2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
Commit Graph

745 Commits

Author SHA1 Message Date
Paolo Bonzini
0cd8dc7398 KVM: x86/mmu: pull call to drop_large_spte() into __link_shadow_page()
Before allocating a child shadow page table, all callers check
whether the parent already points to a huge page and, if so, they
drop that SPTE.  This is done by drop_large_spte().

However, dropping the large SPTE is really only necessary before the
sp is installed.  While the sp is returned by kvm_mmu_get_child_sp(),
installing it happens later in __link_shadow_page().  Move the call
there instead of having it in each and every caller.

To ensure that the shadow page is not linked twice if it was present,
do _not_ opportunistically make kvm_mmu_get_child_sp() idempotent:
instead, return an error value if the shadow page already existed.
This is a bit more verbose, but clearer than NULL.

Finally, now that the drop_large_spte() name is not taken anymore,
remove the two underscores in front of __drop_large_spte().

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:59 -04:00
David Matlack
20d49186c0 KVM: x86/mmu: Zap collapsible SPTEs in shadow MMU at all possible levels
Currently KVM only zaps collapsible 4KiB SPTEs in the shadow MMU. This
is fine for now since KVM never creates intermediate huge pages during
dirty logging. In other words, KVM always replaces 1GiB pages directly
with 4KiB pages, so there is no reason to look for collapsible 2MiB
pages.

However, this will stop being true once the shadow MMU participates in
eager page splitting. During eager page splitting, each 1GiB is first
split into 2MiB pages and then those are split into 4KiB pages. The
intermediate 2MiB pages may be left behind if an error condition causes
eager page splitting to bail early.

No functional change intended.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-20-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:59 -04:00
David Matlack
6a97575d5c KVM: x86/mmu: Cache the access bits of shadowed translations
Splitting huge pages requires allocating/finding shadow pages to replace
the huge page. Shadow pages are keyed, in part, off the guest access
permissions they are shadowing. For fully direct MMUs, there is no
shadowing so the access bits in the shadow page role are always ACC_ALL.
But during shadow paging, the guest can enforce whatever access
permissions it wants.

In particular, eager page splitting needs to know the permissions to use
for the subpages, but KVM cannot retrieve them from the guest page
tables because eager page splitting does not have a vCPU.  Fortunately,
the guest access permissions are easy to cache whenever page faults or
FNAME(sync_page) update the shadow page tables; this is an extension of
the existing cache of the shadowed GFNs in the gfns array of the shadow
page.  The access bits only take up 3 bits, which leaves 61 bits left
over for gfns, which is more than enough.

Now that the gfns array caches more information than just GFNs, rename
it to shadowed_translation.

While here, preemptively fix up the WARN_ON() that detects gfn
mismatches in direct SPs. The WARN_ON() was paired with a
pr_err_ratelimited(), which means that users could sometimes see the
WARN without the accompanying error message. Fix this by outputting the
error message as part of the WARN splat, and opportunistically make
them WARN_ONCE() because if these ever fire, they are all but guaranteed
to fire a lot and will bring down the kernel.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:58 -04:00
David Matlack
81cb4657e9 KVM: x86/mmu: Update page stats in __rmap_add()
Update the page stats in __rmap_add() rather than at the call site. This
will avoid having to manually update page stats when splitting huge
pages in a subsequent commit.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:58 -04:00
David Matlack
2ff9039a75 KVM: x86/mmu: Decouple rmap_add() and link_shadow_page() from kvm_vcpu
Allow adding new entries to the rmap and linking shadow pages without a
struct kvm_vcpu pointer by moving the implementation of rmap_add() and
link_shadow_page() into inner helper functions.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:57 -04:00
David Matlack
6ec6509eea KVM: x86/mmu: Pass const memslot to rmap_add()
Constify rmap_add()'s @slot parameter; it is simply passed on to
gfn_to_rmap(), which takes a const memslot.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-15-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:57 -04:00
David Matlack
cbd858b17e KVM: x86/mmu: Allow NULL @vcpu in kvm_mmu_find_shadow_page()
Allow @vcpu to be NULL in kvm_mmu_find_shadow_page() (and its only
caller __kvm_mmu_get_shadow_page()). @vcpu is only required to sync
indirect shadow pages, so it's safe to pass in NULL when looking up
direct shadow pages.

This will be used for doing eager page splitting, which allocates direct
shadow pages from the context of a VM ioctl without access to a vCPU
pointer.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-14-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:57 -04:00
David Matlack
3cc736b357 KVM: x86/mmu: Pass kvm pointer separately from vcpu to kvm_mmu_find_shadow_page()
Get the kvm pointer from the caller, rather than deriving it from
vcpu->kvm, and plumb the kvm pointer all the way from
kvm_mmu_get_shadow_page(). With this change in place, the vcpu pointer
is only needed to sync indirect shadow pages. In other words,
__kvm_mmu_get_shadow_page() can now be used to get *direct* shadow pages
without a vcpu pointer. This enables eager page splitting, which needs
to allocate direct shadow pages during VM ioctls.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-13-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:56 -04:00
David Matlack
336081fb3f KVM: x86/mmu: Replace vcpu with kvm in kvm_mmu_alloc_shadow_page()
The vcpu pointer in kvm_mmu_alloc_shadow_page() is only used to get the
kvm pointer. So drop the vcpu pointer and just pass in the kvm pointer.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-12-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:56 -04:00
David Matlack
2f8b1b539b KVM: x86/mmu: Pass memory caches to allocate SPs separately
Refactor kvm_mmu_alloc_shadow_page() to receive the caches from which it
will allocate the various pieces of memory for shadow pages as a
parameter, rather than deriving them from the vcpu pointer. This will be
useful in a future commit where shadow pages are allocated during VM
ioctls for eager page splitting, and thus will use a different set of
caches.

Preemptively pull the caches out all the way to
kvm_mmu_get_shadow_page() since eager page splitting will not be calling
kvm_mmu_alloc_shadow_page() directly.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-11-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:56 -04:00
David Matlack
be91177133 KVM: x86/mmu: Move guest PT write-protection to account_shadowed()
Move the code that write-protects newly-shadowed guest page tables into
account_shadowed(). This avoids a extra gfn-to-memslot lookup and is a
more logical place for this code to live. But most importantly, this
reduces kvm_mmu_alloc_shadow_page()'s reliance on having a struct
kvm_vcpu pointer, which will be necessary when creating new shadow pages
during VM ioctls for eager page splitting.

Note, it is safe to drop the role.level == PG_LEVEL_4K check since
account_shadowed() returns early if role.level > PG_LEVEL_4K.

No functional change intended.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-10-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:55 -04:00
David Matlack
876546436d KVM: x86/mmu: Rename shadow MMU functions that deal with shadow pages
Rename 2 functions:

  kvm_mmu_get_page() -> kvm_mmu_get_shadow_page()
  kvm_mmu_free_page() -> kvm_mmu_free_shadow_page()

This change makes it clear that these functions deal with shadow pages
rather than struct pages. It also aligns these functions with the naming
scheme for kvm_mmu_find_shadow_page() and kvm_mmu_alloc_shadow_page().

Prefer "shadow_page" over the shorter "sp" since these are core
functions and the line lengths aren't terrible.

No functional change intended.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-9-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:55 -04:00
David Matlack
c306aec81a KVM: x86/mmu: Consolidate shadow page allocation and initialization
Consolidate kvm_mmu_alloc_page() and kvm_mmu_alloc_shadow_page() under
the latter so that all shadow page allocation and initialization happens
in one place.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-8-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:54 -04:00
David Matlack
94c8136448 KVM: x86/mmu: Decompose kvm_mmu_get_page() into separate functions
Decompose kvm_mmu_get_page() into separate helper functions to increase
readability and prepare for allocating shadow pages without a vcpu
pointer.

Specifically, pull the guts of kvm_mmu_get_page() into 2 helper
functions:

kvm_mmu_find_shadow_page() -
  Walks the page hash checking for any existing mmu pages that match the
  given gfn and role.

kvm_mmu_alloc_shadow_page()
  Allocates and initializes an entirely new kvm_mmu_page. This currently
  requries a vcpu pointer for allocation and looking up the memslot but
  that will be removed in a future commit.

No functional change intended.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:54 -04:00
David Matlack
7f49777550 KVM: x86/mmu: Always pass 0 for @quadrant when gptes are 8 bytes
The quadrant is only used when gptes are 4 bytes, but
mmu_alloc_{direct,shadow}_roots() pass in a non-zero quadrant for PAE
page directories regardless. Make this less confusing by only passing in
a non-zero quadrant when it is actually necessary.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:54 -04:00
David Matlack
2e65e842c5 KVM: x86/mmu: Derive shadow MMU page role from parent
Instead of computing the shadow page role from scratch for every new
page, derive most of the information from the parent shadow page.  This
eliminates the dependency on the vCPU root role to allocate shadow page
tables, and reduces the number of parameters to kvm_mmu_get_page().

Preemptively split out the role calculation to a separate function for
use in a following commit.

Note that when calculating the MMU root role, we can take
@role.passthrough, @role.direct, and @role.access directly from
@vcpu->arch.mmu->root_role. Only @role.level and @role.quadrant still
must be overridden for PAE page directories, when shadowing 32-bit
guest page tables with PAE page tables.

No functional change intended.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:53 -04:00
David Matlack
86938ab692 KVM: x86/mmu: Stop passing "direct" to mmu_alloc_root()
The "direct" argument is vcpu->arch.mmu->root_role.direct,
because unlike non-root page tables, it's impossible to have
a direct root in an indirect MMU.  So just use that.

Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:53 -04:00
David Matlack
27a59d57f0 KVM: x86/mmu: Use a bool for direct
The parameter "direct" can either be true or false, and all of the
callers pass in a bool variable or true/false literal, so just use the
type bool.

No functional change intended.

Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:53 -04:00
David Matlack
bb924ca69f KVM: x86/mmu: Optimize MMU page cache lookup for all direct SPs
Commit fb58a9c345 ("KVM: x86/mmu: Optimize MMU page cache lookup for
fully direct MMUs") skipped the unsync checks and write flood clearing
for full direct MMUs. We can extend this further to skip the checks for
all direct shadow pages. Direct shadow pages in indirect MMUs (i.e.
shadow paging) are used when shadowing a guest huge page with smaller
pages. Such direct shadow pages, like their counterparts in fully direct
MMUs, are never marked unsynced or have a non-zero write-flooding count.

Checking sp->role.direct also generates better code than checking
direct_map because, due to register pressure, direct_map has to get
shoved onto the stack and then pulled back off.

No functional change intended.

Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:52 -04:00
Sean Christopherson
5d49f08c2e KVM: x86/mmu: Shove refcounted page dependency into host_pfn_mapping_level()
Move the check that restricts mapping huge pages into the guest to pfns
that are backed by refcounted 'struct page' memory into the helper that
actually "requires" a 'struct page', host_pfn_mapping_level().  In
addition to deduplicating code, moving the check to the helper eliminates
the subtle requirement that the caller check that the incoming pfn is
backed by a refcounted struct page, and as an added bonus avoids an extra
pfn_to_page() lookup.

Note, the is_error_noslot_pfn() check in kvm_mmu_hugepage_adjust() needs
to stay where it is, as it guards against dereferencing a NULL memslot in
the kvm_slot_dirty_track_enabled() that follows.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:36 -04:00
Sean Christopherson
b14b2690c5 KVM: Rename/refactor kvm_is_reserved_pfn() to kvm_pfn_to_refcounted_page()
Rename and refactor kvm_is_reserved_pfn() to kvm_pfn_to_refcounted_page()
to better reflect what KVM is actually checking, and to eliminate extra
pfn_to_page() lookups.  The kvm_release_pfn_*() an kvm_try_get_pfn()
helpers in particular benefit from "refouncted" nomenclature, as it's not
all that obvious why KVM needs to get/put refcounts for some PG_reserved
pages (ZERO_PAGE and ZONE_DEVICE).

Add a comment to call out that the list of exceptions to PG_reserved is
all but guaranteed to be incomplete.  The list has mostly been compiled
by people throwing noodles at KVM and finding out they stick a little too
well, e.g. the ZERO_PAGE's refcount overflowed and ZONE_DEVICE pages
didn't get freed.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:35 -04:00
Sean Christopherson
284dc49307 KVM: Take a 'struct page', not a pfn in kvm_is_zone_device_page()
Operate on a 'struct page' instead of a pfn when checking if a page is a
ZONE_DEVICE page, and rename the helper accordingly.  Generally speaking,
KVM doesn't actually care about ZONE_DEVICE memory, i.e. shouldn't do
anything special for ZONE_DEVICE memory.  Rather, KVM wants to treat
ZONE_DEVICE memory like regular memory, and the need to identify
ZONE_DEVICE memory only arises as an exception to PG_reserved pages. In
other words, KVM should only ever check for ZONE_DEVICE memory after KVM
has already verified that there is a struct page associated with the pfn.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:34 -04:00
Sean Christopherson
70e41c31bc KVM: x86/mmu: Use common logic for computing the 32/64-bit base PA mask
Use common logic for computing PT_BASE_ADDR_MASK for 32-bit, 64-bit, and
EPT paging.  Both PAGE_MASK and the new-common logic are supsersets of
what is actually needed for 32-bit paging.  PAGE_MASK sets bits 63:12 and
the former GUEST_PT64_BASE_ADDR_MASK sets bits 51:12, so regardless of
which value is used, the result will always be bits 31:12.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:30 -04:00
Sean Christopherson
2ca3129e80 KVM: x86/mmu: Use separate namespaces for guest PTEs and shadow PTEs
Separate the macros for KVM's shadow PTEs (SPTE) from guest 64-bit PTEs
(PT64).  SPTE and PT64 are _mostly_ the same, but the few differences are
quite critical, e.g. *_BASE_ADDR_MASK must differentiate between host and
guest physical address spaces, and SPTE_PERM_MASK (was PT64_PERM_MASK) is
very much specific to SPTEs.

Opportunistically (and temporarily) move most guest macros into paging.h
to clearly associate them with shadow paging, and to ensure that they're
not used as of this commit.  A future patch will eliminate them entirely.

Sadly, PT32_LEVEL_BITS is left behind in mmu_internal.h because it's
needed for the quadrant calculation in kvm_mmu_get_page().  The quadrant
calculation is hot enough (when using shadow paging with 32-bit guests)
that adding a per-context helper is undesirable, and burying the
computation in paging_tmpl.h with a forward declaration isn't exactly an
improvement.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:28 -04:00
Sean Christopherson
42c88ff893 KVM: x86/mmu: Dedup macros for computing various page table masks
Provide common helper macros to generate various masks, shifts, etc...
for 32-bit vs. 64-bit page tables.  Only the inputs differ, the actual
calculations are identical.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:27 -04:00
Sean Christopherson
b3fcdb04a9 KVM: x86/mmu: Bury 32-bit PSE paging helpers in paging_tmpl.h
Move a handful of one-off macros and helpers for 32-bit PSE paging into
paging_tmpl.h and hide them behind "PTTYPE == 32".  Under no circumstance
should anything but 32-bit shadow paging care about PSE paging.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:26 -04:00
Uros Bizjak
2db2f46fdf KVM: x86/mmu: Use try_cmpxchg64 in fast_pf_fix_direct_spte
Use try_cmpxchg64 instead of cmpxchg64 (*ptr, old, new) != old in
fast_pf_fix_direct_spte. cmpxchg returns success in ZF flag, so this
change saves a compare after cmpxchg (and related move instruction
in front of cmpxchg).

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Message-Id: <20220520144635.63134-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-15 08:12:17 -04:00
Lai Jiangshan
024c3c3304 KVM: X86/MMU: Remove useless mmu_topup_memory_caches() in kvm_mmu_pte_write()
Since the commit c5e2184d1544("KVM: x86/mmu: Remove the defunct
update_pte() paging hook"), kvm_mmu_pte_write() no longer uses the rmap
cache.

So remove mmu_topup_memory_caches() in it.

Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220605063417.308311-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-15 08:07:53 -04:00
Lai Jiangshan
fc10020ac9 KVM: X86/MMU: Remove unused PT32_DIR_BASE_ADDR_MASK from mmu.c
It is unused.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220605063417.308311-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-15 08:07:52 -04:00
Yuan Yao
d2263de137 KVM: x86/mmu: Set memory encryption "value", not "mask", in shadow PDPTRs
Assign shadow_me_value, not shadow_me_mask, to PAE root entries,
a.k.a. shadow PDPTRs, when host memory encryption is supported.  The
"mask" is the set of all possible memory encryption bits, e.g. MKTME
KeyIDs, whereas "value" holds the actual value that needs to be
stuffed into host page tables.

Using shadow_me_mask results in a failed VM-Entry due to setting
reserved PA bits in the PDPTRs, and ultimately causes an OOPS due to
physical addresses with non-zero MKTME bits sending to_shadow_page()
into the weeds:

set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.
BUG: unable to handle page fault for address: ffd43f00063049e8
PGD 86dfd8067 P4D 0
Oops: 0000 [#1] PREEMPT SMP
RIP: 0010:mmu_free_root_page+0x3c/0x90 [kvm]
 kvm_mmu_free_roots+0xd1/0x200 [kvm]
 __kvm_mmu_unload+0x29/0x70 [kvm]
 kvm_mmu_unload+0x13/0x20 [kvm]
 kvm_arch_destroy_vm+0x8a/0x190 [kvm]
 kvm_put_kvm+0x197/0x2d0 [kvm]
 kvm_vm_release+0x21/0x30 [kvm]
 __fput+0x8e/0x260
 ____fput+0xe/0x10
 task_work_run+0x6f/0xb0
 do_exit+0x327/0xa90
 do_group_exit+0x35/0xa0
 get_signal+0x911/0x930
 arch_do_signal_or_restart+0x37/0x720
 exit_to_user_mode_prepare+0xb2/0x140
 syscall_exit_to_user_mode+0x16/0x30
 do_syscall_64+0x4e/0x90
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Fixes: e54f1ff244 ("KVM: x86/mmu: Add shadow_me_value and repurpose shadow_me_mask")
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220608012015.19566-1-yuan.yao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-09 10:52:16 -04:00
Paolo Bonzini
66da65005a KVM/riscv fixes for 5.19, take #1
- Typo fix in arch/riscv/kvm/vmid.c
 
 - Remove broken reference pattern from MAINTAINERS entry
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEZdn75s5e6LHDQ+f/rUjsVaLHLAcFAmKhgGkACgkQrUjsVaLH
 LAfCCw/+LEz6af/lm4PXr5CGkJ91xq2xMpU9o39jMBm0RltzsG7zt/90SaUdK/Oz
 MpX7CLFgb1Cm2ZZ/+l5cBlLc7NUaMMxHH9dpScyrYC8xAb75QYimpe/jfjuMyXjO
 IaYJB2WCs2gfTYXA58c4sB2WR5rLahLnQGJrwW2CfMSvpv/nAyEZyWYtgXw8tSxH
 oM06Z/cLWU53uWuX0hbKAVQMdAIrQK5H+z46bhbpFC6gk/XSvaBBEngoOiiE6lC6
 uM8i8ZIeUgqSeWWreczd6H25eYwyLuVxXHWSIgbdvEcvBUn0VDO+Ox4UA2ab3g3d
 uHubqdRY5GnrkbRK0ue6tXfON8NxGlKwlcc6kp9Vqxb3Jxjr2qwToTubHYAUVXUi
 XzrvSxoZRRikwstb1+PNXECCNYUHkNdj4FBA4WoF0Y3Br1IfSwZLUX+EKkY/DHv+
 L4MhFFNqsQPzVly2wNiyxuWwRQyxupHekeMQlp13P9vZnGcptxxEyuQlM1Hf40ST
 iiOC8L+TCQzc5dN156/KjQIUFPud4huJO+0xHQtang628yVzQazzcxD+ialPkcqt
 JnpMmNbvvNzFYLoB3dQ/36flmYRA6SbK4Tt4bdhls+UcnLnfHDZow7OLmX5yj8+A
 QiKx6IOS6KI10LXhVZguAmZuKjXajyLVaCWpBl0tV6XpV9Y5t98=
 =w6dT
 -----END PGP SIGNATURE-----

Merge tag 'kvm-riscv-fixes-5.19-1' of https://github.com/kvm-riscv/linux into HEAD

KVM/riscv fixes for 5.19, take #1

- Typo fix in arch/riscv/kvm/vmid.c

- Remove broken reference pattern from MAINTAINERS entry
2022-06-09 09:45:00 -04:00
Shaoqin Huang
cf4a8693d9 KVM: x86/mmu: Check every prev_roots in __kvm_mmu_free_obsolete_roots()
When freeing obsolete previous roots, check prev_roots as intended, not
the current root.

