate any error returned by make_mmu_pages_available() out to
userspace instead of resuming the guest if the error occurs while
handling a page fault.  Now that zapping the oldest MMU pages skips
active roots, i.e. fails if and only if there are no zappable pages,
there is no chance for a false positive, i.e. no chance of returning a
spurious error to userspace.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623193542.7554-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-08 16:21:52 -04:00
Sean Christopherson
ebdb292dac KVM: x86/mmu: Batch zap MMU pages when shrinking the slab
Use the recently introduced kvm_mmu_zap_oldest_mmu_pages() to batch zap
MMU pages when shrinking a slab.  This fixes a long standing issue where
KVM's shrinker implementation is completely ineffective due to zapping
only a single page.  E.g. without batch zapping, forcing a scan via
drop_caches basically has no impact on a VM with ~2k shadow pages.  With
batch zapping, the number of shadow pages can be reduced to a few
hundred pages in one or two runs of drop_caches.

Note, if the default batch size (currently 128) is problematic, e.g.
zapping 128 pages holds mmu_lock for too long, KVM can bound the batch
size by setting @batch in mmu_shrinker.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623193542.7554-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-07-08 16:21:52 -04:00