-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG
o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS
KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q
4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k
chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3
odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB
J3+wdek=
=39Ca
-----END PGP SIGNATURE-----
Merge tag 'v5.18-rc5' into sched/core to pull in fixes & to resolve a conflict
- sched/core is on a pretty old -rc1 base - refresh it to include recent fixes.
- this also allows up to resolve a (trivial) .mailmap conflict
Conflicts:
.mailmap
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A W=1 build emits more than a dozen missing prototype warnings related to
scheduler and scheduler specific includes.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de
cfs_rq_tg_path() is used by a tracepoint-to traceevent (tp-2-te)
converter to format the path of a taskgroup or autogroup respectively.
It doesn't have any in-kernel users after the removal of the
sched_trace_cfs_rq_path() helper function.
cfs_rq_tg_path() can be coded in a tp-2-te converter.
Remove it from kernel/sched/fair.c.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220428144338.479094-3-qais.yousef@arm.com
We no longer need them as we can use DWARF debug info or BTF + pahole to
re-generate the required structs to compile against them for a given
kernel.
This moves the burden of maintaining these helper functions to the
module.
https://github.com/qais-yousef/sched_tp
Note that pahole v1.15 is required at least for using DWARF. And for BTF
v1.23 which is not yet released will be required. There's alignment
problem that will lead to crashes in earlier versions when used with
BTF.
We should have enough infrastructure to make these helper functions now
obsolete, so remove them.
[Rewrote commit message to reflect the new alternative]
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220428144338.479094-2-qais.yousef@arm.com
Except the 'task has no contribution or is new' condition at the
beginning of cpu_util_without(), which it shares with the load and
runnable counterpart functions, a cpu_util_next(..., dst_cpu = -1)
call can replace the rest of it.
The UTIL_EST specific check that task util_est has to be subtracted
from the CPU one in case of an enqueued (or current (to cater for the
wakeup - lb race)) task has to be moved to cpu_util_next().
This was initially introduced by commit c469933e77
("sched/fair: Fix cpu_util_wake() for 'execl' type workloads").
UnixBench's `execl` throughput tests were run on the dual socket 40
CPUs Intel E5-2690 v2 to make sure it doesn't regress again.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220318163656.954440-1-dietmar.eggemann@arm.com
If busiest group type is group_misfit_task, the local
group type must be group_has_spare according to below
code in update_sd_pick_busiest():
if (sgs->group_type == group_misfit_task &&
(!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
sds->local_stat.group_type != group_has_spare))
return false;
group type imbalanced and overloaded and fully_busy are filtered in here.
misfit and asym are filtered before in update_sg_lb_stats().
So, change the decision matrix to:
busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
has_spare nr_idle balanced N/A N/A balanced balanced
fully_busy nr_idle nr_idle N/A N/A balanced balanced
misfit_task force N/A N/A N/A *N/A* *N/A*
asym_packing force force N/A N/A force force
imbalanced force force N/A N/A force force
overloaded force force N/A N/A force avg_load
Fixes: 0b0695f2b3 ("sched/fair: Rework load_balance()")
Signed-off-by: Tao Zhou <tao.zhou@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20220415095505.7765-1-tao.zhou@linux.dev
We have tested cfs_rq->load.weight in cfs_rq_is_decayed(),
the first condition "!cfs_rq_is_decayed(cfs_rq)" is enough
to cover the second condition "cfs_rq->nr_running".
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220408115309.81603-2-zhouchengming@bytedance.com
Since commit 2312729688 ("sched/fair: Update scale invariance of PELT")
change to use rq_clock_pelt() instead of rq_clock_task(), we should also
use rq_clock_pelt() for throttled_clock_task_time and throttled_clock_task
accounting to get correct cfs_rq_clock_pelt() of throttled cfs_rq. And
rename throttled_clock_task(_time) to be clock_pelt rather than clock_task.
Fixes: 2312729688 ("sched/fair: Update scale invariance of PELT")
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220408115309.81603-1-zhouchengming@bytedance.com
In calculate_imbalance function, when the value of local->avg_load is
greater than or equal to busiest->avg_load, the calculated sds->avg_load is
not used. So this calculation can be placed in a more appropriate position.
Signed-off-by: zgpeng <zgpeng@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Samuel Liao <samuelliao@tencent.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/1649239025-10010-1-git-send-email-zgpeng@tencent.com
The warning in cfs_rq_is_decayed() triggered:
SCHED_WARN_ON(cfs_rq->avg.load_avg ||
cfs_rq->avg.util_avg ||
cfs_rq->avg.runnable_avg)
There exists a corner case in attach_entity_load_avg() which will
cause load_sum to be zero while load_avg will not be.
Consider se_weight is 88761 as per the sched_prio_to_weight[] table.
Further assume the get_pelt_divider() is 47742, this gives:
se->avg.load_avg is 1.
However, calculating load_sum:
se->avg.load_sum = div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
se->avg.load_sum = 1*47742/88761 = 0.
Then enqueue_load_avg() adds this to the cfs_rq totals:
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
Resulting in load_avg being 1 with load_sum is 0, which will trigger
the WARN.
Fixes: f207934fb7 ("sched/fair: Align PELT windows between cfs_rq and its se")
Signed-off-by: kuyo chang <kuyo.chang@mediatek.com>
[peterz: massage changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20220414090229.342-1-kuyo.chang@mediatek.com
move cfs_bandwidth_slice sysctls to fair.c and use the
new register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move child_runs_first sysctls to fair.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
This set of changes removes tracehook.h, moves modification of all of
the ptrace fields inside of siglock to remove races, adds a missing
permission check to ptrace.c
The removal of tracehook.h is quite significant as it has been a major
source of confusion in recent years. Much of that confusion was
around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled
making the semantics clearer).
For people who don't know tracehook.h is a vestiage of an attempt to
implement uprobes like functionality that was never fully merged, and
was later superseeded by uprobes when uprobes was merged. For many
years now we have been removing what tracehook functionaly a little
bit at a time. To the point where now anything left in tracehook.h is
some weird strange thing that is difficult to understand.
Eric W. Biederman (15):
ptrace: Move ptrace_report_syscall into ptrace.h
ptrace/arm: Rename tracehook_report_syscall report_syscall
ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
ptrace: Remove arch_syscall_{enter,exit}_tracehook
ptrace: Remove tracehook_signal_handler
task_work: Remove unnecessary include from posix_timers.h
task_work: Introduce task_work_pending
task_work: Call tracehook_notify_signal from get_signal on all architectures
task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
resume_user_mode: Move to resume_user_mode.h
tracehook: Remove tracehook.h
ptrace: Move setting/clearing ptrace_message into ptrace_stop
ptrace: Return the signal to continue with from ptrace_stop
Jann Horn (1):
ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
Yang Li (1):
ptrace: Remove duplicated include in ptrace.c
MAINTAINERS | 1 -
arch/Kconfig | 5 +-
arch/alpha/kernel/ptrace.c | 5 +-
arch/alpha/kernel/signal.c | 4 +-
arch/arc/kernel/ptrace.c | 5 +-
arch/arc/kernel/signal.c | 4 +-
arch/arm/kernel/ptrace.c | 12 +-
arch/arm/kernel/signal.c | 4 +-
arch/arm64/kernel/ptrace.c | 14 +--
arch/arm64/kernel/signal.c | 4 +-
arch/csky/kernel/ptrace.c | 5 +-
arch/csky/kernel/signal.c | 4 +-
arch/h8300/kernel/ptrace.c | 5 +-
arch/h8300/kernel/signal.c | 4 +-
arch/hexagon/kernel/process.c | 4 +-
arch/hexagon/kernel/signal.c | 1 -
arch/hexagon/kernel/traps.c | 6 +-
arch/ia64/kernel/process.c | 4 +-
arch/ia64/kernel/ptrace.c | 6 +-
arch/ia64/kernel/signal.c | 1 -
arch/m68k/kernel/ptrace.c | 5 +-
arch/m68k/kernel/signal.c | 4 +-
arch/microblaze/kernel/ptrace.c | 5 +-
arch/microblaze/kernel/signal.c | 4 +-
arch/mips/kernel/ptrace.c | 5 +-
arch/mips/kernel/signal.c | 4 +-
arch/nds32/include/asm/syscall.h | 2 +-
arch/nds32/kernel/ptrace.c | 5 +-
arch/nds32/kernel/signal.c | 4 +-
arch/nios2/kernel/ptrace.c | 5 +-
arch/nios2/kernel/signal.c | 4 +-
arch/openrisc/kernel/ptrace.c | 5 +-
arch/openrisc/kernel/signal.c | 4 +-
arch/parisc/kernel/ptrace.c | 7 +-
arch/parisc/kernel/signal.c | 4 +-
arch/powerpc/kernel/ptrace/ptrace.c | 8 +-
arch/powerpc/kernel/signal.c | 4 +-
arch/riscv/kernel/ptrace.c | 5 +-
arch/riscv/kernel/signal.c | 4 +-
arch/s390/include/asm/entry-common.h | 1 -
arch/s390/kernel/ptrace.c | 1 -
arch/s390/kernel/signal.c | 5 +-
arch/sh/kernel/ptrace_32.c | 5 +-
arch/sh/kernel/signal_32.c | 4 +-
arch/sparc/kernel/ptrace_32.c | 5 +-
arch/sparc/kernel/ptrace_64.c | 5 +-
arch/sparc/kernel/signal32.c | 1 -
arch/sparc/kernel/signal_32.c | 4 +-
arch/sparc/kernel/signal_64.c | 4 +-
arch/um/kernel/process.c | 4 +-
arch/um/kernel/ptrace.c | 5 +-
arch/x86/kernel/ptrace.c | 1 -
arch/x86/kernel/signal.c | 5 +-
arch/x86/mm/tlb.c | 1 +
arch/xtensa/kernel/ptrace.c | 5 +-
arch/xtensa/kernel/signal.c | 4 +-
block/blk-cgroup.c | 2 +-
fs/coredump.c | 1 -
fs/exec.c | 1 -
fs/io-wq.c | 6 +-
fs/io_uring.c | 11 +-
fs/proc/array.c | 1 -
fs/proc/base.c | 1 -
include/asm-generic/syscall.h | 2 +-
include/linux/entry-common.h | 47 +-------
include/linux/entry-kvm.h | 2 +-
include/linux/posix-timers.h | 1 -
include/linux/ptrace.h | 81 ++++++++++++-
include/linux/resume_user_mode.h | 64 ++++++++++
include/linux/sched/signal.h | 17 +++
include/linux/task_work.h | 5 +
include/linux/tracehook.h | 226 -----------------------------------
include/uapi/linux/ptrace.h | 2 +-
kernel/entry/common.c | 19 +--
kernel/entry/kvm.c | 9 +-
kernel/exit.c | 3 +-
kernel/livepatch/transition.c | 1 -
kernel/ptrace.c | 47 +++++---
kernel/seccomp.c | 1 -
kernel/signal.c | 62 +++++-----
kernel/task_work.c | 4 +-
kernel/time/posix-cpu-timers.c | 1 +
mm/memcontrol.c | 2 +-
security/apparmor/domain.c | 1 -
security/selinux/hooks.c | 1 -
85 files changed, 372 insertions(+), 495 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmJCQkoACgkQC/v6Eiaj
j0DCWQ/5AZVFU+hX32obUNCLackHTwgcCtSOs3JNBmNA/zL/htPiYYG0ghkvtlDR
Dw5J5DnxC6P7PVAdAqrpvx2uX2FebHYU0bRlyLx8LYUEP5dhyNicxX9jA882Z+vw
Ud0Ue9EojwGWS76dC9YoKUj3slThMATbhA2r4GVEoof8fSNJaBxQIqath44t0FwU
DinWa+tIOvZANGBZr6CUUINNIgqBIZCH/R4h6ArBhMlJpuQ5Ufk2kAaiWFwZCkX4
0LuuAwbKsCKkF8eap5I2KrIg/7zZVgxAg9O3cHOzzm8OPbKzRnNnQClcDe8perqp
S6e/f3MgpE+eavd1EiLxevZ660cJChnmikXVVh8ZYYoefaMKGqBaBSsB38bNcLjY
3+f2dB+TNBFRnZs1aCujK3tWBT9QyjZDKtCBfzxDNWBpXGLhHH6j6lA5Lj+Cef5K
/HNHFb+FuqedlFZh5m1Y+piFQ70hTgCa2u8b+FSOubI2hW9Zd+WzINV0ANaZ2LvZ
4YGtcyDNk1q1+c87lxP9xMRl/xi6rNg+B9T2MCo4IUnHgpSVP6VEB3osgUmrrrN0
eQlUI154G/AaDlqXLgmn1xhRmlPGfmenkxpok1AuzxvNJsfLKnpEwQSc13g3oiZr
disZQxNY0kBO2Nv3G323Z6PLinhbiIIFez6cJzK5v0YJ2WtO3pY=
=uEro
-----END PGP SIGNATURE-----
Merge tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ptrace cleanups from Eric Biederman:
"This set of changes removes tracehook.h, moves modification of all of
the ptrace fields inside of siglock to remove races, adds a missing
permission check to ptrace.c
The removal of tracehook.h is quite significant as it has been a major
source of confusion in recent years. Much of that confusion was around
task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the
semantics clearer).
For people who don't know tracehook.h is a vestiage of an attempt to
implement uprobes like functionality that was never fully merged, and
was later superseeded by uprobes when uprobes was merged. For many
years now we have been removing what tracehook functionaly a little
bit at a time. To the point where anything left in tracehook.h was
some weird strange thing that was difficult to understand"
* tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
ptrace: Remove duplicated include in ptrace.c
ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
ptrace: Return the signal to continue with from ptrace_stop
ptrace: Move setting/clearing ptrace_message into ptrace_stop
tracehook: Remove tracehook.h
resume_user_mode: Move to resume_user_mode.h
resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
task_work: Call tracehook_notify_signal from get_signal on all architectures
task_work: Introduce task_work_pending
task_work: Remove unnecessary include from posix_timers.h
ptrace: Remove tracehook_signal_handler
ptrace: Remove arch_syscall_{enter,exit}_tracehook
ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
ptrace/arm: Rename tracehook_report_syscall report_syscall
ptrace: Move ptrace_report_syscall into ptrace.h
Qian Cai reported a boot crash on arm64 systems, caused by:
0fb3978b0a ("sched/numa: Fix NUMA topology for systems with CPU-less nodes")
The bug is that node_state() must be supplied a valid node_states[] array index,
but in task_numa_placement() the max_nid search can fail with NUMA_NO_NODE,
which is not a valid index.
Fix it by checking that max_nid is a valid index.
[ mingo: Added changelog. ]
Fixes: 0fb3978b0a ("sched/numa: Fix NUMA topology for systems with CPU-less nodes")
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Tested-by: Qian Cai <quic_qiancai@quicinc.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use all generic headers from kernel/sched/sched.h that are required
for it to build.
Sort the sections alphabetically.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
kernel/sched/sched.h is a weird mix of ad-hoc headers included
in the middle of the header.
Two of them rely on being included in the middle of kernel/sched/sched.h,
due to definitions they require:
- "stat.h" needs the rq definitions.
- "autogroup.h" needs the task_group definition.
Move the inclusion of these two files out of kernel/sched/sched.h, and
include them in all files that require them.
Move of the rest of the header dependencies to the top of the
kernel/sched/sched.h file.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmISrYgeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGg20IAKDZr7rfSHBopjQV
Cocw744tom0XuxpvSZpp2GGOOXF+tkswcNNaRIrbGOl1mkyxA7eBZCTMpDeDS9aQ
wB0D0Gxx8QBAJp4KgB1W7TB+hIGes/rs8Ve+6iO4ulLLdCVWX/q2boI0aZ7QX9O9
qNi8OsoZQtk6falRvciZFHwV5Av1p2Sy1AW57udQ7DvJ4H98AfKf1u8/z208WWW8
1ixC+qJxQcUcM9vI+7P9Tt7NbFSKv8SvAmqjFY7P+DxQAsVw6KXoqVXykDzeOv0t
fUNOE/t0oFZafwtn8h7KBQnwS9lH03+3KkslVZs+iMFyUj/Bar+NVVyKoDhWXtVg
/PuMhEg=
=eU1o
-----END PGP SIGNATURE-----
Merge tag 'v5.17-rc5' into sched/core, to resolve conflicts
New conflicts in sched/core due to the following upstream fixes:
44585f7bc0 ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n")
a06247c680 ("psi: Fix uaf issue when psi trigger is destroyed while being polled")
Conflicts:
include/linux/psi_types.h
kernel/sched/psi.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Refer to housekeeping APIs using single feature types instead of flags.
This prevents from passing multiple isolation features at once to
housekeeping interfaces, which soon won't be possible anymore as each
isolation features will have their own cpumask.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
In a typical memory tiering system, there's no CPU in slow (PMEM) NUMA
nodes. But if the number of the hint page faults on a PMEM node is
the max for a task, The current NUMA balancing policy may try to place
the task on the PMEM node instead of DRAM node. This is unreasonable,
because there's no CPU in PMEM NUMA nodes. To fix this, CPU-less
nodes are ignored when searching the migration target node for a task
in this patch.
To test the patch, we run a workload that accesses more memory in PMEM
node than memory in DRAM node. Without the patch, the PMEM node will
be chosen as preferred node in task_numa_placement(). While the DRAM
node will be chosen instead with the patch.
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-2-ying.huang@intel.com
The NUMA topology parameters (sched_numa_topology_type,
sched_domains_numa_levels, and sched_max_numa_distance, etc.)
identified by scheduler may be wrong for systems with CPU-less nodes.
For example, the ACPI SLIT of a system with CPU-less persistent
memory (Intel Optane DCPMM) nodes is as follows,
[000h 0000 4] Signature : "SLIT" [System Locality Information Table]
[004h 0004 4] Table Length : 0000042C
[008h 0008 1] Revision : 01
[009h 0009 1] Checksum : 59
[00Ah 0010 6] Oem ID : "XXXX"
[010h 0016 8] Oem Table ID : "XXXXXXX"
[018h 0024 4] Oem Revision : 00000001
[01Ch 0028 4] Asl Compiler ID : "INTL"
[020h 0032 4] Asl Compiler Revision : 20091013
[024h 0036 8] Localities : 0000000000000004
[02Ch 0044 4] Locality 0 : 0A 15 11 1C
[030h 0048 4] Locality 1 : 15 0A 1C 11
[034h 0052 4] Locality 2 : 11 1C 0A 1C
[038h 0056 4] Locality 3 : 1C 11 1C 0A
While the `numactl -H` output is as follows,
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 64136 MB
node 0 free: 5981 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 64466 MB
node 1 free: 10415 MB
node 2 cpus:
node 2 size: 253952 MB
node 2 free: 253920 MB
node 3 cpus:
node 3 size: 253952 MB
node 3 free: 253951 MB
node distances:
node 0 1 2 3
0: 10 21 17 28
1: 21 10 28 17
2: 17 28 10 28
3: 28 17 28 10
In this system, there are only 2 sockets. In each memory controller,
both DRAM and PMEM DIMMs are installed. Although the physical NUMA
topology is simple, the logical NUMA topology becomes a little
complex. Because both the distance(0, 1) and distance (1, 3) are less
than the distance (0, 3), it appears that node 1 sits between node 0
and node 3. And the whole system appears to be a glueless mesh NUMA
topology type. But it's definitely not, there is even no CPU in node 3.
This isn't a practical problem now yet. Because the PMEM nodes (node
2 and node 3 in example system) are offlined by default during system
boot. So init_numa_topology_type() called during system boot will
ignore them and set sched_numa_topology_type to NUMA_DIRECT. And
init_numa_topology_type() is only called at runtime when a CPU of a
never-onlined-before node gets plugged in. And there's no CPU in the
PMEM nodes. But it appears better to fix this to make the code more
robust.
To test the potential problem. We have used a debug patch to call
init_numa_topology_type() when the PMEM node is onlined (in
__set_migration_target_nodes()). With that, the NUMA parameters
identified by scheduler is as follows,
sched_numa_topology_type: NUMA_GLUELESS_MESH
sched_domains_numa_levels: 4
sched_max_numa_distance: 28
To fix the issue, the CPU-less nodes are ignored when the NUMA topology
parameters are identified. Because a node may become CPU-less or not
at run time because of CPU hotplug, the NUMA topology parameters need
to be re-initialized at runtime for CPU hotplug too.
