- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGtd4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Z9kP/i3WZ40hevvQvB/5cEpxxmxYDwCYnnjM
hiQgK5jT4SrMTmVjLgkNdI2PogQoS4CX+GC7lcA9bvse84hjuPvgOflb2B+p2UQi
Ytbr9g/tfKNIpnKIk9mcPcSObN9vm2Kgt7n28rtPrHWj89eQzgc66eijqdpKBLxA
c3crVR8krwYAQK0tmzHq1+H6hB369YbHAHyTTRRI/bNWnqKblnvUbt0NL2aBusa9
rNMaOdRtinLpy2dmuX/b3japRB8QTnlf7zpPIF4cBEhbYXy5woClZpf1D2fCA6Er
XFbEoYawMVd9UeJYbW4z5yErLT83eYoGp4U0eFXWp6fvh8nZlgCGvBKE9g4mmqwj
aSLaTR5eVN2qlw6jXVeg3unCo8Eyl36AwYwve2L6sFmBvZvNV5iz2eQ7rrOe4oE3
dnTUaLQ8I2SVg04MbYmCq5W+frTL/I7kqNpbccL1Z3R5WO4y5gz63mug6NfLIvhR
t45TAIaifxBfcXQsBZM3v2KUK/xQrD3AbJmFKh54L2CKqiGaNWsMLX+6NZ7LZWgf
8rEqsVkkQDgF7z8eXai4TR26nYfSX6g9gDqtOH73L87aJ7PJk5cRoDWQ1sWs1e/l
4HA/L0Bo/3pnKAa0ZWxJOixmzqY49gNQf3dj8gt3jk3y2ijbAivshiSpPBmIxn0u
QLeOf/LGvipl
=m18F
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.4:
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGsvASHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5XnoP/0D8rQmrA0xPHK81zYS1E71tsR/itO/T
CQMSB4PhEqvcRUaWOuhLBRUW+noWzaOkjkMYK2uoPTdtme7v9+Ar7EtfrWYHrBWD
IxHCAymo3a5dQPUc3Nb77u6HjRAOokPSqSz5jE4qAjlniW09feruro2Phi+BTme4
JjxTc/7Oh0Fu26+mK7mJHiw3fV1x3YznnnRPrKGrVQes5L6ozNICkUZ6nvuJUVMk
lTNHNQbG8PqJZnfWG7VIKRn1vdfXwEfnvyucGVEqFfPLkOXqJHyqMVmIOtvsH7C5
l8j36+lBZwtFh2jk2EsXOTb6sS7l1MSvyHLlbaJaqqffP+77Hf1n0fROur0k9Yse
jJJejJWxZ/SvjMt/bOA+4ybGafZH0lt20DsDWnat5GSQ1EVT1CInN2p8OY8pdecR
QOJBqnNUOykC7/Pyad+IxTxwrOSNCYh+5aYG8AdGquZvNUEwjffVJqrmxDvklY8Z
DTYwGKgNY7NsP/dV0WYYElsAuHiKwiDZL15KftiQebO1fPcZDpTzDo83/8UMfGxh
yegngcNX9Qi7lWtLkUMy8A99UvejM0QrS/Zt8v1zjlQ8PjreZLLBWsNpe0ufIMRk
31ZAC2OS4Koi3wZ54tA7Z1Kh11meGhAk5Ti7sNke0rDqB9UMmj6UKw121cSRvW7q
W6O4U3YeGpKx
=zb4u
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MMU changes for 6.4:
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
Refresh the MMU's snapshot of the vCPU's CR0.WP prior to checking for
permission faults when emulating a guest memory access and CR0.WP may be
guest owned. If the guest toggles only CR0.WP and triggers emulation of
a supervisor write, e.g. when KVM is emulating UMIP, KVM may consume a
stale CR0.WP, i.e. use stale protection bits metadata.
Note, KVM passes through CR0.WP if and only if EPT is enabled as CR0.WP
is part of the MMU role for legacy shadow paging, and SVM (NPT) doesn't
support per-bit interception controls for CR0. Don't bother checking for
EPT vs. NPT as the "old == new" check will always be true under NPT, i.e.
the only cost is the read of vcpu->arch.cr4 (SVM unconditionally grabs CR0
from the VMCB on VM-Exit).
Reported-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lkml.kernel.org/r/677169b4-051f-fcae-756b-9a3e1bb9f8fe%40grsecurity.net
Fixes: fb509f76ac ("KVM: VMX: Make CR0.WP a guest owned bit")
Tested-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230405002608.418442-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor Hyper-V's range-based TLB flushing API to take a gfn+nr_pages
pair instead of a struct, and bury said struct in Hyper-V specific code.
Passing along two params generates much better code for the common case
where KVM is _not_ running on Hyper-V, as forwarding the flush on to
Hyper-V's hv_flush_remote_tlbs_range() from kvm_flush_remote_tlbs_range()
becomes a tail call.
Cc: David Matlack <dmatlack@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230405003133.419177-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename the Hyper-V hooks for TLB flushing to match the naming scheme used
by all the other TLB flushing hooks, e.g. in kvm_x86_ops, vendor code,
arch hooks from common code, etc.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230405003133.419177-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to query if a vCPU has run so that KVM doesn't have to open
code the check on last_vmentry_cpu being set to a magic value.
No functional change intended.
Suggested-by: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Most of the time, calls to get_guest_pgd result in calling
kvm_read_cr3 (the exception is only nested TDP). Hardcode
the default instead of using the get_cr3 function, avoiding
a retpoline if they are enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-2-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
Adjust a variety of functions in mmu.c to put the function return type on
the same line as the function declaration. As stated in the Linus
specification:
But the "on their own line" is complete garbage to begin with. That
will NEVER be a kernel rule. We should never have a rule that assumes
things are so long that they need to be on multiple lines.
We don't put function return types on their own lines either, even if
some other projects have that rule (just to get function names at the
beginning of lines or some other odd reason).
Leave the functions generated by BUILD_MMU_ROLE_REGS_ACCESSOR() as-is,
that code is basically illegible no matter how it's formatted.
No functional change intended.
Link: https://lore.kernel.org/mm-commits/CAHk-=wjS-Jg7sGMwUPpDsjv392nDOOs0CtUtVkp=S6Q7JzFJRw@mail.gmail.com
Signed-off-by: Ben Gardon <bgardon@google.com>
Link: https://lore.kernel.org/r/20230202182809.1929122-4-bgardon@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Assert that mmu_lock is held for write in __walk_slot_rmaps() instead of
hoping the function comment will magically prevent introducing bugs.
Signed-off-by: Ben Gardon <bgardon@google.com>
Link: https://lore.kernel.org/r/20230202182809.1929122-3-bgardon@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use gfn_t instead of u64 for kvm_flush_remote_tlbs_range()'s parameters,
since gfn_t is the standard type for GFNs throughout KVM.
Opportunistically rename pages to nr_pages to make its role even more
obvious.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230126184025.2294823-6-dmatlack@google.com
[sean: convert pages to gfn_t too, and rename]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename kvm_flush_remote_tlbs_with_address() to
kvm_flush_remote_tlbs_range(). This name is shorter, which reduces the
number of callsites that need to be broken up across multiple lines, and
more readable since it conveys a range of memory is being flushed rather
than a single address.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230126184025.2294823-5-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Collapse kvm_flush_remote_tlbs_with_range() and
kvm_flush_remote_tlbs_with_address() into a single function. This
eliminates some lines of code and a useless NULL check on the range
struct.
Opportunistically switch from ENOTSUPP to EOPNOTSUPP to make checkpatch
happy.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230126184025.2294823-4-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rework "struct pte_list_desc" and pte_list_{add|remove} to track the tail
count, i.e. number of PTEs in non-head descriptors, and to always keep all
tail descriptors full so that adding a new entry and counting the number
of entries is done in constant time instead of linear time.
No visible performace is changed in tests. But pte_list_add() is no longer
shown in the perf result for the COWed pages even the guest forks millions
of tasks.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230113122910.672417-1-jiangshanlai@gmail.com
[sean: reword shortlog, tweak changelog, add lots of comments, add BUG_ON()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Sync the spte only when the spte is set and avoid the indirect branch.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-5-jiangshanlai@gmail.com
[sean: add wrapper instead of open coding each check]
Signed-off-by: Sean Christopherson <seanjc@google.com>
In hardware TLB, invalidating TLB entries means the translations are
removed from the TLB.
In KVM shadowed vTLB, the translations (combinations of shadow paging
and hardware TLB) are generally maintained as long as they remain "clean"
when the TLB of an address space (i.e. a PCID or all) is flushed with
the help of write-protections, sp->unsync, and kvm_sync_page(), where
"clean" in this context means that no updates to KVM's SPTEs are needed.
However, FNAME(invlpg) always zaps/removes the vTLB if the shadow page is
unsync, and thus triggers a remote flush even if the original vTLB entry
is clean, i.e. is usable as-is.
Besides this, FNAME(invlpg) is largely is a duplicate implementation of
FNAME(sync_spte) to invalidate a vTLB entry.
To address both issues, reuse FNAME(sync_spte) to share the code and
slightly modify the semantics, i.e. keep the vTLB entry if it's "clean"
and avoid remote TLB flush.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-3-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't assume the current root to be valid, just check it and remove
the WARN().
Also move the code to check if the root is valid into FNAME(invlpg)
to simplify the code.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-2-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_mmu_invalidate_addr() instead open calls to mmu->invlpg().
No functional change intended.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The @root_hpa for kvm_mmu_invalidate_addr() is called with @mmu->root.hpa
or INVALID_PAGE where @mmu->root.hpa is to invalidate gva for the current
root (the same meaning as KVM_MMU_ROOT_CURRENT) and INVALID_PAGE is to
invalidate gva for all roots (the same meaning as KVM_MMU_ROOTS_ALL).
Change the argument type of kvm_mmu_invalidate_addr() and use
KVM_MMU_ROOT_XXX instead so that we can reuse the function for
kvm_mmu_invpcid_gva() and nested_ept_invalidate_addr() for invalidating
gva for different set of roots.
No fuctionalities changed.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-9-jiangshanlai@gmail.com
[sean: massage comment slightly]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tweak KVM_MMU_ROOTS_ALL to precisely cover all current+previous root
flags, and add a sanity in kvm_mmu_free_roots() to verify that the set
of roots to free doesn't stray outside KVM_MMU_ROOTS_ALL.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-8-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename mmu->sync_page to mmu->sync_spte and move the code out
of FNAME(sync_page)'s loop body into mmu.c.
No functionalities change intended.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-6-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
mmu->sync_page for direct paging is never called.
And both mmu->sync_page and mm->invlpg only make sense in shadow paging.