Signed-off-by: Shaoqin Huang <shaoqin.huang@intel.com>
Fixes: 527d5cd7ee ("KVM: x86/mmu: Zap only obsolete roots if a root shadow page is zapped")
Message-Id: <20220607005905.2933378-1-shaoqin.huang@intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-07 11:28:48 -04:00
Linus Torvalds
bf9095424d S390:
* ultravisor communication device driver
 
 * fix TEID on terminating storage key ops
 
 RISC-V:
 
 * Added Sv57x4 support for G-stage page table
 
 * Added range based local HFENCE functions
 
 * Added remote HFENCE functions based on VCPU requests
 
 * Added ISA extension registers in ONE_REG interface
 
 * Updated KVM RISC-V maintainers entry to cover selftests support
 
 ARM:
 
 * Add support for the ARMv8.6 WFxT extension
 
 * Guard pages for the EL2 stacks
 
 * Trap and emulate AArch32 ID registers to hide unsupported features
 
 * Ability to select and save/restore the set of hypercalls exposed
   to the guest
 
 * Support for PSCI-initiated suspend in collaboration with userspace
 
 * GICv3 register-based LPI invalidation support
 
 * Move host PMU event merging into the vcpu data structure
 
 * GICv3 ITS save/restore fixes
 
 * The usual set of small-scale cleanups and fixes
 
 x86:
 
 * New ioctls to get/set TSC frequency for a whole VM
 
 * Allow userspace to opt out of hypercall patching
 
 * Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
 
 AMD SEV improvements:
 
 * Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
 
 * V_TSC_AUX support
 
 Nested virtualization improvements for AMD:
 
 * Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
   nested vGIF)
 
 * Allow AVIC to co-exist with a nested guest running
 
 * Fixes for LBR virtualizations when a nested guest is running,
   and nested LBR virtualization support
 
 * PAUSE filtering for nested hypervisors
 
 Guest support:
 
 * Decoupling of vcpu_is_preempted from PV spinlocks
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKN9M4UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNLeAf+KizAlQwxEehHHeNyTkZuKyMawrD6
 zsqAENR6i1TxiXe7fDfPFbO2NR0ZulQopHbD9mwnHJ+nNw0J4UT7g3ii1IAVcXPu
 rQNRGMVWiu54jt+lep8/gDg0JvPGKVVKLhxUaU1kdWT9PhIOC6lwpP3vmeWkUfRi
 PFL/TMT0M8Nfryi0zHB0tXeqg41BiXfqO8wMySfBAHUbpv8D53D2eXQL6YlMM0pL
 2quB1HxHnpueE5vj3WEPQ3PCdy1M2MTfCDBJAbZGG78Ljx45FxSGoQcmiBpPnhJr
 C6UGP4ZDWpml5YULUoA70k5ylCbP+vI61U4vUtzEiOjHugpPV5wFKtx5nw==
 =ozWx
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "S390:

   - ultravisor communication device driver

   - fix TEID on terminating storage key ops

  RISC-V:

   - Added Sv57x4 support for G-stage page table

   - Added range based local HFENCE functions

   - Added remote HFENCE functions based on VCPU requests

   - Added ISA extension registers in ONE_REG interface

   - Updated KVM RISC-V maintainers entry to cover selftests support

  ARM:

   - Add support for the ARMv8.6 WFxT extension

   - Guard pages for the EL2 stacks

   - Trap and emulate AArch32 ID registers to hide unsupported features

   - Ability to select and save/restore the set of hypercalls exposed to
     the guest

   - Support for PSCI-initiated suspend in collaboration with userspace

   - GICv3 register-based LPI invalidation support

   - Move host PMU event merging into the vcpu data structure

   - GICv3 ITS save/restore fixes

   - The usual set of small-scale cleanups and fixes

  x86:

   - New ioctls to get/set TSC frequency for a whole VM

   - Allow userspace to opt out of hypercall patching

   - Only do MSR filtering for MSRs accessed by rdmsr/wrmsr

  AMD SEV improvements:

   - Add KVM_EXIT_SHUTDOWN metadata for SEV-ES

   - V_TSC_AUX support

  Nested virtualization improvements for AMD:

   - Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
     nested vGIF)

   - Allow AVIC to co-exist with a nested guest running

   - Fixes for LBR virtualizations when a nested guest is running, and
     nested LBR virtualization support

   - PAUSE filtering for nested hypervisors

  Guest support:

   - Decoupling of vcpu_is_preempted from PV spinlocks"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits)
  KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest
  KVM: selftests: x86: Sync the new name of the test case to .gitignore
  Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND
  x86, kvm: use correct GFP flags for preemption disabled
  KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer
  x86/kvm: Alloc dummy async #PF token outside of raw spinlock
  KVM: x86: avoid calling x86 emulator without a decoded instruction
  KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak
  x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
  s390/uv_uapi: depend on CONFIG_S390
  KVM: selftests: x86: Fix test failure on arch lbr capable platforms
  KVM: LAPIC: Trace LAPIC timer expiration on every vmentry
  KVM: s390: selftest: Test suppression indication on key prot exception
  KVM: s390: Don't indicate suppression on dirtying, failing memop
  selftests: drivers/s390x: Add uvdevice tests
  drivers/s390/char: Add Ultravisor io device
  MAINTAINERS: Update KVM RISC-V entry to cover selftests support
  RISC-V: KVM: Introduce ISA extension register
  RISC-V: KVM: Cleanup stale TLB entries when host CPU changes
  RISC-V: KVM: Add remote HFENCE functions based on VCPU requests
  ...
2022-05-26 14:20:14 -07:00
Paolo Bonzini
9f46c187e2 KVM: x86/mmu: fix NULL pointer dereference on guest INVPCID
With shadow paging enabled, the INVPCID instruction results in a call
to kvm_mmu_invpcid_gva.  If INVPCID is executed with CR0.PG=0, the
invlpg callback is not set and the result is a NULL pointer dereference.
Fix it trivially by checking for mmu->invlpg before every call.

There are other possibilities:

- check for CR0.PG, because KVM (like all Intel processors after P5)
  flushes guest TLB on CR0.PG changes so that INVPCID/INVLPG are a
  nop with paging disabled

- check for EFER.LMA, because KVM syncs and flushes when switching
  MMU contexts outside of 64-bit mode

All of these are tricky, go for the simple solution.  This is CVE-2022-1789.

Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-20 13:49:52 -04:00
Sean Christopherson
b28cb0cd2c KVM: x86/mmu: Update number of zapped pages even if page list is stable
When zapping obsolete pages, update the running count of zapped pages
regardless of whether or not the list has become unstable due to zapping
a shadow page with its own child shadow pages.  If the VM is backed by
mostly 4kb pages, KVM can zap an absurd number of SPTEs without bumping
the batch count and thus without yielding.  In the worst case scenario,
this can cause a soft lokcup.

 watchdog: BUG: soft lockup - CPU#12 stuck for 22s! [dirty_log_perf_:13020]
   RIP: 0010:workingset_activation+0x19/0x130
   mark_page_accessed+0x266/0x2e0
   kvm_set_pfn_accessed+0x31/0x40
   mmu_spte_clear_track_bits+0x136/0x1c0
   drop_spte+0x1a/0xc0
   mmu_page_zap_pte+0xef/0x120
   __kvm_mmu_prepare_zap_page+0x205/0x5e0
   kvm_mmu_zap_all_fast+0xd7/0x190
   kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
   kvm_page_track_flush_slot+0x5c/0x80
   kvm_arch_flush_shadow_memslot+0xe/0x10
   kvm_set_memslot+0x1a8/0x5d0
   __kvm_set_memory_region+0x337/0x590
   kvm_vm_ioctl+0xb08/0x1040

Fixes: fbb158cb88 ("KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch""")
Reported-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220511145122.3133334-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 10:09:51 -04:00
Vipin Sharma
6ba1e04fa6 KVM: x86/mmu: Speed up slot_rmap_walk_next for sparsely populated rmaps
Avoid calling handlers on empty rmap entries and skip to the next non
empty rmap entry.

Empty rmap entries are noop in handlers.

Signed-off-by: Vipin Sharma <vipinsh@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220502220347.174664-1-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:45 -04:00
Kai Huang
e54f1ff244 KVM: x86/mmu: Add shadow_me_value and repurpose shadow_me_mask
Intel Multi-Key Total Memory Encryption (MKTME) repurposes couple of
high bits of physical address bits as 'KeyID' bits.  Intel Trust Domain
Extentions (TDX) further steals part of MKTME KeyID bits as TDX private
KeyID bits.  TDX private KeyID bits cannot be set in any mapping in the
host kernel since they can only be accessed by software running inside a
new CPU isolated mode.  And unlike to AMD's SME, host kernel doesn't set
any legacy MKTME KeyID bits to any mapping either.  Therefore, it's not
legitimate for KVM to set any KeyID bits in SPTE which maps guest
memory.

KVM maintains shadow_zero_check bits to represent which bits must be
zero for SPTE which maps guest memory.  MKTME KeyID bits should be set
to shadow_zero_check.  Currently, shadow_me_mask is used by AMD to set
the sme_me_mask to SPTE, and shadow_me_shadow is excluded from
shadow_zero_check.  So initializing shadow_me_mask to represent all
MKTME keyID bits doesn't work for VMX (as oppositely, they must be set
to shadow_zero_check).

Introduce a new 'shadow_me_value' to replace existing shadow_me_mask,
and repurpose shadow_me_mask as 'all possible memory encryption bits'.
The new schematic of them will be:

 - shadow_me_value: the memory encryption bit(s) that will be set to the
   SPTE (the original shadow_me_mask).
 - shadow_me_mask: all possible memory encryption bits (which is a super
   set of shadow_me_value).
 - For now, shadow_me_value is supposed to be set by SVM and VMX
   respectively, and it is a constant during KVM's life time.  This
   perhaps doesn't fit MKTME but for now host kernel doesn't support it
   (and perhaps will never do).
 - Bits in shadow_me_mask are set to shadow_zero_check, except the bits
   in shadow_me_value.

Introduce a new helper kvm_mmu_set_me_spte_mask() to initialize them.
Replace shadow_me_mask with shadow_me_value in almost all code paths,
except the one in PT64_PERM_MASK, which is used by need_remote_flush()
to determine whether remote TLB flush is needed.  This should still use
shadow_me_mask as any encryption bit change should need a TLB flush.
And for AMD, move initializing shadow_me_value/shadow_me_mask from
kvm_mmu_reset_all_pte_masks() to svm_hardware_setup().

Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <f90964b93a3398b1cf1c56f510f3281e0709e2ab.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:44 -04:00
Kai Huang
c919e881ba KVM: x86/mmu: Rename reset_rsvds_bits_mask()
Rename reset_rsvds_bits_mask() to reset_guest_rsvds_bits_mask() to make
it clearer that it resets the reserved bits check for guest's page table
entries.

Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <efdc174b85d55598880064b8bf09245d3791031d.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:44 -04:00
Sean Christopherson
1075d41efd KVM: x86/mmu: Expand and clean up page fault stats
Expand and clean up the page fault stats.  The current stats are at best
incomplete, and at worst misleading.  Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.

Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:43 -04:00
Sean Christopherson
8a009d5bca KVM: x86/mmu: Make all page fault handlers internal to the MMU
Move kvm_arch_async_page_ready() to mmu.c where it belongs, and move all
of the page fault handling collateral that was in mmu.h purely for the
async #PF handler into mmu_internal.h, where it belongs.  This will allow
kvm_mmu_do_page_fault() to act on the RET_PF_* return without having to
expose those enums outside of the MMU.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:42 -04:00
Sean Christopherson
5276c616ab KVM: x86/mmu: Add RET_PF_CONTINUE to eliminate bool+int* "returns"
Add RET_PF_CONTINUE and use it in handle_abnormal_pfn() and
kvm_faultin_pfn() to signal that the page fault handler should continue
doing its thing.  Aside from being gross and inefficient, using a boolean
return to signal continue vs. stop makes it extremely difficult to add
more helpers and/or move existing code to a helper.

E.g. hypothetically, if nested MMUs were to gain a separate page fault
handler in the future, everything up to the "is self-modifying PTE" check
can be shared by all shadow MMUs, but communicating up the stack whether
to continue on or stop becomes a nightmare.

More concretely, proposed support for private guest memory ran into a
similar issue, where it'll be forced to forego a helper in order to yield
sane code: https://lore.kernel.org/all/YkJbxiL%2FAz7olWlq@google.com.

No functional change intended.

Cc: David Matlack <dmatlack@google.com>
Cc: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:42 -04:00
Sean Christopherson
5c64aba517 KVM: x86/mmu: Drop exec/NX check from "page fault can be fast"
Tweak the "page fault can be fast" logic to explicitly check for !PRESENT
faults in the access tracking case, and drop the exec/NX check that
becomes redundant as a result.  No sane hardware will generate an access
that is both an instruct fetch and a write, i.e. it's a waste of cycles.
If hardware goes off the rails, or KVM runs under a misguided hypervisor,
spuriously running throught fast path is benign (KVM has been uknowingly
being doing exactly that for years).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:41 -04:00
Sean Christopherson
54275f74cf KVM: x86/mmu: Don't attempt fast page fault just because EPT is in use
Check for A/D bits being disabled instead of the access tracking mask
being non-zero when deciding whether or not to attempt to fix a page
fault vian the fast path.  Originally, the access tracking mask was
non-zero if and only if A/D bits were disabled by _KVM_ (including not
being supported by hardware), but that hasn't been true since nVMX was
fixed to honor EPTP12's A/D enabling, i.e. since KVM allowed L1 to cause
KVM to not use A/D bits while running L2 despite KVM using them while
running L1.

In other words, don't attempt the fast path just because EPT is enabled.

Note, attempting the fast path for all !PRESENT faults can "fix" a very,
_VERY_ tiny percentage of faults out of mmu_lock by detecting that the
fault is spurious, i.e. has been fixed by a different vCPU, but again the
odds of that happening are vanishingly small.  E.g. booting an 8-vCPU VM
gets less than 10 successes out of 30k+ faults, and that's likely one of
the more favorable scenarios.  Disabling dirty logging can likely lead to
a rash of collisions between vCPUs for some workloads that operate on a
common set of pages, but penalizing _all_ !PRESENT faults for that one
case is unlikely to be a net positive, not to mention that that problem
is best solved by not zapping in the first place.

The number of spurious faults does scale with the number of vCPUs, e.g. a
255-vCPU VM using TDP "jumps" to ~60 spurious faults detected in the fast
path (again out of 30k), but that's all of 0.2% of faults.  Using legacy
shadow paging does get more spurious faults, and a few more detected out
of mmu_lock, but the percentage goes _down_ to 0.08% (and that's ignoring
faults that are reflected into the guest), i.e. the extra detections are
purely due to the sheer number of faults observed.

On the other hand, getting a "negative" in the fast path takes in the
neighborhood of 150-250 cycles.  So while it is tempting to keep/extend
the current behavior, such a change needs to come with hard numbers
showing that it's actually a win in the grand scheme, or any scheme for
that matter.

Fixes: 995f00a619 ("x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:41 -04:00
Paolo Bonzini
6ea6581f12 Merge branch 'kvm-tdp-mmu-atomicity-fix' into HEAD
We are dropping A/D bits (and W bits) in the TDP MMU.  Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.

Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.

The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
2022-05-03 07:29:30 -04:00
Sean Christopherson
54eb3ef56f KVM: x86/mmu: Move shadow-present check out of spte_has_volatile_bits()
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers.  Well, caller, since only one of its two callers
doesn't already do the shadow-present check.

Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change.  Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.

Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present.  Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.

No functional change intended.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-03 07:22:32 -04:00
Sean Christopherson
706c9c55e5 KVM: x86/mmu: Don't treat fully writable SPTEs as volatile (modulo A/D)
Don't treat SPTEs that are truly writable, i.e. writable in hardware, as
being volatile (unless they're volatile for other reasons, e.g. A/D bits).
KVM _sets_ the WRITABLE bit out of mmu_lock, but never _clears_ the bit
out of mmu_lock, so if the WRITABLE bit is set, it cannot magically get
cleared just because the SPTE is MMU-writable.

Rename the wrapper of MMU-writable to be more literal, the previous name
of spte_can_locklessly_be_made_writable() is wrong and misleading.

Fixes: c7ba5b48cc ("KVM: MMU: fast path of handling guest page fault")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-03 07:22:31 -04:00
Lai Jiangshan
84e5ffd045 KVM: X86/MMU: Fix shadowing 5-level NPT for 4-level NPT L1 guest
When shadowing 5-level NPT for 4-level NPT L1 guest, the root_sp is
allocated with role.level = 5 and the guest pagetable's root gfn.

And root_sp->spt[0] is also allocated with the same gfn and the same
role except role.level = 4.  Luckily that they are different shadow
pages, but only root_sp->spt[0] is the real translation of the guest
pagetable.

Here comes a problem:

If the guest switches from gCR4_LA57=0 to gCR4_LA57=1 (or vice verse)
and uses the same gfn as the root page for nested NPT before and after
switching gCR4_LA57.  The host (hCR4_LA57=1) might use the same root_sp
for the guest even the guest switches gCR4_LA57.  The guest will see
unexpected page mapped and L2 may exploit the bug and hurt L1.  It is
lucky that the problem can't hurt L0.

And three special cases need to be handled:

The root_sp should be like role.direct=1 sometimes: its contents are
not backed by gptes, root_sp->gfns is meaningless.  (For a normal high
level sp in shadow paging, sp->gfns is often unused and kept zero, but
it could be relevant and meaningful if sp->gfns is used because they
are backed by concrete gptes.)

For such root_sp in the case, root_sp is just a portal to contribute
root_sp->spt[0], and root_sp->gfns should not be used and
root_sp->spt[0] should not be dropped if gpte[0] of the guest root
pagetable is changed.

Such root_sp should not be accounted too.

So add role.passthrough to distinguish the shadow pages in the hash
when gCR4_LA57 is toggled and fix above special cases by using it in
kvm_mmu_page_{get|set}_gfn() and sp_has_gptes().

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:50:00 -04:00
Lai Jiangshan
767d8d8d50 KVM: X86/MMU: Add sp_has_gptes()
Add sp_has_gptes() which equals to !sp->role.direct currently.

Shadow page having gptes needs to be write-protected, accounted and
responded to kvm_mmu_pte_write().