With the patch, the NUMA parameters identified for the example system
above is as follows,
sched_numa_topology_type: NUMA_DIRECT
sched_domains_numa_levels: 2
sched_max_numa_distance: 21
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-1-ying.huang@intel.com
Commit 7d2b5dd0bc ("sched/numa: Allow a floating imbalance between NUMA
nodes") allowed an imbalance between NUMA nodes such that communicating
tasks would not be pulled apart by the load balancer. This works fine when
there is a 1:1 relationship between LLC and node but can be suboptimal
for multiple LLCs if independent tasks prematurely use CPUs sharing cache.
Zen* has multiple LLCs per node with local memory channels and due to
the allowed imbalance, it's far harder to tune some workloads to run
optimally than it is on hardware that has 1 LLC per node. This patch
allows an imbalance to exist up to the point where LLCs should be balanced
between nodes.
On a Zen3 machine running STREAM parallelised with OMP to have on instance
per LLC the results and without binding, the results are
5.17.0-rc0 5.17.0-rc0
vanilla sched-numaimb-v6
MB/sec copy-16 162596.94 ( 0.00%) 580559.74 ( 257.05%)
MB/sec scale-16 136901.28 ( 0.00%) 374450.52 ( 173.52%)
MB/sec add-16 157300.70 ( 0.00%) 564113.76 ( 258.62%)
MB/sec triad-16 151446.88 ( 0.00%) 564304.24 ( 272.61%)
STREAM can use directives to force the spread if the OpenMP is new
enough but that doesn't help if an application uses threads and
it's not known in advance how many threads will be created.
Coremark is a CPU and cache intensive benchmark parallelised with
threads. When running with 1 thread per core, the vanilla kernel
allows threads to contend on cache. With the patch;
5.17.0-rc0 5.17.0-rc0
vanilla sched-numaimb-v5
Min Score-16 368239.36 ( 0.00%) 389816.06 ( 5.86%)
Hmean Score-16 388607.33 ( 0.00%) 427877.08 * 10.11%*
Max Score-16 408945.69 ( 0.00%) 481022.17 ( 17.62%)
Stddev Score-16 15247.04 ( 0.00%) 24966.82 ( -63.75%)
CoeffVar Score-16 3.92 ( 0.00%) 5.82 ( -48.48%)
It can also make a big difference for semi-realistic workloads
like specjbb which can execute arbitrary numbers of threads without
advance knowledge of how they should be placed. Even in cases where
the average performance is neutral, the results are more stable.
5.17.0-rc0 5.17.0-rc0
vanilla sched-numaimb-v6
Hmean tput-1 71631.55 ( 0.00%) 73065.57 ( 2.00%)
Hmean tput-8 582758.78 ( 0.00%) 556777.23 ( -4.46%)
Hmean tput-16 1020372.75 ( 0.00%) 1009995.26 ( -1.02%)
Hmean tput-24 1416430.67 ( 0.00%) 1398700.11 ( -1.25%)
Hmean tput-32 1687702.72 ( 0.00%) 1671357.04 ( -0.97%)
Hmean tput-40 1798094.90 ( 0.00%) 2015616.46 * 12.10%*
Hmean tput-48 1972731.77 ( 0.00%) 2333233.72 ( 18.27%)
Hmean tput-56 2386872.38 ( 0.00%) 2759483.38 ( 15.61%)
Hmean tput-64 2909475.33 ( 0.00%) 2925074.69 ( 0.54%)
Hmean tput-72 2585071.36 ( 0.00%) 2962443.97 ( 14.60%)
Hmean tput-80 2994387.24 ( 0.00%) 3015980.59 ( 0.72%)
Hmean tput-88 3061408.57 ( 0.00%) 3010296.16 ( -1.67%)
Hmean tput-96 3052394.82 ( 0.00%) 2784743.41 ( -8.77%)
Hmean tput-104 2997814.76 ( 0.00%) 2758184.50 ( -7.99%)
Hmean tput-112 2955353.29 ( 0.00%) 2859705.09 ( -3.24%)
Hmean tput-120 2889770.71 ( 0.00%) 2764478.46 ( -4.34%)
Hmean tput-128 2871713.84 ( 0.00%) 2750136.73 ( -4.23%)
Stddev tput-1 5325.93 ( 0.00%) 2002.53 ( 62.40%)
Stddev tput-8 6630.54 ( 0.00%) 10905.00 ( -64.47%)
Stddev tput-16 25608.58 ( 0.00%) 6851.16 ( 73.25%)
Stddev tput-24 12117.69 ( 0.00%) 4227.79 ( 65.11%)
Stddev tput-32 27577.16 ( 0.00%) 8761.05 ( 68.23%)
Stddev tput-40 59505.86 ( 0.00%) 2048.49 ( 96.56%)
Stddev tput-48 168330.30 ( 0.00%) 93058.08 ( 44.72%)
Stddev tput-56 219540.39 ( 0.00%) 30687.02 ( 86.02%)
Stddev tput-64 121750.35 ( 0.00%) 9617.36 ( 92.10%)
Stddev tput-72 223387.05 ( 0.00%) 34081.13 ( 84.74%)
Stddev tput-80 128198.46 ( 0.00%) 22565.19 ( 82.40%)
Stddev tput-88 136665.36 ( 0.00%) 27905.97 ( 79.58%)
Stddev tput-96 111925.81 ( 0.00%) 99615.79 ( 11.00%)
Stddev tput-104 146455.96 ( 0.00%) 28861.98 ( 80.29%)
Stddev tput-112 88740.49 ( 0.00%) 58288.23 ( 34.32%)
Stddev tput-120 186384.86 ( 0.00%) 45812.03 ( 75.42%)
Stddev tput-128 78761.09 ( 0.00%) 57418.48 ( 27.10%)
Similarly, for embarassingly parallel problems like NPB-ep, there are
improvements due to better spreading across LLC when the machine is not
fully utilised.
vanilla sched-numaimb-v6
Min ep.D 31.79 ( 0.00%) 26.11 ( 17.87%)
Amean ep.D 31.86 ( 0.00%) 26.17 * 17.86%*
Stddev ep.D 0.07 ( 0.00%) 0.05 ( 24.41%)
CoeffVar ep.D 0.22 ( 0.00%) 0.20 ( 7.97%)
Max ep.D 31.93 ( 0.00%) 26.21 ( 17.91%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220208094334.16379-3-mgorman@techsingularity.net
There are inconsistencies when determining if a NUMA imbalance is allowed
that should be corrected.
o allow_numa_imbalance changes types and is not always examining
the destination group so both the type should be corrected as
well as the naming.
o find_idlest_group uses the sched_domain's weight instead of the
group weight which is different to find_busiest_group
o find_busiest_group uses the source group instead of the destination
which is different to task_numa_find_cpu
o Both find_idlest_group and find_busiest_group should account
for the number of running tasks if a move was allowed to be
consistent with task_numa_find_cpu
Fixes: 7d2b5dd0bc ("sched/numa: Allow a floating imbalance between NUMA nodes")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20220208094334.16379-2-mgorman@techsingularity.net
The child processes will inherit numa_pages_migrated and
total_numa_faults from the parent. It means even if there is no numa
fault happen on the child, the statistics in /proc/$pid of the child
process might show huge amount. This is a bit weird. Let's initialize
them when do fork.
Signed-off-by: Honglei Wang <wanghonglei@didichuxing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20220113133920.49900-1-wanghonglei@didichuxing.com
Quieten all kernel-doc warnings in kernel/sched/fair.c:
kernel/sched/fair.c:3663: warning: No description found for return value of 'update_cfs_rq_load_avg'
kernel/sched/fair.c:8601: warning: No description found for return value of 'asym_smt_can_pull_tasks'
kernel/sched/fair.c:8673: warning: Function parameter or member 'sds' not described in 'update_sg_lb_stats'
kernel/sched/fair.c:9483: warning: contents before sections
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211218055900.2704-1-rdunlap@infradead.org
Similarly to util_avg and util_sum, don't sync load_sum with the low
bound of load_avg but only ensure that load_sum stays in the correct range.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Link: https://lkml.kernel.org/r/20220111134659.24961-5-vincent.guittot@linaro.org
Similarly to util_avg and util_sum, don't sync runnable_sum with the low
bound of runnable_avg but only ensure that runnable_sum stays in the
correct range.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Link: https://lkml.kernel.org/r/20220111134659.24961-4-vincent.guittot@linaro.org
Rick reported performance regressions in bugzilla because of cpu frequency
being lower than before:
https://bugzilla.kernel.org/show_bug.cgi?id=215045
He bisected the problem to:
commit 1c35b07e6d ("sched/fair: Ensure _sum and _avg values stay consistent")
This commit forces util_sum to be synced with the new util_avg after
removing the contribution of a task and before the next periodic sync. By
doing so util_sum is rounded to its lower bound and might lost up to
LOAD_AVG_MAX-1 of accumulated contribution which has not yet been
reflected in util_avg.
update_tg_cfs_util() is not the only place where we round util_sum and
lost some accumulated contributions that are not already reflected in
util_avg. Modify update_tg_cfs_util() and detach_entity_load_avg() to not
sync util_sum with the new util_avg. Instead of always setting util_sum to
the low bound of util_avg, which can significantly lower the utilization,
we propagate the difference. In addition, we also check that cfs's util_sum
always stays above the lower bound for a given util_avg as it has been
observed that sched_entity's util_sum is sometimes above cfs one.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Link: https://lkml.kernel.org/r/20220111134659.24961-3-vincent.guittot@linaro.org
Rick reported performance regressions in bugzilla because of cpu frequency
being lower than before:
https://bugzilla.kernel.org/show_bug.cgi?id=215045
He bisected the problem to:
commit 1c35b07e6d ("sched/fair: Ensure _sum and _avg values stay consistent")
This commit forces util_sum to be synced with the new util_avg after
removing the contribution of a task and before the next periodic sync. By
doing so util_sum is rounded to its lower bound and might lost up to
LOAD_AVG_MAX-1 of accumulated contribution which has not yet been
reflected in util_avg.
Instead of always setting util_sum to the low bound of util_avg, which can
significantly lower the utilization of root cfs_rq after propagating the
change down into the hierarchy, we revert the change of util_sum and
propagate the difference.
In addition, we also check that cfs's util_sum always stays above the
lower bound for a given util_avg as it has been observed that
sched_entity's util_sum is sometimes above cfs one.
Fixes: 1c35b07e6d ("sched/fair: Ensure _sum and _avg values stay consistent")
Reported-by: Rick Yiu <rickyiu@google.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Link: https://lkml.kernel.org/r/20220111134659.24961-2-vincent.guittot@linaro.org
cpu_util_cfs() was created by commit d4edd662ac ("sched/cpufreq: Use
the DEADLINE utilization signal") to enable the access to CPU
utilization from the Schedutil CPUfreq governor.
Commit a07630b8b2 ("sched/cpufreq/schedutil: Use util_est for OPP
selection") added util_est support later.
The only thing cpu_util() is doing on top of what cpu_util_cfs() already
does is to clamp the return value to the [0..capacity_orig] capacity
range of the CPU. Integrating this into cpu_util_cfs() is not harming
the existing users (Schedutil and CPUfreq cooling (latter via
sched_cpu_util() wrapper)).
For straightforwardness, prefer to keep using `int cpu` as the function
parameter over using `struct rq *rq` which might avoid some calls to
cpu_rq(cpu) -> per_cpu(runqueues, cpu) -> RELOC_HIDE().
Update cfs_util()'s documentation and reuse it for cpu_util_cfs().
Remove cpu_util().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211118164240.623551-1-dietmar.eggemann@arm.com
task_util and capacity are comparable unsigned long values. There is no
need for an intermidiate implicit signed cast.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211207095755.859972-1-vincent.donnefort@arm.com
All People I know including myself took a long time to figure out that
typical wakeup will always go to fast path and never go to slow path
except WF_FORK and WF_EXEC.
Vincent reminded me once in a linaro meeting and made me understand
slow path won't happen for WF_TTWU. But my other friends repeatedly
wasted a lot of time on testing this path like me before I reminded
them.
So obviously the code needs some document.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211016111109.5559-1-21cnbao@gmail.com
select_idle_sibling() has a special case for tasks woken up by a per-CPU
kthread where the selected CPU is the previous one. For asymmetric CPU
capacity systems, the assumption was that the wakee couldn't have a
bigger utilization during task placement than it used to have during the
last activation. That was not considering uclamp.min which can completely
change between two task activations and as a consequence mandates the
fitness criterion asym_fits_capacity(), even for the exit path described
above.
Fixes: b4c9c9f156 ("sched/fair: Prefer prev cpu in asymmetric wakeup path")
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20211129173115.4006346-1-vincent.donnefort@arm.com
select_idle_sibling() has a special case for tasks woken up by a per-CPU
kthread, where the selected CPU is the previous one. However, the current
condition for this exit path is incomplete. A task can wake up from an
interrupt context (e.g. hrtimer), while a per-CPU kthread is running. A
such scenario would spuriously trigger the special case described above.
Also, a recent change made the idle task like a regular per-CPU kthread,
hence making that situation more likely to happen
(is_per_cpu_kthread(swapper) being true now).
Checking for task context makes sure select_idle_sibling() will not
interpret a wake up from any other context as a wake up by a per-CPU
kthread.
Fixes: 52262ee567 ("sched/fair: Allow a per-CPU kthread waking a task to stack on the same CPU, to fix XFS performance regression")
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20211201143450.479472-1-vincent.donnefort@arm.com
Adds accounting for "forced idle" time, which is time where a cookie'd
task forces its SMT sibling to idle, despite the presence of runnable
tasks.
Forced idle time is one means to measure the cost of enabling core
scheduling (ie. the capacity lost due to the need to force idle).
Forced idle time is attributed to the thread responsible for causing
the forced idle.
A few details:
- Forced idle time is displayed via /proc/PID/sched. It also requires
that schedstats is enabled.
- Forced idle is only accounted when a sibling hyperthread is held
idle despite the presence of runnable tasks. No time is charged if
a sibling is idle but has no runnable tasks.
- Tasks with 0 cookie are never charged forced idle.
- For SMT > 2, we scale the amount of forced idle charged based on the
number of forced idle siblings. Additionally, we split the time up and
evenly charge it to all running tasks, as each is equally responsible
for the forced idle.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211018203428.2025792-1-joshdon@google.com
Kevin is reporting crashes which point to a use-after-free of a cfs_rq
in update_blocked_averages(). Initial debugging revealed that we've
live cfs_rq's (on_list=1) in an about to be kfree()'d task group in
free_fair_sched_group(). However, it was unclear how that can happen.
His kernel config happened to lead to a layout of struct sched_entity
that put the 'my_q' member directly into the middle of the object
which makes it incidentally overlap with SLUB's freelist pointer.
That, in combination with SLAB_FREELIST_HARDENED's freelist pointer
mangling, leads to a reliable access violation in form of a #GP which
made the UAF fail fast.
Michal seems to have run into the same issue[1]. He already correctly
diagnosed that commit a7b359fc6a ("sched/fair: Correctly insert
cfs_rq's to list on unthrottle") is causing the preconditions for the
UAF to happen by re-adding cfs_rq's also to task groups that have no
more running tasks, i.e. also to dead ones. His analysis, however,
misses the real root cause and it cannot be seen from the crash
backtrace only, as the real offender is tg_unthrottle_up() getting
called via sched_cfs_period_timer() via the timer interrupt at an
inconvenient time.
When unregister_fair_sched_group() unlinks all cfs_rq's from the dying
task group, it doesn't protect itself from getting interrupted. If the
timer interrupt triggers while we iterate over all CPUs or after
unregister_fair_sched_group() has finished but prior to unlinking the
task group, sched_cfs_period_timer() will execute and walk the list of
task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the
dying task group. These will later -- in free_fair_sched_group() -- be
kfree()'ed while still being linked, leading to the fireworks Kevin
and Michal are seeing.
To fix this race, ensure the dying task group gets unlinked first.
However, simply switching the order of unregistering and unlinking the
task group isn't sufficient, as concurrent RCU walkers might still see
it, as can be seen below:
CPU1: CPU2:
: timer IRQ:
: do_sched_cfs_period_timer():
: :
: distribute_cfs_runtime():
: rcu_read_lock();
: :
: unthrottle_cfs_rq():
sched_offline_group(): :
: walk_tg_tree_from(…,tg_unthrottle_up,…):
list_del_rcu(&tg->list); :
(1) : list_for_each_entry_rcu(child, &parent->children, siblings)
: :
(2) list_del_rcu(&tg->siblings); :
: tg_unthrottle_up():
unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
: :
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); :
: :
: if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
(3) : list_add_leaf_cfs_rq(cfs_rq);
: :
: :
: :
: :
: :
(4) : rcu_read_unlock();
CPU 2 walks the task group list in parallel to sched_offline_group(),
specifically, it'll read the soon to be unlinked task group entry at
(1). Unlinking it on CPU 1 at (2) therefore won't prevent CPU 2 from
still passing it on to tg_unthrottle_up(). CPU 1 now tries to unlink
all cfs_rq's via list_del_leaf_cfs_rq() in
unregister_fair_sched_group(). Meanwhile CPU 2 will re-add some of
these at (3), which is the cause of the UAF later on.
To prevent this additional race from happening, we need to wait until
walk_tg_tree_from() has finished traversing the task groups, i.e.
after the RCU read critical section ends in (4). Afterwards we're safe
to call unregister_fair_sched_group(), as each new walk won't see the
dying task group any more.
On top of that, we need to wait yet another RCU grace period after
unregister_fair_sched_group() to ensure print_cfs_stats(), which might
run concurrently, always sees valid objects, i.e. not already free'd
ones.
This patch survives Michal's reproducer[2] for 8h+ now, which used to
trigger within minutes before.
[1] https://lore.kernel.org/lkml/20211011172236.11223-1-mkoutny@suse.com/
[2] https://lore.kernel.org/lkml/20211102160228.GA57072@blackbody.suse.cz/
Fixes: a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
[peterz: shuffle code around a bit]
Reported-by: Kevin Tanguy <kevin.tanguy@corp.ovh.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
update_next_balance() uses sd->last_balance which is not modified by
load_balance() so we can merge the 2 calls in one place.
No functional change
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-6-vincent.guittot@linaro.org
With a default value of 500us, sysctl_sched_migration_cost is
significanlty higher than the cost of load_balance. Remove the
condition and rely on the sd->max_newidle_lb_cost to abort
newidle_balance.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-5-vincent.guittot@linaro.org
Decay max_newidle_lb_cost only when it has not been updated for a while
and ensure to not decay a recently changed value.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-4-vincent.guittot@linaro.org
In newidle_balance(), the scheduler skips load balance to the new idle cpu
when the 1st sd of this_rq is:
this_rq->avg_idle < sd->max_newidle_lb_cost
Doing a costly call to update_blocked_averages() will not be useful and
simply adds overhead when this condition is true.
Check the condition early in newidle_balance() to skip
update_blocked_averages() when possible.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-3-vincent.guittot@linaro.org
The time spent to update the blocked load can be significant depending of
the complexity fo the cgroup hierarchy. Take this time into account in
the cost of the 1st load balance of a newly idle cpu.
Also reduce the number of call to sched_clock_cpu() and track more actual
work.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-2-vincent.guittot@linaro.org
Fix a few comments to help understand them better.
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20211004105706.3669-4-bharata@amd.com
numa_group::fault_cpus is actually a pointer to the region
in numa_group::faults[] where NUMA_CPU stats are located.
Remove this redundant member and use numa_group::faults[NUMA_CPU]
directly like it is done for similar per-process numa fault stats.
There is no functionality change due to this commit.
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20211004105706.3669-3-bharata@amd.com
While allocating group fault stats, task_numa_group()
is using a hard coded number 4. Replace this by
NR_NUMA_HINT_FAULT_STATS.
No functionality change in this commit.
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20211004105706.3669-2-bharata@amd.com
Since commit 89aafd67f2 ("sched/fair: Use prev instead of new target as recent_used_cpu"),
p->recent_used_cpu is unconditionnaly set with prev.
Fixes: 89aafd67f2 ("sched/fair: Use prev instead of new target as recent_used_cpu")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210928103544.27489-1-vincent.guittot@linaro.org
When deciding to pull tasks in ASYM_PACKING, it is necessary not only to
check for the idle state of the destination CPU, dst_cpu, but also of
its SMT siblings.
If dst_cpu is idle but its SMT siblings are busy, performance suffers
if it pulls tasks from a medium priority CPU that does not have SMT
siblings.
Implement asym_smt_can_pull_tasks() to inspect the state of the SMT
siblings of both dst_cpu and the CPUs in the candidate busiest group.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-7-ricardo.neri-calderon@linux.intel.com
Create a separate function, sched_asym(). A subsequent changeset will
introduce logic to deal with SMT in conjunction with asmymmetric
packing. Such logic will need the statistics of the scheduling
group provided as argument. Update them before calling sched_asym().