Setting mmu->sync_page as NULL for direct paging makes it consistent
with mm->invlpg which is set NULL for the case.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-5-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Assert that mmu->sync_page is non-NULL as part of the sanity checks
performed before attempting to sync a shadow page. Explicitly checking
mmu->sync_page is all but guaranteed to be redundant with the existing
sanity check that the MMU is indirect, but the cost is negligible, and
the explicit check also serves as documentation.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-4-jiangshanlai@gmail.com
[sean: increase verbosity of changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
FNAME(invlpg)() and kvm_mmu_invalidate_gva() take a gva_t, i.e. unsigned
long, as the type of the address to invalidate. On 32-bit kernels, the
upper 32 bits of the GPA will get dropped when an L2 GPA address is
invalidated in the shadowed nested TDP MMU.
Convert it to u64 to fix the problem.
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-2-jiangshanlai@gmail.com
[sean: tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use a new EMULTYPE flag, EMULTYPE_WRITE_PF_TO_SP, to track page faults
on self-changing writes to shadowed page tables instead of propagating
that information to the emulator via a semi-persistent vCPU flag. Using
a flag in "struct kvm_vcpu_arch" is confusing, especially as implemented,
as it's not at all obvious that clearing the flag only when emulation
actually occurs is correct.
E.g. if KVM sets the flag and then retries the fault without ever getting
to the emulator, the flag will be left set for future calls into the
emulator. But because the flag is consumed if and only if both
EMULTYPE_PF and EMULTYPE_ALLOW_RETRY_PF are set, and because
EMULTYPE_ALLOW_RETRY_PF is deliberately not set for direct MMUs, emulated
MMIO, or while L2 is active, KVM avoids false positives on a stale flag
since FNAME(page_fault) is guaranteed to be run and refresh the flag
before it's ultimately consumed by the tail end of reexecute_instruction().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make tdp_mmu_allowed static since it is only ever used within
arch/x86/kvm/mmu/mmu.c.
Link: https://lore.kernel.org/kvm/202302072055.odjDVd5V-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20230213212844.3062733-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
strtobool() is the same as kstrtobool().
However, the latter is more used within the kernel.
In order to remove strtobool() and slightly simplify kstrtox.h, switch to
the other function name.
While at it, include the corresponding header file (<linux/kstrtox.h>)
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/670882aa04dbdd171b46d3b20ffab87158454616.1673689135.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Sean Christopherson <seanjc@google.com>
The spte pointing to the children SP is dropped, so the whole gfn range
covered by the children SP should be flushed. Although, Hyper-V may
treat a 1-page flush the same if the address points to a huge page, it
still would be better to use the correct size of huge page.
Fixes: c3134ce240 ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/5f297c566f7d7ff2ea6da3c66d050f69ce1b8ede.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When a spte is dropped, the start gfn of tlb flushing should be the gfn
of spte not the base gfn of SP which contains the spte. Also introduce a
helper function to do range-based flushing when a spte is dropped, which
would help prevent future buggy use of
kvm_flush_remote_tlbs_with_address() in such case.
Fixes: c3134ce240 ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/72ac2169a261976f00c1703e88cda676dfb960f5.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When the spte of hupe page is dropped in kvm_set_pte_rmapp(), the whole
gfn range covered by the spte should be flushed. However,
rmap_walk_init_level() doesn't align down the gfn for new level like tdp
iterator does, then the gfn used in kvm_set_pte_rmapp() is not the base
gfn of huge page. And the size of gfn range is wrong too for huge page.
Use the base gfn of huge page and the size of huge page for flushing
tlbs for huge page. Also introduce a helper function to flush the given
page (huge or not) of guest memory, which would help prevent future
buggy use of kvm_flush_remote_tlbs_with_address() in such case.
Fixes: c3134ce240 ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/0ce24d7078fa5f1f8d64b0c59826c50f32f8065e.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rounding down the GFN to a huge page size is a common pattern throughout
KVM, so move round_gfn_for_level() helper in tdp_iter.c to
mmu_internal.h for common usage. Also rename it as gfn_round_for_level()
to use gfn_* prefix and clean up the other call sites.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/415c64782f27444898db650e21cf28eeb6441dfa.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
There is no function named kvm_mmu_ensure_valid_pgd().
Fix the comment and remove the pair of braces to conform to Linux kernel
coding style.
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221128214709.224710-1-wei.liu@kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* Change tdp_mmu to a read-only parameter
* Separate TDP and shadow MMU page fault paths
* Enable Hyper-V invariant TSC control
selftests:
* Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When handling direct page faults, pivot on the TDP MMU being globally
enabled instead of checking if the target MMU is a TDP MMU. Now that the
TDP MMU is all-or-nothing, if the TDP MMU is enabled, KVM will reach
direct_page_fault() if and only if the MMU is a TDP MMU. When TDP is
enabled (obviously required for the TDP MMU), only non-nested TDP page
faults reach direct_page_fault(), i.e. nonpaging MMUs are impossible, as
NPT requires paging to be enabled and EPT faults use ept_page_fault().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221012181702.3663607-8-seanjc@google.com>
[Use tdp_mmu_enabled variable. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Simplify and optimize the logic for detecting if the current/active MMU
is a TDP MMU. If the TDP MMU is globally enabled, then the active MMU is
a TDP MMU if it is direct. When TDP is enabled, so called nonpaging MMUs
are never used as the only form of shadow paging KVM uses is for nested
TDP, and the active MMU can't be direct in that case.
Rename the helper and take the vCPU instead of an arbitrary MMU, as
nonpaging MMUs can show up in the walk_mmu if L1 is using nested TDP and
L2 has paging disabled. Taking the vCPU has the added bonus of cleaning
up the callers, all of which check the current MMU but wrap code that
consumes the vCPU.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221012181702.3663607-9-seanjc@google.com>
[Use tdp_mmu_enabled variable. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use is_tdp_mmu_page() instead of querying sp->tdp_mmu_page directly so
that all users benefit if KVM ever finds a way to optimize the logic.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221012181702.3663607-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename __direct_map() to direct_map() since the leading underscores are
unnecessary. This also makes the page fault handler names more
consistent: kvm_tdp_mmu_page_fault() calls kvm_tdp_mmu_map() and
direct_page_fault() calls direct_map().
Opportunistically make some trivial cleanups to comments that had to be
modified anyway since they mentioned __direct_map(). Specifically, use
"()" when referring to functions, and include kvm_tdp_mmu_map() among
the various callers of disallowed_hugepage_adjust().
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-11-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop calling make_mmu_pages_available() when handling TDP MMU faults.
The TDP MMU does not participate in the "available MMU pages" tracking
and limiting so calling this function is unnecessary work when handling
TDP MMU faults.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-10-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split out the page fault handling for the TDP MMU to a separate
function. This creates some duplicate code, but makes the TDP MMU fault
handler simpler to read by eliminating branches and will enable future
cleanups by allowing the TDP MMU and non-TDP MMU fault paths to diverge.
Only compile in the TDP MMU fault handler for 64-bit builds since
kvm_tdp_mmu_map() does not exist in 32-bit builds.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-9-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the initialization of fault.{gfn,slot} earlier in the page fault
handling code for fully direct MMUs. This will enable a future commit to
split out TDP MMU page fault handling without needing to duplicate the
initialization of these 2 fields.
Opportunistically take advantage of the fact that fault.gfn is
initialized in kvm_tdp_page_fault() rather than recomputing it from
fault->addr.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-8-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle faults on GFNs that do not have a backing memslot in
kvm_faultin_pfn() and drop handle_abnormal_pfn(). This eliminates
duplicate code in the various page fault handlers.
Opportunistically tweak the comment about handling gfn > host.MAXPHYADDR
to reflect that the effect of returning RET_PF_EMULATE at that point is
to avoid creating an MMIO SPTE for such GFNs.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass the kvm_page_fault struct down to kvm_handle_error_pfn() to avoid a
memslot lookup when handling KVM_PFN_ERR_HWPOISON. Opportunistically
move the gfn_to_hva_memslot() call and @current down into
kvm_send_hwpoison_signal() to cut down on line lengths.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle error PFNs in kvm_faultin_pfn() rather than relying on the caller
to invoke handle_abnormal_pfn() after kvm_faultin_pfn().
Opportunistically rename kvm_handle_bad_page() to kvm_handle_error_pfn()
to make it more consistent with is_error_pfn().
This commit moves KVM closer to being able to drop
handle_abnormal_pfn(), which will reduce the amount of duplicate code in
the various page fault handlers.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Grab mmu_invalidate_seq in kvm_faultin_pfn() and stash it in struct
kvm_page_fault. The eliminates duplicate code and reduces the amount of
parameters needed for is_page_fault_stale().
Preemptively split out __kvm_faultin_pfn() to a separate function for
use in subsequent commits.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_mmu_{init,uninit}_tdp_mmu() behind tdp_mmu_enabled. This makes
these functions consistent with the rest of the calls into the TDP MMU
from mmu.c, and which is now possible since tdp_mmu_enabled is only
modified when the x86 vendor module is loaded. i.e. It will never change
during the lifetime of a VM.
This change also enabled removing the stub definitions for 32-bit KVM,
as the compiler will just optimize the calls out like it does for all
the other TDP MMU functions.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change tdp_mmu to a read-only parameter and drop the per-vm
tdp_mmu_enabled. For 32-bit KVM, make tdp_mmu_enabled a macro that is
always false so that the compiler can continue omitting cals to the TDP
MMU.
The TDP MMU was introduced in 5.10 and has been enabled by default since
5.15. At this point there are no known functionality gaps between the
TDP MMU and the shadow MMU, and the TDP MMU uses less memory and scales
better with the number of vCPUs. In other words, there is no good reason
to disable the TDP MMU on a live system.
Purposely do not drop tdp_mmu=N support (i.e. do not force 64-bit KVM to
always use the TDP MMU) since tdp_mmu=N is still used to get test
coverage of KVM's shadow MMU TDP support, which is used in 32-bit KVM.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the commit 65855ed8b0 ("KVM: X86: Synchronize the shadow
pagetable before link it"), no sp would be linked with
sp->unsync_children = 1.
So make it WARN if it is the case.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20221212090106.378206-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
* Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
* Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option,
which multi-process VMMs such as crosvm rely on (see merge commit 382b5b87a9:
"Fix a number of issues with MTE, such as races on the tags being
initialised vs the PG_mte_tagged flag as well as the lack of support
for VM_SHARED when KVM is involved. Patches from Catalin Marinas and
Peter Collingbourne").
* Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
* Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
* Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
* Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
* Second batch of the lazy destroy patches
* First batch of KVM changes for kernel virtual != physical address support
* Removal of a unused function
x86:
* Allow compiling out SMM support
* Cleanup and documentation of SMM state save area format
* Preserve interrupt shadow in SMM state save area
* Respond to generic signals during slow page faults
* Fixes and optimizations for the non-executable huge page errata fix.