Use it in these places to replace !sp->role.direct and rename
for_each_gfn_indirect_valid_sp.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:50:00 -04:00
Paolo Bonzini
347a0d0ded KVM: x86/mmu: replace direct_map with root_role.direct
direct_map is always equal to the direct field of the root page's role:

- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct

- for TDP, it is always true and root_role.direct is also always true

- for shadow TDP, it is always false and root_role.direct is also always
false

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:59 -04:00
Paolo Bonzini
4d25502aa1 KVM: x86/mmu: replace root_level with cpu_role.base.level
Remove another duplicate field of struct kvm_mmu.  This time it's
the root level for page table walking; the separate field is
always initialized as cpu_role.base.level, so its users can look
up the CPU mode directly instead.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:58 -04:00
Paolo Bonzini
a972e29c1d KVM: x86/mmu: replace shadow_root_level with root_role.level
root_role.level is always the same value as shadow_level:

- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu

- it's the level argument when going through kvm_init_shadow_ept_mmu

- it's assigned directly from new_role.base.level when going
  through shadow_mmu_init_context

Remove the duplication and get the level directly from the role.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:58 -04:00
Paolo Bonzini
a7f1de9b60 KVM: x86/mmu: pull CPU mode computation to kvm_init_mmu
Do not lead init_kvm_*mmu into the temptation of poking
into struct kvm_mmu_role_regs, by passing to it directly
the CPU mode.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:57 -04:00
Paolo Bonzini
56b321f9e3 KVM: x86/mmu: simplify and/or inline computation of shadow MMU roles
Shadow MMUs compute their role from cpu_role.base, simply by adjusting
the root level.  It's one line of code, so do not place it in a separate
function.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:57 -04:00
Paolo Bonzini
faf729621c KVM: x86/mmu: remove redundant bits from extended role
Before the separation of the CPU and the MMU role, CR0.PG was not
available in the base MMU role, because two-dimensional paging always
used direct=1 in the MMU role.  However, now that the raw role is
snapshotted in mmu->cpu_role, the value of CR0.PG always matches both
!cpu_role.base.direct and cpu_role.base.level > 0.  There is no need to
store it again in union kvm_mmu_extended_role; instead, write an is_cr0_pg
accessor by hand that takes care of the conversion.  Use cpu_role.base.level
since the future of the direct field is unclear.

Likewise, CR4.PAE is now always present in the CPU role as
!cpu_role.base.has_4_byte_gpte.  The inversion makes certain tests on
the MMU role easier, and is easily hidden by the is_cr4_pae accessor
when operating on the CPU role.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:57 -04:00
Paolo Bonzini
7a7ae82923 KVM: x86/mmu: rename kvm_mmu_role union
It is quite confusing that the "full" union is called kvm_mmu_role
but is used for the "cpu_role" field of struct kvm_mmu.  Rename it
to kvm_cpu_role.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:56 -04:00
Paolo Bonzini
7a458f0e1b KVM: x86/mmu: remove extended bits from mmu_role, rename field
mmu_role represents the role of the root of the page tables.
It does not need any extended bits, as those govern only KVM's
page table walking; the is_* functions used for page table
walking always use the CPU role.

ext.valid is not present anymore in the MMU role, but an
all-zero MMU role is impossible because the level field is
never zero in the MMU role.  So just zap the whole mmu_role
in order to force invalidation after CPUID is updated.

While making this change, which requires touching almost every
occurrence of "mmu_role", rename it to "root_role".

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:56 -04:00
Paolo Bonzini
362505deb8 KVM: x86/mmu: store shadow EFER.NX in the MMU role
Now that the MMU role is separate from the CPU role, it can be a
truthful description of the format of the shadow pages.  This includes
whether the shadow pages use the NX bit; so force the efer_nx field
of the MMU role when TDP is disabled, and remove the hardcoding it in
the callers of reset_shadow_zero_bits_mask.

In fact, the initialization of reserved SPTE bits can now be made common
to shadow paging and shadow NPT; move it to shadow_mmu_init_context.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:55 -04:00
Paolo Bonzini
f417e1459a KVM: x86/mmu: cleanup computation of MMU roles for shadow paging
Pass the already-computed CPU role, instead of redoing it.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:55 -04:00
Paolo Bonzini
2ba676774d KVM: x86/mmu: cleanup computation of MMU roles for two-dimensional paging
Inline kvm_calc_mmu_role_common into its sole caller, and simplify it
by removing the computation of unnecessary bits.

Extended bits are unnecessary because page walking uses the CPU role,
and EFER.NX/CR0.WP can be set to one unconditionally---matching the
format of shadow pages rather than the format of guest pages.

The MMU role for two dimensional paging does still depend on the CPU role,
even if only barely so, due to SMM and guest mode; for consistency,
pass it down to kvm_calc_tdp_mmu_root_page_role instead of querying
the vcpu with is_smm or is_guest_mode.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:55 -04:00
Paolo Bonzini
19b5dcc3be KVM: x86/mmu: remove kvm_calc_shadow_root_page_role_common
kvm_calc_shadow_root_page_role_common is the same as
kvm_calc_cpu_role except for the level, which is overwritten
afterwards in kvm_calc_shadow_mmu_root_page_role
and kvm_calc_shadow_npt_root_page_role.

role.base.direct is already set correctly for the CPU role,
and CR0.PG=1 is required for VMRUN so it will also be
correct for nested NPT.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:54 -04:00
Paolo Bonzini
ec283cb1dc KVM: x86/mmu: remove ept_ad field
The ept_ad field is used during page walk to determine if the guest PTEs
have accessed and dirty bits.  In the MMU role, the ad_disabled
bit represents whether the *shadow* PTEs have the bits, so it
would be incorrect to replace PT_HAVE_ACCESSED_DIRTY with just
!mmu->mmu_role.base.ad_disabled.

However, the similar field in the CPU mode, ad_disabled, is initialized
correctly: to the opposite value of ept_ad for shadow EPT, and zero
for non-EPT guest paging modes (which always have A/D bits).  It is
therefore possible to compute PT_HAVE_ACCESSED_DIRTY from the CPU mode,
like other page-format fields; it just has to be inverted to account
for the different polarity.

In fact, now that the CPU mode is distinct from the MMU roles, it would
even be possible to remove PT_HAVE_ACCESSED_DIRTY macro altogether, and
use !mmu->cpu_role.base.ad_disabled instead.  I am not doing this because
the macro has a small effect in terms of dead code elimination:

   text	   data	    bss	    dec	    hex
 103544	  16665	    112	 120321	  1d601    # as of this patch
 103746	  16665	    112	 120523	  1d6cb    # without PT_HAVE_ACCESSED_DIRTY

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:54 -04:00
Paolo Bonzini
60f3cb60a5 KVM: x86/mmu: do not recompute root level from kvm_mmu_role_regs
The root_level can be found in the cpu_role (in fact the field
is superfluous and could be removed, but one thing at a time).
Since there is only one usage left of role_regs_to_root_level,
inline it into kvm_calc_cpu_role.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:53 -04:00
Paolo Bonzini
e5ed0fb010 KVM: x86/mmu: split cpu_role from mmu_role
Snapshot the state of the processor registers that govern page walk into
a new field of struct kvm_mmu.  This is a more natural representation
than having it *mostly* in mmu_role but not exclusively; the delta
right now is represented in other fields, such as root_level.

The nested MMU now has only the CPU role; and in fact the new function
kvm_calc_cpu_role is analogous to the previous kvm_calc_nested_mmu_role,
except that it has role.base.direct equal to !CR0.PG.  For a walk-only
MMU, "direct" has no meaning, but we set it to !CR0.PG so that
role.ext.cr0_pg can go away in a future patch.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:53 -04:00
Paolo Bonzini
b89805082a KVM: x86/mmu: remove "bool base_only" arguments
The argument is always false now that kvm_mmu_calc_root_page_role has
been removed.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:53 -04:00
Paolo Bonzini
39e7e2bf32 KVM: x86/mmu: pull computation of kvm_mmu_role_regs to kvm_init_mmu
The init_kvm_*mmu functions, with the exception of shadow NPT,
do not need to know the full values of CR0/CR4/EFER; they only
need to know the bits that make up the "role".  This cleanup
however will take quite a few incremental steps.  As a start,
pull the common computation of the struct kvm_mmu_role_regs
into their caller: all of them extract the struct from the vcpu
as the very first step.

Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:17 -04:00
Paolo Bonzini
82ffa13f79 KVM: x86/mmu: constify uses of struct kvm_mmu_role_regs
struct kvm_mmu_role_regs is computed just once and then accessed.  Use
const to make this clearer, even though the const fields of struct
kvm_mmu_role_regs already prevent (or make it harder...) to modify
the contents of the struct.

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:17 -04:00
Paolo Bonzini
daed87b876 KVM: x86/mmu: nested EPT cannot be used in SMM
The role.base.smm flag is always zero when setting up shadow EPT,
do not bother copying it over from vcpu->arch.root_mmu.

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:17 -04:00
Sean Christopherson
8b9e74bfbf KVM: x86/mmu: Use enable_mmio_caching to track if MMIO caching is enabled
Clear enable_mmio_caching if hardware can't support MMIO caching and use
the dedicated flag to detect if MMIO caching is enabled instead of
assuming shadow_mmio_value==0 means MMIO caching is disabled.  TDX will
use a zero value even when caching is enabled, and is_mmio_spte() isn't
so hot that it needs to avoid an extra memory access, i.e. there's no
reason to be super clever.  And the clever approach may not even be more
performant, e.g. gcc-11 lands the extra check on a non-zero value inline,
but puts the enable_mmio_caching out-of-line, i.e. avoids the few extra
uops for non-MMIO SPTEs.

Cc: Isaku Yamahata <isaku.yamahata@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220420002747.3287931-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:16 -04:00
Paolo Bonzini
71d7c575a6 Merge branch 'kvm-fixes-for-5.18-rc5' into HEAD
Fixes for (relatively) old bugs, to be merged in both the -rc and next
development trees.

The merge reconciles the ABI fixes for KVM_EXIT_SYSTEM_EVENT between
5.18 and commit c24a950ec7 ("KVM, SEV: Add KVM_EXIT_SHUTDOWN metadata
for SEV-ES", 2022-04-13).
2022-04-29 12:47:59 -04:00
Mingwei Zhang
44187235cb KVM: x86/mmu: fix potential races when walking host page table
KVM uses lookup_address_in_mm() to detect the hugepage size that the host
uses to map a pfn.  The function suffers from several issues:

 - no usage of READ_ONCE(*). This allows multiple dereference of the same
   page table entry. The TOCTOU problem because of that may cause KVM to
   incorrectly treat a newly generated leaf entry as a nonleaf one, and
   dereference the content by using its pfn value.

 - the information returned does not match what KVM needs; for non-present
   entries it returns the level at which the walk was terminated, as long
   as the entry is not 'none'.  KVM needs level information of only 'present'
   entries, otherwise it may regard a non-present PXE entry as a present
   large page mapping.

 - the function is not safe for mappings that can be torn down, because it
   does not disable IRQs and because it returns a PTE pointer which is never
   safe to dereference after the function returns.

So implement the logic for walking host page tables directly in KVM, and
stop using lookup_address_in_mm().

Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220429031757.2042406-1-mizhang@google.com>
[Inline in host_pfn_mapping_level, ensure no semantic change for its
 callers. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:38:22 -04:00
Sean Christopherson
86931ff720 KVM: x86/mmu: Do not create SPTEs for GFNs that exceed host.MAXPHYADDR
Disallow memslots and MMIO SPTEs whose gpa range would exceed the host's
MAXPHYADDR, i.e. don't create SPTEs for gfns that exceed host.MAXPHYADDR.
The TDP MMU bounds its zapping based on host.MAXPHYADDR, and so if the
guest, possibly with help from userspace, manages to coerce KVM into
creating a SPTE for an "impossible" gfn, KVM will leak the associated
shadow pages (page tables):

  WARNING: CPU: 10 PID: 1122 at arch/x86/kvm/mmu/tdp_mmu.c:57
                                kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
  Modules linked in: kvm_intel kvm irqbypass
  CPU: 10 PID: 1122 Comm: set_memory_regi Tainted: G        W         5.18.0-rc1+ #293
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
  Call Trace:
   <TASK>
   kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
   kvm_destroy_vm+0x162/0x2d0 [kvm]
   kvm_vm_release+0x1d/0x30 [kvm]
   __fput+0x82/0x240
   task_work_run+0x5b/0x90
   exit_to_user_mode_prepare+0xd2/0xe0
   syscall_exit_to_user_mode+0x1d/0x40
   entry_SYSCALL_64_after_hwframe+0x44/0xae
   </TASK>

On bare metal, encountering an impossible gpa in the page fault path is
well and truly impossible, barring CPU bugs, as the CPU will signal #PF
during the gva=>gpa translation (or a similar failure when stuffing a
physical address into e.g. the VMCS/VMCB).  But if KVM is running as a VM
itself, the MAXPHYADDR enumerated to KVM may not be the actual MAXPHYADDR
of the underlying hardware, in which case the hardware will not fault on
the illegal-from-KVM's-perspective gpa.

Alternatively, KVM could continue allowing the dodgy behavior and simply
zap the max possible range.  But, for hosts with MAXPHYADDR < 52, that's
a (minor) waste of cycles, and more importantly, KVM can't reasonably
support impossible memslots when running on bare metal (or with an
accurate MAXPHYADDR as a VM).  Note, limiting the overhead by checking if
KVM is running as a guest is not a safe option as the host isn't required
to announce itself to the guest in any way, e.g. doesn't need to set the
HYPERVISOR CPUID bit.

A second alternative to disallowing the memslot behavior would be to
disallow creating a VM with guest.MAXPHYADDR > host.MAXPHYADDR.  That
restriction is undesirable as there are legitimate use cases for doing
so, e.g. using the highest host.MAXPHYADDR out of a pool of heterogeneous
systems so that VMs can be migrated between hosts with different
MAXPHYADDRs without running afoul of the allow_smaller_maxphyaddr mess.

Note that any guest.MAXPHYADDR is valid with shadow paging, and it is
even useful in order to test KVM with MAXPHYADDR=52 (i.e. without
any reserved physical address bits).

The now common kvm_mmu_max_gfn() is inclusive instead of exclusive.
The memslot and TDP MMU code want an exclusive value, but the name
implies the returned value is inclusive, and the MMIO path needs an
inclusive check.

Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 524a1e4e38 ("KVM: x86/mmu: Don't leak non-leaf SPTEs when zapping all SPTEs")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220428233416.2446833-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:38:21 -04:00
Paolo Bonzini
a4cfff3f0f Merge branch 'kvm-older-features' into HEAD
Merge branch for features that did not make it into 5.18:

* New ioctls to get/set TSC frequency for a whole VM

* Allow userspace to opt out of hypercall patching

Nested virtualization improvements for AMD:

* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
  nested vGIF)

* Allow AVIC to co-exist with a nested guest running

* Fixes for LBR virtualizations when a nested guest is running,
  and nested LBR virtualization support

* PAUSE filtering for nested hypervisors

Guest support:

* Decoupling of vcpu_is_preempted from PV spinlocks

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:17 -04:00
Sean Christopherson
1d0e848060 KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded
Resolve nx_huge_pages to true/false when kvm.ko is loaded, leaving it as
-1 is technically undefined behavior when its value is read out by
param_get_bool(), as boolean values are supposed to be '0' or '1'.

Alternatively, KVM could define a custom getter for the param, but the
auto value doesn't depend on the vendor module in any way, and printing
"auto" would be unnecessarily unfriendly to the user.

In addition to fixing the undefined behavior, resolving the auto value
also fixes the scenario where the auto value resolves to N and no vendor
module is loaded.  Previously, -1 would result in Y being printed even
though KVM would ultimately disable the mitigation.

Rename the existing MMU module init/exit helpers to clarify that they're
invoked with respect to the vendor module, and add comments to document
why KVM has two separate "module init" flows.

  =========================================================================
  UBSAN: invalid-load in kernel/params.c:320:33
  load of value 255 is not a valid value for type '_Bool'
  CPU: 6 PID: 892 Comm: tail Not tainted 5.17.0-rc3+ #799
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Call Trace:
   <TASK>
   dump_stack_lvl+0x34/0x44
   ubsan_epilogue+0x5/0x40
   __ubsan_handle_load_invalid_value.cold+0x43/0x48
   param_get_bool.cold+0xf/0x14
   param_attr_show+0x55/0x80
   module_attr_show+0x1c/0x30
   sysfs_kf_seq_show+0x93/0xc0
   seq_read_iter+0x11c/0x450
   new_sync_read+0x11b/0x1a0
   vfs_read+0xf0/0x190
   ksys_read+0x5f/0xe0
   do_syscall_64+0x3b/0xc0
   entry_SYSCALL_64_after_hwframe+0x44/0xae
   </TASK>
  =========================================================================

Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220331221359.3912754-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-05 08:09:46 -04:00
Hou Wenlong
8d5678a766 KVM: x86/mmu: Don't rebuild page when the page is synced and no tlb flushing is required
Before Commit c3e5e415bc ("KVM: X86: Change kvm_sync_page()
to return true when remote flush is needed"), the return value
of kvm_sync_page() indicates whether the page is synced, and
kvm_mmu_get_page() would rebuild page when the sync fails.
But now, kvm_sync_page() returns false when the page is
synced and no tlb flushing is required, which leads to
rebuild page in kvm_mmu_get_page(). So return the return
value of mmu->sync_page() directly and check it in
kvm_mmu_get_page(). If the sync fails, the page will be
zapped and the invalid_list is not empty, so set flush as
true is accepted in mmu_sync_children().

Cc: stable@vger.kernel.org
Fixes: c3e5e415bc ("KVM: X86: Change kvm_sync_page() to return true when remote flush is needed")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Acked-by: Lai Jiangshan <jiangshanlai@gmail.com>
Message-Id: <0dabeeb789f57b0d793f85d073893063e692032d.1647336064.git.houwenlong.hwl@antgroup.com>
[mmu_sync_children should not flush if the page is zapped. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:44:23 -04:00
Maxim Levitsky
5959ff4ae9 KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
It makes more sense to print new SPTE value than the
old value.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220302102457.588450-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:45 -04:00
Lai Jiangshan
4f4aa80e3b KVM: X86: Handle implicit supervisor access with SMAP
There are two kinds of implicit supervisor access
	implicit supervisor access when CPL = 3
	implicit supervisor access when CPL < 3

Current permission_fault() handles only the first kind for SMAP.

But if the access is implicit when SMAP is on, data may not be read
nor write from any user-mode address regardless the current CPL.

So the second kind should be also supported.

The first kind can be detect via CPL and access mode: if it is
supervisor access and CPL = 3, it must be implicit supervisor access.

But it is not possible to detect the second kind without extra
information, so this patch adds an artificial PFERR_EXPLICIT_ACCESS
into @access. This extra information also works for the first kind, so
the logic is changed to use this information for both cases.

The value of PFERR_EXPLICIT_ACCESS is deliberately chosen to be bit 48
which is in the most significant 16 bits of u64 and less likely to be
forced to change due to future hardware uses it.

This patch removes the call to ->get_cpl() for access mode is determined
by @access.  Not only does it reduce a function call, but also remove
confusions when the permission is checked for nested TDP.  The nested
TDP shouldn't have SMAP checking nor even the L2's CPL have any bearing
on it.  The original code works just because it is always user walk for
NPT and SMAP fault is not set for EPT in update_permission_bitmask.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:43 -04:00
Lai Jiangshan
94b4a2f174 KVM: X86: Fix comments in update_permission_bitmask
The commit 09f037aa48 ("KVM: MMU: speedup update_permission_bitmask")
refactored the code of update_permission_bitmask() and change the
comments.  It added a condition into a list to match the new code,
so the number/order for conditions in the comments should be updated
too.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:42 -04:00
Lai Jiangshan
5b22bbe717 KVM: X86: Change the type of access u32 to u64
Change the type of access u32 to u64 for FNAME(walk_addr) and
->gva_to_gpa().

The kinds of accesses are usually combinations of UWX, and VMX/SVM's
nested paging adds a new factor of access: is it an access for a guest
page table or for a final guest physical address.

And SMAP relies a factor for supervisor access: explicit or implicit.

So @access in FNAME(walk_addr) and ->gva_to_gpa() is better to include
all these information to do the walk.