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-6-ricardo.neri-calderon@linux.intel.com
Before deciding to pull tasks when using asymmetric packing of tasks,
on some architectures (e.g., x86) it is necessary to know not only the
state of dst_cpu but also of its SMT siblings. The decision to classify
a candidate busiest group as group_asym_packing is done in
update_sg_lb_stats(). Give this function access to the scheduling domain
statistics, which contains the statistics of the local group.
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-5-ricardo.neri-calderon@linux.intel.com
sched_asmy_prefer() always returns false when called on the local group. By
checking local_group, we can avoid additional checks and invoking
sched_asmy_prefer() when it is not needed. No functional changes are
introduced.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-4-ricardo.neri-calderon@linux.intel.com
The original prototype of the schedstats helpers are
update_stats_wait_*(struct cfs_rq *cfs_rq, struct sched_entity *se)
The cfs_rq in these helpers is used to get the rq_clock, and the se is
used to get the struct sched_statistics and the struct task_struct. In
order to make these helpers available by all sched classes, we can pass
the rq, sched_statistics and task_struct directly.
Then the new helpers are
update_stats_wait_*(struct rq *rq, struct task_struct *p,
struct sched_statistics *stats)
which are independent of fair sched class.
To avoid vmlinux growing too large or introducing ovehead when
!schedstat_enabled(), some new helpers after schedstat_enabled() are also
introduced, Suggested by Mel. These helpers are in sched/stats.c,
__update_stats_wait_*(struct rq *rq, struct task_struct *p,
struct sched_statistics *stats)
The size of vmlinux as follows,
Before After
Size of vmlinux 826308552 826304640
The size is a litte smaller as some functions are not inlined again after
the change.
I also compared the sched performance with 'perf bench sched pipe',
suggested by Mel. The result as followsi (in usecs/op),
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the prev version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no difference.
No functional change.
[lkp@intel.com: reported build failure in prev version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-4-laoar.shao@gmail.com
If we want to use the schedstats facility to trace other sched classes, we
should make it independent of fair sched class. The struct sched_statistics
is the schedular statistics of a task_struct or a task_group. So we can
move it into struct task_struct and struct task_group to achieve the goal.
After the patch, schestats are orgnized as follows,
struct task_struct {
...
struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;
...
struct sched_statistics stats;
...
};
Regarding the task group, schedstats is only supported for fair group
sched, and a new struct sched_entity_stats is introduced, suggested by
Peter -
struct sched_entity_stats {
struct sched_entity se;
struct sched_statistics stats;
} __no_randomize_layout;
Then with the se in a task_group, we can easily get the stats.
The sched_statistics members may be frequently modified when schedstats is
enabled, in order to avoid impacting on random data which may in the same
cacheline with them, the struct sched_statistics is defined as cacheline
aligned.
As this patch changes the core struct of scheduler, so I verified the
performance it may impact on the scheduler with 'perf bench sched
pipe', suggested by Mel. Below is the result, in which all the values
are in usecs/op.
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the earlier version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no impact on the sched performance.
No functional change.
[lkp@intel.com: reported build failure in earlier version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
schedstat_enabled() has been already checked, so we can use
__schedstat_set() directly.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-2-laoar.shao@gmail.com
Two new statistics are introduced to show the internal of burst feature
and explain why burst helps or not.
nr_bursts: number of periods bandwidth burst occurs
burst_time: cumulative wall-time (in nanoseconds) that any cpus has
used above quota in respective periods
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210830032215.16302-2-changhuaixin@linux.alibaba.com
Give reduced sleeper credit to SCHED_IDLE entities. As a result, woken
SCHED_IDLE entities will take longer to preempt normal entities.
The benefit of this change is to make it less likely that a newly woken
SCHED_IDLE entity will preempt a short-running normal entity before it
blocks.
We still give a small sleeper credit to SCHED_IDLE entities, so that
idle<->idle competition retains some fairness.
Example: With HZ=1000, spawned four threads affined to one cpu, one of
which was set to SCHED_IDLE. Without this patch, wakeup latency for the
SCHED_IDLE thread was ~1-2ms, with the patch the wakeup latency was
~5ms.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Link: https://lore.kernel.org/r/20210820010403.946838-5-joshdon@google.com
Use a small, non-scaled min granularity for SCHED_IDLE entities, when
competing with normal entities. This reduces the latency of getting
a normal entity back on cpu, at the expense of increased context
switch frequency of SCHED_IDLE entities.
The benefit of this change is to reduce the round-robin latency for
normal entities when competing with a SCHED_IDLE entity.
Example: on a machine with HZ=1000, spawned two threads, one of which is
SCHED_IDLE, and affined to one cpu. Without this patch, the SCHED_IDLE
thread runs for 4ms then waits for 1.4s. With this patch, it runs for
1ms and waits 340ms (as it round-robins with the other thread).
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210820010403.946838-4-joshdon@google.com
Adds cfs_rq->idle_nr_running, which accounts the number of idle entities
directly enqueued on the cfs_rq.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210820010403.946838-3-joshdon@google.com
Consider a system with some NOHZ-idle CPUs, such that
nohz.idle_cpus_mask = S
nohz.next_balance = T
When a new CPU k goes NOHZ idle (nohz_balance_enter_idle()), we end up
with:
nohz.idle_cpus_mask = S \U {k}
nohz.next_balance = T
Note that the nohz.next_balance hasn't changed - it won't be updated until
a NOHZ balance is triggered. This is problematic if the newly NOHZ idle CPU
has an earlier rq.next_balance than the other NOHZ idle CPUs, IOW if:
cpu_rq(k).next_balance < nohz.next_balance
In such scenarios, the existing nohz.next_balance will prevent any NOHZ
balance from happening, which itself will prevent nohz.next_balance from
being updated to this new cpu_rq(k).next_balance. Unnecessary load balance
delays of over 12ms caused by this were observed on an arm64 RB5 board.
Use the new nohz.needs_update flag to mark the presence of newly-idle CPUs
that need their rq->next_balance to be collated into
nohz.next_balance. Trigger a NOHZ_NEXT_KICK when the flag is set.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210823111700.2842997-3-valentin.schneider@arm.com
A following patch will trigger NOHZ idle balances as a means to update
nohz.next_balance. Vincent noted that blocked load updates can have
non-negligible overhead, which should be avoided if the intent is to only
update nohz.next_balance.
Add a new NOHZ balance kick flag, NOHZ_NEXT_KICK. Gate NOHZ blocked load
update by the presence of NOHZ_STATS_KICK - currently all NOHZ balance
kicks will have the NOHZ_STATS_KICK flag set, so no change in behaviour is
expected.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210823111700.2842997-2-valentin.schneider@arm.com
Since commit a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to
list on unthrottle") we add cfs_rqs with no runnable tasks but not fully
decayed into the load (leaf) list. We may ignore adding some ancestors
and therefore breaking tmp_alone_branch invariant. This broke LTP test
cfs_bandwidth01 and it was partially fixed in commit fdaba61ef8
("sched/fair: Ensure that the CFS parent is added after unthrottling").
I noticed the named test still fails even with the fix (but with low
probability, 1 in ~1000 executions of the test). The reason is when
bailing out of unthrottle_cfs_rq early, we may miss adding ancestors of
the unthrottled cfs_rq, thus, not joining tmp_alone_branch properly.
Fix this by adding ancestors if we notice the unthrottled cfs_rq was
added to the load list.
Fixes: a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Odin Ugedal <odin@uged.al>
Link: https://lore.kernel.org/r/20210917153037.11176-1-mkoutny@suse.com
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks on
AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their
own task_cpu_possible_mask(p). When this is done, the scheduler will
make sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmEsrDgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gMxBAAmzXPnDm1pDBBUaEwc+DynNGHNxZcBO5E
CaNyfywp4GMA+OC3JzUgDg1B9uvKQRdBGtv6SZ8OcyhJMfmkEvjt5/wYUrcdtQVP
TA2lt80/Is8LQMnvcz7X0gmsLt+fXWQTF8ik1KT4wsi/k03Xw8BH11zHct6sV2QN
NNQ+7BEjqU1HA1UXJFiaoGtWF0gdh29VyE5dSzfAis79L0XUQadS512LJKin/AK0
wYz8E+L7QIrjhfX9FQdOrR6da4TK6jAXyEY6a9dpaMHnFdtxuwhT4/BPtovNTeeY
yxEZm3qSZbpghWHsMEa6Z4GIeLE6aNi3wcHt10fgdZDdotSRsNZuF6gi4A8nhRC+
6wm+fCcFGEIBCL6eE/16Wms6YMdFfuiEAgtJGNy7GGyfH3/mS6u8eylXbLZncYXn
DFHY+xUvmVZSzoPzcnYXEy4FB3kywNL7WBFxyhdXf5/EvWmmtHi4K3jVQ8jaqvhL
MDk3NX9Hd0ariff3zUltWhMY5ouj6bIbBZmWWnD3s1xQT68VvE563cq0qH15dlnr
j5M71eNRWvoOdZKzflgjRZzmdQtsZQ51tiMA6W6ZRfwYkHjb70qiia0r5GFf41X1
MYelmcaA8+RjKrQ5etxzzDjoXl0xDXiZric6gRQHjG1Y1Zm2rVaoD+vkJGD5TQJ0
2XTOGQgAxh4=
=VdGE
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks
on AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their own
task_cpu_possible_mask(p). When this is done, the scheduler will make
sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
* tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
eventfd: Make signal recursion protection a task bit
sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case
sched: Introduce dl_task_check_affinity() to check proposed affinity
sched: Allow task CPU affinity to be restricted on asymmetric systems
sched: Split the guts of sched_setaffinity() into a helper function
sched: Introduce task_struct::user_cpus_ptr to track requested affinity
sched: Reject CPU affinity changes based on task_cpu_possible_mask()
cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()
cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1
sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
sched: Cgroup SCHED_IDLE support
sched/topology: Skip updating masks for non-online nodes
sched: Replace deprecated CPU-hotplug functions.
sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
sched: Fix UCLAMP_FLAG_IDLE setting
sched/deadline: Fix missing clock update in migrate_task_rq_dl()
sched/fair: Avoid a second scan of target in select_idle_cpu
sched/fair: Use prev instead of new target as recent_used_cpu
sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()
...
It's not actually used in the !CONFIG_FAIR_GROUP_SCHED case:
kernel/sched/fair.c:488:12: warning: ‘tg_is_idle’ defined but not used [-Wunused-function]
Keep around a placeholder nevertheless, for API completeness. Mark it inline,
so the compiler doesn't think it must be used.
Fixes: 304000390f: ("sched: Cgroup SCHED_IDLE support")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Josh Don <joshdon@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
This extends SCHED_IDLE to cgroups.
Interface: cgroup/cpu.idle.
0: default behavior
1: SCHED_IDLE
Extending SCHED_IDLE to cgroups means that we incorporate the existing
aspects of SCHED_IDLE; a SCHED_IDLE cgroup will count all of its
descendant threads towards the idle_h_nr_running count of all of its
ancestor cgroups. Thus, sched_idle_rq() will work properly.
Additionally, SCHED_IDLE cgroups are configured with minimum weight.
There are two key differences between the per-task and per-cgroup
SCHED_IDLE interface:
- The cgroup interface allows tasks within a SCHED_IDLE hierarchy to
maintain their relative weights. The entity that is "idle" is the
cgroup, not the tasks themselves.
- Since the idle entity is the cgroup, our SCHED_IDLE wakeup preemption
decision is not made by comparing the current task with the woken
task, but rather by comparing their matching sched_entity.
A typical use-case for this is a user that creates an idle and a
non-idle subtree. The non-idle subtree will dominate competition vs
the idle subtree, but the idle subtree will still be high priority vs
other users on the system. The latter is accomplished via comparing
matching sched_entity in the waken preemption path (this could also be
improved by making the sched_idle_rq() decision dependent on the
perspective of a specific task).
For now, we maintain the existing SCHED_IDLE semantics. Future patches
may make improvements that extend how we treat SCHED_IDLE entities.
The per-task_group idle field is an integer that currently only holds
either a 0 or a 1. This is explicitly typed as an integer to allow for
further extensions to this API. For example, a negative value may
indicate a highly latency-sensitive cgroup that should be preferred
for preemption/placement/etc.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210730020019.1487127-2-joshdon@google.com
When select_idle_cpu starts scanning for an idle CPU, it starts with
a target CPU that has already been checked by select_idle_sibling.
This patch starts with the next CPU instead.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210804115857.6253-3-mgorman@techsingularity.net
After select_idle_sibling, p->recent_used_cpu is set to the
new target. However on the next wakeup, prev will be the same as
recent_used_cpu unless the load balancer has moved the task since the
last wakeup. It still works, but is less efficient than it could be.
This patch preserves recent_used_cpu for longer.
The impact on SIS efficiency is tiny so the SIS statistic patches were
used to track the hit rate for using recent_used_cpu. With perf bench
pipe on a 2-socket Cascadelake machine, the hit rate went from 57.14%
to 85.32%. For more intensive wakeup loads like hackbench, the hit rate
is almost negligible but rose from 0.21% to 6.64%. For scaling loads
like tbench, the hit rate goes from almost 0% to 25.42% overall. Broadly
speaking, on tbench, the success rate is much higher for lower thread
counts and drops to almost 0 as the workload scales to towards saturation.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210804115857.6253-2-mgorman@techsingularity.net
Use the loop variable instead of the function argument to test the
other SMT siblings for idle.
Fixes: ff7db0bf24 ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks")
Signed-off-by: Mika Penttilä <mika.penttila@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Pankaj Gupta <pankaj.gupta@ionos.com>
Link: https://lkml.kernel.org/r/20210722063946.28951-1-mika.penttila@gmail.com
The time remaining until expiry of the refresh_timer can be negative.
Casting the type to an unsigned 64-bit value will cause integer
underflow, making the runtime_refresh_within return false instead of
true. These situations are rare, but they do happen.
This does not cause user-facing issues or errors; other than
possibly unthrottling cfs_rq's using runtime from the previous period(s),
making the CFS bandwidth enforcement less strict in those (special)
situations.
Signed-off-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Link: https://lore.kernel.org/r/20210629121452.18429-1-odin@uged.al
commit 9e077b52d8 ("sched/pelt: Check that *_avg are null when *_sum are")
reported some inconsitencies between *_avg and *_sum.
commit 1c35b07e6d ("sched/fair: Ensure _sum and _avg values stay consistent")
fixed some but one remains when dequeuing load.
sync the cfs's load_sum with its load_avg after dequeuing the load of a
sched_entity.
Fixes: 9e077b52d8 ("sched/pelt: Check that *_avg are null when *_sum are")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Odin Ugedal <odin@uged.al>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Link: https://lore.kernel.org/r/20210701171837.32156-1-vincent.guittot@linaro.org
new warning that several people reported.
- Flip CONFIG_SCHED_CORE to default-disabled, and update the
Kconfig help text.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDcSeURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g0ixAApwxCWCyNWKEKzg/I3FsR3RYfErpIUgnf
gwQRtXNKZBOt/q8yWYw0VXG2ob17NgUdiC3p9IaxPrmCmB8tuojcsuPssHj5UktQ
GWFoJdUwqQrM68Pl0centbN3xeKPcp7tHXK0jfmpbzolJxSFnx4/bQVPdhjlmWTM
CoSTx4QCJoHYsNhZXj7aHQczKUMKBZ2/SD74+c/2Ft3jWkFmwdynzMdySKJfEuVX
u/6PiFQDK0/5Qsic3a6pWmXZHcA0Q6HUwKKAaJcqI1OcAQyPuzwxY5qwbzvq5fRM
ZhaJ7T5rJFQ8u6KndV5wv4+Xqgv6teAZBaPVP93cbnfeyVzWaiYL6/SC+xJnNDT+
fNpE41FINHq/NfUa6sId84lIpcQvAZzy3tpxS3VI/WXqDymFsG9BuoX9V2fm1uQP
O3oa+B/PkP+VVezDS8qxZ2xixpcsRW97UVFtaj2P0QFOeb+qrOhPuSoCjNREkFmu
CFWW+qnbiVaxQ3rtaXaHWhEtAhOMPbE4frYtbS4pjEMgv0K2E/mvDivHwrVX23II
WkEQxUbzdp/APppBlhtFpcxKNTnNsV5Uk0VPhTu1bEOpKAC7wA+dmyPEMG0MLBUc
88DizVnofzKTax8PZnuabWpITcS+TS1qzBRmn1W1SajEh66iJltCSafWZ3JxytDO
meqBYVd0ubQ=
=Jgwc
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2021-06-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
- Fix a small inconsistency (bug) in load tracking, caught by a new
warning that several people reported.
- Flip CONFIG_SCHED_CORE to default-disabled, and update the Kconfig
help text.
* tag 'sched-urgent-2021-06-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Disable CONFIG_SCHED_CORE by default
sched/fair: Ensure _sum and _avg values stay consistent
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow
the flexible utilization of SMT siblings, without exposing
untrusted domains to information leaks & side channels, plus
to ensure more deterministic computing performance on SMT
systems used by heterogenous workloads.
There's new prctls to set core scheduling groups, which
allows more flexible management of workloads that can share
siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve
'memcache'-like workloads.
- "Age" (decay) average idle time, to better track & improve workloads
such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked
via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable
it at runtime if tooling needs it. Use static keys and
other optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcPoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g3yw//WfhIqy7Psa9d/MBMjQDRGbTuO4+w22Dj
vmWFU44Q4KJxQHWeIgUlrK+dzvYWvNmflUs2CUUOiDVzxFTHMIyBtL4qCBUbx4Ns
vKAcB9wsWZge2o3WzZqpProRhdoRaSKw8egUr2q7rACVBkckY7eGP/OjWxXU8BdA
b7D0LPWwuIBFfN4pFYeCDLn32Dqr9s6Chyj+ZecabdG7EE6Gu+f1diVcxy7JE/mc
4WWL0D1RqdgpGrBEuMJIxPYekdrZiuy4jtEbztz5gbTBteN1cj3BLfqn0Pc/e6rO
Vyuc5mXCAmzRVi18z6g6bsVl+IA/nrbErENB2OHOhOYtqiZxqGTd4GPWZszMyY17
5AsEO5+5pcaBsy4gyp09qURggBu9zhJnMVmOI3rIHZkmkhwzc6uUJlyhDCTiFWOz
3ZF3LjbZEyCKodMD8qMHbs3axIBpIfZqjzkvSKyFnvfXEGVytVse7NUuWtQ36u92
GnURxVeYY1TDVXvE1Y8owNKMxknKQ6YRlypP7Dtbeo/qG6hShp0xmS7qDLDi0ybZ
ZlK+bDECiVoDf3nvJo+8v5M82IJ3CBt4UYldeRJsa1YCK/FsbK8tp91fkEfnXVue
+U6LPX0AmMpXacR5HaZfb3uBIKRw/QMdP/7RFtBPhpV6jqCrEmuqHnpPQiEVtxwO
UmG7bt94Trk=
=3VDr
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler udpates from Ingo Molnar:
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow the
flexible utilization of SMT siblings, without exposing untrusted
domains to information leaks & side channels, plus to ensure more
deterministic computing performance on SMT systems used by
heterogenous workloads.
There are new prctls to set core scheduling groups, which allows
more flexible management of workloads that can share siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve 'memcache'-like
workloads.
- "Age" (decay) average idle time, to better track & improve
workloads such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked via
/sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable it at
runtime if tooling needs it. Use static keys and other
optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/doc: Update the CPU capacity asymmetry bits
sched/topology: Rework CPU capacity asymmetry detection
sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
psi: Fix race between psi_trigger_create/destroy
sched/fair: Introduce the burstable CFS controller
sched/uclamp: Fix uclamp_tg_restrict()
sched/rt: Fix Deadline utilization tracking during policy change
sched/rt: Fix RT utilization tracking during policy change
sched: Change task_struct::state
sched,arch: Remove unused TASK_STATE offsets
sched,timer: Use __set_current_state()
sched: Add get_current_state()
sched,perf,kvm: Fix preemption condition
sched: Introduce task_is_running()
sched: Unbreak wakeups
sched/fair: Age the average idle time
sched/cpufreq: Consider reduced CPU capacity in energy calculation
sched/fair: Take thermal pressure into account while estimating energy
thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
sched/fair: Return early from update_tg_cfs_load() if delta == 0
...
On a 128 cores AMD machine, there are 8 cores in nohz_full mode, and
the others are used for housekeeping. When many housekeeping cpus are
in idle state, we can observe huge time burn in the loop for searching
nearest busy housekeeper cpu by ftrace.