* Reprogram all performance counters on PMU filter change
* Cleanups to Hyper-V emulation and tests
* Process Hyper-V TLB flushes from a nested guest (i.e. from a L2 guest
running on top of a L1 Hyper-V hypervisor)
* Advertise several new Intel features
* x86 Xen-for-KVM:
** Allow the Xen runstate information to cross a page boundary
** Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
** Add support for 32-bit guests in SCHEDOP_poll
* Notable x86 fixes and cleanups:
** One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
** Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
** Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
** Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
** Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
** Advertise (on AMD) that the SMM_CTL MSR is not supported
** Remove unnecessary exports
Generic:
* Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
* Add support for pinning vCPUs in dirty_log_perf_test.
* Rename the so called "perf_util" framework to "memstress".
* Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress tests.
* Add a common ucall implementation; code dedup and pre-work for running
SEV (and beyond) guests in selftests.
* Provide a common constructor and arch hook, which will eventually be
used by x86 to automatically select the right hypercall (AMD vs. Intel).
* A bunch of added/enabled/fixed selftests for ARM64, covering memslots,
breakpoints, stage-2 faults and access tracking.
* x86-specific selftest changes:
** Clean up x86's page table management.
** Clean up and enhance the "smaller maxphyaddr" test, and add a related
test to cover generic emulation failure.
** Clean up the nEPT support checks.
** Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
** Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
Documentation:
* Remove deleted ioctls from documentation
* Clean up the docs for the x86 MSR filter.
* Various fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmOaFrcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPemQgAq49excg2Cc+EsHnZw3vu/QWdA0Rt
KhL3OgKxuHNjCbD2O9n2t5di7eJOTQ7F7T0eDm3xPTr4FS8LQ2327/mQePU/H2CF
mWOpq9RBWLzFsSTeVA2Mz9TUTkYSnDHYuRsBvHyw/n9cL76BWVzjImldFtjYjjex
yAwl8c5itKH6bc7KO+5ydswbvBzODkeYKUSBNdbn6m0JGQST7XppNwIAJvpiHsii
Qgpk0e4Xx9q4PXG/r5DedI6BlufBsLhv0aE9SHPzyKH3JbbUFhJYI8ZD5OhBQuYW
MwxK2KlM5Jm5ud2NZDDlsMmmvd1lnYCFDyqNozaKEWC1Y5rq1AbMa51fXA==
=QAYX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a9: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
make_mmu_pages_available() must be called with mmu_lock held for write.
However, if the TDP MMU is used, it will be called with mmu_lock held for
read.
This function does nothing unless shadow pages are used, so there is no
race unless nested TDP is used.
Since nested TDP uses shadow pages, old shadow pages may be zapped by this
function even when the TDP MMU is enabled.
Since shadow pages are never allocated by kvm_tdp_mmu_map(), a race
condition can be avoided by not calling make_mmu_pages_available() if the
TDP MMU is currently in use.
I encountered this when repeatedly starting and stopping nested VM.
It can be artificially caused by allocating a large number of nested TDP
SPTEs.
For example, the following BUG and general protection fault are caused in
the host kernel.
pte_list_remove: 00000000cd54fc10 many->many
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/mmu.c:963!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:pte_list_remove.cold+0x16/0x48 [kvm]
Call Trace:
<TASK>
drop_spte+0xe0/0x180 [kvm]
mmu_page_zap_pte+0x4f/0x140 [kvm]
__kvm_mmu_prepare_zap_page+0x62/0x3e0 [kvm]
kvm_mmu_zap_oldest_mmu_pages+0x7d/0xf0 [kvm]
direct_page_fault+0x3cb/0x9b0 [kvm]
kvm_tdp_page_fault+0x2c/0xa0 [kvm]
kvm_mmu_page_fault+0x207/0x930 [kvm]
npf_interception+0x47/0xb0 [kvm_amd]
svm_invoke_exit_handler+0x13c/0x1a0 [kvm_amd]
svm_handle_exit+0xfc/0x2c0 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0xa79/0x1780 [kvm]
kvm_vcpu_ioctl+0x29b/0x6f0 [kvm]
__x64_sys_ioctl+0x95/0xd0
do_syscall_64+0x5c/0x90
general protection fault, probably for non-canonical address
0xdead000000000122: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:kvm_mmu_commit_zap_page.part.0+0x4b/0xe0 [kvm]
Call Trace:
<TASK>
kvm_mmu_zap_oldest_mmu_pages+0xae/0xf0 [kvm]
direct_page_fault+0x3cb/0x9b0 [kvm]
kvm_tdp_page_fault+0x2c/0xa0 [kvm]
kvm_mmu_page_fault+0x207/0x930 [kvm]
npf_interception+0x47/0xb0 [kvm_amd]
CVE: CVE-2022-45869
Fixes: a2855afc7e ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Signed-off-by: Kazuki Takiguchi <takiguchi.kazuki171@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since gfn_to_memslot() is relatively expensive, it helps to
skip it if it the memslot cannot possibly have dirty logging
enabled. In order to do this, add to struct kvm a counter
of the number of log-page memslots. While the correct value
can only be read with slots_lock taken, the NX recovery thread
is content with using an approximate value. Therefore, the
counter is an atomic_t.
Based on https://lore.kernel.org/kvm/20221027200316.2221027-2-dmatlack@google.com/
by David Matlack.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not recover (i.e. zap) an NX Huge Page that is being dirty tracked,
as it will just be faulted back in at the same 4KiB granularity when
accessed by a vCPU. This may need to be changed if KVM ever supports
2MiB (or larger) dirty tracking granularity, or faulting huge pages
during dirty tracking for reads/executes. However for now, these zaps
are entirely wasteful.
In order to check if this commit increases the CPU usage of the NX
recovery worker thread I used a modified version of execute_perf_test
[1] that supports splitting guest memory into multiple slots and reports
/proc/pid/schedstat:se.sum_exec_runtime for the NX recovery worker just
before tearing down the VM. The goal was to force a large number of NX
Huge Page recoveries and see if the recovery worker used any more CPU.
Test Setup:
echo 1000 > /sys/module/kvm/parameters/nx_huge_pages_recovery_period_ms
echo 10 > /sys/module/kvm/parameters/nx_huge_pages_recovery_ratio
Test Command:
./execute_perf_test -v64 -s anonymous_hugetlb_1gb -x 16 -o
| kvm-nx-lpage-re:se.sum_exec_runtime |
| ---------------------------------------- |
Run | Before | After |
------- | ------------------ | ------------------- |
1 | 730.084105 | 724.375314 |
2 | 728.751339 | 740.581988 |
3 | 736.264720 | 757.078163 |
Comparing the median results, this commit results in about a 1% increase
CPU usage of the NX recovery worker when testing a VM with 16 slots.
However, the effect is negligible with the default halving time of NX
pages, which is 1 hour rather than 10 seconds given by period_ms = 1000,
ratio = 10.
[1] https://lore.kernel.org/kvm/20221019234050.3919566-2-dmatlack@google.com/
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20221103204421.1146958-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping a GFN range, pass 0 => ALL_ONES for the to-be-invalidated
range to effectively block all page faults while the zap is in-progress.
The invalidation helpers take a host virtual address, whereas zapping a
GFN obviously provides a guest physical address and with the wrong unit
of measurement (frame vs. byte).
Alternatively, KVM could walk all memslots to get the associated HVAs,
but thanks to SMM, that would require multiple lookups. And practically
speaking, kvm_zap_gfn_range() usage is quite rare and not a hot path,
e.g. MTRR and CR0.CD are almost guaranteed to be done only on vCPU0
during boot, and APICv inhibits are similarly infrequent operations.
Fixes: edb298c663 ("KVM: x86/mmu: bump mmu notifier count in kvm_zap_gfn_range")
Reported-by: Chao Peng <chao.p.peng@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221111001841.2412598-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend the accounting sanity check in kvm_recover_nx_huge_pages() to the
TDP MMU, i.e. verify that zapping a shadow page unaccounts the disallowed
NX huge page regardless of the MMU type. Recovery runs while holding
mmu_lock for write and so it should be impossible to get false positives
on the WARN.
Suggested-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221019165618.927057-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check if a NX huge page is disallowed when determining if a
page fault needs to be forced to use a smaller sized page. KVM currently
assumes that the NX huge page mitigation is the only scenario where KVM
will force a shadow page instead of a huge page, and so unnecessarily
keeps an existing shadow page instead of replacing it with a huge page.
Any scenario that causes KVM to zap leaf SPTEs may result in having a SP
that can be made huge without violating the NX huge page mitigation.
E.g. prior to commit 5ba7c4c6d1 ("KVM: x86/MMU: Zap non-leaf SPTEs when
disabling dirty logging"), KVM would keep shadow pages after disabling
dirty logging due to a live migration being canceled, resulting in
degraded performance due to running with 4kb pages instead of huge pages.
Although the dirty logging case is "fixed", that fix is coincidental,
i.e. is an implementation detail, and there are other scenarios where KVM
will zap leaf SPTEs. E.g. zapping leaf SPTEs in response to a host page
migration (mmu_notifier invalidation) to create a huge page would yield a
similar result; KVM would see the shadow-present non-leaf SPTE and assume
a huge page is disallowed.
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
[sean: use spte_to_child_sp(), massage changelog, fold into if-statement]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to convert a SPTE to its shadow page to deduplicate a
variety of flows and hopefully avoid future bugs, e.g. if KVM attempts to
get the shadow page for a SPTE without dropping high bits.
Opportunistically add a comment in mmu_free_root_page() documenting why
it treats the root HPA as a SPTE.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221019165618.927057-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set nx_huge_page_disallowed in TDP MMU shadow pages before making the SP
visible to other readers, i.e. before setting its SPTE. This will allow
KVM to query the flag when determining if a shadow page can be replaced
by a NX huge page without violating the rules of the mitigation.
Note, the shadow/legacy MMU holds mmu_lock for write, so it's impossible
for another CPU to see a shadow page without an up-to-date
nx_huge_page_disallowed, i.e. only the TDP MMU needs the complicated
dance.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Account and track NX huge pages for nonpaging MMUs so that a future
enhancement to precisely check if a shadow page can't be replaced by a NX
huge page doesn't get false positives. Without correct tracking, KVM can
get stuck in a loop if an instruction is fetching and writing data on the
same huge page, e.g. KVM installs a small executable page on the fetch
fault, replaces it with an NX huge page on the write fault, and faults
again on the fetch.
Alternatively, and perhaps ideally, KVM would simply not enforce the
workaround for nonpaging MMUs. The guest has no page tables to abuse
and KVM is guaranteed to switch to a different MMU on CR0.PG being
toggled so there's no security or performance concerns. However, getting
make_spte() to play nice now and in the future is unnecessarily complex.