Although @access(u32) has enough bits to encode all the kinds, this
patch extends it to u64:
	o Extra bits will be in the higher 32 bits, so that we can
	  easily obtain the traditional access mode (UWX) by converting
	  it to u32.
	o Reuse the value for the access kind defined by SVM's nested
	  paging (PFERR_GUEST_FINAL_MASK and PFERR_GUEST_PAGE_MASK) as
	  @error_code in kvm_handle_page_fault().

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:42 -04:00
Sean Christopherson
f47e5bbbc9 KVM: x86/mmu: Zap only TDP MMU leafs in zap range and mmu_notifier unmap
Re-introduce zapping only leaf SPTEs in kvm_zap_gfn_range() and
kvm_tdp_mmu_unmap_gfn_range(), this time without losing a pending TLB
flush when processing multiple roots (including nested TDP shadow roots).
Dropping the TLB flush resulted in random crashes when running Hyper-V
Server 2019 in a guest with KSM enabled in the host (or any source of
mmu_notifier invalidations, KSM is just the easiest to force).

This effectively revert commits 873dd12217
and fcb93eb6d0, and thus restores commit
cf3e26427c, plus this delta on top:

bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end,
        struct kvm_mmu_page *root;

        for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
-               flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, false);
+               flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush);

        return flush;
 }

Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325230348.2587437-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:39 -04:00
Paolo Bonzini
a1a39128fa KVM: MMU: propagate alloc_workqueue failure
If kvm->arch.tdp_mmu_zap_wq cannot be created, the failure has
to be propagated up to kvm_mmu_init_vm and kvm_arch_init_vm.
kvm_arch_init_vm also has to undo all the initialization, so
group all the MMU initialization code at the beginning and
handle cleaning up of kvm_page_track_init.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:38 -04:00
Paolo Bonzini
873dd12217 Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
This reverts commit cf3e26427c.

Multi-vCPU Hyper-V guests started crashing randomly on boot with the
latest kvm/queue and the problem can be bisected the problem to this
particular patch. Basically, I'm not able to boot e.g. 16-vCPU guest
successfully anymore. Both Intel and AMD seem to be affected. Reverting
the commit saves the day.

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-21 05:11:51 -04:00
Paolo Bonzini
22b94c4b63 KVM: x86/mmu: Zap invalidated roots via asynchronous worker
Use the system worker threads to zap the roots invalidated
by the TDP MMU's "fast zap" mechanism, implemented by
kvm_tdp_mmu_invalidate_all_roots().

At this point, apart from allowing some parallelism in the zapping of
roots, the workqueue is a glorified linked list: work items are added and
flushed entirely within a single kvm->slots_lock critical section.  However,
the workqueue fixes a latent issue where kvm_mmu_zap_all_invalidated_roots()
assumes that it owns a reference to all invalid roots; therefore, no
one can set the invalid bit outside kvm_mmu_zap_all_fast().  Putting the
invalidated roots on a linked list... erm, on a workqueue ensures that
tdp_mmu_zap_root_work() only puts back those extra references that
kvm_mmu_zap_all_invalidated_roots() had gifted to it.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08 10:55:27 -05:00
Sean Christopherson
bb95dfb9e2 KVM: x86/mmu: Defer TLB flush to caller when freeing TDP MMU shadow pages
Defer TLB flushes to the caller when freeing TDP MMU shadow pages instead
of immediately flushing.  Because the shadow pages are freed in an RCU
callback, so long as at least one CPU holds RCU, all CPUs are protected.
For vCPUs running in the guest, i.e. consuming TLB entries, KVM only
needs to ensure the caller services the pending TLB flush before dropping
its RCU protections.  I.e. use the caller's RCU as a proxy for all vCPUs
running in the guest.

Deferring the flushes allows batching flushes, e.g. when installing a
1gb hugepage and zapping a pile of SPs.  And when zapping an entire root,
deferring flushes allows skipping the flush entirely (because flushes are
not needed in that case).

Avoiding flushes when zapping an entire root is especially important as
synchronizing with other CPUs via IPI after zapping every shadow page can
cause significant performance issues for large VMs.  The issue is
exacerbated by KVM zapping entire top-level entries without dropping
RCU protection, which can lead to RCU stalls even when zapping roots
backing relatively "small" amounts of guest memory, e.g. 2tb.  Removing
the IPI bottleneck largely mitigates the RCU issues, though it's likely
still a problem for 5-level paging.  A future patch will further address
the problem by zapping roots in multiple passes to avoid holding RCU for
an extended duration.

Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08 09:31:57 -05:00
Sean Christopherson
cf3e26427c KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()
Zap only leaf SPTEs in the TDP MMU's zap_gfn_range(), and rename various
functions accordingly.  When removing mappings for functional correctness
(except for the stupid VFIO GPU passthrough memslots bug), zapping the
leaf SPTEs is sufficient as the paging structures themselves do not point
at guest memory and do not directly impact the final translation (in the
TDP MMU).

Note, this aligns the TDP MMU with the legacy/full MMU, which zaps only
the rmaps, a.k.a. leaf SPTEs, in kvm_zap_gfn_range() and
kvm_unmap_gfn_range().

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08 09:31:56 -05:00
Sean Christopherson
7ae5840e6f KVM: x86/mmu: Document that zapping invalidated roots doesn't need to flush
Remove the misleading flush "handling" when zapping invalidated TDP MMU
roots, and document that flushing is unnecessary for all flavors of MMUs
when zapping invalid/obsolete roots/pages.  The "handling" in the TDP MMU
is dead code, as zap_gfn_range() is called with shared=true, in which
case it will never return true due to the flushing being handled by
tdp_mmu_zap_spte_atomic().

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08 09:31:36 -05:00
Sean Christopherson
db01416b22 KVM: x86/mmu: Formalize TDP MMU's (unintended?) deferred TLB flush logic
Explicitly ignore the result of zap_gfn_range() when putting the last
reference to a TDP MMU root, and add a pile of comments to formalize the
TDP MMU's behavior of deferring TLB flushes to alloc/reuse.  Note, this
only affects the !shared case, as zap_gfn_range() subtly never returns
true for "flush" as the flush is handled by tdp_mmu_zap_spte_atomic().

Putting the root without a flush is ok because even if there are stale
references to the root in the TLB, they are unreachable because KVM will
not run the guest with the same ASID without first flushing (where ASID
in this context refers to both SVM's explicit ASID and Intel's implicit
ASID that is constructed from VPID+PCID+EPT4A+etc...).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-5-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08 09:31:23 -05:00
Sean Christopherson
f28e9c7fce KVM: x86/mmu: Fix wrong/misleading comments in TDP MMU fast zap
Fix misleading and arguably wrong comments in the TDP MMU's fast zap
flow.  The comments, and the fact that actually zapping invalid roots was
added separately, strongly suggests that zapping invalid roots is an
optimization and not required for correctness.  That is a lie.

KVM _must_ zap invalid roots before returning from kvm_mmu_zap_all_fast(),
because when it's called from kvm_mmu_invalidate_zap_pages_in_memslot(),
KVM is relying on it to fully remove all references to the memslot.  Once
the memslot is gone, KVM's mmu_notifier hooks will be unable to find the
stale references as the hva=>gfn translation is done via the memslots.
If KVM doesn't immediately zap SPTEs and userspace unmaps a range after
deleting a memslot, KVM will fail to zap in response to the mmu_notifier
due to not finding a memslot corresponding to the notifier's range, which
leads to a variation of use-after-free.

The other misleading comment (and code) explicitly states that roots
without a reference should be skipped.  While that's technically true,
it's also extremely misleading as it should be impossible for KVM to
encounter a defunct root on the list while holding mmu_lock for write.
Opportunistically add a WARN to enforce that invariant.

Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Fixes: 4c6654bd16 ("KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08 09:31:18 -05:00
Paolo Bonzini
0564eeb71b Merge branch 'kvm-bugfixes' into HEAD
Merge bugfixes from 5.17 before merging more tricky work.
2022-03-04 18:39:29 -05:00
Like Xu
c6c937d673 KVM: x86/mmu: Passing up the error state of mmu_alloc_shadow_roots()
Just like on the optional mmu_alloc_direct_roots() path, once shadow
path reaches "r = -EIO" somewhere, the caller needs to know the actual
state in order to enter error handling and avoid something worse.

Fixes: 4a38162ee9 ("KVM: MMU: load PDPTRs outside mmu_lock")
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220301124941.48412-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-02 10:55:58 -05:00
Sean Christopherson
5d6a322156 KVM: WARN if is_unsync_root() is called on a root without a shadow page
WARN and bail if is_unsync_root() is passed a root for which there is no
shadow page, i.e. is passed the physical address of one of the special
roots, which do not have an associated shadow page.  The current usage
squeaks by without bug reports because neither kvm_mmu_sync_roots() nor
kvm_mmu_sync_prev_roots() calls the helper with pae_root or pml4_root,
and 5-level AMD CPUs are not generally available, i.e. no one can coerce
KVM into calling is_unsync_root() on pml5_root.

Note, this doesn't fix the mess with 5-level nNPT, it just (hopefully)
prevents KVM from crashing.

Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220225182248.3812651-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-01 08:58:26 -05:00
Sean Christopherson
527d5cd7ee KVM: x86/mmu: Zap only obsolete roots if a root shadow page is zapped
Zap only obsolete roots when responding to zapping a single root shadow
page.  Because KVM keeps root_count elevated when stuffing a previous
root into its PGD cache, shadowing a 64-bit guest means that zapping any
root causes all vCPUs to reload all roots, even if their current root is
not affected by the zap.

For many kernels, zapping a single root is a frequent operation, e.g. in
Linux it happens whenever an mm is dropped, e.g. process exits, etc...

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220225182248.3812651-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-01 08:58:25 -05:00
Sean Christopherson
2f6f66ccd2 KVM: Drop kvm_reload_remote_mmus(), open code request in x86 users
Remove the generic kvm_reload_remote_mmus() and open code its
functionality into the two x86 callers.  x86 is (obviously) the only
architecture that uses the hook, and is also the only architecture that
uses KVM_REQ_MMU_RELOAD in a way that's consistent with the name.  That
will change in a future patch, as x86's usage when zapping a single
shadow page x86 doesn't actually _need_ to reload all vCPUs' MMUs, only
MMUs whose root is being zapped actually need to be reloaded.

s390 also uses KVM_REQ_MMU_RELOAD, but for a slightly different purpose.

Drop the generic code in anticipation of implementing s390 and x86 arch
specific requests, which will allow dropping KVM_REQ_MMU_RELOAD entirely.

Opportunistically reword the x86 TDP MMU comment to avoid making
references to functions (and requests!) when possible, and to remove the
rather ambiguous "this".

No functional change intended.

Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220225182248.3812651-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-01 08:58:25 -05:00
Paolo Bonzini
6d58f275e6 KVM: x86/mmu: clear MMIO cache when unloading the MMU
For cleanliness, do not leave a stale GVA in the cache after all the roots are
cleared.  In practice, kvm_mmu_load will go through kvm_mmu_sync_roots if
paging is on, and will not use vcpu_match_mmio_gva at all if paging is off.
However, leaving data in the cache might cause bugs in the future.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:19 -05:00
Paolo Bonzini
d2e5f33341 KVM: x86/mmu: Always use current mmu's role when loading new PGD
Since the guest PGD is now loaded after the MMU has been set up
completely, the desired role for a cache hit is simply the current
mmu_role.  There is no need to compute it again, so __kvm_mmu_new_pgd
can be folded in kvm_mmu_new_pgd.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:18 -05:00
Paolo Bonzini
3cffc89d9d KVM: x86/mmu: load new PGD after the shadow MMU is initialized
Now that __kvm_mmu_new_pgd does not look at the MMU's root_level and
shadow_root_level anymore, pull the PGD load after the initialization of
the shadow MMUs.

Besides being more intuitive, this enables future simplifications
and optimizations because it's not necessary anymore to compute the
role outside kvm_init_mmu.  In particular, kvm_mmu_reset_context was not
attempting to use a cached PGD to avoid having to figure out the new role.
With this change, it could follow what nested_{vmx,svm}_load_cr3 are doing,
and avoid unloading all the cached roots.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:18 -05:00
Paolo Bonzini
5499ea73e7 KVM: x86/mmu: look for a cached PGD when going from 32-bit to 64-bit
Right now, PGD caching avoids placing a PAE root in the cache by using the
old value of mmu->root_level and mmu->shadow_root_level; it does not look
for a cached PGD if the old root is a PAE one, and then frees it using
kvm_mmu_free_roots.

Change the logic instead to free the uncacheable root early.
This way, __kvm_new_mmu_pgd is able to look up the cache when going from
32-bit to 64-bit (if there is a hit, the invalid root becomes the least
recently used).  An example of this is nested virtualization with shadow
paging, when a 64-bit L1 runs a 32-bit L2.

As a side effect (which is actually the reason why this patch was
written), PGD caching does not use the old value of mmu->root_level
and mmu->shadow_root_level anymore.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:18 -05:00
Paolo Bonzini
0c1c92f15f KVM: x86/mmu: do not pass vcpu to root freeing functions
These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables).  They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu.  So, pass the vcpu->kvm directly to them.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:17 -05:00
Paolo Bonzini
594bef7931 KVM: x86/mmu: do not consult levels when freeing roots
Right now, PGD caching requires a complicated dance of first computing
the MMU role and passing it to __kvm_mmu_new_pgd(), and then separately calling
kvm_init_mmu().

Part of this is due to kvm_mmu_free_roots using mmu->root_level and
mmu->shadow_root_level to distinguish whether the page table uses a single
root or 4 PAE roots.  Because kvm_init_mmu() can overwrite mmu->root_level,
kvm_mmu_free_roots() must be called before kvm_init_mmu().

However, even after kvm_init_mmu() there is a way to detect whether the
page table may hold PAE roots, as root.hpa isn't backed by a shadow when
it points at PAE roots.  Using this method results in simpler code, and
is one less obstacle in moving all calls to __kvm_mmu_new_pgd() after the
MMU has been initialized.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:17 -05:00
Paolo Bonzini
b9e5603c2a KVM: x86: use struct kvm_mmu_root_info for mmu->root
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.

The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:16 -05:00
Paolo Bonzini
9191b8f074 KVM: x86/mmu: avoid NULL-pointer dereference on page freeing bugs
WARN and bail if KVM attempts to free a root that isn't backed by a shadow
page.  KVM allocates a bare page for "special" roots, e.g. when using PAE
paging or shadowing 2/3/4-level page tables with 4/5-level, and so root_hpa
will be valid but won't be backed by a shadow page.  It's all too easy to
blindly call mmu_free_root_page() on root_hpa, be nice and WARN instead of
crashing KVM and possibly the kernel.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:16 -05:00
Liang Zhang
6f3c1fc53d KVM: x86/mmu: make apf token non-zero to fix bug
In current async pagefault logic, when a page is ready, KVM relies on
kvm_arch_can_dequeue_async_page_present() to determine whether to deliver
a READY event to the Guest. This function test token value of struct
kvm_vcpu_pv_apf_data, which must be reset to zero by Guest kernel when a
READY event is finished by Guest. If value is zero meaning that a READY
event is done, so the KVM can deliver another.
But the kvm_arch_setup_async_pf() may produce a valid token with zero
value, which is confused with previous mention and may lead the loss of
this READY event.

This bug may cause task blocked forever in Guest:
 INFO: task stress:7532 blocked for more than 1254 seconds.
       Not tainted 5.10.0 #16
 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
 task:stress          state:D stack:    0 pid: 7532 ppid:  1409
 flags:0x00000080
 Call Trace:
  __schedule+0x1e7/0x650
  schedule+0x46/0xb0
  kvm_async_pf_task_wait_schedule+0xad/0xe0
  ? exit_to_user_mode_prepare+0x60/0x70
  __kvm_handle_async_pf+0x4f/0xb0
  ? asm_exc_page_fault+0x8/0x30
  exc_page_fault+0x6f/0x110
  ? asm_exc_page_fault+0x8/0x30
  asm_exc_page_fault+0x1e/0x30
 RIP: 0033:0x402d00
 RSP: 002b:00007ffd31912500 EFLAGS: 00010206
 RAX: 0000000000071000 RBX: ffffffffffffffff RCX: 00000000021a32b0
 RDX: 000000000007d011 RSI: 000000000007d000 RDI: 00000000021262b0
 RBP: 00000000021262b0 R08: 0000000000000003 R09: 0000000000000086
 R10: 00000000000000eb R11: 00007fefbdf2baa0 R12: 0000000000000000
 R13: 0000000000000002 R14: 000000000007d000 R15: 0000000000001000

Signed-off-by: Liang Zhang <zhangliang5@huawei.com>
Message-Id: <20220222031239.1076682-1-zhangliang5@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-24 13:04:46 -05:00
Sean Christopherson
1bbc60d0c7 KVM: x86/mmu: Remove MMU auditing
Remove mmu_audit.c and all its collateral, the auditing code has suffered
severe bitrot, ironically partly due to shadow paging being more stable
and thus not benefiting as much from auditing, but mostly due to TDP
supplanting shadow paging for non-nested guests and shadowing of nested
TDP not heavily stressing the logic that is being audited.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-18 13:46:23 -05:00
David Matlack
cb00a70bd4 KVM: x86/mmu: Split huge pages mapped by the TDP MMU during KVM_CLEAR_DIRTY_LOG
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.

Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:43 -05:00
David Matlack
a3fe5dbda0 KVM: x86/mmu: Split huge pages mapped by the TDP MMU when dirty logging is enabled
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.

Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.

Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:

 1. Splitting on the vCPU thread interrupts vCPUs execution and is
    disruptive to customers whereas splitting on VM ioctl threads can
    run in parallel with vCPU execution.

 2. Splitting all huge pages at once is more efficient because it does
    not require performing VM-exit handling or walking the page table for
    every 4KiB page in the memslot, and greatly reduces the amount of
    contention on the mmu_lock.

For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.

Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.

Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:42 -05:00
David Matlack
315d86da89 KVM: x86/mmu: Move restore_acc_track_spte() to spte.h
restore_acc_track_spte() is pure SPTE bit manipulation, making it a good
fit for spte.h. And now that the WARN_ON_ONCE() calls have been removed,
there isn't any good reason to not inline it.

This move also prepares for a follow-up commit that will need to call
restore_acc_track_spte() from spte.c

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-11-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:40 -05:00
David Matlack
77c23c77f9 KVM: x86/mmu: Drop new_spte local variable from restore_acc_track_spte()
The new_spte local variable is unnecessary. Deleting it can save a line
of code and simplify the remaining lines a bit.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-10-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:39 -05:00
David Matlack
59940e76d1 KVM: x86/mmu: Remove unnecessary warnings from restore_acc_track_spte()
The warnings in restore_acc_track_spte() can be removed because the only
caller checks is_access_track_spte(), and is_access_track_spte() checks
!spte_ad_enabled(). In other words, the warning can never be triggered.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-9-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:39 -05:00
David Matlack
1346bbb6b4 KVM: x86/mmu: Rename __rmap_write_protect() to rmap_write_protect()
The function formerly known as rmap_write_protect() has been renamed to
kvm_vcpu_write_protect_gfn(), so we can get rid of the double
underscores in front of __rmap_write_protect().

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:37 -05:00
David Matlack
cf48f9e286 KVM: x86/mmu: Rename rmap_write_protect() to kvm_vcpu_write_protect_gfn()
rmap_write_protect() is a poor name because it also write-protects SPTEs
in the TDP MMU, not just SPTEs in the rmap. It is also confusing that
rmap_write_protect() is not a simple wrapper around
__rmap_write_protect(), since that is the common pattern for functions
with double-underscore names.

Rename rmap_write_protect() to kvm_vcpu_write_protect_gfn() to convey
that KVM is write-protecting a specific gfn in the context of a vCPU.

No functional change intended.

Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:36 -05:00
David Matlack
02844ac1eb KVM: x86/mmu: Consolidate comments about {Host,MMU}-writable
Consolidate the large comment above DEFAULT_SPTE_HOST_WRITABLE with the
large comment above is_writable_pte() into one comment. This comment
explains the different reasons why an SPTE may be non-writable and KVM
keeps track of that with the {Host,MMU}-writable bits.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230723.1701061-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:33 -05:00
David Matlack
1ca87e015d KVM: x86/mmu: Rename DEFAULT_SPTE_MMU_WRITEABLE to DEFAULT_SPTE_MMU_WRITABLE
Both "writeable" and "writable" are valid, but we should be consistent
about which we use. DEFAULT_SPTE_MMU_WRITEABLE was the odd one out in
the SPTE code, so rename it to DEFAULT_SPTE_MMU_WRITABLE.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230713.1700406-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:33 -05:00
David Matlack
115111efd9 KVM: x86/mmu: Check SPTE writable invariants when setting leaf SPTEs
Check SPTE writable invariants when setting SPTEs rather than in
spte_can_locklessly_be_made_writable(). By the time KVM checks
spte_can_locklessly_be_made_writable(), the SPTE has long been since
corrupted.

Note that these invariants only apply to shadow-present leaf SPTEs (i.e.
not to MMIO SPTEs, non-leaf SPTEs, etc.). Add a comment explaining the
restriction and only instrument the code paths that set shadow-present
leaf SPTEs.

To account for access tracking, also check the SPTE writable invariants
when marking an SPTE as an access track SPTE. This also lets us remove
a redundant WARN from mark_spte_for_access_track().

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230518.1697048-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:32 -05:00
Sean Christopherson
e27bc0440e KVM: x86: Rename kvm_x86_ops pointers to align w/ preferred vendor names
Rename a variety of kvm_x86_op function pointers so that preferred name
for vendor implementations follows the pattern <vendor>_<function>, e.g.
rename .run() to .vcpu_run() to match {svm,vmx}_vcpu_run().  This will
allow vendor implementations to be wired up via the KVM_X86_OP macro.

In many cases, VMX and SVM "disagree" on the preferred name, though in
reality it's VMX and x86 that disagree as SVM blindly prepended _svm to
the kvm_x86_ops name.  Justification for using the VMX nomenclature:

  - set_{irq,nmi} => inject_{irq,nmi} because the helper is injecting an
    event that has already been "set" in e.g. the vIRR.  SVM's relevant
    VMCB field is even named event_inj, and KVM's stat is irq_injections.

  - prepare_guest_switch => prepare_switch_to_guest because the former is
    ambiguous, e.g. it could mean switching between multiple guests,
    switching from the guest to host, etc...

  - update_pi_irte => pi_update_irte to allow for matching match the rest
    of VMX's posted interrupt naming scheme, which is vmx_pi_<blah>().

  - start_assignment => pi_start_assignment to again follow VMX's posted
    interrupt naming scheme, and to provide context for what bit of code
    might care about an otherwise undescribed "assignment".

The "tlb_flush" => "flush_tlb" creates an inconsistency with respect to
Hyper-V's "tlb_remote_flush" hooks, but Hyper-V really is the one that's
wrong.  x86, VMX, and SVM all use flush_tlb, and even common KVM is on a
variant of the bandwagon with "kvm_flush_remote_tlbs", e.g. a more
appropriate name for the Hyper-V hooks would be flush_remote_tlbs.  Leave
that change for another time as the Hyper-V hooks always start as NULL,
i.e. the name doesn't matter for using kvm-x86-ops.h, and changing all
names requires an astounding amount of churn.

VMX and SVM function names are intentionally left as is to minimize the
diff.  Both VMX and SVM will need to rename even more functions in order
to fully utilize KVM_X86_OPS, i.e. an additional patch for each is
inevitable.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:17 -05:00
Jinrong Liang
e8f6e7383c KVM: x86/mmu: Remove unused "vcpu" of reset_{tdp,ept}_shadow_zero_bits_mask()
The "struct kvm_vcpu *vcpu" parameter of reset_ept_shadow_zero_bits_mask()
and reset_tdp_shadow_zero_bits_mask() is not used, so remove it.

No functional change intended.

Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-4-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:10 -05:00
Jinrong Liang
a0e72cd1e9 KVM: x86/mmu: Remove unused "kvm" of __rmap_write_protect()
The "struct kvm *kvm" parameter of __rmap_write_protect()
is not used, so remove it. No functional change intended.

Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-3-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:10 -05:00
Jinrong Liang
61827671ca KVM: x86/mmu: Remove unused "kvm" of kvm_mmu_unlink_parents()
The "struct kvm *kvm" parameter of kvm_mmu_unlink_parents()
is not used, so remove it. No functional change intended.

Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-2-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:09 -05:00
David Matlack
6ff94f27fd KVM: x86/mmu: Improve TLB flush comment in kvm_mmu_slot_remove_write_access()
Rewrite the comment in kvm_mmu_slot_remove_write_access() that explains
why it is safe to flush TLBs outside of the MMU lock after
write-protecting SPTEs for dirty logging. The current comment is a long
run-on sentence that was difficult to understand. In addition it was
specific to the shadow MMU (mentioning mmu_spte_update()) when the TDP
MMU has to handle this as well.

The new comment explains:
 - Why the TLB flush is necessary at all.
 - Why it is desirable to do the TLB flush outside of the MMU lock.
 - Why it is safe to do the TLB flush outside of the MMU lock.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-5-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-19 12:09:07 -05:00
Paolo Bonzini
855fb0384a Merge remote-tracking branch 'kvm/master' into HEAD
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU").  In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-21 12:51:09 -05:00
Sean Christopherson
18c841e1f4 KVM: x86: Retry page fault if MMU reload is pending and root has no sp
Play nice with a NULL shadow page when checking for an obsolete root in
the page fault handler by flagging the page fault as stale if there's no
shadow page associated with the root and KVM_REQ_MMU_RELOAD is pending.
Invalidating memslots, which is the only case where _all_ roots need to
be reloaded, requests all vCPUs to reload their MMUs while holding
mmu_lock for lock.

The "special" roots, e.g. pae_root when KVM uses PAE paging, are not
backed by a shadow page.  Running with TDP disabled or with nested NPT
explodes spectaculary due to dereferencing a NULL shadow page pointer.

Skip the KVM_REQ_MMU_RELOAD check if there is a valid shadow page for the
root.  Zapping shadow pages in response to guest activity, e.g. when the
guest frees a PGD, can trigger KVM_REQ_MMU_RELOAD even if the current
vCPU isn't using the affected root.  I.e. KVM_REQ_MMU_RELOAD can be seen
with a completely valid root shadow page.  This is a bit of a moot point
as KVM currently unloads all roots on KVM_REQ_MMU_RELOAD, but that will
be cleaned up in the future.

Fixes: a955cad84c ("KVM: x86/mmu: Retry page fault if root is invalidated by memslot update")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211209060552.2956723-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-19 19:38:58 +01:00
Lai Jiangshan
bb3b394d35 KVM: X86: Rename gpte_is_8_bytes to has_4_byte_gpte and invert the direction
This bit is very close to mean "role.quadrant is not in use", except that
it is false also when the MMU is mapping guest physical addresses
directly.  In that case, role.quadrant is indeed not in use, but there
are no guest PTEs at all.

Changing the name and direction of the bit removes the special case,
since a guest with paging disabled, or not considering guest paging
structures as is the case for two-dimensional paging, does not have
to deal with 4-byte guest PTEs.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:13 -05:00
Lai Jiangshan
cc022ae144 KVM: X86: Add parameter huge_page_level to kvm_init_shadow_ept_mmu()
The level of supported large page on nEPT affects the rsvds_bits_mask.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:12 -05:00
Lai Jiangshan
84ea5c09a6 KVM: X86: Add huge_page_level to __reset_rsvds_bits_mask_ept()
Bit 7 on pte depends on the level of supported large page.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:11 -05:00
Lai Jiangshan
c59a0f57fa KVM: X86: Remove mmu->translate_gpa
Reduce an indirect function call (retpoline) and some intialization
code.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:11 -05:00
Lai Jiangshan
1f5a21ee84 KVM: X86: Add parameter struct kvm_mmu *mmu into mmu->gva_to_gpa()
The mmu->gva_to_gpa() has no "struct kvm_mmu *mmu", so an extra
FNAME(gva_to_gpa_nested) is needed.

Add the parameter can simplify the code.  And it makes it explicit that
the walk is upon vcpu->arch.walk_mmu for gva and vcpu->arch.mmu for L2
gpa in translate_nested_gpa() via the new parameter.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:10 -05:00
Lai Jiangshan
b46a13cb7e KVM: X86: Calculate quadrant when !role.gpte_is_8_bytes
role.quadrant is only valid when gpte size is 4 bytes and only be
calculated when gpte size is 4 bytes.

Although "vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL" also means
gpte size is 4 bytes, but using "!role.gpte_is_8_bytes" is clearer

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-15-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:10 -05:00
Lai Jiangshan
41e35604ea KVM: X86: Remove useless code to set role.gpte_is_8_bytes when role.direct
role.gpte_is_8_bytes is unused when role.direct; there is no
point in changing a bit in the role, the value that was set
when the MMU is initialized is just fine.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-14-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:09 -05:00
Lai Jiangshan
84432316cd KVM: X86: Fix comment in __kvm_mmu_create()
The allocation of special roots is moved to mmu_alloc_special_roots().

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-12-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:08 -05:00
Lai Jiangshan
27f4fca29f KVM: X86: Skip allocating pae_root for vcpu->arch.guest_mmu when !tdp_enabled
It is never used.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:08 -05:00
Vihas Mak
98a26b69d8 KVM: x86: change TLB flush indicator to bool
change 0 to false and 1 to true to fix following cocci warnings:

        arch/x86/kvm/mmu/mmu.c:1485:9-10: WARNING: return of 0/1 in function 'kvm_set_pte_rmapp' with return type bool
        arch/x86/kvm/mmu/mmu.c:1636:10-11: WARNING: return of 0/1 in function 'kvm_test_age_rmapp' with return type bool

Signed-off-by: Vihas Mak <makvihas@gmail.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Message-Id: <20211114164312.GA28736@makvihas>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:44 -05:00
Ben Gardon
8283e36abf KVM: x86/mmu: Propagate memslot const qualifier
In preparation for implementing in-place hugepage promotion, various
functions will need to be called from zap_collapsible_spte_range, which
has the const qualifier on its memslot argument. Propagate the const
qualifier to the various functions which will be needed. This just serves
to simplify the following patch.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:43 -05:00
Ben Gardon
4d78d0b39a KVM: x86/mmu: Remove need for a vcpu from mmu_try_to_unsync_pages
The vCPU argument to mmu_try_to_unsync_pages is now only used to get a
pointer to the associated struct kvm, so pass in the kvm pointer from
the beginning to remove the need for a vCPU when calling the function.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:42 -05:00
Ben Gardon
9d395a0a7a KVM: x86/mmu: Remove need for a vcpu from kvm_slot_page_track_is_active
kvm_slot_page_track_is_active only uses its vCPU argument to get a
pointer to the assoicated struct kvm, so just pass in the struct KVM to
remove the need for a vCPU pointer.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:42 -05:00
Maciej S. Szmigiero
f4209439b5 KVM: Optimize gfn lookup in kvm_zap_gfn_range()
Introduce a memslots gfn upper bound operation and use it to optimize
kvm_zap_gfn_range().
This way this handler can do a quick lookup for intersecting gfns and won't
have to do a linear scan of the whole memslot set.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <ef242146a87a335ee93b441dcf01665cb847c902.1638817641.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:35 -05:00
Maciej S. Szmigiero
a54d806688 KVM: Keep memslots in tree-based structures instead of array-based ones
The current memslot code uses a (reverse gfn-ordered) memslot array for
keeping track of them.

Because the memslot array that is currently in use cannot be modified
every memslot management operation (create, delete, move, change flags)
has to make a copy of the whole array so it has a scratch copy to work on.

Strictly speaking, however, it is only necessary to make copy of the
memslot that is being modified, copying all the memslots currently present
is just a limitation of the array-based memslot implementation.

Two memslot sets, however, are still needed so the VM continues to run
on the currently active set while the requested operation is being
performed on the second, currently inactive one.

In order to have two memslot sets, but only one copy of actual memslots
it is necessary to split out the memslot data from the memslot sets.

The memslots themselves should be also kept independent of each other
so they can be individually added or deleted.

These two memslot sets should normally point to the same set of
memslots. They can, however, be desynchronized when performing a
memslot management operation by replacing the memslot to be modified
by its copy.  After the operation is complete, both memslot sets once
again point to the same, common set of memslot data.

This commit implements the aforementioned idea.

For tracking of gfns an ordinary rbtree is used since memslots cannot
overlap in the guest address space and so this data structure is
sufficient for ensuring that lookups are done quickly.

The "last used slot" mini-caches (both per-slot set one and per-vCPU one),
that keep track of the last found-by-gfn memslot, are still present in the
new code.

Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <17c0cf3663b760a0d3753d4ac08c0753e941b811.1638817641.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:34 -05:00
Maciej S. Szmigiero
f5756029ee KVM: x86: Use nr_memslot_pages to avoid traversing the memslots array
There is no point in recalculating from scratch the total number of pages
in all memslots each time a memslot is created or deleted.  Use KVM's
cached nr_memslot_pages to compute the default max number of MMU pages.

Note that even with nr_memslot_pages capped at ULONG_MAX we can't safely
multiply it by KVM_PERMILLE_MMU_PAGES (20) since this operation can
possibly overflow an unsigned long variable.

Write this "* 20 / 1000" operation as "/ 50" instead to avoid such
overflow.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
[sean: use common KVM field and rework changelog accordingly]
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <d14c5a24535269606675437d5602b7dac4ad8c0e.1638817640.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:29 -05:00
Sean Christopherson
a955cad84c KVM: x86/mmu: Retry page fault if root is invalidated by memslot update
Bail from the page fault handler if the root shadow page was obsoleted by
a memslot update.  Do the check _after_ acuiring mmu_lock, as the TDP MMU
doesn't rely on the memslot/MMU generation, and instead relies on the
root being explicit marked invalid by kvm_mmu_zap_all_fast(), which takes
mmu_lock for write.

For the TDP MMU, inserting a SPTE into an obsolete root can leak a SP if
kvm_tdp_mmu_zap_invalidated_roots() has already zapped the SP, i.e. has
moved past the gfn associated with the SP.

For other MMUs, the resulting behavior is far more convoluted, though
unlikely to be truly problematic.  Installing SPs/SPTEs into the obsolete
root isn't directly problematic, as the obsolete root will be unloaded
and dropped before the vCPU re-enters the guest.  But because the legacy
MMU tracks shadow pages by their role, any SP created by the fault can
can be reused in the new post-reload root.  Again, that _shouldn't_ be
problematic as any leaf child SPTEs will be created for the current/valid
memslot generation, and kvm_mmu_get_page() will not reuse child SPs from
the old generation as they will be flagged as obsolete.  But, given that
continuing with the fault is pointess (the root will be unloaded), apply
the check to all MMUs.

Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-02 04:12:12 -05:00
Sean Christopherson
f47491d7f3 KVM: x86/mmu: Handle "default" period when selectively waking kthread
Account for the '0' being a default, "let KVM choose" period, when
determining whether or not the recovery worker needs to be awakened in
response to userspace reducing the period.  Failure to do so results in
the worker not being awakened properly, e.g. when changing the period
from '0' to any small-ish value.

Fixes: 4dfe4f40d8 ("kvm: x86: mmu: Make NX huge page recovery period configurable")
Cc: stable@vger.kernel.org
Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120015706.3830341-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:27 -05:00
Paolo Bonzini
28f091bc2f KVM: MMU: shadow nested paging does not have PKU
Initialize the mask for PKU permissions as if CR4.PKE=0, avoiding
incorrect interpretations of the nested hypervisor's page tables.

Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:26 -05:00
Sean Christopherson
4b85c921cd KVM: x86/mmu: Remove spurious TLB flushes in TDP MMU zap collapsible path
Drop the "flush" param and return values to/from the TDP MMU's helper for
zapping collapsible SPTEs.  Because the helper runs with mmu_lock held
for read, not write, it uses tdp_mmu_zap_spte_atomic(), and the atomic
zap handles the necessary remote TLB flush.

Similarly, because mmu_lock is dropped and re-acquired between zapping
legacy MMUs and zapping TDP MMUs, kvm_mmu_zap_collapsible_sptes() must
handle remote TLB flushes from the legacy MMU before calling into the TDP
MMU.

Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:25 -05:00
Lai Jiangshan
05b29633c7 KVM: X86: Use vcpu->arch.walk_mmu for kvm_mmu_invlpg()
INVLPG operates on guest virtual address, which are represented by
vcpu->arch.walk_mmu.  In nested virtualization scenarios,
kvm_mmu_invlpg() was using the wrong MMU structure; if L2's invlpg were
emulated by L0 (in practice, it hardly happen) when nested two-dimensional
paging is enabled, the call to ->tlb_flush_gva() would be skipped and
the hardware TLB entry would not be invalidated.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-5-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:21 -05:00
Lai Jiangshan
12ec33a705 KVM: X86: Fix when shadow_root_level=5 && guest root_level<4
If the is an L1 with nNPT in 32bit, the shadow walk starts with
pae_root.

Fixes: a717a780fc ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host)
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:20 -05:00
Vitaly Kuznetsov
feb627e8d6 KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN
Commit 63f5a1909f ("KVM: x86: Alert userspace that KVM_SET_CPUID{,2}
after KVM_RUN is broken") officially deprecated KVM_SET_CPUID{,2} ioctls
after first successful KVM_RUN and promissed to make this sequence forbiden
in 5.16. It's time to fulfil the promise.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211122175818.608220-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:20 -05:00
Hou Wenlong
8ed716ca7d KVM: x86/mmu: Pass parameter flush as false in kvm_tdp_mmu_zap_collapsible_sptes()
Since tlb flush has been done for legacy MMU before
kvm_tdp_mmu_zap_collapsible_sptes(), so the parameter flush
should be false for kvm_tdp_mmu_zap_collapsible_sptes().

Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <21453a1d2533afb6e59fb6c729af89e771ff2e76.1637140154.git.houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 07:05:58 -05:00
Hou Wenlong
c7785d85b6 KVM: x86/mmu: Skip tlb flush if it has been done in zap_gfn_range()
If the parameter flush is set, zap_gfn_range() would flush remote tlb
when yield, then tlb flush is not needed outside. So use the return
value of zap_gfn_range() directly instead of OR on it in
kvm_unmap_gfn_range() and kvm_tdp_mmu_unmap_gfn_range().

Fixes: 3039bcc744 ("KVM: Move x86's MMU notifier memslot walkers to generic code")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <5e16546e228877a4d974f8c0e448a93d52c7a5a9.1637140154.git.houwenlong93@linux.alibaba.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 07:05:57 -05:00
Paolo Bonzini
817506df9d Merge branch 'kvm-5.16-fixes' into kvm-master
* Fixes for Xen emulation

* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache

* Fixes for migration of 32-bit nested guests on 64-bit hypervisor

* Compilation fixes

* More SEV cleanups
2021-11-18 02:11:57 -05:00
Maxim Levitsky
b8453cdcf2 KVM: x86/mmu: include EFER.LMA in extended mmu role
Incorporate EFER.LMA into kvm_mmu_extended_role, as it used to compute the
guest root level and is not reflected in kvm_mmu_page_role.level when TDP
is in use.  When simply running the guest, it is impossible for EFER.LMA
and kvm_mmu.root_level to get out of sync, as the guest cannot transition
from PAE paging to 64-bit paging without toggling CR0.PG, i.e. without
first bouncing through a different MMU context.  And stuffing guest state
via KVM_SET_SREGS{,2} also ensures a full MMU context reset.