9) | get_nohz_timer_target() {
9) | housekeeping_test_cpu() {
9) 0.390 us | housekeeping_get_mask.part.1();
9) 0.561 us | }
9) 0.090 us | __rcu_read_lock();
9) 0.090 us | housekeeping_cpumask();
9) 0.521 us | housekeeping_cpumask();
9) 0.140 us | housekeeping_cpumask();
...
9) 0.500 us | housekeeping_cpumask();
9) | housekeeping_any_cpu() {
9) 0.090 us | housekeeping_get_mask.part.1();
9) 0.100 us | sched_numa_find_closest();
9) 0.491 us | }
9) 0.100 us | __rcu_read_unlock();
9) + 76.163 us | }
for_each_cpu_and() is a micro function, so in get_nohz_timer_target()
function the
for_each_cpu_and(i, sched_domain_span(sd),
housekeeping_cpumask(HK_FLAG_TIMER))
equals to below:
for (i = -1; i = cpumask_next_and(i, sched_domain_span(sd),
housekeeping_cpumask(HK_FLAG_TIMER)), i < nr_cpu_ids;)
That will cause that housekeeping_cpumask() will be invoked many times.
The housekeeping_cpumask() function returns a const value, so it is
unnecessary to invoke it every time. This patch can minimize the worst
searching time from ~76us to ~16us in my testing.
Similarly, the find_new_ilb() function has the same problem.
Co-developed-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Yuan ZhaoXiong <yuanzhaoxiong@baidu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1622985115-51007-1-git-send-email-yuanzhaoxiong@baidu.com
The _sum and _avg values are in general sync together with the PELT
divider. They are however not always completely in perfect sync,
resulting in situations where _sum gets to zero while _avg stays
positive. Such situations are undesirable.
This comes from the fact that PELT will increase period_contrib, also
increasing the PELT divider, without updating _sum and _avg values to
stay in perfect sync where (_sum == _avg * divider). However, such PELT
change will never lower _sum, making it impossible to end up in a
situation where _sum is zero and _avg is not.
Therefore, we need to ensure that when subtracting load outside PELT,
that when _sum is zero, _avg is also set to zero. This occurs when
(_sum < _avg * divider), and the subtracted (_avg * divider) is bigger
or equal to the current _sum, while the subtracted _avg is smaller than
the current _avg.
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Link: https://lore.kernel.org/r/20210624111815.57937-1-odin@uged.al
The CFS bandwidth controller limits CPU requests of a task group to
quota during each period. However, parallel workloads might be bursty
so that they get throttled even when their average utilization is under
quota. And they are latency sensitive at the same time so that
throttling them is undesired.
We borrow time now against our future underrun, at the cost of increased
interference against the other system users. All nicely bounded.
Traditional (UP-EDF) bandwidth control is something like:
(U = \Sum u_i) <= 1
This guaranteeds both that every deadline is met and that the system is
stable. After all, if U were > 1, then for every second of walltime,
we'd have to run more than a second of program time, and obviously miss
our deadline, but the next deadline will be further out still, there is
never time to catch up, unbounded fail.
This work observes that a workload doesn't always executes the full
quota; this enables one to describe u_i as a statistical distribution.
For example, have u_i = {x,e}_i, where x is the p(95) and x+e p(100)
(the traditional WCET). This effectively allows u to be smaller,
increasing the efficiency (we can pack more tasks in the system), but at
the cost of missing deadlines when all the odds line up. However, it
does maintain stability, since every overrun must be paired with an
underrun as long as our x is above the average.
That is, suppose we have 2 tasks, both specify a p(95) value, then we
have a p(95)*p(95) = 90.25% chance both tasks are within their quota and
everything is good. At the same time we have a p(5)p(5) = 0.25% chance
both tasks will exceed their quota at the same time (guaranteed deadline
fail). Somewhere in between there's a threshold where one exceeds and
the other doesn't underrun enough to compensate; this depends on the
specific CDFs.
At the same time, we can say that the worst case deadline miss, will be
\Sum e_i; that is, there is a bounded tardiness (under the assumption
that x+e is indeed WCET).
The benefit of burst is seen when testing with schbench. Default value of
kernel.sched_cfs_bandwidth_slice_us(5ms) and CONFIG_HZ(1000) is used.
mkdir /sys/fs/cgroup/cpu/test
echo $$ > /sys/fs/cgroup/cpu/test/cgroup.procs
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_quota_us
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_burst_us
./schbench -m 1 -t 3 -r 20 -c 80000 -R 10
The average CPU usage is at 80%. I run this for 10 times, and got long tail
latency for 6 times and got throttled for 8 times.
Tail latencies are shown below, and it wasn't the worst case.
Latency percentiles (usec)
50.0000th: 19872
75.0000th: 21344
90.0000th: 22176
95.0000th: 22496
*99.0000th: 22752
99.5000th: 22752
99.9000th: 22752
min=0, max=22727
rps: 9.90 p95 (usec) 22496 p99 (usec) 22752 p95/cputime 28.12% p99/cputime 28.44%
The interferenece when using burst is valued by the possibilities for
missing the deadline and the average WCET. Test results showed that when
there many cgroups or CPU is under utilized, the interference is
limited. More details are shown in:
https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-B86DC32E3D2B@linux.alibaba.com/
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210621092800.23714-2-changhuaixin@linux.alibaba.com
Ensure that a CFS parent will be in the list whenever one of its children is also
in the list.
A warning on rq->tmp_alone_branch != &rq->leaf_cfs_rq_list has been
reported while running LTP test cfs_bandwidth01.
Odin Ugedal found the root cause:
$ tree /sys/fs/cgroup/ltp/ -d --charset=ascii
/sys/fs/cgroup/ltp/
|-- drain
`-- test-6851
`-- level2
|-- level3a
| |-- worker1
| `-- worker2
`-- level3b
`-- worker3
Timeline (ish):
- worker3 gets throttled
- level3b is decayed, since it has no more load
- level2 get throttled
- worker3 get unthrottled
- level2 get unthrottled
- worker3 is added to list
- level3b is not added to list, since nr_running==0 and is decayed
[ Vincent Guittot: Rebased and updated to fix for the reported warning. ]
Fixes: a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Acked-by: Odin Ugedal <odin@uged.al>
Link: https://lore.kernel.org/r/20210621174330.11258-1-vincent.guittot@linaro.org
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
This commit in sched/urgent moved the cfs_rq_is_decayed() function:
a7b359fc6a: ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
and this fresh commit in sched/core modified it in the old location:
9e077b52d8: ("sched/pelt: Check that *_avg are null when *_sum are")
Merge the two variants.
Conflicts:
kernel/sched/fair.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a partial forward-port of Peter Ziljstra's work first posted
at:
https://lore.kernel.org/lkml/20180530142236.667774973@infradead.org/
Currently select_idle_cpu()'s proportional scheme uses the average idle
time *for when we are idle*, that is temporally challenged. When a CPU
is not at all idle, we'll happily continue using whatever value we did
see when the CPU goes idle. To fix this, introduce a separate average
idle and age it (the existing value still makes sense for things like
new-idle balancing, which happens when we do go idle).
The overall goal is to not spend more time scanning for idle CPUs than
we're idle for. Otherwise we're inhibiting work. This means that we need to
consider the cost over all the wake-ups between consecutive idle periods.
To track this, the scan cost is subtracted from the estimated average
idle time.
The impact of this patch is related to workloads that have domains that
are fully busy or overloaded. Without the patch, the scan depth may be
too high because a CPU is not reaching idle.
Due to the nature of the patch, this is a regression magnet. It
potentially wins when domains are almost fully busy or overloaded --
at that point searches are likely to fail but idle is not being aged
as CPUs are active so search depth is too large and useless. It will
potentially show regressions when there are idle CPUs and a deep search is
beneficial. This tbench result on a 2-socket broadwell machine partially
illustates the problem
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Hmean 1 445.02 ( 0.00%) 451.36 * 1.42%*
Hmean 2 830.69 ( 0.00%) 846.03 * 1.85%*
Hmean 4 1350.80 ( 0.00%) 1505.56 * 11.46%*
Hmean 8 2888.88 ( 0.00%) 2586.40 * -10.47%*
Hmean 16 5248.18 ( 0.00%) 5305.26 * 1.09%*
Hmean 32 8914.03 ( 0.00%) 9191.35 * 3.11%*
Hmean 64 10663.10 ( 0.00%) 10192.65 * -4.41%*
Hmean 128 18043.89 ( 0.00%) 18478.92 * 2.41%*
Hmean 256 16530.89 ( 0.00%) 17637.16 * 6.69%*
Hmean 320 16451.13 ( 0.00%) 17270.97 * 4.98%*
Note that 8 was a regression point where a deeper search would have helped
but it gains for high thread counts when searches are useless. Hackbench
is a more extreme example although not perfect as the tasks idle rapidly
hackbench-process-pipes
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Amean 1 0.3950 ( 0.00%) 0.3887 ( 1.60%)
Amean 4 0.9450 ( 0.00%) 0.9677 ( -2.40%)
Amean 7 1.4737 ( 0.00%) 1.4890 ( -1.04%)
Amean 12 2.3507 ( 0.00%) 2.3360 * 0.62%*
Amean 21 4.0807 ( 0.00%) 4.0993 * -0.46%*
Amean 30 5.6820 ( 0.00%) 5.7510 * -1.21%*
Amean 48 8.7913 ( 0.00%) 8.7383 ( 0.60%)
Amean 79 14.3880 ( 0.00%) 13.9343 * 3.15%*
Amean 110 21.2233 ( 0.00%) 19.4263 * 8.47%*
Amean 141 28.2930 ( 0.00%) 25.1003 * 11.28%*
Amean 172 34.7570 ( 0.00%) 30.7527 * 11.52%*
Amean 203 41.0083 ( 0.00%) 36.4267 * 11.17%*
Amean 234 47.7133 ( 0.00%) 42.0623 * 11.84%*
Amean 265 53.0353 ( 0.00%) 47.7720 * 9.92%*
Amean 296 60.0170 ( 0.00%) 53.4273 * 10.98%*
Stddev 1 0.0052 ( 0.00%) 0.0025 ( 51.57%)
Stddev 4 0.0357 ( 0.00%) 0.0370 ( -3.75%)
Stddev 7 0.0190 ( 0.00%) 0.0298 ( -56.64%)
Stddev 12 0.0064 ( 0.00%) 0.0095 ( -48.38%)
Stddev 21 0.0065 ( 0.00%) 0.0097 ( -49.28%)
Stddev 30 0.0185 ( 0.00%) 0.0295 ( -59.54%)
Stddev 48 0.0559 ( 0.00%) 0.0168 ( 69.92%)
Stddev 79 0.1559 ( 0.00%) 0.0278 ( 82.17%)
Stddev 110 1.1728 ( 0.00%) 0.0532 ( 95.47%)
Stddev 141 0.7867 ( 0.00%) 0.0968 ( 87.69%)
Stddev 172 1.0255 ( 0.00%) 0.0420 ( 95.91%)
Stddev 203 0.8106 ( 0.00%) 0.1384 ( 82.92%)
Stddev 234 1.1949 ( 0.00%) 0.1328 ( 88.89%)
Stddev 265 0.9231 ( 0.00%) 0.0820 ( 91.11%)
Stddev 296 1.0456 ( 0.00%) 0.1327 ( 87.31%)
Again, higher thread counts benefit and the standard deviation
shows that results are also a lot more stable when the idle
time is aged.
The patch potentially matters when a socket was multiple LLCs as the
maximum search depth is lower. However, some of the test results were
suspiciously good (e.g. specjbb2005 gaining 50% on a Zen1 machine) and
other results were not dramatically different to other mcahines.
Given the nature of the patch, Peter's full series is not being forward
ported as each part should stand on its own. Preferably they would be
merged at different times to reduce the risk of false bisections.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210615111611.GH30378@techsingularity.net
Energy Aware Scheduling (EAS) needs to predict the decisions made by
SchedUtil. The map_util_freq() exists to do that.
There are corner cases where the max allowed frequency might be reduced
(due to thermal). SchedUtil as a CPUFreq governor, is aware of that
but EAS is not. This patch aims to address it.
SchedUtil stores the maximum allowed frequency in
'sugov_policy::next_freq' field. EAS has to predict that value, which is
the real used frequency. That value is made after a call to
cpufreq_driver_resolve_freq() which clamps to the CPUFreq policy limits.
In the existing code EAS is not able to predict that real frequency.
This leads to energy estimation errors.
To avoid wrong energy estimation in EAS (due to frequency miss prediction)
make sure that the step which calculates Performance Domain frequency,
is also aware of the allowed CPU capacity.
Furthermore, modify map_util_freq() to not extend the frequency value.
Instead, use map_util_perf() to extend the util value in both places:
SchedUtil and EAS, but for EAS clamp it to max allowed CPU capacity.
In the end, we achieve the same desirable behavior for both subsystems
and alignment in regards to the real CPU frequency.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> (For the schedutil part)
Link: https://lore.kernel.org/r/20210614191238.23224-1-lukasz.luba@arm.com
Energy Aware Scheduling (EAS) needs to be able to predict the frequency
requests made by the SchedUtil governor to properly estimate energy used
in the future. It has to take into account CPUs utilization and forecast
Performance Domain (PD) frequency. There is a corner case when the max
allowed frequency might be reduced due to thermal. SchedUtil is aware of
that reduced frequency, so it should be taken into account also in EAS
estimations.
SchedUtil, as a CPUFreq governor, knows the maximum allowed frequency of
a CPU, thanks to cpufreq_driver_resolve_freq() and internal clamping
to 'policy::max'. SchedUtil is responsible to respect that upper limit
while setting the frequency through CPUFreq drivers. This effective
frequency is stored internally in 'sugov_policy::next_freq' and EAS has
to predict that value.
In the existing code the raw value of arch_scale_cpu_capacity() is used
for clamping the returned CPU utilization from effective_cpu_util().
This patch fixes issue with too big single CPU utilization, by introducing
clamping to the allowed CPU capacity. The allowed CPU capacity is a CPU
capacity reduced by thermal pressure raw value.
Thanks to knowledge about allowed CPU capacity, we don't get too big value
for a single CPU utilization, which is then added to the util sum. The
util sum is used as a source of information for estimating whole PD energy.
To avoid wrong energy estimation in EAS (due to capped frequency), make
sure that the calculation of util sum is aware of allowed CPU capacity.
This thermal pressure might be visible in scenarios where the CPUs are not
heavily loaded, but some other component (like GPU) drastically reduced
available power budget and increased the SoC temperature. Thus, we still
use EAS for task placement and CPUs are not over-utilized.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20210614191128.22735-1-lukasz.luba@arm.com
In case the _avg delta is 0 there is no need to update se's _avg
(level n) nor cfs_rq's _avg (level n-1). These values stay the same.
Since cfs_rq's _avg isn't changed, i.e. no load is propagated down,
cfs_rq's _sum should stay the same as well.
So bail out after se's _sum has been updated.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210601083616.804229-1-dietmar.eggemann@arm.com
Check that we never break the rule that pelt's avg values are null if
pelt's sum are.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Odin Ugedal <odin@uged.al>
Link: https://lore.kernel.org/r/20210601155328.19487-1-vincent.guittot@linaro.org
Fix an issue where fairness is decreased since cfs_rq's can end up not
being decayed properly. For two sibling control groups with the same
priority, this can often lead to a load ratio of 99/1 (!!).
This happens because when a cfs_rq is throttled, all the descendant
cfs_rq's will be removed from the leaf list. When they initial cfs_rq
is unthrottled, it will currently only re add descendant cfs_rq's if
they have one or more entities enqueued. This is not a perfect
heuristic.
Instead, we insert all cfs_rq's that contain one or more enqueued
entities, or it its load is not completely decayed.
Can often lead to situations like this for equally weighted control
groups:
$ ps u -C stress
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 10009 88.8 0.0 3676 100 pts/1 R+ 11:04 0:13 stress --cpu 1
root 10023 3.0 0.0 3676 104 pts/1 R+ 11:04 0:00 stress --cpu 1
Fixes: 31bc6aeaab ("sched/fair: Optimize update_blocked_averages()")
[vingo: !SMP build fix]
Signed-off-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210612112815.61678-1-odin@uged.al
The util_est internal UTIL_AVG_UNCHANGED flag which is used to prevent
unnecessary util_est updates uses the LSB of util_est.enqueued. It is
exposed via _task_util_est() (and task_util_est()).
Commit 92a801e5d5 ("sched/fair: Mask UTIL_AVG_UNCHANGED usages")
mentions that the LSB is lost for util_est resolution but
find_energy_efficient_cpu() checks if task_util_est() returns 0 to
return prev_cpu early.
_task_util_est() returns the max value of util_est.ewma and
util_est.enqueued or'ed w/ UTIL_AVG_UNCHANGED.
So task_util_est() returning the max of task_util() and
_task_util_est() will never return 0 under the default
SCHED_FEAT(UTIL_EST, true).
To fix this use the MSB of util_est.enqueued instead and keep the flag
util_est internal, i.e. don't export it via _task_util_est().
The maximal possible util_avg value for a task is 1024 so the MSB of
'unsigned int util_est.enqueued' isn't used to store a util value.
As a caveat the code behind the util_est_se trace point has to filter
UTIL_AVG_UNCHANGED to see the real util_est.enqueued value which should
be easy to do.
This also fixes an issue report by Xuewen Yan that util_est_update()
only used UTIL_AVG_UNCHANGED for the subtrahend of the equation:
last_enqueued_diff = ue.enqueued - (task_util() | UTIL_AVG_UNCHANGED)
Fixes: b89997aa88 sched/pelt: Fix task util_est update filtering
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Xuewen Yan <xuewen.yan@unisoc.com>
Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210602145808.1562603-1-dietmar.eggemann@arm.com
Rounding in PELT calculation happening when entities are attached/detached
of a cfs_rq can result into situations where util/runnable_avg is not null
but util/runnable_sum is. This is normally not possible so we need to
ensure that util/runnable_sum stays synced with util/runnable_avg.
detach_entity_load_avg() is the last place where we don't sync
util/runnable_sum with util/runnbale_avg when moving some sched_entities
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210601085832.12626-1-vincent.guittot@linaro.org
When using something other than 8 spaces per tab, this ascii art
makes not sense, and the reader might end up wondering what this
advanced equation "is".
Signed-off-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210518125202.78658-4-odin@uged.al
During the update of fair blocked load (__update_blocked_fair()), we
update the contribution of the cfs in tg->load_avg if cfs_rq's pelt
has decayed. Nevertheless, the pelt values of a cfs_rq could have
been recently updated while propagating the change of a child. In this
case, cfs_rq's pelt will not decayed because it has already been
updated and we don't update tg->load_avg.
__update_blocked_fair
...
for_each_leaf_cfs_rq_safe: child cfs_rq
update cfs_rq_load_avg() for child cfs_rq
...
update_load_avg(cfs_rq_of(se), se, 0)
...
update cfs_rq_load_avg() for parent cfs_rq
-propagation of child's load makes parent cfs_rq->load_sum
becoming null
-UPDATE_TG is not set so it doesn't update parent
cfs_rq->tg_load_avg_contrib
..
for_each_leaf_cfs_rq_safe: parent cfs_rq
update cfs_rq_load_avg() for parent cfs_rq
- nothing to do because parent cfs_rq has already been updated
recently so cfs_rq->tg_load_avg_contrib is not updated
...
parent cfs_rq is decayed
list_del_leaf_cfs_rq parent cfs_rq
- but it still contibutes to tg->load_avg
we must set UPDATE_TG flags when propagting pending load to the parent
Fixes: 039ae8bcf7 ("sched/fair: Fix O(nr_cgroups) in the load balancing path")
Reported-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Odin Ugedal <odin@uged.al>
Link: https://lkml.kernel.org/r/20210527122916.27683-3-vincent.guittot@linaro.org
when removing a cfs_rq from the list we only check _sum value so we must
ensure that _avg and _sum stay synced so load_sum can't be null whereas
load_avg is not after propagating load in the cgroup hierarchy.
Use load_avg to compute load_sum similarly to what is done for util_sum
and runnable_sum.
Fixes: 0e2d2aaaae ("sched/fair: Rewrite PELT migration propagation")
Reported-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Odin Ugedal <odin@uged.al>
Link: https://lkml.kernel.org/r/20210527122916.27683-2-vincent.guittot@linaro.org
- Don't migrate if there is a cookie mismatch
Load balance tries to move task from busiest CPU to the
destination CPU. When core scheduling is enabled, if the
task's cookie does not match with the destination CPU's
core cookie, this task may be skipped by this CPU. This
mitigates the forced idle time on the destination CPU.