In the current code base, make_spte() can enforce the mitigation if TDP
is enabled or the MMU is indirect, but make_spte() may not always have a
vCPU/MMU to work with, e.g. if KVM were to support in-line huge page
promotion when disabling dirty logging.
Without a vCPU/MMU, KVM could either pass in the correct information
and/or derive it from the shadow page, but the former is ugly and the
latter subtly non-trivial due to the possibility of direct shadow pages
in indirect MMUs. Given that using shadow paging with an unpaged guest
is far from top priority _and_ has been subjected to the workaround since
its inception, keep it simple and just fix the accounting glitch.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221019165618.927057-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename most of the variables/functions involved in the NX huge page
mitigation to provide consistency, e.g. lpage vs huge page, and NX huge
vs huge NX, and also to provide clarity, e.g. to make it obvious the flag
applies only to the NX huge page mitigation, not to any condition that
prevents creating a huge page.
Add a comment explaining what the newly named "possible_nx_huge_pages"
tracks.
Leave the nx_lpage_splits stat alone as the name is ABI and thus set in
stone.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221019165618.927057-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tag shadow pages that cannot be replaced with an NX huge page regardless
of whether or not zapping the page would allow KVM to immediately create
a huge page, e.g. because something else prevents creating a huge page.
I.e. track pages that are disallowed from being NX huge pages regardless
of whether or not the page could have been huge at the time of fault.
KVM currently tracks pages that were disallowed from being huge due to
the NX workaround if and only if the page could otherwise be huge. But
that fails to handled the scenario where whatever restriction prevented
KVM from installing a huge page goes away, e.g. if dirty logging is
disabled, the host mapping level changes, etc...
Failure to tag shadow pages appropriately could theoretically lead to
false negatives, e.g. if a fetch fault requests a small page and thus
isn't tracked, and a read/write fault later requests a huge page, KVM
will not reject the huge page as it should.
To avoid yet another flag, initialize the list_head and use list_empty()
to determine whether or not a page is on the list of NX huge pages that
should be recovered.
Note, the TDP MMU accounting is still flawed as fixing the TDP MMU is
more involved due to mmu_lock being held for read. This will be
addressed in a future commit.
Fixes: 5bcaf3e171 ("KVM: x86/mmu: Account NX huge page disallowed iff huge page was requested")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221019165618.927057-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enable x86 slow page faults to be able to respond to non-fatal signals,
returning -EINTR properly when it happens.
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221011195947.557281-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new "interruptible" flag showing that the caller is willing to be
interrupted by signals during the __gfn_to_pfn_memslot() request. Wire it
up with a FOLL_INTERRUPTIBLE flag that we've just introduced.
This prepares KVM to be able to respond to SIGUSR1 (for QEMU that's the
SIGIPI) even during e.g. handling an userfaultfd page fault.
No functional change intended.
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221011195809.557016-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new header and source with code related to system management
mode emulation. Entry and exit will move there too; for now,
opportunistically rename put_smstate to PUT_SMSTATE while moving
it to smm.h, and adjust the SMM state saving code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use helper macro SPTE_ENT_PER_PAGE to get the number of spte entries
per page. Minor readability improvement.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220913085452.25561-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix some typos in comments.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220913091725.35953-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
am sending out early due to me travelling next week. There is a
lone mm patch for which Andrew gave an informal ack at
https://lore.kernel.org/linux-mm/20220817102500.440c6d0a3fce296fdf91bea6@linux-foundation.org.
I will send the bulk of ARM work, as well as other
architectures, at the end of next week.
ARM:
* Account stage2 page table allocations in memory stats.
x86:
* Account EPT/NPT arm64 page table allocations in memory stats.
* Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses.
* Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of
Hyper-V now support eVMCS fields associated with features that are
enumerated to the guest.
* Use KVM's sanitized VMCS config as the basis for the values of nested VMX
capabilities MSRs.
* A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed
a longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed
for good.
* A handful of fixes for memory leaks in error paths.
* Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow.
* Never write to memory from non-sleepable kvm_vcpu_check_block()
* Selftests refinements and cleanups.
* Misc typo cleanups.
Generic:
* remove KVM_REQ_UNHALT
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM2zwcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNpbwf+MlVeOlzE5SBdrJ0TEnLmKUel1lSz
QnZzP5+D65oD0zhCilUZHcg6G4mzZ5SdVVOvrGJvA0eXh25ruLNMF6jbaABkMLk/
FfI1ybN7A82hwJn/aXMI/sUurWv4Jteaad20JC2DytBCnsW8jUqc49gtXHS2QWy4
3uMsFdpdTAg4zdJKgEUfXBmQviweVpjjl3ziRyZZ7yaeo1oP7XZ8LaE1nR2l5m0J
mfjzneNm5QAnueypOh5KhSwIvqf6WHIVm/rIHDJ1HIFbgfOU0dT27nhb1tmPwAcE
+cJnnMUHjZqtCXteHkAxMClyRq0zsEoKk0OGvSOOMoq3Q0DavSXUNANOig==
=/hqX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The first batch of KVM patches, mostly covering x86.
ARM:
- Account stage2 page table allocations in memory stats
x86:
- Account EPT/NPT arm64 page table allocations in memory stats
- Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR
accesses
- Drop eVMCS controls filtering for KVM on Hyper-V, all known
versions of Hyper-V now support eVMCS fields associated with
features that are enumerated to the guest
- Use KVM's sanitized VMCS config as the basis for the values of
nested VMX capabilities MSRs
- A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed a
longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed for
good
- A handful of fixes for memory leaks in error paths
- Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow
- Never write to memory from non-sleepable kvm_vcpu_check_block()
- Selftests refinements and cleanups
- Misc typo cleanups
Generic:
- remove KVM_REQ_UNHALT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
KVM: remove KVM_REQ_UNHALT
KVM: mips, x86: do not rely on KVM_REQ_UNHALT
KVM: x86: never write to memory from kvm_vcpu_check_block()
KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events
KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending
KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter
KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set
KVM: x86: lapic does not have to process INIT if it is blocked
KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific
KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed
KVM: nVMX: Make an event request when pending an MTF nested VM-Exit
KVM: x86: make vendor code check for all nested events
mailmap: Update Oliver's email address
KVM: x86: Allow force_emulation_prefix to be written without a reload
KVM: selftests: Add an x86-only test to verify nested exception queueing
KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes
KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events()
KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior
KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions
KVM: x86: Morph pending exceptions to pending VM-Exits at queue time
...
Currently, kvm_page_fault trace point provide fault_address and error
code. However it is not enough to find which cpu and instruction
cause kvm_page_faults. So add vcpu id and instruction pointer in
kvm_page_fault trace point.
Cc: Baik Song An <bsahn@etri.re.kr>
Cc: Hong Yeon Kim <kimhy@etri.re.kr>
Cc: Taeung Song <taeung@reallinux.co.kr>
Cc: linuxgeek@linuxgeek.io
Signed-off-by: Wonhyuk Yang <vvghjk1234@gmail.com>
Link: https://lore.kernel.org/r/20220510071001.87169-1-vvghjk1234@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The update to statistic max_mmu_rmap_size is unintentionally removed by
commit 4293ddb788 ("KVM: x86/mmu: Remove redundant spte present check
in mmu_set_spte"). Add missing update to it or max_mmu_rmap_size will
always be nonsensical 0.
Fixes: 4293ddb788 ("KVM: x86/mmu: Remove redundant spte present check in mmu_set_spte")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Message-Id: <20220907080657.42898-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Count the pages used by KVM mmu on x86 in memory stats under secondary
pagetable stats (e.g. "SecPageTables" in /proc/meminfo) to give better
visibility into the memory consumption of KVM mmu in a similar way to
how normal user page tables are accounted.
Add the inner helper in common KVM, ARM will also use it to count stats
in a future commit.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Marc Zyngier <maz@kernel.org> # generic KVM changes
Link: https://lore.kernel.org/r/20220823004639.2387269-3-yosryahmed@google.com
Link: https://lore.kernel.org/r/20220823004639.2387269-4-yosryahmed@google.com
[sean: squash x86 usage to workaround modpost issues]
Signed-off-by: Sean Christopherson <seanjc@google.com>
When register_shrinker() fails, KVM doesn't release the percpu counter
kvm_total_used_mmu_pages leading to memoryleak. Fix this issue by calling
percpu_counter_destroy() when register_shrinker() fails.
Fixes: ab271bd4df ("x86: kvm: propagate register_shrinker return code")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Link: https://lore.kernel.org/r/20220823063237.47299-1-linmiaohe@huawei.com
[sean: tweak shortlog and changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
When A/D bits are not available, KVM uses a software access tracking
mechanism, which involves making the SPTEs inaccessible. However,
the clear_young() MMU notifier does not flush TLBs. So it is possible
that there may still be stale, potentially writable, TLB entries.
This is usually fine, but can be problematic when enabling dirty
logging, because it currently only does a TLB flush if any SPTEs were
modified. But if all SPTEs are in access-tracked state, then there
won't be a TLB flush, which means that the guest could still possibly
write to memory and not have it reflected in the dirty bitmap.
So just unconditionally flush the TLBs when enabling dirty logging.
As an alternative, KVM could explicitly check the MMU-Writable bit when
write-protecting SPTEs to decide if a flush is needed (instead of
checking the Writable bit), but given that a flush almost always happens
anyway, so just making it unconditional seems simpler.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20220810224939.2611160-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is only used by kvm_mmu_pte_write(), which no longer actually
creates the new SPTE and instead just clears the old SPTE. So we
just need to check if the old SPTE was shadow-present instead of
calling need_remote_flush(). Hence we can drop this function. It was
incomplete anyway as it didn't take access-tracking into account.
This patch should not result in any functional change.
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220723024316.2725328-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The motivation of this renaming is to make these variables and related
helper functions less mmu_notifier bound and can also be used for non
mmu_notifier based page invalidation. mmu_invalidate_* was chosen to
better describe the purpose of 'invalidating' a page that those
variables are used for.
- mmu_notifier_seq/range_start/range_end are renamed to
mmu_invalidate_seq/range_start/range_end.
- mmu_notifier_retry{_hva} helper functions are renamed to
mmu_invalidate_retry{_hva}.
- mmu_notifier_count is renamed to mmu_invalidate_in_progress to
avoid confusion with mn_active_invalidate_count.
- While here, also update kvm_inc/dec_notifier_count() to
kvm_mmu_invalidate_begin/end() to match the change for
mmu_notifier_count.
No functional change intended.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-3-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the tracepoint function from trace_kvm_async_pf_doublefault() to
trace_kvm_async_pf_repeated_fault() to make it clear, since double fault
has nothing to do with this trace function.