However, if KVM_SET_SREGS{,2} is followed by KVM_SET_NESTED_STATE, e.g. to
set guest state when migrating the VM while L2 is active, the vCPU state
will reflect L2, not L1.  If L1 is using TDP for L2, then root_mmu will
have been configured using L2's state, despite not being used for L2.  If
L2.EFER.LMA != L1.EFER.LMA, and L2 is using PAE paging, then root_mmu will
be configured for guest PAE paging, but will match the mmu_role for 64-bit
paging and cause KVM to not reconfigure root_mmu on the next nested VM-Exit.

Alternatively, the root_mmu's role could be invalidated after a successful
KVM_SET_NESTED_STATE that yields vcpu->arch.mmu != vcpu->arch.root_mmu,
i.e. that switches the active mmu to guest_mmu, but doing so is unnecessarily
tricky, and not even needed if L1 and L2 do have the same role (e.g., they
are both 64-bit guests and run with the same CR4).

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:03:42 -05:00
Paolo Bonzini
f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Junaid Shahid
10c30de019 kvm: mmu: Use fast PF path for access tracking of huge pages when possible
The fast page fault path bails out on write faults to huge pages in
order to accommodate dirty logging. This change adds a check to do that
only when dirty logging is actually enabled, so that access tracking for
huge pages can still use the fast path for write faults in the common
case.

Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211104003359.2201967-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:20 -05:00
Linus Torvalds
d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Sean Christopherson
21fa324654 KVM: x86/mmu: Extract zapping of rmaps for gfn range to separate helper
Extract the zapping of rmaps, a.k.a. legacy MMU, for a gfn range to a
separate helper to clean up the unholy mess that kvm_zap_gfn_range() has
become.  In addition to deep nesting, the rmaps zapping spreads out the
declaration of several variables and is generally a mess.  Clean up the
mess now so that future work to improve the memslots implementation
doesn't need to deal with it.

Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:52 -04:00
Sean Christopherson
e8be2a5ba8 KVM: x86/mmu: Drop a redundant remote TLB flush in kvm_zap_gfn_range()
Remove an unnecessary remote TLB flush in kvm_zap_gfn_range() now that
said function holds mmu_lock for write for its entire duration.  The
flush was added by the now-reverted commit to allow TDP MMU to flush while
holding mmu_lock for read, as the transition from write=>read required
dropping the lock and thus a pending flush needed to be serviced.

Fixes: 5a324c24b6 ("Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:46 -04:00
Sean Christopherson
bc3b3c1002 KVM: x86/mmu: Drop a redundant, broken remote TLB flush
A recent commit to fix the calls to kvm_flush_remote_tlbs_with_address()
in kvm_zap_gfn_range() inadvertantly added yet another flush instead of
fixing the existing flush.  Drop the redundant flush, and fix the params
for the existing flush.

Cc: stable@vger.kernel.org
Fixes: 2822da4466 ("KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:30 -04:00
Lai Jiangshan
61b05a9fd4 KVM: X86: Don't unload MMU in kvm_vcpu_flush_tlb_guest()
kvm_mmu_unload() destroys all the PGD caches.  Use the lighter
kvm_mmu_sync_roots() and kvm_mmu_sync_prev_roots() instead.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:44:43 -04:00
Lai Jiangshan
264d3dc1d3 KVM: X86: pair smp_wmb() of mmu_try_to_unsync_pages() with smp_rmb()
The commit 578e1c4db2 ("kvm: x86: Avoid taking MMU lock
in kvm_mmu_sync_roots if no sync is needed") added smp_wmb() in
mmu_try_to_unsync_pages(), but the corresponding smp_load_acquire() isn't
used on the load of SPTE.W.  smp_load_acquire() orders _subsequent_
loads after sp->is_unsync; it does not order _earlier_ loads before
the load of sp->is_unsync.

This has no functional change; smp_rmb() is a NOP on x86, and no
compiler barrier is required because there is a VMEXIT between the
load of SPTE.W and kvm_mmu_snc_roots.

Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:43:21 -04:00
Junaid Shahid
4dfe4f40d8 kvm: x86: mmu: Make NX huge page recovery period configurable
Currently, the NX huge page recovery thread wakes up every minute and
zaps 1/nx_huge_pages_recovery_ratio of the total number of split NX
huge pages at a time. This is intended to ensure that only a
relatively small number of pages get zapped at a time. But for very
large VMs (or more specifically, VMs with a large number of
executable pages), a period of 1 minute could still result in this
number being too high (unless the ratio is changed significantly,
but that can result in split pages lingering on for too long).

This change makes the period configurable instead of fixing it at
1 minute. Users of large VMs can then adjust the period and/or the
ratio to reduce the number of pages zapped at one time while still
maintaining the same overall duration for cycling through the
entire list. By default, KVM derives a period from the ratio such
that a page will remain on the list for 1 hour on average.

Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20211020010627.305925-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
David Matlack
610265ea3d KVM: x86/mmu: Rename slot_handle_leaf to slot_handle_level_4k
slot_handle_leaf is a misnomer because it only operates on 4K SPTEs
whereas "leaf" is used to describe any valid terminal SPTE (4K or
large page). Rename slot_handle_leaf to slot_handle_level_4k to
avoid confusion.

Making this change makes it more obvious there is a benign discrepency
between the legacy MMU and the TDP MMU when it comes to dirty logging.
The legacy MMU only iterates through 4K SPTEs when zapping for
collapsing and when clearing D-bits. The TDP MMU, on the other hand,
iterates through SPTEs on all levels.

The TDP MMU behavior of zapping SPTEs at all levels is technically
overkill for its current dirty logging implementation, which always
demotes to 4k SPTES, but both the TDP MMU and legacy MMU zap if and only
if the SPTE can be replaced by a larger page, i.e. will not spuriously
zap 2m (or larger) SPTEs. Opportunistically add comments to explain this
discrepency in the code.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20211019162223.3935109-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:27 -04:00
Paolo Bonzini
2839180ce5 KVM: x86/mmu: clean up prefetch/prefault/speculative naming
"prefetch", "prefault" and "speculative" are used throughout KVM to mean
the same thing.  Use a single name, standardizing on "prefetch" which
is already used by various functions such as direct_pte_prefetch,
FNAME(prefetch_gpte), FNAME(pte_prefetch), etc.

Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:26 -04:00
David Stevens
1e76a3ce0d KVM: cleanup allocation of rmaps and page tracking data
Unify the flags for rmaps and page tracking data, using a
single flag in struct kvm_arch and a single loop to go
over all the address spaces and memslots.  This avoids
code duplication between alloc_all_memslots_rmaps and
kvm_page_track_enable_mmu_write_tracking.

Signed-off-by: David Stevens <stevensd@chromium.org>
[This patch is the delta between David's v2 and v3, with conflicts
 fixed and my own commit message. - Paolo]
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:25 -04:00
Chenyi Qiang
a3ca5281bb KVM: MMU: Reset mmu->pkru_mask to avoid stale data
When updating mmu->pkru_mask, the value can only be added but it isn't
reset in advance. This will make mmu->pkru_mask keep the stale data.
Fix this issue.

Fixes: 2d344105f5 ("KVM, pkeys: introduce pkru_mask to cache conditions")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20211021071022.1140-1-chenyi.qiang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-21 11:09:29 -04:00
Andrei Vagin
a7cc099f2e KVM: x86/mmu: kvm_faultin_pfn has to return false if pfh is returned
This looks like a typo in 8f32d5e563. This change didn't intend to do
any functional changes.

The problem was caught by gVisor tests.

Fixes: 8f32d5e563 ("KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Message-Id: <20211015163221.472508-1-avagin@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 08:19:18 -04:00
David Stevens
deae4a10f1 KVM: x86: only allocate gfn_track when necessary
Avoid allocating the gfn_track arrays if nothing needs them. If there
are no external to KVM users of the API (i.e. no GVT-g), then page
tracking is only needed for shadow page tables. This means that when tdp
is enabled and there are no external users, then the gfn_track arrays
can be lazily allocated when the shadow MMU is actually used. This avoid
allocations equal to .05% of guest memory when nested virtualization is
not used, if the kernel is compiled without GVT-g.

Signed-off-by: David Stevens <stevensd@chromium.org>
Message-Id: <20210922045859.2011227-3-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:58 -04:00
David Matlack
53597858db KVM: x86/mmu: Avoid memslot lookup in make_spte and mmu_try_to_unsync_pages
mmu_try_to_unsync_pages checks if page tracking is active for the given
gfn, which requires knowing the memslot. We can pass down the memslot
via make_spte to avoid this lookup.

The memslot is also handy for make_spte's marking of the gfn as dirty:
we can test whether dirty page tracking is enabled, and if so ensure that
pages are mapped as writable with 4K granularity.  Apart from the warning,
no functional change is intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
David Matlack
8a9f566ae4 KVM: x86/mmu: Avoid memslot lookup in rmap_add
Avoid the memslot lookup in rmap_add, by passing it down from the fault
handling code to mmu_set_spte and then to rmap_add.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
Paolo Bonzini
a12f43818b KVM: MMU: pass struct kvm_page_fault to mmu_set_spte
mmu_set_spte is called for either PTE prefetching or page faults.  The
three boolean arguments write_fault, speculative and host_writable are
always respectively false/true/true for prefetching and coming from
a struct kvm_page_fault for page faults.

Let mmu_set_spte distinguish these two situation by accepting a
possibly NULL struct kvm_page_fault argument.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
Paolo Bonzini
7158bee4b4 KVM: MMU: pass kvm_mmu_page struct to make_spte
The level and A/D bit support of the new SPTE can be found in the role,
which is stored in the kvm_mmu_page struct.  This merges two arguments
into one.

For the TDP MMU, the kvm_mmu_page was not used (kvm_tdp_mmu_map does
not use it if the SPTE is already present) so we fetch it just before
calling make_spte.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:55 -04:00
Paolo Bonzini
eb5cd7ffe1 KVM: MMU: remove unnecessary argument to mmu_set_spte
The level of the new SPTE can be found in the kvm_mmu_page struct; there
is no need to pass it down.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:55 -04:00
Paolo Bonzini
ad67e4806e KVM: MMU: clean up make_spte return value
Now that make_spte is called directly by the shadow MMU (rather than
wrapped by set_spte), it only has to return one boolean value.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
Paolo Bonzini
4758d47e0d KVM: MMU: inline set_spte in FNAME(sync_page)
Since the two callers of set_spte do different things with the results,
inlining it actually makes the code simpler to reason about.  For example,
FNAME(sync_page) already has a struct kvm_mmu_page *, but set_spte had to
fish it back out of sptep's private page data.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
Paolo Bonzini
d786c7783b KVM: MMU: inline set_spte in mmu_set_spte
Since the two callers of set_spte do different things with the results,
inlining it actually makes the code simpler to reason about.  For example,
mmu_set_spte looks quite like tdp_mmu_map_handle_target_level, but the
similarity is hidden by set_spte.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
David Matlack
888104138c KVM: x86/mmu: Avoid memslot lookup in page_fault_handle_page_track
Now that kvm_page_fault has a pointer to the memslot it can be passed
down to the page tracking code to avoid a redundant slot lookup.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
David Matlack
e710c5f6be KVM: x86/mmu: Pass the memslot around via struct kvm_page_fault
The memslot for the faulting gfn is used throughout the page fault
handling code, so capture it in kvm_page_fault as soon as we know the
gfn and use it in the page fault handling code that has direct access
to the kvm_page_fault struct.  Replace various tests using is_noslot_pfn
with more direct tests on fault->slot being NULL.

This, in combination with the subsequent patch, improves "Populate
memory time" in dirty_log_perf_test by 5% when using the legacy MMU.
There is no discerable improvement to the performance of the TDP MMU.

No functional change intended.

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
Paolo Bonzini
bcc4f2bc50 KVM: MMU: mark page dirty in make_spte
This simplifies set_spte, which we want to remove, and unifies code
between the shadow MMU and the TDP MMU.  The warning will be added
back later to make_spte as well.

There is a small disadvantage in the TDP MMU; it may unnecessarily mark
a page as dirty twice if two vCPUs end up mapping the same page twice.
However, this is a very small cost for a case that is already rare.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
David Matlack
68be1306ca KVM: x86/mmu: Fold rmap_recycle into rmap_add
Consolidate rmap_recycle and rmap_add into a single function since they
are only ever called together (and only from one place). This has a nice
side effect of eliminating an extra kvm_vcpu_gfn_to_memslot(). In
addition it makes mmu_set_spte(), which is a very long function, a
little shorter.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Sean Christopherson
b1a429fb18 KVM: x86/mmu: Verify shadow walk doesn't terminate early in page faults
WARN and bail if the shadow walk for faulting in a SPTE terminates early,
i.e. doesn't reach the expected level because the walk encountered a
terminal SPTE.  The shadow walks for page faults are subtle in that they
install non-leaf SPTEs (zapping leaf SPTEs if necessary!) in the loop
body, and consume the newly created non-leaf SPTE in the loop control,
e.g. __shadow_walk_next().  In other words, the walks guarantee that the
walk will stop if and only if the target level is reached by installing
non-leaf SPTEs to guarantee the walk remains valid.

Opportunistically use fault->goal-level instead of it.level in
FNAME(fetch) to further clarify that KVM always installs the leaf SPTE at
the target level.

Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210906122547.263316-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Paolo Bonzini
f0066d94c9 KVM: MMU: change tracepoints arguments to kvm_page_fault
Pass struct kvm_page_fault to tracepoints instead of extracting the
arguments from the struct.  This also lets the kvm_mmu_spte_requested
tracepoint pick the gfn directly from fault->gfn, instead of using
the address.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Paolo Bonzini
536f0e6ace KVM: MMU: change disallowed_hugepage_adjust() arguments to kvm_page_fault
Pass struct kvm_page_fault to disallowed_hugepage_adjust() instead of
extracting the arguments from the struct.  Tweak a bit the conditions
to avoid long lines.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini
73a3c65947 KVM: MMU: change kvm_mmu_hugepage_adjust() arguments to kvm_page_fault
Pass struct kvm_page_fault to kvm_mmu_hugepage_adjust() instead of
extracting the arguments from the struct; the results are also stored
in the struct, so the callers are adjusted consequently.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini
3c8ad5a675 KVM: MMU: change fast_page_fault() arguments to kvm_page_fault
Pass struct kvm_page_fault to fast_page_fault() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini
2f6305dd56 KVM: MMU: change kvm_tdp_mmu_map() arguments to kvm_page_fault
Pass struct kvm_page_fault to kvm_tdp_mmu_map() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:50 -04:00
Paolo Bonzini
43b74355ef KVM: MMU: change __direct_map() arguments to kvm_page_fault
Pass struct kvm_page_fault to __direct_map() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:50 -04:00
Paolo Bonzini
3a13f4fea3 KVM: MMU: change handle_abnormal_pfn() arguments to kvm_page_fault
Pass struct kvm_page_fault to handle_abnormal_pfn() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
3647cd04b7 KVM: MMU: change kvm_faultin_pfn() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to outputs of
kvm_faultin_pfn().  For now they have to be extracted again from struct
kvm_page_fault in the subsequent steps, but this is temporary until
other functions in the chain are switched over as well.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
b8a5d55115 KVM: MMU: change page_fault_handle_page_track() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to the arguments
of page_fault_handle_page_track().  The fields are initialized in the
callers, and page_fault_handle_page_track() receives a struct
kvm_page_fault instead of having to extract the arguments out of it.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
4326e57ef4 KVM: MMU: change direct_page_fault() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to
the arguments of direct_page_fault().  The fields are
initialized in the callers, and direct_page_fault()
receives a struct kvm_page_fault instead of having to
extract the arguments out of it.

Also adjust FNAME(page_fault) to store the max_level in
struct kvm_page_fault, to keep it similar to the direct
map path.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini
c501040abc KVM: MMU: change mmu->page_fault() arguments to kvm_page_fault
Pass struct kvm_page_fault to mmu->page_fault() instead of
extracting the arguments from the struct.  FNAME(page_fault) can use
the precomputed bools from the error code.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:48 -04:00
Paolo Bonzini
d055f028a5 KVM: MMU: pass unadulterated gpa to direct_page_fault
Do not bother removing the low bits of the gpa.  This masking dates back
to the very first commit of KVM but it is unnecessary, as exemplified
by the other call in kvm_tdp_page_fault.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:48 -04:00
Lai Jiangshan
3e44dce4d0 KVM: X86: Move PTE present check from loop body to __shadow_walk_next()
So far, the loop bodies already ensure the PTE is present before calling
__shadow_walk_next():  Some loop bodies simply exit with a !PRESENT
directly and some other loop bodies, i.e. FNAME(fetch) and __direct_map()
do not currently guard their walks with is_shadow_present_pte, but only
because they install present non-leaf SPTEs in the loop itself.

But checking pte present in __shadow_walk_next() (which is called from
shadow_walk_okay()) is more prudent; walking past a !PRESENT SPTE
would lead to attempting to read a the next level SPTE from a garbage
iter->shadow_addr.  It also allows to remove the is_shadow_present_pte()
checks from the loop bodies.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210906122547.263316-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Lai Jiangshan
f1c4a88c41 KVM: X86: Don't unsync pagetables when speculative
We'd better only unsync the pagetable when there just was a really
write fault on a level-1 pagetable.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:10 -04:00
Lai Jiangshan
5591c0694d KVM: X86: Zap the invalid list after remote tlb flushing
In mmu_sync_children(), it can zap the invalid list after remote tlb flushing.
Emptifying the invalid list ASAP might help reduce a remote tlb flushing
in some cases.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan
c3e5e415bc KVM: X86: Change kvm_sync_page() to return true when remote flush is needed
Currently kvm_sync_page() returns true when there is any present spte.
But the return value is ignored in the callers.

Changing kvm_sync_page() to return true when remote flush is needed and
changing mmu->sync_page() not to directly flush can combine and reduce
remote flush requests.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan
06152b2dec KVM: X86: Remove kvm_mmu_flush_or_zap()
Because local_flush is useless, kvm_mmu_flush_or_zap() can be removed
and kvm_mmu_remote_flush_or_zap is used instead.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan
bd047e5440 KVM: X86: Don't flush current tlb on shadow page modification
After any shadow page modification, flushing tlb only on current VCPU
is weird due to other VCPU's tlb might still be stale.

In other words, if there is any mandatory tlb-flushing after shadow page
modification, SET_SPTE_NEED_REMOTE_TLB_FLUSH or remote_flush should be
set and the tlbs of all VCPUs should be flushed.  There is not point to
only flush current tlb except when the request is from vCPU's or pCPU's
activities.

If there was any bug that mandatory tlb-flushing is required and
SET_SPTE_NEED_REMOTE_TLB_FLUSH/remote_flush is failed to set, this patch
would expose the bug in a more destructive way.  The related code paths
are checked and no missing SET_SPTE_NEED_REMOTE_TLB_FLUSH is found yet.

Currently, there is no optional tlb-flushing after sync page related code
is changed to flush tlb timely.  So we can just remove these local flushing
code.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Sean Christopherson
c6cecc4b93 KVM: x86/mmu: Complete prefetch for trailing SPTEs for direct, legacy MMU
Make a final call to direct_pte_prefetch_many() if there are "trailing"
SPTEs to prefetch, i.e. SPTEs for GFNs following the faulting GFN.  The
call to direct_pte_prefetch_many() in the loop only handles the case
where there are !PRESENT SPTEs preceding a PRESENT SPTE.

E.g. if the faulting GFN is a multiple of 8 (the prefetch size) and all
SPTEs for the following GFNs are !PRESENT, the loop will terminate with
"start = sptep+1" and not prefetch any SPTEs.

Prefetching trailing SPTEs as intended can drastically reduce the number
of guest page faults, e.g. accessing the first byte of every 4kb page in
a 6gb chunk of virtual memory, in a VM with 8gb of preallocated memory,
the number of pf_fixed events observed in L0 drops from ~1.75M to <0.27M.