- Select cookie matched idle CPU
In the fast path of task wakeup, select the first cookie matched
idle CPU instead of the first idle CPU.
- Find cookie matched idlest CPU
In the slow path of task wakeup, find the idlest CPU whose core
cookie matches with task's cookie
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.860083871@infradead.org
During force-idle, we end up doing cross-cpu comparison of vruntimes
during pick_next_task. If we simply compare (vruntime-min_vruntime)
across CPUs, and if the CPUs only have 1 task each, we will always
end up comparing 0 with 0 and pick just one of the tasks all the time.
This starves the task that was not picked. To fix this, take a snapshot
of the min_vruntime when entering force idle and use it for comparison.
This min_vruntime snapshot will only be used for cross-CPU vruntime
comparison, and nothing else.
A note about the min_vruntime snapshot and force idling:
During selection:
When we're not fi, we need to update snapshot.
when we're fi and we were not fi, we must update snapshot.
When we're fi and we were already fi, we must not update snapshot.
Which gives:
fib fi update
0 0 1
0 1 1
1 0 1
1 1 0
Where:
fi: force-idled now
fib: force-idled before
So the min_vruntime snapshot needs to be updated when: !(fib && fi).
Also, the cfs_prio_less() function needs to be aware of whether the
core is in force idle or not, since it will be use this information to
know whether to advance a cfs_rq's min_vruntime_fi in the hierarchy.
So pass this information along via pick_task() -> prio_less().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.738542617@infradead.org
If there is only one long running local task and the sibling is
forced idle, it might not get a chance to run until a schedule
event happens on any cpu in the core.
So we check for this condition during a tick to see if a sibling
is starved and then give it a chance to schedule.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.617407840@infradead.org
Introduce task_struct::core_cookie as an opaque identifier for core
scheduling. When enabled; core scheduling will only allow matching
task to be on the core; where idle matches everything.
When task_struct::core_cookie is set (and core scheduling is enabled)
these tasks are indexed in a second RB-tree, first on cookie value
then on scheduling function, such that matching task selection always
finds the most elegible match.
NOTE: *shudder* at the overhead...
NOTE: *sigh*, a 3rd copy of the scheduling function; the alternative
is per class tracking of cookies and that just duplicates a lot of
stuff for no raisin (the 2nd copy lives in the rt-mutex PI code).
[Joel: folded fixes]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.496975854@infradead.org
Because sched_class::pick_next_task() also implies
sched_class::set_next_task() (and possibly put_prev_task() and
newidle_balance) it is not state invariant. This makes it unsuitable
for remote task selection.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[Vineeth: folded fixes]
Signed-off-by: Vineeth Remanan Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.437092775@infradead.org
rq_lockp() includes a static_branch(), which is asm-goto, which is
asm volatile which defeats regular CSE. This means that:
if (!static_branch(&foo))
return simple;
if (static_branch(&foo) && cond)
return complex;
Doesn't fold and we get horrible code. Introduce __rq_lockp() without
the static_branch() on.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.316696988@infradead.org
In preparation of playing games with rq->lock, abstract the thing
using an accessor.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.015639083@infradead.org
find_energy_efficient_cpu() (feec()) searches the best energy CPU
to place a task on. To do so, compute_energy() estimates the energy
impact of placing the task on a CPU, based on CPU and task utilization
signals.
Utilization signals can be concurrently updated while evaluating a
performance domain (pd). In some cases, this leads to having a
'negative delta', i.e. placing the task in the pd is seen as an
energy gain. Thus, any further energy comparison is biased.
In case of a 'negative delta', return prev_cpu since:
1. a 'negative delta' happens in less than 0.5% of feec() calls,
on a Juno with 6 CPUs (4 little, 2 big)
2. it is unlikely to have two consecutive 'negative delta' for
a task, so if the first call fails, feec() will correctly
place the task in the next feec() call
3. EAS current behavior tends to select prev_cpu if the task
doesn't raise the OPP of its current pd. prev_cpu is EAS's
generic decision
4. prev_cpu should be preferred to returning an error code.
In the latter case, select_idle_sibling() would do the placement,
selecting a big (and not energy efficient) CPU. As 3., the task
would potentially reside on the big CPU for a long time
Reported-by: Xuewen Yan <xuewen.yan@unisoc.com>
Suggested-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Pierre Gondois <Pierre.Gondois@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com>
Link: https://lkml.kernel.org/r/20210504090743.9688-3-Pierre.Gondois@arm.com
find_energy_efficient_cpu() searches the best energy CPU
to place a task on. To do so, the energy of each performance domain
(pd) is computed w/ and w/o the task placed on it.
The energy of a pd w/o the task (base_energy_pd) is computed prior
knowing whether a CPU is available in the pd.
Move the base_energy_pd computation after looping through the CPUs
of a pd and only compute it if at least one CPU is available.
Suggested-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Pierre Gondois <Pierre.Gondois@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com>
Link: https://lkml.kernel.org/r/20210504090743.9688-2-Pierre.Gondois@arm.com
The try_to_wake_up function has an optimization where it can queue
a task for wakeup on its previous CPU, if the task is still in the
middle of going to sleep inside schedule().
Once schedule() re-enables IRQs, the task will be woken up with an
IPI, and placed back on the runqueue.
If we have such a wakeup pending, there is no need to search other
CPUs for runnable tasks. Just skip (or bail out early from) newidle
balancing, and run the just woken up task.
For a memcache like workload test, this reduces total CPU use by
about 2%, proportionally split between user and system time,
and p99 and p95 application response time by 10% on average.
The schedstats run_delay number shows a similar improvement.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210422130236.0bb353df@imladris.surriel.com
In commit:
9fe1f127b9 ("sched/fair: Merge select_idle_core/cpu()")
in select_idle_cpu(), we check if an idle core is present in the LLC
of the target CPU via the flag "has_idle_cores". We look for the idle
core in select_idle_cores(). If select_idle_cores() isn't able to find
an idle core/CPU, we need to unset the has_idle_cores flag in the LLC
of the target to prevent other CPUs from going down this route.
However, the current code is unsetting it in the LLC of the current
CPU instead of the target CPU. This patch fixes this issue.
Fixes: 9fe1f127b9 ("sched/fair: Merge select_idle_core/cpu()")
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/1620746169-13996-1-git-send-email-ego@linux.vnet.ibm.com
This fixes an issue where old load on a cfs_rq is not properly decayed,
resulting in strange behavior where fairness can decrease drastically.
Real workloads with equally weighted control groups have ended up
getting a respective 99% and 1%(!!) of cpu time.
When an idle task is attached to a cfs_rq by attaching a pid to a cgroup,
the old load of the task is attached to the new cfs_rq and sched_entity by
attach_entity_cfs_rq. If the task is then moved to another cpu (and
therefore cfs_rq) before being enqueued/woken up, the load will be moved
to cfs_rq->removed from the sched_entity. Such a move will happen when
enforcing a cpuset on the task (eg. via a cgroup) that force it to move.
The load will however not be removed from the task_group itself, making
it look like there is a constant load on that cfs_rq. This causes the
vruntime of tasks on other sibling cfs_rq's to increase faster than they
are supposed to; causing severe fairness issues. If no other task is
started on the given cfs_rq, and due to the cpuset it would not happen,
this load would never be properly unloaded. With this patch the load
will be properly removed inside update_blocked_averages. This also
applies to tasks moved to the fair scheduling class and moved to another
cpu, and this path will also fix that. For fork, the entity is queued
right away, so this problem does not affect that.
This applies to cases where the new process is the first in the cfs_rq,
issue introduced 3d30544f02 ("sched/fair: Apply more PELT fixes"), and
when there has previously been load on the cgroup but the cgroup was
removed from the leaflist due to having null PELT load, indroduced
in 039ae8bcf7 ("sched/fair: Fix O(nr_cgroups) in the load balancing
path").
For a simple cgroup hierarchy (as seen below) with two equally weighted
groups, that in theory should get 50/50 of cpu time each, it often leads
to a load of 60/40 or 70/30.
parent/
cg-1/
cpu.weight: 100
cpuset.cpus: 1
cg-2/
cpu.weight: 100
cpuset.cpus: 1
If the hierarchy is deeper (as seen below), while keeping cg-1 and cg-2
equally weighted, they should still get a 50/50 balance of cpu time.
This however sometimes results in a balance of 10/90 or 1/99(!!) between
the task groups.
$ ps u -C stress
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 18568 1.1 0.0 3684 100 pts/12 R+ 13:36 0:00 stress --cpu 1
root 18580 99.3 0.0 3684 100 pts/12 R+ 13:36 0:09 stress --cpu 1
parent/
cg-1/
cpu.weight: 100
sub-group/
cpu.weight: 1
cpuset.cpus: 1
cg-2/
cpu.weight: 100
sub-group/
cpu.weight: 10000
cpuset.cpus: 1
This can be reproduced by attaching an idle process to a cgroup and
moving it to a given cpuset before it wakes up. The issue is evident in
many (if not most) container runtimes, and has been reproduced
with both crun and runc (and therefore docker and all its "derivatives"),
and with both cgroup v1 and v2.
Fixes: 3d30544f02 ("sched/fair: Apply more PELT fixes")
Fixes: 039ae8bcf7 ("sched/fair: Fix O(nr_cgroups) in the load balancing path")
Signed-off-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210501141950.23622-2-odin@uged.al
The kthread_is_per_cpu() construct relies on only being called on
PF_KTHREAD tasks (per the WARN in to_kthread). This gives rise to the
following usage pattern:
if ((p->flags & PF_KTHREAD) && kthread_is_per_cpu(p))
However, as reported by syzcaller, this is broken. The scenario is:
CPU0 CPU1 (running p)
(p->flags & PF_KTHREAD) // true
begin_new_exec()
me->flags &= ~(PF_KTHREAD|...);
kthread_is_per_cpu(p)
to_kthread(p)
WARN(!(p->flags & PF_KTHREAD) <-- *SPLAT*
Introduce __to_kthread() that omits the WARN and is sure to check both
values.
Use this to remove the problematic pattern for kthread_is_per_cpu()
and fix a number of other kthread_*() functions that have similar
issues but are currently not used in ways that would expose the
problem.
Notably kthread_func() is only ever called on 'current', while
kthread_probe_data() is only used for PF_WQ_WORKER, which implies the
task is from kthread_create*().
Fixes: ac687e6e8c ("kthread: Extract KTHREAD_IS_PER_CPU")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Link: https://lkml.kernel.org/r/YH6WJc825C4P0FCK@hirez.programming.kicks-ass.net
When !CONFIG_NO_HZ_COMMON we get this new GCC warning:
kernel/sched/fair.c:8398:13: warning: ‘update_nohz_stats’ defined but not used [-Wunused-function]
Move update_nohz_stats() to an already existing CONFIG_NO_HZ_COMMON #ifdef
block.
Beyond fixing the GCC warning, this also simplifies the update_nohz_stats() function.
[ mingo: Rewrote the changelog. ]
Fixes: 0826530de3 ("sched/fair: Remove update of blocked load from newidle_balance")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210329144029.29200-1-yuehaibing@huawei.com
The current sched_slice() seems to have issues; there's two possible
things that could be improved:
- the 'nr_running' used for __sched_period() is daft when cgroups are
considered. Using the RQ wide h_nr_running seems like a much more
consistent number.
- (esp) cgroups can slice it real fine, which makes for easy
over-scheduling, ensure min_gran is what the name says.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.611897312@infradead.org
Stop polluting sysctl with undocumented knobs that really are debug
only, move them all to /debug/sched/ along with the existing
/debug/sched_* files that already exist.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.287610138@infradead.org
During load-balance, groups classified as group_misfit_task are filtered
out if they do not pass
group_smaller_max_cpu_capacity(<candidate group>, <local group>);
which itself employs fits_capacity() to compare the sgc->max_capacity of
both groups.
Due to the underlying margin, fits_capacity(X, 1024) will return false for
any X > 819. Tough luck, the capacity_orig's on e.g. the Pixel 4 are
{261, 871, 1024}. If a CPU-bound task ends up on one of those "medium"
CPUs, misfit migration will never intentionally upmigrate it to a CPU of
higher capacity due to the aforementioned margin.
One may argue the 20% margin of fits_capacity() is excessive in the advent
of counter-enhanced load tracking (APERF/MPERF, AMUs), but one point here
is that fits_capacity() is meant to compare a utilization value to a
capacity value, whereas here it is being used to compare two capacity
values. As CPU capacity and task utilization have different dynamics, a
sensible approach here would be to add a new helper dedicated to comparing
CPU capacities.
Also note that comparing capacity extrema of local and source sched_group's
doesn't make much sense when at the day of the day the imbalance will be
pulled by a known env->dst_cpu, whose capacity can be anywhere within the
local group's capacity extrema.
While at it, replace group_smaller_{min, max}_cpu_capacity() with
comparisons of the source group's min/max capacity and the destination
CPU's capacity.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Lingutla Chandrasekhar <clingutla@codeaurora.org>
Link: https://lkml.kernel.org/r/20210407220628.3798191-4-valentin.schneider@arm.com
When triggering an active load balance, sd->nr_balance_failed is set to
such a value that any further can_migrate_task() using said sd will ignore
the output of task_hot().
This behaviour makes sense, as active load balance intentionally preempts a
rq's running task to migrate it right away, but this asynchronous write is
a bit shoddy, as the stopper thread might run active_load_balance_cpu_stop
before the sd->nr_balance_failed write either becomes visible to the
stopper's CPU or even happens on the CPU that appended the stopper work.
Add a struct lb_env flag to denote active balancing, and use it in
can_migrate_task(). Remove the sd->nr_balance_failed write that served the
same purpose. Cleanup the LBF_DST_PINNED active balance special case.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210407220628.3798191-3-valentin.schneider@arm.com
During load balance, LBF_SOME_PINNED will be set if any candidate task
cannot be detached due to CPU affinity constraints. This can result in
setting env->sd->parent->sgc->group_imbalance, which can lead to a group
being classified as group_imbalanced (rather than any of the other, lower
group_type) when balancing at a higher level.
In workloads involving a single task per CPU, LBF_SOME_PINNED can often be
set due to per-CPU kthreads being the only other runnable tasks on any
given rq. This results in changing the group classification during
load-balance at higher levels when in reality there is nothing that can be
done for this affinity constraint: per-CPU kthreads, as the name implies,
don't get to move around (modulo hotplug shenanigans).
It's not as clear for userspace tasks - a task could be in an N-CPU cpuset
with N-1 offline CPUs, making it an "accidental" per-CPU task rather than
an intended one. KTHREAD_IS_PER_CPU gives us an indisputable signal which
we can leverage here to not set LBF_SOME_PINNED.
Note that the aforementioned classification to group_imbalance (when
nothing can be done) is especially problematic on big.LITTLE systems, which
have a topology the likes of:
DIE [ ]
MC [ ][ ]
0 1 2 3
L L B B
arch_scale_cpu_capacity(L) < arch_scale_cpu_capacity(B)
Here, setting LBF_SOME_PINNED due to a per-CPU kthread when balancing at MC
level on CPUs [0-1] will subsequently prevent CPUs [2-3] from classifying
the [0-1] group as group_misfit_task when balancing at DIE level. Thus, if
CPUs [0-1] are running CPU-bound (misfit) tasks, ill-timed per-CPU kthreads
can significantly delay the upgmigration of said misfit tasks. Systems
relying on ASYM_PACKING are likely to face similar issues.
Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org>
[Use kthread_is_per_cpu() rather than p->nr_cpus_allowed]
[Reword changelog]
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210407220628.3798191-2-valentin.schneider@arm.com
Mel Gorman did some nice work in 9fe1f127b9 ("sched/fair: Merge
select_idle_core/cpu()"), resulting in the kernel being more efficient
at finding an idle CPU, and in tasks spending less time waiting to be
run, both according to the schedstats run_delay numbers, and according
to measured application latencies. Yay.
The flip side of this is that we see more task migrations (about 30%
more), higher cache misses, higher memory bandwidth utilization, and
higher CPU use, for the same number of requests/second.
This is most pronounced on a memcache type workload, which saw a
consistent 1-3% increase in total CPU use on the system, due to those
increased task migrations leading to higher L2 cache miss numbers, and
higher memory utilization. The exclusive L3 cache on Skylake does us
no favors there.
On our web serving workload, that effect is usually negligible.
It appears that the increased number of CPU migrations is generally a
good thing, since it leads to lower cpu_delay numbers, reflecting the
fact that tasks get to run faster. However, the reduced locality and
the corresponding increase in L2 cache misses hurts a little.
The patch below appears to fix the regression, while keeping the
benefit of the lower cpu_delay numbers, by reintroducing
select_idle_smt with a twist: when a socket has no idle cores, check
to see if the sibling of "prev" is idle, before searching all the
other CPUs.
This fixes both the occasional 9% regression on the web serving
workload, and the continuous 2% CPU use regression on the memcache
type workload.
With Mel's patches and this patch together, task migrations are still
high, but L2 cache misses, memory bandwidth, and CPU time used are
back down to what they were before. The p95 and p99 response times for
the memcache type application improve by about 10% over what they were
before Mel's patches got merged.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210326151932.2c187840@imladris.surriel.com
A long-tail load balance cost is observed on the newly idle path,
this is caused by a race window between the first nr_running check
of the busiest runqueue and its nr_running recheck in detach_tasks.
Before the busiest runqueue is locked, the tasks on the busiest
runqueue could be pulled by other CPUs and nr_running of the busiest
runqueu becomes 1 or even 0 if the running task becomes idle, this
causes detach_tasks breaks with LBF_ALL_PINNED flag set, and triggers
load_balance redo at the same sched_domain level.
In order to find the new busiest sched_group and CPU, load balance will
recompute and update the various load statistics, which eventually leads
to the long-tail load balance cost.
This patch clears LBF_ALL_PINNED flag for this race condition, and hence
reduces the long-tail cost of newly idle balance.
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1614154549-116078-1-git-send-email-aubrey.li@intel.com
update_idle_core() is only done for the case of sched_smt_present.
but test_idle_cores() is done for all machines even those without
SMT.
This can contribute to up 8%+ hackbench performance loss on a
machine like kunpeng 920 which has no SMT. This patch removes the
redundant test_idle_cores() for !SMT machines.
Hackbench is ran with -g {2..14}, for each g it is ran 10 times to get
an average.
$ numactl -N 0 hackbench -p -T -l 20000 -g $1
The below is the result of hackbench w/ and w/o this patch:
g= 2 4 6 8 10 12 14
w/o: 1.8151 3.8499 5.5142 7.2491 9.0340 10.7345 12.0929
w/ : 1.8428 3.7436 5.4501 6.9522 8.2882 9.9535 11.3367
+4.1% +8.3% +7.3% +6.3%
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210320221432.924-1-song.bao.hua@hisilicon.com
Fix ~42 single-word typos in scheduler code comments.
We have accumulated a few fun ones over the years. :-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-kernel@vger.kernel.org
A significant portion of __calc_delta() time is spent in the loop
shifting a u64 by 32 bits. Use `fls` instead of iterating.
This is ~7x faster on benchmarks.
The generic `fls` implementation (`generic_fls`) is still ~4x faster
than the loop.
Architectures that have a better implementation will make use of it. For
example, on x86 we get an additional factor 2 in speed without dedicated
implementation.
On GCC, the asm versions of `fls` are about the same speed as the
builtin. On Clang, the versions that use fls are more than twice as
slow as the builtin. This is because the way the `fls` function is
written, clang puts the value in memory:
https://godbolt.org/z/EfMbYe. This bug is filed at
https://bugs.llvm.org/show_bug.cgi?idI406.
```
name cpu/op
BM_Calc<__calc_delta_loop> 9.57ms Â=B112%
BM_Calc<__calc_delta_generic_fls> 2.36ms Â=B113%
BM_Calc<__calc_delta_asm_fls> 2.45ms Â=B113%
BM_Calc<__calc_delta_asm_fls_nomem> 1.66ms Â=B112%
BM_Calc<__calc_delta_asm_fls64> 2.46ms Â=B113%
BM_Calc<__calc_delta_asm_fls64_nomem> 1.34ms Â=B115%
BM_Calc<__calc_delta_builtin> 1.32ms Â=B111%
```
Signed-off-by: Clement Courbet <courbet@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210303224653.2579656-1-joshdon@google.com
Being called for each dequeue, util_est reduces the number of its updates
by filtering out when the EWMA signal is different from the task util_avg
by less than 1%. It is a problem for a sudden util_avg ramp-up. Due to the
decay from a previous high util_avg, EWMA might now be close enough to
the new util_avg. No update would then happen while it would leave
ue.enqueued with an out-of-date value.