Asynchronous Page Fault (APF) is an artifact generated by KVM when it
cannot find a physical page to satisfy an EPT violation. KVM uses APF to
tell the guest OS to do something else such as scheduling other guest
processes to make forward progress. However, when another guest process
also touches a previously APFed page, KVM halts the vCPU instead of
generating a repeated APF to avoid wasting cycles.
Double fault (#DF) clearly has a different meaning and a different
consequence when triggered. #DF requires two nested contributory exceptions
instead of two page faults faulting at the same address. A prevous bug on
APF indicates that it may trigger a double fault in the guest [1] and
clearly this trace function has nothing to do with it. So rename this
function should be a valid choice.
No functional change intended.
[1] https://www.spinics.net/lists/kvm/msg214957.html
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220807052141.69186-1-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fully re-evaluate whether or not MMIO caching can be enabled when SPTE
masks change; simply clearing enable_mmio_caching when a configuration
isn't compatible with caching fails to handle the scenario where the
masks are updated, e.g. by VMX for EPT or by SVM to account for the C-bit
location, and toggle compatibility from false=>true.
Snapshot the original module param so that re-evaluating MMIO caching
preserves userspace's desire to allow caching. Use a snapshot approach
so that enable_mmio_caching still reflects KVM's actual behavior.
Fixes: 8b9e74bfbf ("KVM: x86/mmu: Use enable_mmio_caching to track if MMIO caching is enabled")
Reported-by: Michael Roth <michael.roth@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220803224957.1285926-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark kvm_mmu_x86_module_init() with __init, the entire reason it exists
is to initialize variables when kvm.ko is loaded, i.e. it must never be
called after module initialization.
Fixes: 1d0e848060 ("KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded")
Cc: stable@vger.kernel.org
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve latency
and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
=w/UH
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
The last use of 'pfn' went away with the same-named argument to
host_pfn_mapping_level; now that the hugepage level is obtained
exclusively from the host page tables, kvm_mmu_zap_collapsible_spte
does not need to know host pfns at all.
Fixes: a8ac499bb6 ("KVM: x86/mmu: Don't require refcounted "struct page" to create huge SPTEs")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat the NX bit as valid when using NPT, as KVM will set the NX bit when
the NX huge page mitigation is enabled (mindblowing) and trigger the WARN
that fires on reserved SPTE bits being set.
KVM has required NX support for SVM since commit b26a71a1a5 ("KVM: SVM:
Refuse to load kvm_amd if NX support is not available") for exactly this
reason, but apparently it never occurred to anyone to actually test NPT
with the mitigation enabled.
------------[ cut here ]------------
spte = 0x800000018a600ee7, level = 2, rsvd bits = 0x800f0000001fe000
WARNING: CPU: 152 PID: 15966 at arch/x86/kvm/mmu/spte.c:215 make_spte+0x327/0x340 [kvm]
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
RIP: 0010:make_spte+0x327/0x340 [kvm]
Call Trace:
<TASK>
tdp_mmu_map_handle_target_level+0xc3/0x230 [kvm]
kvm_tdp_mmu_map+0x343/0x3b0 [kvm]
direct_page_fault+0x1ae/0x2a0 [kvm]
kvm_tdp_page_fault+0x7d/0x90 [kvm]
kvm_mmu_page_fault+0xfb/0x2e0 [kvm]
npf_interception+0x55/0x90 [kvm_amd]
svm_invoke_exit_handler+0x31/0xf0 [kvm_amd]
svm_handle_exit+0xf6/0x1d0 [kvm_amd]
vcpu_enter_guest+0xb6d/0xee0 [kvm]
? kvm_pmu_trigger_event+0x6d/0x230 [kvm]
vcpu_run+0x65/0x2c0 [kvm]
kvm_arch_vcpu_ioctl_run+0x355/0x610 [kvm]
kvm_vcpu_ioctl+0x551/0x610 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220723013029.1753623-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment to document how host_pfn_mapping_level() can be used safely,
as the line between safe and dangerous is quite thin. E.g. if KVM were
to ever support in-place promotion to create huge pages, consuming the
level is safe if the caller holds mmu_lock and checks that there's an
existing _leaf_ SPTE, but unsafe if the caller only checks that there's a
non-leaf SPTE.
Opportunistically tweak the existing comments to explicitly document why
KVM needs to use READ_ONCE().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715232107.3775620-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the requirement that a pfn be backed by a refcounted, compound or
or ZONE_DEVICE, struct page, and instead rely solely on the host page
tables to identify huge pages. The PageCompound() check is a remnant of
an old implementation that identified (well, attempt to identify) huge
pages without walking the host page tables. The ZONE_DEVICE check was
added as an exception to the PageCompound() requirement. In other words,
neither check is actually a hard requirement, if the primary has a pfn
backed with a huge page, then KVM can back the pfn with a huge page
regardless of the backing store.
Dropping the @pfn parameter will also allow KVM to query the max host
mapping level without having to first get the pfn, which is advantageous
for use outside of the page fault path where KVM wants to take action if
and only if a page can be mapped huge, i.e. avoids the pfn lookup for
gfns that can't be backed with a huge page.
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220715232107.3775620-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Restrict the mapping level for SPTEs based on the guest MTRRs if and only
if KVM may actually use the guest MTRRs to compute the "real" memtype.
For all forms of paging, guest MTRRs are purely virtual in the sense that
they are completely ignored by hardware, i.e. they affect the memtype
only if software manually consumes them. The only scenario where KVM
consumes the guest MTRRs is when shadow_memtype_mask is non-zero and the
guest has non-coherent DMA, in all other cases KVM simply leaves the PAT
field in SPTEs as '0' to encode WB memtype.
Note, KVM may still ultimately ignore guest MTRRs, e.g. if the backing
pfn is host MMIO, but false positives are ok as they only cause a slight
performance blip (unless the guest is doing weird things with its MTRRs,
which is extremely unlikely).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220715230016.3762909-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the underscores from __pte_list_remove(), the function formerly
known as pte_list_remove() is now named kvm_zap_one_rmap_spte() to show
that it zaps rmaps/PTEs, i.e. doesn't just remove an entry from a list.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename pte_list_remove() and pte_list_destroy() to kvm_zap_one_rmap_spte()
and kvm_zap_all_rmap_sptes() respectively to document that (a) they zap
SPTEs and (b) to better document how they differ (remove vs. destroy does
not exactly scream "one vs. all").
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename kvm_unmap_rmap() and kvm_zap_rmap() to kvm_zap_rmap() and
__kvm_zap_rmap() respectively to show that what was the "unmap" helper is
just a wrapper for the "zap" helper, i.e. that they do the exact same
thing, one just exists to deal with its caller passing in more params.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename __kvm_zap_rmaps() to kvm_rmap_zap_gfn_range() to avoid future
confusion with a soon-to-be-introduced __kvm_zap_rmap(). Using a plural
"rmaps" is somewhat ambiguous without additional context, as it's not
obvious whether it's referring to multiple rmap lists, versus multiple
rmap entries within a single list.
Use kvm_rmap_zap_gfn_range() to align with the pattern established by
kvm_rmap_zap_collapsible_sptes(), without losing the information that it
zaps only rmap-based MMUs, i.e. don't rename it to __kvm_zap_gfn_range().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the trailing "p" from rmap helpers, i.e. rename functions to simply
be kvm_<action>_rmap(). Declaring that a function takes a pointer is
completely unnecessary and goes against kernel style.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use pte_list_destroy() directly when recycling rmaps instead of bouncing
through kvm_unmap_rmapp() and kvm_zap_rmapp(). Calling kvm_unmap_rmapp()
is unnecessary and odd as it requires passing dummy parameters; passing
NULL for @slot when __rmap_add() already has a valid slot is especially
weird and confusing.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return a u64, not an int, from mmu_spte_clear_track_bits(). The return
value is the old SPTE value, which is very much a 64-bit value. The sole
caller that consumes the return value, drop_spte(), already uses a u64.
The only reason that truncating the SPTE value is not problematic is
because drop_spte() only queries the shadow-present bit, which is in the
lower 32 bits.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a spurious closing paranthesis and tweak the comment about the
cache capacity for PTE descriptors (rmaps) eager page splitting to tone
down the assertion slightly, and to call out that topup requires dropping
mmu_lock, which is the real motivation for avoiding topup (as opposed to
memory usage).
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220712020724.1262121-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tweak the comment above the computation of the quadrant for PG_LEVEL_4K
shadow pages to explicitly call out how and why KVM uses role.quadrant to
consume gPTE bits.
Opportunistically wrap an unnecessarily long line.
No functional change intended.
Link: https://lore.kernel.org/all/YqvWvBv27fYzOFdE@google.com
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220712020724.1262121-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add spte_index() to dedup all the code that calculates a SPTE's index
into its parent's page table and/or spt array. Opportunistically tweak
the calculation to avoid pointer arithmetic, which is subtle (subtract in
8-byte chunks) and less performant (requires the compiler to generate the
subtraction).
Suggested-by: David Matlack <dmatlack@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220712020724.1262121-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently shrinkers are anonymous objects. For debugging purposes they
can be identified by count/scan function names, but it's not always
useful: e.g. for superblock's shrinkers it's nice to have at least an
idea of to which superblock the shrinker belongs.
This commit adds names to shrinkers. register_shrinker() and
prealloc_shrinker() functions are extended to take a format and arguments
to master a name.
In some cases it's not possible to determine a good name at the time when
a shrinker is allocated. For such cases shrinker_debugfs_rename() is
provided.
The expected format is:
<subsystem>-<shrinker_type>[:<instance>]-<id>
For some shrinkers an instance can be encoded as (MAJOR:MINOR) pair.
After this change the shrinker debugfs directory looks like:
$ cd /sys/kernel/debug/shrinker/
$ ls
dquota-cache-16 sb-devpts-28 sb-proc-47 sb-tmpfs-42
mm-shadow-18 sb-devtmpfs-5 sb-proc-48 sb-tmpfs-43
mm-zspool:zram0-34 sb-hugetlbfs-17 sb-pstore-31 sb-tmpfs-44
rcu-kfree-0 sb-hugetlbfs-33 sb-rootfs-2 sb-tmpfs-49
sb-aio-20 sb-iomem-12 sb-securityfs-6 sb-tracefs-13
sb-anon_inodefs-15 sb-mqueue-21 sb-selinuxfs-22 sb-xfs:vda1-36
sb-bdev-3 sb-nsfs-4 sb-sockfs-8 sb-zsmalloc-19
sb-bpf-32 sb-pipefs-14 sb-sysfs-26 thp-deferred_split-10
sb-btrfs:vda2-24 sb-proc-25 sb-tmpfs-1 thp-zero-9
sb-cgroup2-30 sb-proc-39 sb-tmpfs-27 xfs-buf:vda1-37
sb-configfs-23 sb-proc-41 sb-tmpfs-29 xfs-inodegc:vda1-38
sb-dax-11 sb-proc-45 sb-tmpfs-35
sb-debugfs-7 sb-proc-46 sb-tmpfs-40
[roman.gushchin@linux.dev: fix build warnings]
Link: https://lkml.kernel.org/r/Yr+ZTnLb9lJk6fJO@castle
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lkml.kernel.org/r/20220601032227.4076670-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Buffer split_desc_cache, the cache used to allcoate rmap list entries,
only by the default cache capacity (currently 40), not by doubling the
minimum (513). Aliasing L2 GPAs to L1 GPAs is uncommon, thus eager page
splitting is unlikely to need 500+ entries. And because each object is a
non-trivial 128 bytes (see struct pte_list_desc), those extra ~500
entries means KVM is in all likelihood wasting ~64kb of memory per VM.