Note, this only affects memory that is backed by 4kb pages as KVM doesn't
prefetch when installing hugepages.  Shadow paging prefetching is not
affected as it does not batch the prefetches due to the need to process
the corresponding guest PTE.  The TDP MMU is not affected because it
doesn't have prefetching, yet...

Fixes: 957ed9effd ("KVM: MMU: prefetch ptes when intercepted guest #PF")
Cc: Sergey Senozhatsky <senozhatsky@google.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210818235615.2047588-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:08 -04:00
Lai Jiangshan
65855ed8b0 KVM: X86: Synchronize the shadow pagetable before link it
If gpte is changed from non-present to present, the guest doesn't need
to flush tlb per SDM.  So the host must synchronze sp before
link it.  Otherwise the guest might use a wrong mapping.

For example: the guest first changes a level-1 pagetable, and then
links its parent to a new place where the original gpte is non-present.
Finally the guest can access the remapped area without flushing
the tlb.  The guest's behavior should be allowed per SDM, but the host
kvm mmu makes it wrong.

Fixes: 4731d4c7a0 ("KVM: MMU: out of sync shadow core")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 11:01:00 -04:00
Paolo Bonzini
4ac214574d KVM: MMU: mark role_regs and role accessors as maybe unused
It is reasonable for these functions to be used only in some configurations,
for example only if the host is 64-bits (and therefore supports 64-bit
guests).  It is also reasonable to keep the role_regs and role accessors
in sync even though some of the accessors may be used only for one of the
two sets (as is the case currently for CR4.LA57)..

Because clang reports warnings for unused inlines declared in a .c file,
mark both sets of accessors as __maybe_unused.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:56:38 -04:00
Sean Christopherson
e7177339d7 Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
Revert a misguided illegal GPA check when "translating" a non-nested GPA.
The check is woefully incomplete as it does not fill in @exception as
expected by all callers, which leads to KVM attempting to inject a bogus
exception, potentially exposing kernel stack information in the process.

 WARNING: CPU: 0 PID: 8469 at arch/x86/kvm/x86.c:525 exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 CPU: 1 PID: 8469 Comm: syz-executor531 Not tainted 5.14.0-rc7-syzkaller #0
 RIP: 0010:exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 Call Trace:
  x86_emulate_instruction+0xef6/0x1460 arch/x86/kvm/x86.c:7853
  kvm_mmu_page_fault+0x2f0/0x1810 arch/x86/kvm/mmu/mmu.c:5199
  handle_ept_misconfig+0xdf/0x3e0 arch/x86/kvm/vmx/vmx.c:5336
  __vmx_handle_exit arch/x86/kvm/vmx/vmx.c:6021 [inline]
  vmx_handle_exit+0x336/0x1800 arch/x86/kvm/vmx/vmx.c:6038
  vcpu_enter_guest+0x2a1c/0x4430 arch/x86/kvm/x86.c:9712
  vcpu_run arch/x86/kvm/x86.c:9779 [inline]
  kvm_arch_vcpu_ioctl_run+0x47d/0x1b20 arch/x86/kvm/x86.c:10010
  kvm_vcpu_ioctl+0x49e/0xe50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3652

The bug has escaped notice because practically speaking the GPA check is
useless.  The GPA check in question only comes into play when KVM is
walking guest page tables (or "translating" CR3), and KVM already handles
illegal GPA checks by setting reserved bits in rsvd_bits_mask for each
PxE, or in the case of CR3 for loading PTDPTRs, manually checks for an
illegal CR3.  This particular failure doesn't hit the existing reserved
bits checks because syzbot sets guest.MAXPHYADDR=1, and IA32 architecture
simply doesn't allow for such an absurd MAXPHYADDR, e.g. 32-bit paging
doesn't define any reserved PA bits checks, which KVM emulates by only
incorporating the reserved PA bits into the "high" bits, i.e. bits 63:32.

Simply remove the bogus check.  There is zero meaningful value and no
architectural justification for supporting guest.MAXPHYADDR < 32, and
properly filling the exception would introduce non-trivial complexity.

This reverts commit ec7771ab47.

Fixes: ec7771ab47 ("KVM: x86: mmu: Add guest physical address check in translate_gpa()")
Cc: stable@vger.kernel.org
Reported-by: syzbot+200c08e88ae818f849ce@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210831164224.1119728-2-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:18:02 -04:00
Sean Christopherson
a717a780fc KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
Include pml5_root in the set of special roots if and only if the host,
and thus NPT, is using 5-level paging.  mmu_alloc_special_roots() expects
special roots to be allocated as a bundle, i.e. they're either all valid
or all NULL.  But for pml5_root, that expectation only holds true if the
host uses 5-level paging, which causes KVM to WARN about pml5_root being
NULL when the other special roots are valid.

The silver lining of 4-level vs. 5-level NPT being tied to the host
kernel's paging level is that KVM's shadow root level is constant; unlike
VMX's EPT, KVM can't choose 4-level NPT based on guest.MAXPHYADDR.  That
means KVM can still expect pml5_root to be bundled with the other special
roots, it just needs to be conditioned on the shadow root level.

Fixes: cb0f722aff ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210824005824.205536-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 05:56:38 -04:00
Wei Huang
cb0f722aff KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host
When the 5-level page table CPU flag is set in the host, but the guest
has CR4.LA57=0 (including the case of a 32-bit guest), the top level of
the shadow NPT page tables will be fixed, consisting of one pointer to
a lower-level table and 511 non-present entries.  Extend the existing
code that creates the fixed PML4 or PDP table, to provide a fixed PML5
table if needed.

This is not needed on EPT because the number of layers in the tables
is specified in the EPTP instead of depending on the host CR4.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-3-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:07:48 -04:00
Wei Huang
746700d21f KVM: x86: Allow CPU to force vendor-specific TDP level
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:44 -04:00
Paolo Bonzini
ec607a564f KVM: x86: clamp host mapping level to max_level in kvm_mmu_max_mapping_level
This change started as a way to make kvm_mmu_hugepage_adjust a bit simpler,
but it does fix two bugs as well.

One bug is in zapping collapsible PTEs.  If a large page size is
disallowed but not all of them, kvm_mmu_max_mapping_level will return the
host mapping level and the small PTEs will be zapped up to that level.
However, if e.g. 1GB are prohibited, we can still zap 4KB mapping and
preserve the 2MB ones. This can happen for example when NX huge pages
are in use.

The second would happen when userspace backs guest memory
with a 1gb hugepage but only assign a subset of the page to
the guest.  1gb pages would be disallowed by the memslot, but
not 2mb.  kvm_mmu_max_mapping_level() would fall through to the
host_pfn_mapping_level() logic, see the 1gb hugepage, and map the whole
thing into the guest.

Fixes: 2f57b7051f ("KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_level")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:41 -04:00
Mingwei Zhang
71f51d2c32 KVM: x86/mmu: Add detailed page size stats
Existing KVM code tracks the number of large pages regardless of their
sizes. Therefore, when large page of 1GB (or larger) is adopted, the
information becomes less useful because lpages counts a mix of 1G and 2M
pages.

So remove the lpages since it is easy for user space to aggregate the info.
Instead, provide a comprehensive page stats of all sizes from 4K to 512G.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Jing Zhang <jingzhangos@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20210803044607.599629-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Mingwei Zhang
4293ddb788 KVM: x86/mmu: Remove redundant spte present check in mmu_set_spte
Drop an unnecessary is_shadow_present_pte() check when updating the rmaps
after installing a non-MMIO SPTE.  set_spte() is used only to create
shadow-present SPTEs, e.g. MMIO SPTEs are handled early on, mmu_set_spte()
runs with mmu_lock held for write, i.e. the SPTE can't be zapped between
writing the SPTE and updating the rmaps.

Opportunistically combine the "new SPTE" logic for large pages and rmaps.

No functional change intended.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20210803044607.599629-2-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Maxim Levitsky
9cc13d60ba KVM: x86/mmu: allow APICv memslot to be enabled but invisible
on AMD, APIC virtualization needs to dynamicaly inhibit the AVIC in a
response to some events, and this is problematic and not efficient to do by
enabling/disabling the memslot that covers APIC's mmio range.

Plus due to SRCU locking, it makes it more complex to
request AVIC inhibition.

Instead, the APIC memslot will be always enabled, but be invisible
to the guest, such as the MMU code will not install a SPTE for it,
when it is inhibited and instead jump straight to emulating the access.

When inhibiting the AVIC, this SPTE will be zapped.

This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:22 -04:00
Maxim Levitsky
8f32d5e563 KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code
This will allow it to return RET_PF_EMULATE for APIC mmio
emulation.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky
33a5c0009d KVM: x86/mmu: rename try_async_pf to kvm_faultin_pfn
try_async_pf is a wrong name for this function, since this code
is used when asynchronous page fault is not enabled as well.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky
edb298c663 KVM: x86/mmu: bump mmu notifier count in kvm_zap_gfn_range
This together with previous patch, ensures that
kvm_zap_gfn_range doesn't race with page fault
running on another vcpu, and will make this page fault code
retry instead.

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:19 -04:00
Maxim Levitsky
88f585358b KVM: x86/mmu: add comment explaining arguments to kvm_zap_gfn_range
This comment makes it clear that the range of gfns that this
function receives is non inclusive.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:18 -04:00
Maxim Levitsky
2822da4466 KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address
kvm_flush_remote_tlbs_with_address expects (start gfn, number of pages),
and not (start gfn, end gfn)

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:16 -04:00
Sean Christopherson
5a324c24b6 Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"
This together with the next patch will fix a future race between
kvm_zap_gfn_range and the page fault handler, which will happen
when AVIC memslot is going to be only partially disabled.

The performance impact is minimal since kvm_zap_gfn_range is only
called by users, update_mtrr() and kvm_post_set_cr0().

Both only use it if the guest has non-coherent DMA, in order to
honor the guest's UC memtype.

MTRR and CD setup only happens at boot, and generally in an area
where the page tables should be small (for CD) or should not
include the affected GFNs at all (for MTRRs).

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:15 -04:00
Peter Xu
3bcd0662d6 KVM: X86: Introduce mmu_rmaps_stat per-vm debugfs file
Use this file to dump rmap statistic information.  The statistic is done by
calculating the rmap count and the result is log-2-based.

An example output of this looks like (idle 6GB guest, right after boot linux):

Rmap_Count:     0       1       2-3     4-7     8-15    16-31   32-63   64-127  128-255 256-511 512-1023
Level=4K:       3086676 53045   12330   1272    502     121     76      2       0       0       0
Level=2M:       5947    231     0       0       0       0       0       0       0       0       0
Level=1G:       32      0       0       0       0       0       0       0       0       0       0

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-5-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:11 -04:00
Paolo Bonzini
9a63b4517c Merge branch 'kvm-tdpmmu-fixes' into HEAD
Merge topic branch with fixes for 5.14-rc6 and 5.15 merge window.
2021-08-13 03:35:01 -04:00
Sean Christopherson
ce25681d59 KVM: x86/mmu: Protect marking SPs unsync when using TDP MMU with spinlock
Add yet another spinlock for the TDP MMU and take it when marking indirect
shadow pages unsync.  When using the TDP MMU and L1 is running L2(s) with
nested TDP, KVM may encounter shadow pages for the TDP entries managed by
L1 (controlling L2) when handling a TDP MMU page fault.  The unsync logic
is not thread safe, e.g. the kvm_mmu_page fields are not atomic, and
misbehaves when a shadow page is marked unsync via a TDP MMU page fault,
which runs with mmu_lock held for read, not write.

Lack of a critical section manifests most visibly as an underflow of
unsync_children in clear_unsync_child_bit() due to unsync_children being
corrupted when multiple CPUs write it without a critical section and
without atomic operations.  But underflow is the best case scenario.  The
worst case scenario is that unsync_children prematurely hits '0' and
leads to guest memory corruption due to KVM neglecting to properly sync
shadow pages.

Use an entirely new spinlock even though piggybacking tdp_mmu_pages_lock
would functionally be ok.  Usurping the lock could degrade performance when
building upper level page tables on different vCPUs, especially since the
unsync flow could hold the lock for a comparatively long time depending on
the number of indirect shadow pages and the depth of the paging tree.

For simplicity, take the lock for all MMUs, even though KVM could fairly
easily know that mmu_lock is held for write.  If mmu_lock is held for
write, there cannot be contention for the inner spinlock, and marking
shadow pages unsync across multiple vCPUs will be slow enough that
bouncing the kvm_arch cacheline should be in the noise.

Note, even though L2 could theoretically be given access to its own EPT
entries, a nested MMU must hold mmu_lock for write and thus cannot race
against a TDP MMU page fault.  I.e. the additional spinlock only _needs_ to
be taken by the TDP MMU, as opposed to being taken by any MMU for a VM
that is running with the TDP MMU enabled.  Holding mmu_lock for read also
prevents the indirect shadow page from being freed.  But as above, keep
it simple and always take the lock.

Alternative #1, the TDP MMU could simply pass "false" for can_unsync and
effectively disable unsync behavior for nested TDP.  Write protecting leaf
shadow pages is unlikely to noticeably impact traditional L1 VMMs, as such
VMMs typically don't modify TDP entries, but the same may not hold true for
non-standard use cases and/or VMMs that are migrating physical pages (from
L1's perspective).

Alternative #2, the unsync logic could be made thread safe.  In theory,
simply converting all relevant kvm_mmu_page fields to atomics and using
atomic bitops for the bitmap would suffice.  However, (a) an in-depth audit
would be required, (b) the code churn would be substantial, and (c) legacy
shadow paging would incur additional atomic operations in performance
sensitive paths for no benefit (to legacy shadow paging).

Fixes: a2855afc7e ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181815.3378104-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:32:14 -04:00
Paolo Bonzini
c3e9434c98 Merge branch 'kvm-vmx-secctl' into HEAD
Merge common topic branch for 5.14-rc6 and 5.15 merge window.
2021-08-10 13:45:26 -04:00
David Matlack
93e083d4f4 KVM: x86/mmu: Rename __gfn_to_rmap to gfn_to_rmap
gfn_to_rmap was removed in the previous patch so there is no need to
retain the double underscore on __gfn_to_rmap.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-06 07:52:58 -04:00
David Matlack
601f8af01e KVM: x86/mmu: Leverage vcpu->last_used_slot for rmap_add and rmap_recycle
rmap_add() and rmap_recycle() both run in the context of the vCPU and
thus we can use kvm_vcpu_gfn_to_memslot() to look up the memslot. This
enables rmap_add() and rmap_recycle() to take advantage of
vcpu->last_used_slot and avoid expensive memslot searching.

This change improves the performance of "Populate memory time" in
dirty_log_perf_test with tdp_mmu=N. In addition to improving the
performance, "Populate memory time" no longer scales with the number
of memslots in the VM.

Command                         | Before           | After
------------------------------- | ---------------- | -------------
./dirty_log_perf_test -v64 -x1  | 15.18001570s     | 14.99469366s
./dirty_log_perf_test -v64 -x64 | 18.71336392s     | 14.98675076s

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-06 07:52:29 -04:00
Sean Christopherson
d5aaad6f83 KVM: x86/mmu: Fix per-cpu counter corruption on 32-bit builds
Take a signed 'long' instead of an 'unsigned long' for the number of
pages to add/subtract to the total number of pages used by the MMU.  This
fixes a zero-extension bug on 32-bit kernels that effectively corrupts
the per-cpu counter used by the shrinker.

Per-cpu counters take a signed 64-bit value on both 32-bit and 64-bit
kernels, whereas kvm_mod_used_mmu_pages() takes an unsigned long and thus
an unsigned 32-bit value on 32-bit kernels.  As a result, the value used
to adjust the per-cpu counter is zero-extended (unsigned -> signed), not
sign-extended (signed -> signed), and so KVM's intended -1 gets morphed to
4294967295 and effectively corrupts the counter.

This was found by a staggering amount of sheer dumb luck when running
kvm-unit-tests on a 32-bit KVM build.  The shrinker just happened to kick
in while running tests and do_shrink_slab() logged an error about trying
to free a negative number of objects.  The truly lucky part is that the
kernel just happened to be a slightly stale build, as the shrinker no
longer yells about negative objects as of commit 18bb473e50 ("mm:
vmscan: shrink deferred objects proportional to priority").

 vmscan: shrink_slab: mmu_shrink_scan+0x0/0x210 [kvm] negative objects to delete nr=-858993460

Fixes: bc8a3d8925 ("kvm: mmu: Fix overflow on kvm mmu page limit calculation")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210804214609.1096003-1-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-05 03:33:56 -04:00
Peter Xu
a75b540451 KVM: X86: Optimize zapping rmap
Using rmap_get_first() and rmap_remove() for zapping a huge rmap list could be
slow.  The easy way is to travers the rmap list, collecting the a/d bits and
free the slots along the way.

Provide a pte_list_destroy() and do exactly that.

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220605.26377-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Peter Xu
13236e25eb KVM: X86: Optimize pte_list_desc with per-array counter
Add a counter field into pte_list_desc, so as to simplify the add/remove/loop
logic.  E.g., we don't need to loop over the array any more for most reasons.

This will make more sense after we've switched the array size to be larger
otherwise the counter will be a waste.

Initially I wanted to store a tail pointer at the head of the array list so we
don't need to traverse the list at least for pushing new ones (if without the
counter we traverse both the list and the array).  However that'll need
slightly more change without a huge lot benefit, e.g., after we grow entry
numbers per array the list traversing is not so expensive.

So let's be simple but still try to get as much benefit as we can with just
these extra few lines of changes (not to mention the code looks easier too
without looping over arrays).

I used the same a test case to fork 500 child and recycle them ("./rmap_fork
500" [1]), this patch further speeds up the total fork time of about 4%, which
is a total of 33% of vanilla kernel:

        Vanilla:      473.90 (+-5.93%)
        3->15 slots:  366.10 (+-4.94%)
        Add counter:  351.00 (+-3.70%)

[1] 825436f825

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220602.26327-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Peter Xu
dc1cff9691 KVM: X86: MMU: Tune PTE_LIST_EXT to be bigger
Currently rmap array element only contains 3 entries.  However for EPT=N there
could have a lot of guest pages that got tens of even hundreds of rmap entry.

A normal distribution of a 6G guest (even if idle) shows this with rmap count
statistics:

Rmap_Count:     0       1       2-3     4-7     8-15    16-31   32-63   64-127  128-255 256-511 512-1023
Level=4K:       3089171 49005   14016   1363    235     212     15      7       0       0       0
Level=2M:       5951    227     0       0       0       0       0       0       0       0       0
Level=1G:       32      0       0       0       0       0       0       0       0       0       0

If we do some more fork some pages will grow even larger rmap counts.

This patch makes PTE_LIST_EXT bigger so it'll be more efficient for the general
use case of EPT=N as we do list reference less and the loops over PTE_LIST_EXT
will be slightly more efficient; but still not too large so less waste when
array not full.

It should not affecting EPT=Y since EPT normally only has zero or one rmap
entry for each page, so no array is even allocated.

With a test case to fork 500 child and recycle them ("./rmap_fork 500" [1]),
this patch speeds up fork time of about 29%.

    Before: 473.90 (+-5.93%)
    After:  366.10 (+-4.94%)

[1] 825436f825

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-6-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Hamza Mahfooz
269e9552d2 KVM: const-ify all relevant uses of struct kvm_memory_slot
As alluded to in commit f36f3f2846 ("KVM: add "new" argument to
kvm_arch_commit_memory_region"), a bunch of other places where struct
kvm_memory_slot is used, needs to be refactored to preserve the
"const"ness of struct kvm_memory_slot across-the-board.