Taking into consideration the two util_est members, EWMA and enqueued for
the filtering, ensures, for both, an up-to-date value.
This is for now an issue only for the trace probe that might return the
stale value. Functional-wise, it isn't a problem, as the value is always
accessed through max(enqueued, ewma).
This problem has been observed using LISA's UtilConvergence:test_means on
the sd845c board.
No regression observed with Hackbench on sd845c and Perf-bench sched pipe
on hikey/hikey960.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210225165820.1377125-1-vincent.donnefort@arm.com
Syzbot reported a handful of occurrences where an sd->nr_balance_failed can
grow to much higher values than one would expect.
A successful load_balance() resets it to 0; a failed one increments
it. Once it gets to sd->cache_nice_tries + 3, this *should* trigger an
active balance, which will either set it to sd->cache_nice_tries+1 or reset
it to 0. However, in case the to-be-active-balanced task is not allowed to
run on env->dst_cpu, then the increment is done without any further
modification.
This could then be repeated ad nauseam, and would explain the absurdly high
values reported by syzbot (86, 149). VincentG noted there is value in
letting sd->cache_nice_tries grow, so the shift itself should be
fixed. That means preventing:
"""
If the value of the right operand is negative or is greater than or equal
to the width of the promoted left operand, the behavior is undefined.
"""
Thus we need to cap the shift exponent to
BITS_PER_TYPE(typeof(lefthand)) - 1.
I had a look around for other similar cases via coccinelle:
@expr@
position pos;
expression E1;
expression E2;
@@
(
E1 >> E2@pos
|
E1 >> E2@pos
)
@cst depends on expr@
position pos;
expression expr.E1;
constant cst;
@@
(
E1 >> cst@pos
|
E1 << cst@pos
)
@script:python depends on !cst@
pos << expr.pos;
exp << expr.E2;
@@
# Dirty hack to ignore constexpr
if exp.upper() != exp:
coccilib.report.print_report(pos[0], "Possible UB shift here")
The only other match in kernel/sched is rq_clock_thermal() which employs
sched_thermal_decay_shift, and that exponent is already capped to 10, so
that one is fine.
Fixes: 5a7f555904 ("sched/fair: Relax constraint on task's load during load balance")
Reported-by: syzbot+d7581744d5fd27c9fbe1@syzkaller.appspotmail.com
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lore.kernel.org/r/000000000000ffac1205b9a2112f@google.com
The sub_positive local version is saving an explicit load-store and is
enough for the cpu_util_next() usage.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20210225083612.1113823-3-vincent.donnefort@arm.com
find_energy_efficient_cpu() (feec()) computes for each perf_domain (pd) an
energy delta as follows:
feec(task)
for_each_pd
base_energy = compute_energy(task, -1, pd)
-> for_each_cpu(pd)
-> cpu_util_next(cpu, task, -1)
energy_delta = compute_energy(task, dst_cpu, pd)
-> for_each_cpu(pd)
-> cpu_util_next(cpu, task, dst_cpu)
energy_delta -= base_energy
Then it picks the best CPU as being the one that minimizes energy_delta.
cpu_util_next() estimates the CPU utilization that would happen if the
task was placed on dst_cpu as follows:
max(cpu_util + task_util, cpu_util_est + _task_util_est)
The task contribution to the energy delta can then be either:
(1) _task_util_est, on a mostly idle CPU, where cpu_util is close to 0
and _task_util_est > cpu_util.
(2) task_util, on a mostly busy CPU, where cpu_util > _task_util_est.
(cpu_util_est doesn't appear here. It is 0 when a CPU is idle and
otherwise must be small enough so that feec() takes the CPU as a
potential target for the task placement)
This is problematic for feec(), as cpu_util_next() might give an unfair
advantage to a CPU which is mostly busy (2) compared to one which is
mostly idle (1). _task_util_est being always bigger than task_util in
feec() (as the task is waking up), the task contribution to the energy
might look smaller on certain CPUs (2) and this breaks the energy
comparison.
This issue is, moreover, not sporadic. By starving idle CPUs, it keeps
their cpu_util < _task_util_est (1) while others will maintain cpu_util >
_task_util_est (2).
Fix this problem by always using max(task_util, _task_util_est) as a task
contribution to the energy (ENERGY_UTIL). The new estimated CPU
utilization for the energy would then be:
max(cpu_util, cpu_util_est) + max(task_util, _task_util_est)
compute_energy() still needs to know which OPP would be selected if the
task would be migrated in the perf_domain (FREQUENCY_UTIL). Hence,
cpu_util_next() is still used to estimate the maximum util within the pd.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20210225083612.1113823-2-vincent.donnefort@arm.com
Start to update last_blocked_load_update_tick to reduce the possibility
of another cpu starting the update one more time
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-8-vincent.guittot@linaro.org
Instead of waking up a random and already idle CPU, we can take advantage
of this_cpu being about to enter idle to run the ILB and update the
blocked load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-7-vincent.guittot@linaro.org
Reorder the tests and skip useless ones when no load balance has been
performed and rq lock has not been released.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-6-vincent.guittot@linaro.org
Remove the specific case for handling this_cpu outside for_each_cpu() loop
when running ILB. Instead we use for_each_cpu_wrap() and start with the
next cpu after this_cpu so we will continue to finish with this_cpu.
update_nohz_stats() is now used for this_cpu too and will prevents
unnecessary update. We don't need a special case for handling the update of
nohz.next_balance for this_cpu anymore because it is now handled by the
loop like others.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-5-vincent.guittot@linaro.org
idle load balance is the only user of update_nohz_stats and doesn't use
force parameter. Remove it
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-4-vincent.guittot@linaro.org
The return of _nohz_idle_balance() is not used anymore so we can remove
it
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-3-vincent.guittot@linaro.org
newidle_balance runs with both preempt and irq disabled which prevent
local irq to run during this period. The duration for updating the
blocked load of CPUs varies according to the number of CPU cgroups
with non-decayed load and extends this critical period to an uncontrolled
level.
Remove the update from newidle_balance and trigger a normal ILB that
will take care of the update instead.
This reduces the IRQ latency from O(nr_cgroups * nr_nohz_cpus) to
O(nr_cgroups).
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-2-vincent.guittot@linaro.org
Drop repeated words in kernel/events/.
{if, the, that, with, time}
Drop repeated words in kernel/locking/.
{it, no, the}
Drop repeated words in kernel/sched/.
{in, not}
Link: https://lkml.kernel.org/r/20210127023412.26292-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Will Deacon <will@kernel.org> [kernel/locking/]
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The HRTICK feature has traditionally been servicing configurations that
need precise preemptions point for NORMAL tasks. More recently, the
feature has been extended to also service DEADLINE tasks with stringent
runtime enforcement needs (e.g., runtime < 1ms with HZ=1000).
Enabling HRTICK sched feature currently enables the additional timer and
task tick for both classes, which might introduced undesired overhead
for no additional benefit if one needed it only for one of the cases.
Separate HRTICK sched feature in two (and leave the traditional case
name unmodified) so that it can be selectively enabled when needed.
With:
$ echo HRTICK > /sys/kernel/debug/sched_features
the NORMAL/fair hrtick gets enabled.
With:
$ echo HRTICK_DL > /sys/kernel/debug/sched_features
the DEADLINE hrtick gets enabled.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-3-juri.lelli@redhat.com
Reduce rbtree boiler plate by using the new helper function.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Both select_idle_core() and select_idle_cpu() do a loop over the same
cpumask. Observe that by clearing the already visited CPUs, we can
fold the iteration and iterate a core at a time.
All we need to do is remember any non-idle CPU we encountered while
scanning for an idle core. This way we'll only iterate every CPU once.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210127135203.19633-5-mgorman@techsingularity.net
In order to make the next patch more readable, and to quantify the
actual effectiveness of this pass, start by removing it.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210125085909.4600-4-mgorman@techsingularity.net
As noted by Vincent Guittot, avg_scan_costs are calculated for SIS_PROP
even if SIS_PROP is disabled. Move the time calculations under a SIS_PROP
check and while we are at it, exclude the cost of initialising the CPU
mask from the average scan cost.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210125085909.4600-3-mgorman@techsingularity.net
SIS_AVG_CPU was introduced as a means of avoiding a search when the
average search cost indicated that the search would likely fail. It was
a blunt instrument and disabled by commit 4c77b18cf8 ("sched/fair: Make
select_idle_cpu() more aggressive") and later replaced with a proportional
search depth by commit 1ad3aaf3fc ("sched/core: Implement new approach
to scale select_idle_cpu()").
While there are corner cases where SIS_AVG_CPU is better, it has now been
disabled for almost three years. As the intent of SIS_PROP is to reduce
the time complexity of select_idle_cpu(), lets drop SIS_AVG_CPU and focus
on SIS_PROP as a throttling mechanism.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210125085909.4600-2-mgorman@techsingularity.net
If the task is pinned to a cpu, setting the misfit status means that
we'll unnecessarily continuously attempt to migrate the task but fail.
This continuous failure will cause the balance_interval to increase to
a high value, and eventually cause unnecessary significant delays in
balancing the system when real imbalance happens.
Caught while testing uclamp where rt-app calibration loop was pinned to
cpu 0, shortly after which we spawn another task with high util_clamp
value. The task was failing to migrate after over 40ms of runtime due to
balance_interval unnecessary expanded to a very high value from the
calibration loop.
Not done here, but it could be useful to extend the check for pinning to
verify that the affinity of the task has a cpu that fits. We could end
up in a similar situation otherwise.
Fixes: 3b1baa6496 ("sched/fair: Add 'group_misfit_task' load-balance type")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Acked-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210119120755.2425264-1-qais.yousef@arm.com
Use the task_current() function where appropriate.
No functional change.
Signed-off-by: Hui Su <sh_def@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201030173223.GA52339@rlk
Active balance is triggered for a number of voluntary cases like misfit
or pinned tasks cases but also after that a number of load balance
attempts failed to migrate a task. There is no need to use active load
balance when the group is overloaded because an overloaded state means
that there is at least one waiting task. Nevertheless, the waiting task
is not selected and detached until the threshold becomes higher than its
load. This threshold increases with the number of failed lb (see the
condition if ((load >> env->sd->nr_balance_failed) > env->imbalance) in
detach_tasks()) and the waiting task will end up to be selected after a
number of attempts.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210107103325.30851-4-vincent.guittot@linaro.org
Setting LBF_ALL_PINNED during active load balance is only valid when there
is only 1 running task on the rq otherwise this ends up increasing the
balance interval whereas other tasks could migrate after the next interval
once they become cache-cold as an example.
LBF_ALL_PINNED flag is now always set it by default. It is then cleared
when we find one task that can be pulled when calling detach_tasks() or
during active migration.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210107103325.30851-3-vincent.guittot@linaro.org
Don't waste time checking whether an idle cfs_rq could be the busiest
queue. Furthermore, this can end up selecting a cfs_rq with a high load
but being idle in case of migrate_load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210107103325.30851-2-vincent.guittot@linaro.org
CPU (root cfs_rq) estimated utilization (util_est) is currently used in
dequeue_task_fair() to drive frequency selection before it is updated.
with:
CPU_util : rq->cfs.avg.util_avg
CPU_util_est : rq->cfs.avg.util_est
CPU_utilization : max(CPU_util, CPU_util_est)
task_util : p->se.avg.util_avg
task_util_est : p->se.avg.util_est
dequeue_task_fair():
/* (1) CPU_util and task_util update + inform schedutil about
CPU_utilization changes */
for_each_sched_entity() /* 2 loops */
(dequeue_entity() ->) update_load_avg() -> cfs_rq_util_change()
-> cpufreq_update_util() ->...-> sugov_update_[shared\|single]
-> sugov_get_util() -> cpu_util_cfs()
/* (2) CPU_util_est and task_util_est update */
util_est_dequeue()
cpu_util_cfs() uses CPU_utilization which could lead to a false (too
high) utilization value for schedutil in task ramp-down or ramp-up
scenarios during task dequeue.
To mitigate the issue split the util_est update (2) into:
(A) CPU_util_est update in util_est_dequeue()
(B) task_util_est update in util_est_update()
Place (A) before (1) and keep (B) where (2) is. The latter is necessary
since (B) relies on task_util update in (1).
Fixes: 7f65ea42eb ("sched/fair: Add util_est on top of PELT")
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1608283672-18240-1-git-send-email-xuewen.yan94@gmail.com
SCHED_SOFTIRQ is raised to trigger periodic load balancing. When CPU is not
active, CPU should not participate in load balancing.
The scheduler uses nohz.idle_cpus_mask to keep track of the CPUs which can
do idle load balancing. When bringing a CPU up the CPU is added to the mask
when it reaches the active state, but on teardown the CPU stays in the mask
until it goes offline and invokes sched_cpu_dying().
When SCHED_SOFTIRQ is raised on a !active CPU, there might be a pending
softirq when stopping the tick which triggers a warning in NOHZ code. The
SCHED_SOFTIRQ can also be raised by the scheduler tick which has the same
issue.
Therefore remove the CPU from nohz.idle_cpus_mask when it is marked
inactive and also prevent the scheduler_tick() from raising SCHED_SOFTIRQ
after this point.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201215104400.9435-1-anna-maria@linutronix.de
There is nothing schedutil specific in schedutil_cpu_util(), rename it
to effective_cpu_util(). Also create and expose another wrapper
sched_cpu_util() which can be used by other parts of the kernel, like
thermal core (that will be done in a later commit).
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/db011961fb3bb8bef1c0eda5cd64564637d3ef31.1607400596.git.viresh.kumar@linaro.org
idle_balance() has been renamed to newidle_balance(). To differentiate
with nohz_idle_balance, it seems refining the comment will be helpful
for the readers of the code.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201202220641.22752-1-song.bao.hua@hisilicon.com
The clearing of SMT siblings from the SIS mask before checking for an idle
core is a small but unnecessary cost. Defer the clearing of the siblings
until the scan moves to the next potential target. The cost of this was
not measured as it is borderline noise but it should be self-evident.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201130144020.GS3371@techsingularity.net
Kernel-doc requires that a kernel-doc markup to be immediately
below the function prototype, as otherwise it will rename it.
So, move sys_sched_yield() markup to the right place.
Also fix the cpu_util() markup: Kernel-doc markups
should use this format:
identifier - description
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/50cd6f460aeb872ebe518a8e9cfffda2df8bdb0a.1606823973.git.mchehab+huawei@kernel.org
At fork time currently, a local node can be allowed to fill completely
and allow the periodic load balancer to fix the problem. This can be
problematic in cases where a task creates lots of threads that idle until
woken as part of a worker poll causing a memory bandwidth problem.
However, a "real" workload suffers badly from this behaviour. The workload
in question is mostly NUMA aware but spawns large numbers of threads
that act as a worker pool that can be called from anywhere. These need
to spread early to get reasonable behaviour.
This patch limits how much a local node can fill before spilling over
to another node and it will not be a universal win. Specifically,
very short-lived workloads that fit within a NUMA node would prefer
the memory bandwidth.
As I cannot describe the "real" workload, the best proxy measure I found
for illustration was a page fault microbenchmark. It's not representative
of the workload but demonstrates the hazard of the current behaviour.
pft timings
5.10.0-rc2 5.10.0-rc2
imbalancefloat-v2 forkspread-v2
Amean elapsed-1 46.37 ( 0.00%) 46.05 * 0.69%*
Amean elapsed-4 12.43 ( 0.00%) 12.49 * -0.47%*
Amean elapsed-7 7.61 ( 0.00%) 7.55 * 0.81%*
Amean elapsed-12 4.79 ( 0.00%) 4.80 ( -0.17%)
Amean elapsed-21 3.13 ( 0.00%) 2.89 * 7.74%*
Amean elapsed-30 3.65 ( 0.00%) 2.27 * 37.62%*
Amean elapsed-48 3.08 ( 0.00%) 2.13 * 30.69%*
Amean elapsed-79 2.00 ( 0.00%) 1.90 * 4.95%*
Amean elapsed-80 2.00 ( 0.00%) 1.90 * 4.70%*
This is showing the time to fault regions belonging to threads. The target
machine has 80 logical CPUs and two nodes. Note the ~30% gain when the
machine is approximately the point where one node becomes fully utilised.
The slower results are borderline noise.
Kernel building shows similar benefits around the same balance point.
Generally performance was either neutral or better in the tests conducted.
The main consideration with this patch is the point where fork stops
spreading a task so some workloads may benefit from different balance
points but it would be a risky tuning parameter.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-5-mgorman@techsingularity.net
Currently, an imbalance is only allowed when a destination node
is almost completely idle. This solved one basic class of problems
and was the cautious approach.
This patch revisits the possibility that NUMA nodes can be imbalanced
until 25% of the CPUs are occupied. The reasoning behind 25% is somewhat
superficial -- it's half the cores when HT is enabled. At higher
utilisations, balancing should continue as normal and keep things even
until scheduler domains are fully busy or over utilised.
Note that this is not expected to be a universal win. Any benchmark
that prefers spreading as wide as possible with limited communication
will favour the old behaviour as there is more memory bandwidth.
Workloads that communicate heavily in pairs such as netperf or tbench
benefit. For the tests I ran, the vast majority of workloads saw
a benefit so it seems to be a worthwhile trade-off.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-4-mgorman@techsingularity.net
In find_idlest_group(), the load imbalance is only relevant when the group
is either overloaded or fully busy but it is calculated unconditionally.
This patch moves the imbalance calculation to the context it is required.
Technically, it is a micro-optimisation but really the benefit is avoiding
confusing one type of imbalance with another depending on the group_type
in the next patch.
No functional change.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-3-mgorman@techsingularity.net
This is simply a preparation patch to make the following patches easier
to read. No functional change.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-2-mgorman@techsingularity.net
- Make the conditional update of the overutilized state work correctly by
caching the relevant flags state before overwriting them and checking
them afterwards.
- Fix a data race in the wakeup path which caused loadavg on ARM64
platforms to become a random number generator.
- Fix the ordering of the iowaiter accounting operations so it can't be
decremented before it is incremented.
- Fix a bug in the deadline scheduler vs. priority inheritance when a
non-deadline task A has inherited the parameters of a deadline task B
and then blocks on a non-deadline task C.
The second inheritance step used the static deadline parameters of task
A, which are usually 0, instead of further propagating task B's
parameters. The zero initialized parameters trigger a bug in the
deadline scheduler.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+6edsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaJCEAC7VGr9IlWRzCI/173tKAXkLRrGXHVb
yOYc/YjLMCTcERNxqpf8uIURd/ATSHU/RMwfFcB558NedKZ/QKZDoKmLqeCXnVeM
e20tXv/fmpqRS7lgtmbBfhQ8mSDhst960oD1mHifdEwEBCCm7mLEaipTuTWjnZ0x
rOz70Hir1mSjsP0E7ZorsxCr1yExbrt+jZfKCe9D2kUSvlWHf1ipzAYNlqb/DsfG
n81G7q9LYV8NUhX3lt8oSZDq0K44aO6G6fEaP4EkfwsIAOh37yPHwuEuqDZCBmXw
rQ17XUU3jQ2MtubPvVEKG/6Z+hAUyOsAKynpq/RhzueXQm/9Ns6+qHX/xY8yh39y
S5qPd5DLRlac8f7cFwz2zPxP5E+xTJLONgRkuN1XlitMJZBxru9AzDNa0/6on8TM
OtvbvVR+bPUfHiHULk4fTz7fLcbgYgxbCgfGoFsVlfskOxnzgEG8WfuI2Up2rRJ0
nr1MCER+5fprciqPPs+18rVEFiC4mQSrV01cnwrNbpW8pqibZSomMilQ0oQvcTGL
VDEHkaDTa5YbR92Szq4rYbr7Sf0ihFU0EZUNVQnu7SujdVFxTdHb1yr8UYcYp09b
LqGFhr1FHBNYKbw3rEPx2R/FGuCii21oQkhz94ujDo1Np8EGVZYwFGh+iwbsa2Xn
K1u0HzqLTfTkMw==
=HiGq
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"A couple of scheduler fixes:
- Make the conditional update of the overutilized state work
correctly by caching the relevant flags state before overwriting
them and checking them afterwards.
- Fix a data race in the wakeup path which caused loadavg on ARM64
platforms to become a random number generator.
- Fix the ordering of the iowaiter accounting operations so it can't
be decremented before it is incremented.