Link: https://lore.kernel.org/all/YrTDcrsn0%2F+alpzf@google.com
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220624171808.2845941-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use an "unsigned int" for @access parameters instead of a "u32", mostly
to be consistent throughout KVM, but also because "u32" is misleading.
@access can actually squeeze into a u8, i.e. doesn't need 32 bits, but is
as an "unsigned int" because sp->role.access is an unsigned int.
No functional change intended.
Link: https://lore.kernel.org/all/YqyZxEfxXLsHGoZ%2F@google.com
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220624171808.2845941-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TLB flush before installing the newly-populated lower level
page table is unnecessary if the lower-level page table maps
the huge page identically. KVM knows it is if it did not reuse
an existing shadow page table, tell drop_large_spte() to skip
the flush in that case.
Extracted from a patch by David Matlack.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for Eager Page Splitting pages that are mapped by nested
MMUs. Walk through the rmap first splitting all 1GiB pages to 2MiB
pages, and then splitting all 2MiB pages to 4KiB pages.
Note, Eager Page Splitting is limited to nested MMUs as a policy rather
than due to any technical reason (the sp->role.guest_mode check could
just be deleted and Eager Page Splitting would work correctly for all
shadow MMU pages). There is really no reason to support Eager Page
Splitting for tdp_mmu=N, since such support will eventually be phased
out, and there is no current use case supporting Eager Page Splitting on
hosts where TDP is either disabled or unavailable in hardware.
Furthermore, future improvements to nested MMU scalability may diverge
the code from the legacy shadow paging implementation. These
improvements will be simpler to make if Eager Page Splitting does not
have to worry about legacy shadow paging.
Splitting huge pages mapped by nested MMUs requires dealing with some
extra complexity beyond that of the TDP MMU:
(1) The shadow MMU has a limit on the number of shadow pages that are
allowed to be allocated. So, as a policy, Eager Page Splitting
refuses to split if there are KVM_MIN_FREE_MMU_PAGES or fewer
pages available.
(2) Splitting a huge page may end up re-using an existing lower level
shadow page tables. This is unlike the TDP MMU which always allocates
new shadow page tables when splitting.
(3) When installing the lower level SPTEs, they must be added to the
rmap which may require allocating additional pte_list_desc structs.
Case (2) is especially interesting since it may require a TLB flush,
unlike the TDP MMU which can fully split huge pages without any TLB
flushes. Specifically, an existing lower level page table may point to
even lower level page tables that are not fully populated, effectively
unmapping a portion of the huge page, which requires a flush. As of
this commit, a flush is always done always after dropping the huge page
and before installing the lower level page table.
This TLB flush could instead be delayed until the MMU lock is about to be
dropped, which would batch flushes for multiple splits. However these
flushes should be rare in practice (a huge page must be aliased in
multiple SPTEs and have been split for NX Huge Pages in only some of
them). Flushing immediately is simpler to plumb and also reduces the
chances of tripping over a CPU bug (e.g. see iTLB multihit).
[ This commit is based off of the original implementation of Eager Page
Splitting from Peter in Google's kernel from 2016. ]
Suggested-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-23-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before allocating a child shadow page table, all callers check
whether the parent already points to a huge page and, if so, they
drop that SPTE. This is done by drop_large_spte().
However, dropping the large SPTE is really only necessary before the
sp is installed. While the sp is returned by kvm_mmu_get_child_sp(),
installing it happens later in __link_shadow_page(). Move the call
there instead of having it in each and every caller.
To ensure that the shadow page is not linked twice if it was present,
do _not_ opportunistically make kvm_mmu_get_child_sp() idempotent:
instead, return an error value if the shadow page already existed.
This is a bit more verbose, but clearer than NULL.
Finally, now that the drop_large_spte() name is not taken anymore,
remove the two underscores in front of __drop_large_spte().
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently KVM only zaps collapsible 4KiB SPTEs in the shadow MMU. This
is fine for now since KVM never creates intermediate huge pages during
dirty logging. In other words, KVM always replaces 1GiB pages directly
with 4KiB pages, so there is no reason to look for collapsible 2MiB
pages.
However, this will stop being true once the shadow MMU participates in
eager page splitting. During eager page splitting, each 1GiB is first
split into 2MiB pages and then those are split into 4KiB pages. The
intermediate 2MiB pages may be left behind if an error condition causes
eager page splitting to bail early.
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-20-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Splitting huge pages requires allocating/finding shadow pages to replace
the huge page. Shadow pages are keyed, in part, off the guest access
permissions they are shadowing. For fully direct MMUs, there is no
shadowing so the access bits in the shadow page role are always ACC_ALL.
But during shadow paging, the guest can enforce whatever access
permissions it wants.
In particular, eager page splitting needs to know the permissions to use
for the subpages, but KVM cannot retrieve them from the guest page
tables because eager page splitting does not have a vCPU. Fortunately,
the guest access permissions are easy to cache whenever page faults or
FNAME(sync_page) update the shadow page tables; this is an extension of
the existing cache of the shadowed GFNs in the gfns array of the shadow
page. The access bits only take up 3 bits, which leaves 61 bits left
over for gfns, which is more than enough.
Now that the gfns array caches more information than just GFNs, rename
it to shadowed_translation.
While here, preemptively fix up the WARN_ON() that detects gfn
mismatches in direct SPs. The WARN_ON() was paired with a
pr_err_ratelimited(), which means that users could sometimes see the
WARN without the accompanying error message. Fix this by outputting the
error message as part of the WARN splat, and opportunistically make
them WARN_ONCE() because if these ever fire, they are all but guaranteed
to fire a lot and will bring down the kernel.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update the page stats in __rmap_add() rather than at the call site. This
will avoid having to manually update page stats when splitting huge
pages in a subsequent commit.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow adding new entries to the rmap and linking shadow pages without a
struct kvm_vcpu pointer by moving the implementation of rmap_add() and
link_shadow_page() into inner helper functions.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Constify rmap_add()'s @slot parameter; it is simply passed on to
gfn_to_rmap(), which takes a const memslot.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-15-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow @vcpu to be NULL in kvm_mmu_find_shadow_page() (and its only
caller __kvm_mmu_get_shadow_page()). @vcpu is only required to sync
indirect shadow pages, so it's safe to pass in NULL when looking up
direct shadow pages.
This will be used for doing eager page splitting, which allocates direct
shadow pages from the context of a VM ioctl without access to a vCPU
pointer.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-14-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Get the kvm pointer from the caller, rather than deriving it from
vcpu->kvm, and plumb the kvm pointer all the way from
kvm_mmu_get_shadow_page(). With this change in place, the vcpu pointer
is only needed to sync indirect shadow pages. In other words,
__kvm_mmu_get_shadow_page() can now be used to get *direct* shadow pages
without a vcpu pointer. This enables eager page splitting, which needs
to allocate direct shadow pages during VM ioctls.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-13-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The vcpu pointer in kvm_mmu_alloc_shadow_page() is only used to get the
kvm pointer. So drop the vcpu pointer and just pass in the kvm pointer.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-12-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor kvm_mmu_alloc_shadow_page() to receive the caches from which it
will allocate the various pieces of memory for shadow pages as a
parameter, rather than deriving them from the vcpu pointer. This will be
useful in a future commit where shadow pages are allocated during VM
ioctls for eager page splitting, and thus will use a different set of
caches.
Preemptively pull the caches out all the way to
kvm_mmu_get_shadow_page() since eager page splitting will not be calling
kvm_mmu_alloc_shadow_page() directly.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-11-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the code that write-protects newly-shadowed guest page tables into
account_shadowed(). This avoids a extra gfn-to-memslot lookup and is a
more logical place for this code to live. But most importantly, this
reduces kvm_mmu_alloc_shadow_page()'s reliance on having a struct
kvm_vcpu pointer, which will be necessary when creating new shadow pages
during VM ioctls for eager page splitting.
Note, it is safe to drop the role.level == PG_LEVEL_4K check since
account_shadowed() returns early if role.level > PG_LEVEL_4K.
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-10-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename 2 functions:
kvm_mmu_get_page() -> kvm_mmu_get_shadow_page()
kvm_mmu_free_page() -> kvm_mmu_free_shadow_page()
This change makes it clear that these functions deal with shadow pages
rather than struct pages. It also aligns these functions with the naming
scheme for kvm_mmu_find_shadow_page() and kvm_mmu_alloc_shadow_page().
Prefer "shadow_page" over the shorter "sp" since these are core
functions and the line lengths aren't terrible.
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-9-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate kvm_mmu_alloc_page() and kvm_mmu_alloc_shadow_page() under
the latter so that all shadow page allocation and initialization happens
in one place.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-8-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Decompose kvm_mmu_get_page() into separate helper functions to increase
readability and prepare for allocating shadow pages without a vcpu
pointer.
Specifically, pull the guts of kvm_mmu_get_page() into 2 helper
functions:
kvm_mmu_find_shadow_page() -
Walks the page hash checking for any existing mmu pages that match the
given gfn and role.
kvm_mmu_alloc_shadow_page()
Allocates and initializes an entirely new kvm_mmu_page. This currently
requries a vcpu pointer for allocation and looking up the memslot but
that will be removed in a future commit.
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The quadrant is only used when gptes are 4 bytes, but
mmu_alloc_{direct,shadow}_roots() pass in a non-zero quadrant for PAE
page directories regardless. Make this less confusing by only passing in
a non-zero quadrant when it is actually necessary.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of computing the shadow page role from scratch for every new
page, derive most of the information from the parent shadow page. This
eliminates the dependency on the vCPU root role to allocate shadow page
tables, and reduces the number of parameters to kvm_mmu_get_page().
Preemptively split out the role calculation to a separate function for
use in a following commit.