Signed-off-by: Hamza Mahfooz <someguy@effective-light.com>
Message-Id: <20210713023338.57108-1-someguy@effective-light.com>
[Do not touch body of slot_rmap_walk_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-03 06:04:24 -04:00
David Matlack
6e8eb2060c KVM: x86/mmu: fast_page_fault support for the TDP MMU
Make fast_page_fault interoperate with the TDP MMU by leveraging
walk_shadow_page_lockless_{begin,end} to acquire the RCU read lock and
introducing a new helper function kvm_tdp_mmu_fast_pf_get_last_sptep to
grab the lowest level sptep.

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:47 -04:00
David Matlack
c5c8c7c530 KVM: x86/mmu: Make walk_shadow_page_lockless_{begin,end} interoperate with the TDP MMU
Acquire the RCU read lock in walk_shadow_page_lockless_begin and release
it in walk_shadow_page_lockless_end when the TDP MMU is enabled.  This
should not introduce any functional changes but is used in the following
commit to make fast_page_fault interoperate with the TDP MMU.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-4-dmatlack@google.com>
[Use if...else instead of if(){return;}]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:47 -04:00
David Matlack
76cd325ea7 KVM: x86/mmu: Rename cr2_or_gpa to gpa in fast_page_fault
fast_page_fault is only called from direct_page_fault where we know the
address is a gpa.

Fixes: 736c291c9f ("KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM")
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:46 -04:00
Peter Xu
ec1cf69c37 KVM: X86: Add per-vm stat for max rmap list size
Add a new statistic max_mmu_rmap_size, which stores the maximum size of rmap
for the vm.

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210625153214.43106-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson
7fa2a34751 KVM: x86/mmu: Return old SPTE from mmu_spte_clear_track_bits()
Return the old SPTE when clearing a SPTE and push the "old SPTE present"
check to the caller.  Private shadow page support will use the old SPTE
in rmap_remove() to determine whether or not there is a linked private
shadow page.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <b16bac1fd1357aaf39e425aab2177d3f89ee8318.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson
03fffc5493 KVM: x86/mmu: Refactor shadow walk in __direct_map() to reduce indentation
Employ a 'continue' to reduce the indentation for linking a new shadow
page during __direct_map() in preparation for linking private pages.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <702419686d5700373123f6ea84e7a946c2cad8b4.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson
19025e7bc5 KVM: x86/mmu: Mark VM as bugged if page fault returns RET_PF_INVALID
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <298980aa5fc5707184ac082287d13a800cd9c25f.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:36 -04:00
Linus Torvalds
405386b021 * Allow again loading KVM on 32-bit non-PAE builds
* Fixes for host SMIs on AMD
 
 * Fixes for guest SMIs on AMD
 
 * Fixes for selftests on s390 and ARM
 
 * Fix memory leak
 
 * Enforce no-instrumentation area on vmentry when hardware
   breakpoints are in use.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDwRi4UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOt4AgAl6xEkMwDC74d/QFIOA7s2GD3ugfa
 z5XqGN1qz/nmEMnuIg6/tjTXDPmn/dfLMqy8RGZfyUv6xbgPcv/7JuFMRILvwGTb
 SbOVrGnR/QOhMdlfWH34qDkXeEsthTXSgQgVm/iiED0TttvQYVcZ/E9mgzaWQXor
 T1yTug2uAUXJ1EBxY0ZBo2kbh+BvvdmhEF0pksZOuwqZdH3zn3QCXwAwkL/OtUYE
 M6nNn3j1LU38C4OK1niXOZZVOuMIdk/l7LyFpjUQTFlIqitQAPtBE5MD+K+A9oC2
 Yocxyj2tId1e6o8bLic/oN8/LpdORTvA/wDMj5M1DcMzvxQuQIpGYkcVGg==
 =gjVA
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Allow again loading KVM on 32-bit non-PAE builds

 - Fixes for host SMIs on AMD

 - Fixes for guest SMIs on AMD

 - Fixes for selftests on s390 and ARM

 - Fix memory leak

 - Enforce no-instrumentation area on vmentry when hardware breakpoints
   are in use.

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
  KVM: selftests: smm_test: Test SMM enter from L2
  KVM: nSVM: Restore nested control upon leaving SMM
  KVM: nSVM: Fix L1 state corruption upon return from SMM
  KVM: nSVM: Introduce svm_copy_vmrun_state()
  KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUN
  KVM: nSVM: Check the value written to MSR_VM_HSAVE_PA
  KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilities
  KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header fails
  KVM: SVM: add module param to control the #SMI interception
  KVM: SVM: remove INIT intercept handler
  KVM: SVM: #SMI interception must not skip the instruction
  KVM: VMX: Remove vmx_msr_index from vmx.h
  KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()
  KVM: selftests: Address extra memslot parameters in vm_vaddr_alloc
  kvm: debugfs: fix memory leak in kvm_create_vm_debugfs
  KVM: x86/pmu: Clear anythread deprecated bit when 0xa leaf is unsupported on the SVM
  KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio
  KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
  KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
  KVM: x86: Use kernel's x86_phys_bits to handle reduced MAXPHYADDR
  ...
2021-07-15 11:56:07 -07:00
Sean Christopherson
fc9bf2e087 KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks.  The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".

For non-SEV guests, not dropping bits is the correct behavior.  Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits.  And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.

For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted.  Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM.  The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.

Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-5-seanjc@google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-14 12:17:56 -04:00
Linus Torvalds
36824f198c ARM:
- Add MTE support in guests, complete with tag save/restore interface
 
 - Reduce the impact of CMOs by moving them in the page-table code
 
 - Allow device block mappings at stage-2
 
 - Reduce the footprint of the vmemmap in protected mode
 
 - Support the vGIC on dumb systems such as the Apple M1
 
 - Add selftest infrastructure to support multiple configuration
   and apply that to PMU/non-PMU setups
 
 - Add selftests for the debug architecture
 
 - The usual crop of PMU fixes
 
 PPC:
 
 - Support for the H_RPT_INVALIDATE hypercall
 
 - Conversion of Book3S entry/exit to C
 
 - Bug fixes
 
 S390:
 
 - new HW facilities for guests
 
 - make inline assembly more robust with KASAN and co
 
 x86:
 
 - Allow userspace to handle emulation errors (unknown instructions)
 
 - Lazy allocation of the rmap (host physical -> guest physical address)
 
 - Support for virtualizing TSC scaling on VMX machines
 
 - Optimizations to avoid shattering huge pages at the beginning of live migration
 
 - Support for initializing the PDPTRs without loading them from memory
 
 - Many TLB flushing cleanups
 
 - Refuse to load if two-stage paging is available but NX is not (this has
   been a requirement in practice for over a year)
 
 - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
   CR0/CR4/EFER, using the MMU mode everywhere once it is computed
   from the CPU registers
 
 - Use PM notifier to notify the guest about host suspend or hibernate
 
 - Support for passing arguments to Hyper-V hypercalls using XMM registers
 
 - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap on
   AMD processors
 
 - Hide Hyper-V hypercalls that are not included in the guest CPUID
 
 - Fixes for live migration of virtual machines that use the Hyper-V
   "enlightened VMCS" optimization of nested virtualization
 
 - Bugfixes (not many)
 
 Generic:
 
 - Support for retrieving statistics without debugfs
 
 - Cleanups for the KVM selftests API
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDV9UYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOIRgf/XX8fKLh24RnTOs2ldIu2AfRGVrT4
 QMrr8MxhmtukBAszk2xKvBt8/6gkUjdaIC3xqEnVjxaDaUvZaEtP7CQlF5JV45rn
 iv1zyxUKucXrnIOr+gCioIT7qBlh207zV35ArKioP9Y83cWx9uAs22pfr6g+7RxO
 h8bJZlJbSG6IGr3voANCIb9UyjU1V/l8iEHqRwhmr/A5rARPfD7g8lfMEQeGkzX6
 +/UydX2fumB3tl8e2iMQj6vLVdSOsCkehvpHK+Z33EpkKhan7GwZ2sZ05WmXV/nY
 QLAYfD10KegoNWl5Ay4GTp4hEAIYVrRJCLC+wnLdc0U8udbfCuTC31LK4w==
 =NcRh
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This covers all architectures (except MIPS) so I don't expect any
  other feature pull requests this merge window.

  ARM:

   - Add MTE support in guests, complete with tag save/restore interface

   - Reduce the impact of CMOs by moving them in the page-table code

   - Allow device block mappings at stage-2

   - Reduce the footprint of the vmemmap in protected mode

   - Support the vGIC on dumb systems such as the Apple M1

   - Add selftest infrastructure to support multiple configuration and
     apply that to PMU/non-PMU setups

   - Add selftests for the debug architecture

   - The usual crop of PMU fixes

  PPC:

   - Support for the H_RPT_INVALIDATE hypercall

   - Conversion of Book3S entry/exit to C

   - Bug fixes

  S390:

   - new HW facilities for guests

   - make inline assembly more robust with KASAN and co

  x86:

   - Allow userspace to handle emulation errors (unknown instructions)

   - Lazy allocation of the rmap (host physical -> guest physical
     address)

   - Support for virtualizing TSC scaling on VMX machines

   - Optimizations to avoid shattering huge pages at the beginning of
     live migration

   - Support for initializing the PDPTRs without loading them from
     memory

   - Many TLB flushing cleanups

   - Refuse to load if two-stage paging is available but NX is not (this
     has been a requirement in practice for over a year)

   - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
     CR0/CR4/EFER, using the MMU mode everywhere once it is computed
     from the CPU registers

   - Use PM notifier to notify the guest about host suspend or hibernate

   - Support for passing arguments to Hyper-V hypercalls using XMM
     registers

   - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
     on AMD processors

   - Hide Hyper-V hypercalls that are not included in the guest CPUID

   - Fixes for live migration of virtual machines that use the Hyper-V
     "enlightened VMCS" optimization of nested virtualization

   - Bugfixes (not many)

  Generic:

   - Support for retrieving statistics without debugfs

   - Cleanups for the KVM selftests API"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
  KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
  kvm: x86: disable the narrow guest module parameter on unload
  selftests: kvm: Allows userspace to handle emulation errors.
  kvm: x86: Allow userspace to handle emulation errors
  KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
  KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
  KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
  KVM: x86: Enhance comments for MMU roles and nested transition trickiness
  KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
  KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
  KVM: x86/mmu: Use MMU's role to determine PTTYPE
  KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
  KVM: x86/mmu: Add a helper to calculate root from role_regs
  KVM: x86/mmu: Add helper to update paging metadata
  KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
  KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
  KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
  KVM: x86/mmu: Get nested MMU's root level from the MMU's role
  ...
2021-06-28 15:40:51 -07:00
Linus Torvalds
8e4d7a78f0 Misc cleanups & removal of obsolete code.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZejQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hKCg//a0wiOyJBiWLAW0uiOucF2ICVQZj5rKgi
 M4HRJZ9jNkFUFVQ/eXYI7uedSqJ6B4hwoUqU6Yp6e05CF/Jgxe2OQXnknearjtDp
 xs8yBsnLolCrtHzWvuJAZL8InXwvUYrsxu1A8kWKd1ezZQ2V2aFEI4KtYcPVoBBi
 hRNMy1JVJbUoCG5s/CbsMpTKH0ehQFGsG46rCLQJ4s9H3rcYaCv9NY2q1EYKBrha
 ZiZjPSFBKaTAVEoc3tUbqsNZAqgyuwRcBQL0K5VDI9p92fudvKgsTI7erbmp+Lij
 mLhjjoPQK1C07kj0HpCPyoGMiTbJ2piag/jZnxSEiQnNxmZjqjRUhDuDhp6uc/SE
 98CEYWPoVbU7N6QLEurHVRAfaQ/ZC7PfiR7lhkoJHizaszFY1NFRxplsU1rzTwGq
 YZdr+y49tJTCU1wIvWF2eFBZHBEgfA6fP4TRGgVsQ7r8IhugR1nCLcnTfMLYXt2t
 9Fe57M7cBgZMgNf5AgvraowugJrTLX7240YPKxHnv5yLjIBt4bulm8X4Lq/MKgc+
 UbRfB7Trd2c9T4EVDy26rQ7qk+VC8rIbzEp4kvlDpV8u7BtLYhVonxVz6qPong5b
 NxOczaFsfL5gWJmfGU+vfc+RFl2lNhQQMLo/gdEn89qZL8nxL/4byejwfCs0YfC2
 wgDXNwRJb+g=
 =YqZp
 -----END PGP SIGNATURE-----

Merge tag 'x86-cleanups-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cleanups from Ingo Molnar:
 "Misc cleanups & removal of obsolete code"

* tag 'x86-cleanups-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sgx: Correct kernel-doc's arg name in sgx_encl_release()
  doc: Remove references to IBM Calgary
  x86/setup: Document that Windows reserves the first MiB
  x86/crash: Remove crash_reserve_low_1M()
  x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
  x86/alternative: Align insn bytes vertically
  x86: Fix leftover comment typos
  x86/asm: Simplify __smp_mb() definition
  x86/alternatives: Make the x86nops[] symbol static
2021-06-28 13:10:25 -07:00
Sean Christopherson
27de925044 KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
Let the guest use 1g hugepages if TDP is enabled and the host supports
GBPAGES, KVM can't actively prevent the guest from using 1g pages in this
case since they can't be disabled in the hardware page walker.  While
injecting a page fault if a bogus 1g page is encountered during a
software page walk is perfectly reasonable since KVM is simply honoring
userspace's vCPU model, doing so arguably doesn't provide any meaningful
value, and at worst will be horribly confusing as the guest will see
inconsistent behavior and seemingly spurious page faults.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-55-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:48 -04:00
Sean Christopherson
f82fdaf536 KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
Drop the extra reset of shadow_zero_bits in the nested NPT flow now
that shadow_mmu_init_context computes the correct level for nested NPT.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-52-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:47 -04:00
Sean Christopherson
7cd138db5c KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
Drop the pre-computed last_nonleaf_level, which is arguably wrong and at
best confusing.  Per the comment:

  Can have large pages at levels 2..last_nonleaf_level-1.

the intent of the variable would appear to be to track what levels can
_legally_ have large pages, but that intent doesn't align with reality.
The computed value will be wrong for 5-level paging, or if 1gb pages are
not supported.

The flawed code is not a problem in practice, because except for 32-bit
PSE paging, bit 7 is reserved if large pages aren't supported at the
level.  Take advantage of this invariant and simply omit the level magic
math for 64-bit page tables (including PAE).

For 32-bit paging (non-PAE), the adjustments are needed purely because
bit 7 is ignored if PSE=0.  Retain that logic as is, but make
is_last_gpte() unique per PTTYPE so that the PSE check is avoided for
PAE and EPT paging.  In the spirit of avoiding branches, bump the "last
nonleaf level" for 32-bit PSE paging by adding the PSE bit itself.

Note, bit 7 is ignored or has other meaning in CR3/EPTP, but despite
FNAME(walk_addr_generic) briefly grabbing CR3/EPTP in "pte", they are
not PTEs and will blow up all the other gpte helpers.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-51-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:47 -04:00
Sean Christopherson
961f84457c KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
Extract the reserved SPTE check and print helpers in get_mmio_spte() to
new helpers so that KVM can also WARN on reserved badness when making a
SPTE.

Tag the checking helper with __always_inline to improve the probability
of the compiler generating optimal code for the checking loop, e.g. gcc
appears to avoid using %rbp when the helper is tagged with a vanilla
"inline".

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-48-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson
36f267871e KVM: x86/mmu: Use MMU's role to determine PTTYPE
Use the MMU's role instead of vCPU state or role_regs to determine the
PTTYPE, i.e. which helpers to wire up.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-47-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson
fe660f7244 KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
Skip paging32E_init_context() and paging64_init_context_common() and go
directly to paging64_init_context() (was the common version) now that
the relevant flows don't need to distinguish between 64-bit PAE and
32-bit PAE for other reasons.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-46-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson
f4bd6f7376 KVM: x86/mmu: Add a helper to calculate root from role_regs
Add a helper to calculate the level for non-EPT page tables from the
MMU's role_regs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
533f9a4b38 KVM: x86/mmu: Add helper to update paging metadata
Consolidate MMU guest metadata updates into a common helper for TDP,
shadow, and nested MMUs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
af0eb17e99 KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
Don't bother updating the bitmasks and last-leaf information if paging is
disabled as the metadata will never be used.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
fa4b558802 KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
Move calls to reset_rsvds_bits_mask() out of the various mode statements
and under a more generic CR0.PG=1 check.  This will allow for additional
code consolidation in the future.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
87e99d7d70 KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
Get LA57 from the role_regs, which are initialized from the vCPU even
though TDP is enabled, instead of pulling the value directly from the
vCPU when computing the guest's root_level for TDP MMUs.  Note, the check
is inside an is_long_mode() statement, so that requirement is not lost.

Use role_regs even though the MMU's role is available and arguably
"better".  A future commit will consolidate the guest root level logic,
and it needs access to EFER.LMA, which is not tracked in the role (it
can't be toggled on VM-Exit, unlike LA57).

Drop is_la57_mode() as there are no remaining users, and to discourage
pulling MMU state from the vCPU (in the future).

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson
5472fcd4c6 KVM: x86/mmu: Get nested MMU's root level from the MMU's role
Initialize the MMU's (guest) root_level using its mmu_role instead of
redoing the calculations.  The role_regs used to calculate the mmu_role
are initialized from the vCPU, i.e. this should be a complete nop.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
a4c93252fe KVM: x86/mmu: Drop "nx" from MMU context now that there are no readers
Drop kvm_mmu.nx as there no consumers left.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
90599c2801 KVM: x86/mmu: Use MMU's role to get EFER.NX during MMU configuration
Get the MMU's effective EFER.NX from its role instead of using the
one-off, dedicated flag.  This will allow dropping said flag in a
future commit.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
84a1622604 KVM: x86/mmu: Use MMU's role/role_regs to compute context's metadata
Use the MMU's role and role_regs to calculate the MMU's guest root level
and NX bit.  For some flows, the vCPU state may not be correct (or
relevant), e.g. EPT doesn't interact with EFER.NX and nested NPT will
configure the guest_mmu with possibly-stale vCPU state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson
b67a93a87e KVM: x86/mmu: Use MMU's roles to compute last non-leaf level
Use the MMU's role to get CR4.PSE when determining the last level at
which the guest _cannot_ create a non-leaf PTE, i.e. cannot create a
huge page.

Note, the existing logic is arguably wrong when considering 5-level
paging and the case where 1gb pages aren't supported.  In practice, the
logic is confusing but not broken, because except for 32-bit non-PAE
paging, bit 7 (_PAGE_PSE) bit is reserved when a huge page isn't supported at
that level.  I.e. setting bit 7 will terminate the guest walk one way or
another.  Furthermore, last_nonleaf_level is only consulted after KVM has
verified there are no reserved bits set.

All that confusion will be addressed in a future patch by dropping
last_nonleaf_level entirely.  For now, massage the code to continue the
march toward using mmu_role for (almost) all MMU computations.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson
2e4c06618d KVM: x86/mmu: Use MMU's role to compute PKRU bitmask
Use the MMU's role to calculate the Protection Keys (Restrict Userspace)
bitmask instead of pulling bits from current vCPU state.  For some flows,
the vCPU state may not be correct (or relevant), e.g. EPT doesn't
interact with PKRU.  Case in point, the "ept" param simply disappears.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson
c596f1470a KVM: x86/mmu: Use MMU's role to compute permission bitmask
Use the MMU's role to generate the permission bitmasks for the MMU.
For some flows, the vCPU state may not be correct (or relevant), e.g.
the nested NPT MMU can be initialized with incoherent vCPU state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson
b705a277b7 KVM: x86/mmu: Drop vCPU param from reserved bits calculator
Drop the vCPU param from __reset_rsvds_bits_mask() as it's now unused,
and ideally will remain unused in the future.  Any information that's
needed by the low level helper should be explicitly provided as it's used
for both shadow/host MMUs and guest MMUs, i.e. vCPU state may be
meaningless or simply wrong.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00