- Fix a bug in the deadline scheduler vs. priority inheritance when a
non-deadline task A has inherited the parameters of a deadline task
B and then blocks on a non-deadline task C.
The second inheritance step used the static deadline parameters of
task A, which are usually 0, instead of further propagating task
B's parameters. The zero initialized parameters trigger a bug in
the deadline scheduler"
* tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Fix priority inheritance with multiple scheduling classes
sched: Fix rq->nr_iowait ordering
sched: Fix data-race in wakeup
sched/fair: Fix overutilized update in enqueue_task_fair()
enqueue_task_fair() attempts to skip the overutilized update for new
tasks as their util_avg is not accurate yet. However, the flag we check
to do so is overwritten earlier on in the function, which makes the
condition pretty much a nop.
Fix this by saving the flag early on.
Fixes: 2802bf3cd9 ("sched/fair: Add over-utilization/tipping point indicator")
Reported-by: Rick Yiu <rickyiu@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20201112111201.2081902-1-qperret@google.com
- Address a load balancer regression by making the load balancer use the
same logic as the wakeup path to spread tasks in the LLC domain.
- Prefer the CPU on which a task run last over the local CPU in the fast
wakeup path for asymmetric CPU capacity systems to align with the
symmetric case. This ensures more locality and prevents massive
migration overhead on those asymetric systems
- Fix a memory corruption bug in the scheduler debug code caused by
handing a modified buffer pointer to kfree().
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xJIoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofyGD/9rUnLlC1h7jEufVa4yPG94DcEqiXT7
8B/zNRKnOmqQePCYUm+DS8njSFqpF9VjR+5zpos3bgYqwn7DyfV+hpxbbgS9NDh/
qRg5gxhTrR4uMyZN62Fex5JS4bP8mKO7oc0usgV2Ytsg3e4H+9DqYhuaA5GrJAxC
J3d1Hv/YBW2Uo+RZpB20aaJr0srN7bswTtPMxeeqo8q3Qh4pFcI+rmA4WphVAgHF
jQWaNP4YVTgNjqxy7nBp7zFHlSdRbLohldZFtueYmRo1mjmkyQ34Cg7etfBvN1Uf
iVYZLaInr0YPr0qR4FrQ3yI8ln/HESxshs0ARzMReYVT71mV//o5wftE18uCULQB
rRu9vYz+LBVhkdgx118jJdNJqyqk6Ca6h9ZLqyBKuckj9a39289bwWiS6D/6W51p
gurq58YTb2lRzyCnOVEULXehYRJkDI8EToiWppRVm9gy43OFPNox7n6TvNLW6BLS
I8msTVdqDYXXj4U1o4Mf9K5LBKlda+ARuBu87r7kH1BJLxXHnOHcEkmeN8O9k7eu
jdWfeDzDDjBjt/TU+X4f4RNjudUZrSPQrrESE5+XhfM4CwqcPXa2M/dGtPekW/ED
9IqxPvwkau+0Ym6gkuanfnmda+JVR/nLvZV0uFuUGd+2xMcRemZbZE6hTUiYvYPY
CAHpOhmeakbr6w==
=wFcU
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"A set of scheduler fixes:
- Address a load balancer regression by making the load balancer use
the same logic as the wakeup path to spread tasks in the LLC domain
- Prefer the CPU on which a task run last over the local CPU in the
fast wakeup path for asymmetric CPU capacity systems to align with
the symmetric case. This ensures more locality and prevents massive
migration overhead on those asymetric systems
- Fix a memory corruption bug in the scheduler debug code caused by
handing a modified buffer pointer to kfree()"
* tag 'sched-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/debug: Fix memory corruption caused by multiple small reads of flags
sched/fair: Prefer prev cpu in asymmetric wakeup path
sched/fair: Ensure tasks spreading in LLC during LB
The CFS wakeup code will only ever go through EAS / its fast path on
"regular" wakeups (i.e. not on forks or execs). These are currently gated
by a check against 'sd_flag', which would be SD_BALANCE_WAKE at wakeup.
However, we now have a flag that explicitly tells us whether a wakeup is a
"regular" one, so hinge those conditions on that flag instead.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201102184514.2733-4-valentin.schneider@arm.com
Only select_task_rq_fair() uses that parameter to do an actual domain
search, other classes only care about what kind of wakeup is happening
(fork, exec, or "regular") and thus just translate the flag into a wakeup
type.
WF_TTWU and WF_EXEC have just been added, use these along with WF_FORK to
encode the wakeup types we care about. For select_task_rq_fair(), we can
simply use the shiny new WF_flag : SD_flag mapping.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201102184514.2733-3-valentin.schneider@arm.com
Since ab93a4bc95 ("sched/fair: Remove distribute_running fromCFS
bandwidth"), there is nothing to protect between
raw_spin_lock_irqsave/store() in do_sched_cfs_slack_timer().
Signed-off-by: Hui Su <sh_def@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Link: https://lkml.kernel.org/r/20201030144621.GA96974@rlk
During fast wakeup path, scheduler always check whether local or prev
cpus are good candidates for the task before looking for other cpus in
the domain. With commit b7a331615d ("sched/fair: Add asymmetric CPU
capacity wakeup scan") the heterogenous system gains a dedicated path
but doesn't try to reuse prev cpu whenever possible. If the previous
cpu is idle and belong to the LLC domain, we should check it 1st
before looking for another cpu because it stays one of the best
candidate and this also stabilizes task placement on the system.
This change aligns asymmetric path behavior with symmetric one and reduces
cases where the task migrates across all cpus of the sd_asym_cpucapacity
domains at wakeup.
This change does not impact normal EAS mode but only the overloaded case or
when EAS is not used.
- On hikey960 with performance governor (EAS disable)
./perf bench sched pipe -T -l 50000
mainline w/ patch
# migrations 999364 0
ops/sec 149313(+/-0.28%) 182587(+/- 0.40) +22%
- On hikey with performance governor
./perf bench sched pipe -T -l 50000
mainline w/ patch
# migrations 0 0
ops/sec 47721(+/-0.76%) 47899(+/- 0.56) +0.4%
According to test on hikey, the patch doesn't impact symmetric system
compared to current implementation (only tested on arm64)
Also read the uclamped value of task's utilization at most twice instead
instead each time we compare task's utilization with cpu's capacity.
Fixes: b7a331615d ("sched/fair: Add asymmetric CPU capacity wakeup scan")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20201029161824.26389-1-vincent.guittot@linaro.org
schbench shows latency increase for 95 percentile above since:
commit 0b0695f2b3 ("sched/fair: Rework load_balance()")
Align the behavior of the load balancer with the wake up path, which tries
to select an idle CPU which belongs to the LLC for a waking task.
calculate_imbalance() will use nr_running instead of the spare
capacity when CPUs share resources (ie cache) at the domain level. This
will ensure a better spread of tasks on idle CPUs.
Running schbench on a hikey (8cores arm64) shows the problem:
tip/sched/core :
schbench -m 2 -t 4 -s 10000 -c 1000000 -r 10
Latency percentiles (usec)
50.0th: 33
75.0th: 45
90.0th: 51
95.0th: 4152
*99.0th: 14288
99.5th: 14288
99.9th: 14288
min=0, max=14276
tip/sched/core + patch :
schbench -m 2 -t 4 -s 10000 -c 1000000 -r 10
Latency percentiles (usec)
50.0th: 34
75.0th: 47
90.0th: 52
95.0th: 78
*99.0th: 94
99.5th: 94
99.9th: 94
min=0, max=94
Fixes: 0b0695f2b3 ("sched/fair: Rework load_balance()")
Reported-by: Chris Mason <clm@fb.com>
Suggested-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Tested-by: Rik van Riel <riel@surriel.com>
Link: https://lkml.kernel.org/r/20201102102457.28808-1-vincent.guittot@linaro.org
As commit:
39f23ce07b ("sched/fair: Fix unthrottle_cfs_rq() for leaf_cfs_rq list")
does in unthrottle_cfs_rq(), throttle_cfs_rq() can also use the same
pattern as dequeue_task_fair().
No functional changes.
Signed-off-by: Peng Wang <rocking@linux.alibaba.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Phil Auld <pauld@redhat.com>
Cc: Ben Segall <bsegall@google.com>
Link: https://lore.kernel.org/r/f11dd2e3ab35cc538e2eb57bf0c99b6eaffce127.1604973978.git.rocking@linux.alibaba.com
In the case of a thread wakeup, wake_affine determines whether a core
will be chosen for the thread on the socket where the thread ran
previously or on the socket of the waker. This is done primarily by
comparing the load of the core where th thread ran previously (prev)
and the load of the waker (this).
commit 11f10e5420 ("sched/fair: Use load instead of runnable load
in wakeup path") changed the load computation from the runnable load
to the load average, where the latter includes the load of threads
that have already blocked on the core.
When a short-running daemon processes happens to run on prev, this
change raised the situation that prev could appear to have a greater
load than this, even when prev is actually idle. When prev and this
are on the same socket, the idle prev is detected later, in
select_idle_sibling. But if that does not hold, prev is completely
ignored, causing the waking thread to move to the socket of the waker.
In the case of N mostly active threads on N cores, this triggers other
migrations and hurts performance.
In contrast, before commit 11f10e5420, the load on an idle core
was 0, and in the case of a non-idle waker core, the effect of
wake_affine was to select prev as the target for searching for a core
for the waking thread.
To avoid unnecessary migrations, extend wake_affine_idle to check
whether the core where the thread previously ran is currently idle,
and if so simply return that core as the target.
[1] commit 11f10e5420 ("sched/fair: Use load instead of runnable
load in wakeup path")
This particularly has an impact when using the ondemand power manager,
where kworkers run every 0.004 seconds on all cores, increasing the
likelihood that an idle core will be considered to have a load.
The following numbers were obtained with the benchmarking tool
hyperfine (https://github.com/sharkdp/hyperfine) on the NAS parallel
benchmarks (https://www.nas.nasa.gov/publications/npb.html). The
tests were run on an 80-core Intel(R) Xeon(R) CPU E7-8870 v4 @
2.10GHz. Active (intel_pstate) and passive (intel_cpufreq) power
management were used. Times are in seconds. All experiments use all
160 hardware threads.
v5.9/intel-pstate v5.9+patch/intel-pstate
bt.C.c 24.725724+-0.962340 23.349608+-1.607214
lu.C.x 29.105952+-4.804203 25.249052+-5.561617
sp.C.x 31.220696+-1.831335 30.227760+-2.429792
ua.C.x 26.606118+-1.767384 25.778367+-1.263850
v5.9/ondemand v5.9+patch/ondemand
bt.C.c 25.330360+-1.028316 23.544036+-1.020189
lu.C.x 35.872659+-4.872090 23.719295+-3.883848
sp.C.x 32.141310+-2.289541 29.125363+-0.872300
ua.C.x 29.024597+-1.667049 25.728888+-1.539772
On the smaller data sets (A and B) and on the other NAS benchmarks
there is no impact on performance.
This also has a major impact on the splash2x.volrend benchmark of the
parsec benchmark suite that goes from 1m25 without this patch to 0m45,
in active (intel_pstate) mode.
Fixes: 11f10e5420 ("sched/fair: Use load instead of runnable load in wakeup path")
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/1603372550-14680-1-git-send-email-Julia.Lawall@inria.fr
Florian reported that all of kernel/sched/ is rebuild when
CONFIG_BLK_DEV_INITRD is changed, which, while not a bug is
unexpected. This is due to us including vmlinux.lds.h.
Jakub explained that the problem is that we put the alignment
requirement on the type instead of on a variable. Type alignment is a
minimum, the compiler is free to pick any larger alignment for a
specific instance of the type (eg. the variable).
So force the type alignment on all individual variable definitions and
remove the undesired dependency on vmlinux.lds.h.
Fixes: 85c2ce9104 ("sched, vmlinux.lds: Increase STRUCT_ALIGNMENT to 64 bytes for GCC-4.9")
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Suggested-by: Jakub Jelinek <jakub@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
It is possible for find_new_ilb() to select the current CPU, however,
this only happens from newidle balancing, in which case need_resched()
will be true, and consequently nohz_csd_func() will not trigger the
softirq.
Exclude the current CPU from becoming an ILB target.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
When the sched_schedstat changes from 0 to 1, some sched se maybe
already in the runqueue, the se->statistics.wait_start will be 0.
So it will let the (rq_of(cfs_rq)) - se->statistics.wait_start)
wrong. We need to avoid this scenario.
Signed-off-by: jun qian <qianjun.kernel@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20201015064846.19809-1-qianjun.kernel@gmail.com
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A previous commit changed the notification mode from true/false to an
int, allowing notify-no, notify-yes, or signal-notify. This was
backwards compatible in the sense that any existing true/false user
would translate to either 0 (on notification sent) or 1, the latter
which mapped to TWA_RESUME. TWA_SIGNAL was assigned a value of 2.
Clean this up properly, and define a proper enum for the notification
mode. Now we have:
- TWA_NONE. This is 0, same as before the original change, meaning no
notification requested.
- TWA_RESUME. This is 1, same as before the original change, meaning
that we use TIF_NOTIFY_RESUME.
- TWA_SIGNAL. This uses TIF_SIGPENDING/JOBCTL_TASK_WORK for the
notification.
Clean up all the callers, switching their 0/1/false/true to using the
appropriate TWA_* mode for notifications.
Fixes: e91b481623 ("task_work: teach task_work_add() to do signal_wake_up()")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
rq->cpu_capacity is a key element in several scheduler parts, such as EAS
task placement and load balancing. Tracking this value enables testing
and/or debugging by a toolkit.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1598605249-72651-1-git-send-email-vincent.donnefort@arm.com
Currently, pick_next_entity(...) has the following structure
(simplified):
[...]
if (last_buddy_ok())
result = last_buddy;
if (next_buddy_ok())
result = next_buddy;
[...]
The intended behavior is to prefer next buddy over last buddy;
the current code somewhat obfuscates this, and also wastes
cycles checking the last buddy when eventually the next buddy is
picked up.
So this patch refactors two 'ifs' above into
[...]
if (next_buddy_ok())
result = next_buddy;
else if (last_buddy_ok())
result = last_buddy;
[...]
Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guitttot@linaro.org>
Link: https://lkml.kernel.org/r/20200930173532.1069092-1-posk@google.com
sched domains tend to trigger simultaneously the load balance loop but
the larger domains often need more time to collect statistics. This
slowness makes the larger domain trying to detach tasks from a rq whereas
tasks already migrated somewhere else at a sub-domain level. This is not
a real problem for idle LB because the period of smaller domains will
increase with its CPUs being busy and this will let time for higher ones
to pulled tasks. But this becomes a problem when all CPUs are already busy
because all domains stay synced when they trigger their LB.
A simple way to minimize simultaneous LB of all domains is to decrement the
the busy interval by 1 jiffies. Because of the busy_factor, the interval of
larger domain will not be a multiple of smaller ones anymore.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-4-vincent.guittot@linaro.org
Some UCs like 9 always running tasks on 8 CPUs can't be balanced and the
load balancer currently migrates the waiting task between the CPUs in an
almost random manner. The success of a rq pulling a task depends of the
value of nr_balance_failed of its domains and its ability to be faster
than others to detach it. This behavior results in an unfair distribution
of the running time between tasks because some CPUs will run most of the
time, if not always, the same task whereas others will share their time
between several tasks.
Instead of using nr_balance_failed as a boolean to relax the condition
for detaching task, the LB will use nr_balanced_failed to relax the
threshold between the tasks'load and the imbalance. This mecanism
prevents the same rq or domain to always win the load balance fight.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-2-vincent.guittot@linaro.org
In the file fair.c, sometims update_tg_load_avg(cfs_rq, 0) is used,
sometimes update_tg_load_avg(cfs_rq, false) is used.
update_tg_load_avg() has the parameter force, but in current code,
it never set 1 or true to it, so remove the force parameter.
Signed-off-by: Xianting Tian <tian.xianting@h3c.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200924014755.36253-1-tian.xianting@h3c.com
We've met problems that occasionally tasks with full cpumask
(e.g. by putting it into a cpuset or setting to full affinity)
were migrated to our isolated cpus in production environment.
After some analysis, we found that it is due to the current
select_idle_smt() not considering the sched_domain mask.
Steps to reproduce on my 31-CPU hyperthreads machine:
1. with boot parameter: "isolcpus=domain,2-31"
(thread lists: 0,16 and 1,17)
2. cgcreate -g cpu:test; cgexec -g cpu:test "test_threads"
3. some threads will be migrated to the isolated cpu16~17.
Fix it by checking the valid domain mask in select_idle_smt().
Fixes: 10e2f1acd0 ("sched/core: Rewrite and improve select_idle_siblings())
Reported-by: Wetp Zhang <wetp.zy@linux.alibaba.com>
Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1600930127-76857-1-git-send-email-xlpang@linux.alibaba.com
Use runnable_avg to classify numa node state similarly to what is done for
normal load balancer. This helps to ensure that numa and normal balancers
use the same view of the state of the system.
Large arm64system: 2 nodes / 224 CPUs:
hackbench -l (256000/#grp) -g #grp
grp tip/sched/core +patchset improvement
1 14,008(+/- 4,99 %) 13,800(+/- 3.88 %) 1,48 %
4 4,340(+/- 5.35 %) 4.283(+/- 4.85 %) 1,33 %
16 3,357(+/- 0.55 %) 3.359(+/- 0.54 %) -0,06 %
32 3,050(+/- 0.94 %) 3.039(+/- 1,06 %) 0,38 %
64 2.968(+/- 1,85 %) 3.006(+/- 2.92 %) -1.27 %
128 3,290(+/-12.61 %) 3,108(+/- 5.97 %) 5.51 %
256 3.235(+/- 3.95 %) 3,188(+/- 2.83 %) 1.45 %
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200921072959.16317-1-vincent.guittot@linaro.org
The code in reweight_entity() can be simplified.
For a sched entity on the rq, the entity accounting can be replaced by
cfs_rq instantaneous load updates currently called from within the
entity accounting.
Even though an entity on the rq can't represent a task in
reweight_entity() (a task is always dequeued before calling this
function) and so the numa task accounting and the rq->cfs_tasks list
management of the entity accounting are never called, the redundant
cfs_rq->nr_running decrement/increment will be avoided.
Signed-off-by: Jiang Biao <benbjiang@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200811113209.34057-1-benbjiang@tencent.com
In find_energy_efficient_cpu() 'cpu_cap' could be less that 'util'.
It might be because of RT, DL (so higher sched class than CFS), irq or
thermal pressure signal, which reduce the capacity value.
In such situation the result of 'cpu_cap - util' might be negative but
stored in the unsigned long. Then it might be compared with other unsigned
long when uclamp_rq_util_with() reduced the 'util' such that is passes the
fits_capacity() check.
Prevent this situation and make the arithmetic more safe.
Fixes: 1d42509e47 ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20200810083004.26420-1-lukasz.luba@arm.com
SMT siblings share caches, so cache hotness should be irrelevant for
cross-sibling migration.
Signed-off-by: Josh Don <joshdon@google.com>
Proposed-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200804193413.510651-1-joshdon@google.com
- Make the Energy Model cover non-CPU devices (Lukasz Luba).
- Add Ice Lake server idle states table to the intel_idle driver
and eliminate a redundant static variable from it (Chen Yu,
Rafael Wysocki).
- Eliminate all W=1 build warnings from cpufreq (Lee Jones).
- Add support for Sapphire Rapids and for Power Limit 4 to the
Intel RAPL power capping driver (Sumeet Pawnikar, Zhang Rui).
- Fix function name in kerneldoc comments in the idle_inject power
capping driver (Yangtao Li).
- Fix locking issues with cpufreq governors and drop a redundant
"weak" function definition from cpufreq (Viresh Kumar).
- Rearrange cpufreq to register non-modular governors at the
core_initcall level and allow the default cpufreq governor to
be specified in the kernel command line (Quentin Perret).
- Extend, fix and clean up the intel_pstate driver (Srinivas
Pandruvada, Rafael Wysocki):
* Add a new sysfs attribute for disabling/enabling CPU
energy-efficiency optimizations in the processor.
* Make the driver avoid enabling HWP if EPP is not supported.
* Allow the driver to handle numeric EPP values in the sysfs
interface and fix the setting of EPP via sysfs in the active
mode.
* Eliminate a static checker warning and clean up a kerneldoc
comment.
- Clean up some variable declarations in the powernv cpufreq
driver (Wei Yongjun).
- Fix up the ->enter_s2idle callback definition to cover the case
when it points to the same function as ->idle correctly (Neal
Liu).
- Rearrange and clean up the PSCI cpuidle driver (Ulf Hansson).