Note that when calculating the MMU root role, we can take
@role.passthrough, @role.direct, and @role.access directly from
@vcpu->arch.mmu->root_role. Only @role.level and @role.quadrant still
must be overridden for PAE page directories, when shadowing 32-bit
guest page tables with PAE page tables.
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "direct" argument is vcpu->arch.mmu->root_role.direct,
because unlike non-root page tables, it's impossible to have
a direct root in an indirect MMU. So just use that.
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The parameter "direct" can either be true or false, and all of the
callers pass in a bool variable or true/false literal, so just use the
type bool.
No functional change intended.
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit fb58a9c345 ("KVM: x86/mmu: Optimize MMU page cache lookup for
fully direct MMUs") skipped the unsync checks and write flood clearing
for full direct MMUs. We can extend this further to skip the checks for
all direct shadow pages. Direct shadow pages in indirect MMUs (i.e.
shadow paging) are used when shadowing a guest huge page with smaller
pages. Such direct shadow pages, like their counterparts in fully direct
MMUs, are never marked unsynced or have a non-zero write-flooding count.
Checking sp->role.direct also generates better code than checking
direct_map because, due to register pressure, direct_map has to get
shoved onto the stack and then pulled back off.
No functional change intended.
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the check that restricts mapping huge pages into the guest to pfns
that are backed by refcounted 'struct page' memory into the helper that
actually "requires" a 'struct page', host_pfn_mapping_level(). In
addition to deduplicating code, moving the check to the helper eliminates
the subtle requirement that the caller check that the incoming pfn is
backed by a refcounted struct page, and as an added bonus avoids an extra
pfn_to_page() lookup.
Note, the is_error_noslot_pfn() check in kvm_mmu_hugepage_adjust() needs
to stay where it is, as it guards against dereferencing a NULL memslot in
the kvm_slot_dirty_track_enabled() that follows.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename and refactor kvm_is_reserved_pfn() to kvm_pfn_to_refcounted_page()
to better reflect what KVM is actually checking, and to eliminate extra
pfn_to_page() lookups. The kvm_release_pfn_*() an kvm_try_get_pfn()
helpers in particular benefit from "refouncted" nomenclature, as it's not
all that obvious why KVM needs to get/put refcounts for some PG_reserved
pages (ZERO_PAGE and ZONE_DEVICE).
Add a comment to call out that the list of exceptions to PG_reserved is
all but guaranteed to be incomplete. The list has mostly been compiled
by people throwing noodles at KVM and finding out they stick a little too
well, e.g. the ZERO_PAGE's refcount overflowed and ZONE_DEVICE pages
didn't get freed.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Operate on a 'struct page' instead of a pfn when checking if a page is a
ZONE_DEVICE page, and rename the helper accordingly. Generally speaking,
KVM doesn't actually care about ZONE_DEVICE memory, i.e. shouldn't do
anything special for ZONE_DEVICE memory. Rather, KVM wants to treat
ZONE_DEVICE memory like regular memory, and the need to identify
ZONE_DEVICE memory only arises as an exception to PG_reserved pages. In
other words, KVM should only ever check for ZONE_DEVICE memory after KVM
has already verified that there is a struct page associated with the pfn.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use common logic for computing PT_BASE_ADDR_MASK for 32-bit, 64-bit, and
EPT paging. Both PAGE_MASK and the new-common logic are supsersets of
what is actually needed for 32-bit paging. PAGE_MASK sets bits 63:12 and
the former GUEST_PT64_BASE_ADDR_MASK sets bits 51:12, so regardless of
which value is used, the result will always be bits 31:12.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the macros for KVM's shadow PTEs (SPTE) from guest 64-bit PTEs
(PT64). SPTE and PT64 are _mostly_ the same, but the few differences are
quite critical, e.g. *_BASE_ADDR_MASK must differentiate between host and
guest physical address spaces, and SPTE_PERM_MASK (was PT64_PERM_MASK) is
very much specific to SPTEs.
Opportunistically (and temporarily) move most guest macros into paging.h
to clearly associate them with shadow paging, and to ensure that they're
not used as of this commit. A future patch will eliminate them entirely.
Sadly, PT32_LEVEL_BITS is left behind in mmu_internal.h because it's
needed for the quadrant calculation in kvm_mmu_get_page(). The quadrant
calculation is hot enough (when using shadow paging with 32-bit guests)
that adding a per-context helper is undesirable, and burying the
computation in paging_tmpl.h with a forward declaration isn't exactly an
improvement.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide common helper macros to generate various masks, shifts, etc...
for 32-bit vs. 64-bit page tables. Only the inputs differ, the actual
calculations are identical.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move a handful of one-off macros and helpers for 32-bit PSE paging into
paging_tmpl.h and hide them behind "PTTYPE == 32". Under no circumstance
should anything but 32-bit shadow paging care about PSE paging.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use try_cmpxchg64 instead of cmpxchg64 (*ptr, old, new) != old in
fast_pf_fix_direct_spte. cmpxchg returns success in ZF flag, so this
change saves a compare after cmpxchg (and related move instruction
in front of cmpxchg).
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Message-Id: <20220520144635.63134-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the commit c5e2184d1544("KVM: x86/mmu: Remove the defunct
update_pte() paging hook"), kvm_mmu_pte_write() no longer uses the rmap
cache.
So remove mmu_topup_memory_caches() in it.
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220605063417.308311-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is unused.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220605063417.308311-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Assign shadow_me_value, not shadow_me_mask, to PAE root entries,
a.k.a. shadow PDPTRs, when host memory encryption is supported. The
"mask" is the set of all possible memory encryption bits, e.g. MKTME
KeyIDs, whereas "value" holds the actual value that needs to be
stuffed into host page tables.
Using shadow_me_mask results in a failed VM-Entry due to setting
reserved PA bits in the PDPTRs, and ultimately causes an OOPS due to
physical addresses with non-zero MKTME bits sending to_shadow_page()
into the weeds:
set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.
BUG: unable to handle page fault for address: ffd43f00063049e8
PGD 86dfd8067 P4D 0
Oops: 0000 [#1] PREEMPT SMP
RIP: 0010:mmu_free_root_page+0x3c/0x90 [kvm]
kvm_mmu_free_roots+0xd1/0x200 [kvm]
__kvm_mmu_unload+0x29/0x70 [kvm]
kvm_mmu_unload+0x13/0x20 [kvm]
kvm_arch_destroy_vm+0x8a/0x190 [kvm]
kvm_put_kvm+0x197/0x2d0 [kvm]
kvm_vm_release+0x21/0x30 [kvm]
__fput+0x8e/0x260
____fput+0xe/0x10
task_work_run+0x6f/0xb0
do_exit+0x327/0xa90
do_group_exit+0x35/0xa0
get_signal+0x911/0x930
arch_do_signal_or_restart+0x37/0x720
exit_to_user_mode_prepare+0xb2/0x140
syscall_exit_to_user_mode+0x16/0x30
do_syscall_64+0x4e/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: e54f1ff244 ("KVM: x86/mmu: Add shadow_me_value and repurpose shadow_me_mask")
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220608012015.19566-1-yuan.yao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When freeing obsolete previous roots, check prev_roots as intended, not
the current root.
Signed-off-by: Shaoqin Huang <shaoqin.huang@intel.com>
Fixes: 527d5cd7ee ("KVM: x86/mmu: Zap only obsolete roots if a root shadow page is zapped")
Message-Id: <20220607005905.2933378-1-shaoqin.huang@intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* ultravisor communication device driver
* fix TEID on terminating storage key ops
RISC-V:
* Added Sv57x4 support for G-stage page table
* Added range based local HFENCE functions
* Added remote HFENCE functions based on VCPU requests
* Added ISA extension registers in ONE_REG interface
* Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
* Add support for the ARMv8.6 WFxT extension
* Guard pages for the EL2 stacks
* Trap and emulate AArch32 ID registers to hide unsupported features
* Ability to select and save/restore the set of hypercalls exposed
to the guest
* Support for PSCI-initiated suspend in collaboration with userspace
* GICv3 register-based LPI invalidation support
* Move host PMU event merging into the vcpu data structure
* GICv3 ITS save/restore fixes
* The usual set of small-scale cleanups and fixes
x86:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
* Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
* Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
* V_TSC_AUX support
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKN9M4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNLeAf+KizAlQwxEehHHeNyTkZuKyMawrD6
zsqAENR6i1TxiXe7fDfPFbO2NR0ZulQopHbD9mwnHJ+nNw0J4UT7g3ii1IAVcXPu
rQNRGMVWiu54jt+lep8/gDg0JvPGKVVKLhxUaU1kdWT9PhIOC6lwpP3vmeWkUfRi
PFL/TMT0M8Nfryi0zHB0tXeqg41BiXfqO8wMySfBAHUbpv8D53D2eXQL6YlMM0pL
2quB1HxHnpueE5vj3WEPQ3PCdy1M2MTfCDBJAbZGG78Ljx45FxSGoQcmiBpPnhJr
C6UGP4ZDWpml5YULUoA70k5ylCbP+vI61U4vUtzEiOjHugpPV5wFKtx5nw==
=ozWx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- ultravisor communication device driver
- fix TEID on terminating storage key ops
RISC-V:
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed to
the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
x86:
- New ioctls to get/set TSC frequency for a whole VM
- Allow userspace to opt out of hypercall patching
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
- Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
- V_TSC_AUX support
Nested virtualization improvements for AMD:
- Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
- Allow AVIC to co-exist with a nested guest running
- Fixes for LBR virtualizations when a nested guest is running, and
nested LBR virtualization support
- PAUSE filtering for nested hypervisors
Guest support:
- Decoupling of vcpu_is_preempted from PV spinlocks"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits)
KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest
KVM: selftests: x86: Sync the new name of the test case to .gitignore
Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND
x86, kvm: use correct GFP flags for preemption disabled
KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer
x86/kvm: Alloc dummy async #PF token outside of raw spinlock
KVM: x86: avoid calling x86 emulator without a decoded instruction
KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak
x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
s390/uv_uapi: depend on CONFIG_S390
KVM: selftests: x86: Fix test failure on arch lbr capable platforms
KVM: LAPIC: Trace LAPIC timer expiration on every vmentry
KVM: s390: selftest: Test suppression indication on key prot exception
KVM: s390: Don't indicate suppression on dirtying, failing memop
selftests: drivers/s390x: Add uvdevice tests
drivers/s390/char: Add Ultravisor io device
MAINTAINERS: Update KVM RISC-V entry to cover selftests support
RISC-V: KVM: Introduce ISA extension register
RISC-V: KVM: Cleanup stale TLB entries when host CPU changes
RISC-V: KVM: Add remote HFENCE functions based on VCPU requests
...
With shadow paging enabled, the INVPCID instruction results in a call
to kvm_mmu_invpcid_gva. If INVPCID is executed with CR0.PG=0, the
invlpg callback is not set and the result is a NULL pointer dereference.
Fix it trivially by checking for mmu->invlpg before every call.
There are other possibilities:
- check for CR0.PG, because KVM (like all Intel processors after P5)
flushes guest TLB on CR0.PG changes so that INVPCID/INVLPG are a
nop with paging disabled
- check for EFER.LMA, because KVM syncs and flushes when switching
MMU contexts outside of 64-bit mode
All of these are tricky, go for the simple solution. This is CVE-2022-1789.
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping obsolete pages, update the running count of zapped pages
regardless of whether or not the list has become unstable due to zapping
a shadow page with its own child shadow pages. If the VM is backed by
mostly 4kb pages, KVM can zap an absurd number of SPTEs without bumping
the batch count and thus without yielding. In the worst case scenario,
this can cause a soft lokcup.
watchdog: BUG: soft lockup - CPU#12 stuck for 22s! [dirty_log_perf_:13020]
RIP: 0010:workingset_activation+0x19/0x130
mark_page_accessed+0x266/0x2e0
kvm_set_pfn_accessed+0x31/0x40
mmu_spte_clear_track_bits+0x136/0x1c0
drop_spte+0x1a/0xc0
mmu_page_zap_pte+0xef/0x120
__kvm_mmu_prepare_zap_page+0x205/0x5e0
kvm_mmu_zap_all_fast+0xd7/0x190
kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
kvm_page_track_flush_slot+0x5c/0x80
kvm_arch_flush_shadow_memslot+0xe/0x10
kvm_set_memslot+0x1a8/0x5d0
__kvm_set_memory_region+0x337/0x590
kvm_vm_ioctl+0xb08/0x1040
Fixes: fbb158cb88 ("KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch""")
Reported-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220511145122.3133334-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid calling handlers on empty rmap entries and skip to the next non
empty rmap entry.
Empty rmap entries are noop in handlers.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220502220347.174664-1-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel Multi-Key Total Memory Encryption (MKTME) repurposes couple of
high bits of physical address bits as 'KeyID' bits. Intel Trust Domain
Extentions (TDX) further steals part of MKTME KeyID bits as TDX private
KeyID bits. TDX private KeyID bits cannot be set in any mapping in the
host kernel since they can only be accessed by software running inside a
new CPU isolated mode. And unlike to AMD's SME, host kernel doesn't set
any legacy MKTME KeyID bits to any mapping either. Therefore, it's not
legitimate for KVM to set any KeyID bits in SPTE which maps guest
memory.
KVM maintains shadow_zero_check bits to represent which bits must be
zero for SPTE which maps guest memory. MKTME KeyID bits should be set
to shadow_zero_check. Currently, shadow_me_mask is used by AMD to set
the sme_me_mask to SPTE, and shadow_me_shadow is excluded from
shadow_zero_check. So initializing shadow_me_mask to represent all
MKTME keyID bits doesn't work for VMX (as oppositely, they must be set
to shadow_zero_check).
Introduce a new 'shadow_me_value' to replace existing shadow_me_mask,
and repurpose shadow_me_mask as 'all possible memory encryption bits'.
The new schematic of them will be:
- shadow_me_value: the memory encryption bit(s) that will be set to the
SPTE (the original shadow_me_mask).
- shadow_me_mask: all possible memory encryption bits (which is a super
set of shadow_me_value).
- For now, shadow_me_value is supposed to be set by SVM and VMX
respectively, and it is a constant during KVM's life time. This
perhaps doesn't fit MKTME but for now host kernel doesn't support it
(and perhaps will never do).
- Bits in shadow_me_mask are set to shadow_zero_check, except the bits
in shadow_me_value.
Introduce a new helper kvm_mmu_set_me_spte_mask() to initialize them.
Replace shadow_me_mask with shadow_me_value in almost all code paths,
except the one in PT64_PERM_MASK, which is used by need_remote_flush()
to determine whether remote TLB flush is needed. This should still use
shadow_me_mask as any encryption bit change should need a TLB flush.
And for AMD, move initializing shadow_me_value/shadow_me_mask from
kvm_mmu_reset_all_pte_masks() to svm_hardware_setup().
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <f90964b93a3398b1cf1c56f510f3281e0709e2ab.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename reset_rsvds_bits_mask() to reset_guest_rsvds_bits_mask() to make
it clearer that it resets the reserved bits check for guest's page table
entries.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <efdc174b85d55598880064b8bf09245d3791031d.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand and clean up the page fault stats. The current stats are at best
incomplete, and at worst misleading. Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.
Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_arch_async_page_ready() to mmu.c where it belongs, and move all
of the page fault handling collateral that was in mmu.h purely for the
async #PF handler into mmu_internal.h, where it belongs. This will allow
kvm_mmu_do_page_fault() to act on the RET_PF_* return without having to
expose those enums outside of the MMU.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add RET_PF_CONTINUE and use it in handle_abnormal_pfn() and
kvm_faultin_pfn() to signal that the page fault handler should continue
doing its thing. Aside from being gross and inefficient, using a boolean
return to signal continue vs. stop makes it extremely difficult to add
more helpers and/or move existing code to a helper.
E.g. hypothetically, if nested MMUs were to gain a separate page fault
handler in the future, everything up to the "is self-modifying PTE" check
can be shared by all shadow MMUs, but communicating up the stack whether
to continue on or stop becomes a nightmare.
More concretely, proposed support for private guest memory ran into a
similar issue, where it'll be forced to forego a helper in order to yield
sane code: https://lore.kernel.org/all/YkJbxiL%2FAz7olWlq@google.com.
No functional change intended.
Cc: David Matlack <dmatlack@google.com>
Cc: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tweak the "page fault can be fast" logic to explicitly check for !PRESENT
faults in the access tracking case, and drop the exec/NX check that
becomes redundant as a result. No sane hardware will generate an access
that is both an instruct fetch and a write, i.e. it's a waste of cycles.
If hardware goes off the rails, or KVM runs under a misguided hypervisor,
spuriously running throught fast path is benign (KVM has been uknowingly
being doing exactly that for years).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for A/D bits being disabled instead of the access tracking mask
being non-zero when deciding whether or not to attempt to fix a page
fault vian the fast path. Originally, the access tracking mask was
non-zero if and only if A/D bits were disabled by _KVM_ (including not
being supported by hardware), but that hasn't been true since nVMX was
fixed to honor EPTP12's A/D enabling, i.e. since KVM allowed L1 to cause
KVM to not use A/D bits while running L2 despite KVM using them while
running L1.
In other words, don't attempt the fast path just because EPT is enabled.
Note, attempting the fast path for all !PRESENT faults can "fix" a very,
_VERY_ tiny percentage of faults out of mmu_lock by detecting that the
fault is spurious, i.e. has been fixed by a different vCPU, but again the
odds of that happening are vanishingly small. E.g. booting an 8-vCPU VM
gets less than 10 successes out of 30k+ faults, and that's likely one of
the more favorable scenarios. Disabling dirty logging can likely lead to
a rash of collisions between vCPUs for some workloads that operate on a
common set of pages, but penalizing _all_ !PRESENT faults for that one
case is unlikely to be a net positive, not to mention that that problem
is best solved by not zapping in the first place.
The number of spurious faults does scale with the number of vCPUs, e.g. a
255-vCPU VM using TDP "jumps" to ~60 spurious faults detected in the fast
path (again out of 30k), but that's all of 0.2% of faults. Using legacy
shadow paging does get more spurious faults, and a few more detected out
of mmu_lock, but the percentage goes _down_ to 0.08% (and that's ignoring
faults that are reflected into the guest), i.e. the extra detections are
purely due to the sheer number of faults observed.
On the other hand, getting a "negative" in the fast path takes in the
neighborhood of 150-250 cycles. So while it is tempting to keep/extend
the current behavior, such a change needs to come with hard numbers
showing that it's actually a win in the grand scheme, or any scheme for
that matter.
Fixes: 995f00a619 ("x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We are dropping A/D bits (and W bits) in the TDP MMU. Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.
Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.
The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't treat SPTEs that are truly writable, i.e. writable in hardware, as
being volatile (unless they're volatile for other reasons, e.g. A/D bits).
KVM _sets_ the WRITABLE bit out of mmu_lock, but never _clears_ the bit
out of mmu_lock, so if the WRITABLE bit is set, it cannot magically get
cleared just because the SPTE is MMU-writable.
Rename the wrapper of MMU-writable to be more literal, the previous name
of spte_can_locklessly_be_made_writable() is wrong and misleading.
Fixes: c7ba5b48cc ("KVM: MMU: fast path of handling guest page fault")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When shadowing 5-level NPT for 4-level NPT L1 guest, the root_sp is
allocated with role.level = 5 and the guest pagetable's root gfn.
And root_sp->spt[0] is also allocated with the same gfn and the same
role except role.level = 4. Luckily that they are different shadow
pages, but only root_sp->spt[0] is the real translation of the guest
pagetable.
Here comes a problem:
If the guest switches from gCR4_LA57=0 to gCR4_LA57=1 (or vice verse)
and uses the same gfn as the root page for nested NPT before and after
switching gCR4_LA57. The host (hCR4_LA57=1) might use the same root_sp
for the guest even the guest switches gCR4_LA57. The guest will see
unexpected page mapped and L2 may exploit the bug and hurt L1. It is
lucky that the problem can't hurt L0.
And three special cases need to be handled:
The root_sp should be like role.direct=1 sometimes: its contents are
not backed by gptes, root_sp->gfns is meaningless. (For a normal high
level sp in shadow paging, sp->gfns is often unused and kept zero, but
it could be relevant and meaningful if sp->gfns is used because they
are backed by concrete gptes.)
For such root_sp in the case, root_sp is just a portal to contribute
root_sp->spt[0], and root_sp->gfns should not be used and
root_sp->spt[0] should not be dropped if gpte[0] of the guest root
pagetable is changed.
Such root_sp should not be accounted too.
So add role.passthrough to distinguish the shadow pages in the hash
when gCR4_LA57 is toggled and fix above special cases by using it in
kvm_mmu_page_{get|set}_gfn() and sp_has_gptes().
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add sp_has_gptes() which equals to !sp->role.direct currently.
Shadow page having gptes needs to be write-protected, accounted and
responded to kvm_mmu_pte_write().
Use it in these places to replace !sp->role.direct and rename
for_each_gfn_indirect_valid_sp.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
direct_map is always equal to the direct field of the root page's role:
- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct
- for TDP, it is always true and root_role.direct is also always true
- for shadow TDP, it is always false and root_role.direct is also always
false
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove another duplicate field of struct kvm_mmu. This time it's
the root level for page table walking; the separate field is
always initialized as cpu_role.base.level, so its users can look
up the CPU mode directly instead.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>