- Make the PM core emit "changed" uevent when adding/removing the
"wakeup" sysfs attribute of devices (Abhishek Pandit-Subedi).
- Add a helper macro for declaring PM callbacks and use it in the
MMC jz4740 driver (Paul Cercueil).
- Fix white space in some places in the hibernate code and make the
system-wide PM code use "const char *" where appropriate (Xiang
Chen, Alexey Dobriyan).
- Add one more "unsafe" helper macro to the freezer to cover the NFS
use case (He Zhe).
- Change the language in the generic PM domains framework to use
parent/child terminology and clean up a typo and some comment
fromatting in that code (Kees Cook, Geert Uytterhoeven).
- Update the operating performance points OPP framework (Lukasz
Luba, Andrew-sh.Cheng, Valdis Kletnieks):
* Refactor dev_pm_opp_of_register_em() and update related drivers.
* Add a missing function export.
* Allow disabled OPPs in dev_pm_opp_get_freq().
- Update devfreq core and drivers (Chanwoo Choi, Lukasz Luba, Enric
Balletbo i Serra, Dmitry Osipenko, Kieran Bingham, Marc Zyngier):
* Add support for delayed timers to the devfreq core and make the
Samsung exynos5422-dmc driver use it.
* Unify sysfs interface to use "df-" as a prefix in instance names
consistently.
* Fix devfreq_summary debugfs node indentation.
* Add the rockchip,pmu phandle to the rk3399_dmc driver DT
bindings.
* List Dmitry Osipenko as the Tegra devfreq driver maintainer.
* Fix typos in the core devfreq code.
- Update the pm-graph utility to version 5.7 including a number of
fixes related to suspend-to-idle (Todd Brandt).
- Fix coccicheck errors and warnings in the cpupower utility (Shuah
Khan).
- Replace HTTP links with HTTPs ones in multiple places (Alexander
A. Klimov).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl8oO24SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx7ZQP/0lQ0yABnASnwomdOH6+K/m7rvc+e9FE
zx5pTDQswhU5tM7SQAIKqe0uSI+okF2UrBrT5onA16F+JUbnrbexJLazBPfVTTGF
AKpKEQ7Wh69Wz+Y6cQZjm1dTuRL+dlBJuBrzR2tLSnONPMMHuFcO3xd7lgE9UAxC
oGEf393taA6OqcUNRQIa2gqbq+k1qhKjeDucGkbOaoJ6CL0ZyWI+Tfw1WWaBBGv0
/2wBd6V513OH8WtQCW6H3YpHmhYW6OwL8w19KyGcjPRGJaeaIP4W/Ng7mkvgL5ZB
vZqg3XiufFV9uTe8W1NQaVv/NjlN256OteuK809aosTVjD0dhFkhBYg5TLu6HbQq
C/NciZ+78oLedWLT73EUfw3NyS+V0jk6X2EIlBUwNi0Qw1B1pCifGOCKzWFFe5cr
ci4xr4FG7dBkxScOxwFAU2s5TdPHLOkGkQtg4jZr0OYDrzkyLEdsnZEUjLPORo+0
6EBXGfTOSy2CBHcYswRtzJr/1pUTzj7oejhTAMCCuYW2r3VyQtnYcVjlehtp20if
6BfmGisk8nmtxlSm+/Y2FqKa4bNnSTMmr0UJQ+Rjp0tHs47QeucI0ORfZ5nPaBac
+ptvIjWmn3xejT/+oAehpH9066Iuy66vzHdnj7x5+WAsmYS8n8OFtlBFkYELmLJB
3xI5hIl7WtGo
=8cUO
-----END PGP SIGNATURE-----
Merge tag 'pm-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The most significant change here is the extension of the Energy Model
to cover non-CPU devices (as well as CPUs) from Lukasz Luba.
There is also some new hardware support (Ice Lake server idle states
table for intel_idle, Sapphire Rapids and Power Limit 4 support in the
RAPL driver), some new functionality in the existing drivers (eg. a
new switch to disable/enable CPU energy-efficiency optimizations in
intel_pstate, delayed timers in devfreq), some assorted fixes (cpufreq
core, intel_pstate, intel_idle) and cleanups (eg. cpuidle-psci,
devfreq), including the elimination of W=1 build warnings from cpufreq
done by Lee Jones.
Specifics:
- Make the Energy Model cover non-CPU devices (Lukasz Luba).
- Add Ice Lake server idle states table to the intel_idle driver and
eliminate a redundant static variable from it (Chen Yu, Rafael
Wysocki).
- Eliminate all W=1 build warnings from cpufreq (Lee Jones).
- Add support for Sapphire Rapids and for Power Limit 4 to the Intel
RAPL power capping driver (Sumeet Pawnikar, Zhang Rui).
- Fix function name in kerneldoc comments in the idle_inject power
capping driver (Yangtao Li).
- Fix locking issues with cpufreq governors and drop a redundant
"weak" function definition from cpufreq (Viresh Kumar).
- Rearrange cpufreq to register non-modular governors at the
core_initcall level and allow the default cpufreq governor to be
specified in the kernel command line (Quentin Perret).
- Extend, fix and clean up the intel_pstate driver (Srinivas
Pandruvada, Rafael Wysocki):
* Add a new sysfs attribute for disabling/enabling CPU
energy-efficiency optimizations in the processor.
* Make the driver avoid enabling HWP if EPP is not supported.
* Allow the driver to handle numeric EPP values in the sysfs
interface and fix the setting of EPP via sysfs in the active
mode.
* Eliminate a static checker warning and clean up a kerneldoc
comment.
- Clean up some variable declarations in the powernv cpufreq driver
(Wei Yongjun).
- Fix up the ->enter_s2idle callback definition to cover the case
when it points to the same function as ->idle correctly (Neal Liu).
- Rearrange and clean up the PSCI cpuidle driver (Ulf Hansson).
- Make the PM core emit "changed" uevent when adding/removing the
"wakeup" sysfs attribute of devices (Abhishek Pandit-Subedi).
- Add a helper macro for declaring PM callbacks and use it in the MMC
jz4740 driver (Paul Cercueil).
- Fix white space in some places in the hibernate code and make the
system-wide PM code use "const char *" where appropriate (Xiang
Chen, Alexey Dobriyan).
- Add one more "unsafe" helper macro to the freezer to cover the NFS
use case (He Zhe).
- Change the language in the generic PM domains framework to use
parent/child terminology and clean up a typo and some comment
fromatting in that code (Kees Cook, Geert Uytterhoeven).
- Update the operating performance points OPP framework (Lukasz Luba,
Andrew-sh.Cheng, Valdis Kletnieks):
* Refactor dev_pm_opp_of_register_em() and update related drivers.
* Add a missing function export.
* Allow disabled OPPs in dev_pm_opp_get_freq().
- Update devfreq core and drivers (Chanwoo Choi, Lukasz Luba, Enric
Balletbo i Serra, Dmitry Osipenko, Kieran Bingham, Marc Zyngier):
* Add support for delayed timers to the devfreq core and make the
Samsung exynos5422-dmc driver use it.
* Unify sysfs interface to use "df-" as a prefix in instance
names consistently.
* Fix devfreq_summary debugfs node indentation.
* Add the rockchip,pmu phandle to the rk3399_dmc driver DT
bindings.
* List Dmitry Osipenko as the Tegra devfreq driver maintainer.
* Fix typos in the core devfreq code.
- Update the pm-graph utility to version 5.7 including a number of
fixes related to suspend-to-idle (Todd Brandt).
- Fix coccicheck errors and warnings in the cpupower utility (Shuah
Khan).
- Replace HTTP links with HTTPs ones in multiple places (Alexander A.
Klimov)"
* tag 'pm-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (71 commits)
cpuidle: ACPI: fix 'return' with no value build warning
cpufreq: intel_pstate: Fix EPP setting via sysfs in active mode
cpufreq: intel_pstate: Rearrange the storing of new EPP values
intel_idle: Customize IceLake server support
PM / devfreq: Fix the wrong end with semicolon
PM / devfreq: Fix indentaion of devfreq_summary debugfs node
PM / devfreq: Clean up the devfreq instance name in sysfs attr
memory: samsung: exynos5422-dmc: Add module param to control IRQ mode
memory: samsung: exynos5422-dmc: Adjust polling interval and uptreshold
memory: samsung: exynos5422-dmc: Use delayed timer as default
PM / devfreq: Add support delayed timer for polling mode
dt-bindings: devfreq: rk3399_dmc: Add rockchip,pmu phandle
PM / devfreq: tegra: Add Dmitry as a maintainer
PM / devfreq: event: Fix trivial spelling
PM / devfreq: rk3399_dmc: Fix kernel oops when rockchip,pmu is absent
cpuidle: change enter_s2idle() prototype
cpuidle: psci: Prevent domain idlestates until consumers are ready
cpuidle: psci: Convert PM domain to platform driver
cpuidle: psci: Fix error path via converting to a platform driver
cpuidle: psci: Fail cpuidle registration if set OSI mode failed
...
* pm-em:
OPP: refactor dev_pm_opp_of_register_em() and update related drivers
Documentation: power: update Energy Model description
PM / EM: change name of em_pd_energy to em_cpu_energy
PM / EM: remove em_register_perf_domain
PM / EM: add support for other devices than CPUs in Energy Model
PM / EM: update callback structure and add device pointer
PM / EM: introduce em_dev_register_perf_domain function
PM / EM: change naming convention from 'capacity' to 'performance'
* pm-core:
mmc: jz4740: Use pm_ptr() macro
PM: Make *_DEV_PM_OPS macros use __maybe_unused
PM: core: introduce pm_ptr() macro
In slow path, when selecting idlest group, if both groups have type
group_has_spare, only idle_cpus count gets compared.
As a result, if multiple tasks are created in a tight loop,
and go back to sleep immediately
(while waiting for all tasks to be created),
they may be scheduled on the same core, because CPU is back to idle
when the new fork happen.
For example:
sudo perf record -e sched:sched_wakeup_new -- \
sysbench threads --threads=4 run
...
total number of events: 61582
...
sudo perf script
sysbench 129378 [006] 74586.633466: sched:sched_wakeup_new:
sysbench:129380 [120] success=1 CPU:007
sysbench 129378 [006] 74586.634718: sched:sched_wakeup_new:
sysbench:129381 [120] success=1 CPU:007
sysbench 129378 [006] 74586.635957: sched:sched_wakeup_new:
sysbench:129382 [120] success=1 CPU:007
sysbench 129378 [006] 74586.637183: sched:sched_wakeup_new:
sysbench:129383 [120] success=1 CPU:007
This may have negative impact on performance for workloads with frequent
creation of multiple threads.
In this patch we are using group_util to select idlest group if both groups
have equal number of idle_cpus. Comparing the number of idle cpu is
not enough in this case, because the newly forked thread sleeps
immediately and before we select the cpu for the next one.
This is shown in the trace where the same CPU7 is selected for
all wakeup_new events.
That's why, looking at utilization when there is the same number of
CPU is a good way to see where the previous task was placed. Using
nr_running doesn't solve the problem because the newly forked task is not
running and the cpu would not have been idle in this case and an idle
CPU would have been selected instead.
With this patch newly created tasks would be better distributed.
With this patch:
sudo perf record -e sched:sched_wakeup_new -- \
sysbench threads --threads=4 run
...
total number of events: 74401
...
sudo perf script
sysbench 129455 [006] 75232.853257: sched:sched_wakeup_new:
sysbench:129457 [120] success=1 CPU:008
sysbench 129455 [006] 75232.854489: sched:sched_wakeup_new:
sysbench:129458 [120] success=1 CPU:009
sysbench 129455 [006] 75232.855732: sched:sched_wakeup_new:
sysbench:129459 [120] success=1 CPU:010
sysbench 129455 [006] 75232.856980: sched:sched_wakeup_new:
sysbench:129460 [120] success=1 CPU:011
We tested this patch with following benchmarks:
master: 'commit b3a9e3b962 ("Linux 5.8-rc1")'
100 iterations of: perf bench -f simple futex wake -s -t 128 -w 1
Lower result is better
| | BASELINE | +PATCH | DELTA (%) |
|---------|------------|----------|-------------|
| mean | 0.33 | 0.313 | +5.152 |
| std (%) | 10.433 | 7.563 | |
100 iterations of: sysbench threads --threads=8 run
Higher result is better
| | BASELINE | +PATCH | DELTA (%) |
|---------|------------|----------|-------------|
| mean | 5235.02 | 5863.73 | +12.01 |
| std (%) | 8.166 | 10.265 | |
100 iterations of: sysbench mutex --mutex-num=1 --threads=8 run
Lower result is better
| | BASELINE | +PATCH | DELTA (%) |
|---------|------------|----------|-------------|
| mean | 0.413 | 0.404 | +2.179 |
| std (%) | 3.791 | 1.816 | |
Signed-off-by: Peter Puhov <peter.puhov@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200714125941.4174-1-peter.puhov@linaro.org
task_h_load() can return 0 in some situations like running stress-ng
mmapfork, which forks thousands of threads, in a sched group on a 224 cores
system. The load balance doesn't handle this correctly because
env->imbalance never decreases and it will stop pulling tasks only after
reaching loop_max, which can be equal to the number of running tasks of
the cfs. Make sure that imbalance will be decreased by at least 1.
misfit task is the other feature that doesn't handle correctly such
situation although it's probably more difficult to face the problem
because of the smaller number of CPUs and running tasks on heterogenous
system.
We can't simply ensure that task_h_load() returns at least one because it
would imply to handle underflow in other places.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: <stable@vger.kernel.org> # v4.4+
Link: https://lkml.kernel.org/r/20200710152426.16981-1-vincent.guittot@linaro.org
Add a bare tracepoint trace_sched_update_nr_running_tp which tracks
->nr_running CPU's rq. This is used to accurately trace this data and
provide a visualization of scheduler imbalances in, for example, the
form of a heat map. The tracepoint is accessed by loading an external
kernel module. An example module (forked from Qais' module and including
the pelt related tracepoints) can be found at:
https://github.com/auldp/tracepoints-helpers.git
A script to turn the trace-cmd report output into a heatmap plot can be
found at:
https://github.com/jirvoz/plot-nr-running
The tracepoints are added to add_nr_running() and sub_nr_running() which
are in kernel/sched/sched.h. In order to avoid CREATE_TRACE_POINTS in
the header a wrapper call is used and the trace/events/sched.h include
is moved before sched.h in kernel/sched/core.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200629192303.GC120228@lorien.usersys.redhat.com
Some performance regression on reaim benchmark have been raised with
commit 070f5e860e ("sched/fair: Take into account runnable_avg to classify group")
The problem comes from the init value of runnable_avg which is initialized
with max value. This can be a problem if the newly forked task is finally
a short task because the group of CPUs is wrongly set to overloaded and
tasks are pulled less agressively.
Set initial value of runnable_avg equals to util_avg to reflect that there
is no waiting time so far.
Fixes: 070f5e860e ("sched/fair: Take into account runnable_avg to classify group")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200624154422.29166-1-vincent.guittot@linaro.org
While looking at enqueue_task_fair and dequeue_task_fair, it occurred
to me that dequeue_task_fair can also be optimized as Vincent described
in commit 7d148be69e ("sched/fair: Optimize enqueue_task_fair()").
When encountering throttled cfs_rq, dequeue_throttle label can ensure
se not to be NULL, and rq->nr_running remains unchanged, so we can also
skip the early balance check.
Signed-off-by: Peng Wang <rocking@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/701eef9a40de93dcf5fe7063fd607bca5db38e05.1592287263.git.rocking@linux.alibaba.com
Now that the sched_class descriptors are defined in order via the linker
script vmlinux.lds.h, there's no reason to have a "next" pointer to the
previous priroity structure. The order of the sturctures can be aligned as
an array, and used to index and find the next sched_class descriptor.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191219214558.845353593@goodmis.org
In order to make a micro optimization in pick_next_task(), the order of the
sched class descriptor address must be in the same order as their priority
to each other. That is:
&idle_sched_class < &fair_sched_class < &rt_sched_class <
&dl_sched_class < &stop_sched_class
In order to guarantee this order of the sched class descriptors, add each
one into their own data section and force the order in the linker script.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/157675913272.349305.8936736338884044103.stgit@localhost.localdomain
Energy Model framework now supports other devices than CPUs. Refactor some
of the functions in order to prevent wrong usage. The old function
em_pd_energy has to generic name. It must not be used without proper
cpumask pointer, which is possible only for CPU devices. Thus, rename it
and add proper description to warn of potential wrong usage for other
devices.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Factorize in a single place the calculation of the divider to be used to
to compute *_avg from *_sum value
Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200612154703.23555-1-vincent.guittot@linaro.org
With commit:
'b7031a02ec75 ("sched/fair: Add NOHZ_STATS_KICK")'
rebalance_domains of the local cfs_rq happens before others idle cpus have
updated nohz.next_balance and its value is overwritten.
Move the update of nohz.next_balance for other idles cpus before balancing
and updating the next_balance of local cfs_rq.
Also, the nohz.next_balance is now updated only if all idle cpus got a
chance to rebalance their domains and the idle balance has not been aborted
because of new activities on the CPU. In case of need_resched, the idle
load balance will be kick the next jiffie in order to address remaining
ilb.
Fixes: b7031a02ec ("sched/fair: Add NOHZ_STATS_KICK")
Reported-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200609123748.18636-1-vincent.guittot@linaro.org
The util_est signals are key elements for EAS task placement and
frequency selection. Having tracepoints to track these signals enables
load-tracking and schedutil testing and/or debugging by a toolkit.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/1590597554-370150-1-git-send-email-vincent.donnefort@arm.com
Since commit 8ec59c0f5f ("sched/topology: Remove unused 'sd'
parameter from arch_scale_cpu_capacity()") it is no longer needed.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-5-dietmar.eggemann@arm.com
Commit 6d1cafd8b5 ("sched: Resched proper CPU on yield_to()") moved
the code to resched the CPU from yield_to_task_fair() to yield_to()
making the preempt parameter in sched_class->yield_to_task()
unnecessary. Remove it. No other sched_class implements yield_to_task().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-3-dietmar.eggemann@arm.com
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
xdp_umem.c had overlapping changes between the 64-bit math fix
for the calculation of npgs and the removal of the zerocopy
memory type which got rid of the chunk_size_nohdr member.
The mlx5 Kconfig conflict is a case where we just take the
net-next copy of the Kconfig entry dependency as it takes on
the ESWITCH dependency by one level of indirection which is
what the 'net' conflicting change is trying to ensure.
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation of removing rq->wake_list, replace the
!list_empty(rq->wake_list) with rq->ttwu_pending. This is not fully
equivalent as this new variable is racy.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161908.070399698@infradead.org
The recent commit: 90b5363acd ("sched: Clean up scheduler_ipi()")
got smp_call_function_single_async() subtly wrong. Even though it will
return -EBUSY when trying to re-use a csd, that condition is not
atomic and still requires external serialization.
The change in kick_ilb() got this wrong.
While on first reading kick_ilb() has an atomic test-and-set that
appears to serialize the use, the matching 'release' is not in the
right place to actually guarantee this serialization.
Rework the nohz_idle_balance() trigger so that the release is in the
IPI callback and thus guarantees the required serialization for the
CSD.
Fixes: 90b5363acd ("sched: Clean up scheduler_ipi()")
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: mgorman@techsingularity.net
Link: https://lore.kernel.org/r/20200526161907.778543557@infradead.org
Stefano reported a crash with using SQPOLL with io_uring:
BUG: kernel NULL pointer dereference, address: 00000000000003b0
CPU: 2 PID: 1307 Comm: io_uring-sq Not tainted 5.7.0-rc7 #11
RIP: 0010:task_numa_work+0x4f/0x2c0
Call Trace:
task_work_run+0x68/0xa0
io_sq_thread+0x252/0x3d0
kthread+0xf9/0x130
ret_from_fork+0x35/0x40
which is task_numa_work() oopsing on current->mm being NULL.
The task work is queued by task_tick_numa(), which checks if current->mm is
NULL at the time of the call. But this state isn't necessarily persistent,
if the kthread is using use_mm() to temporarily adopt the mm of a task.
Change the task_tick_numa() check to exclude kernel threads in general,
as it doesn't make sense to attempt ot balance for kthreads anyway.
Reported-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/865de121-8190-5d30-ece5-3b097dc74431@kernel.dk
The MSCC bug fix in 'net' had to be slightly adjusted because the
register accesses are done slightly differently in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200507192141.GA16183@embeddedor
update_tg_cfs_*() propagate the impact of the attach/detach of an entity
down into the cfs_rq hierarchy and must keep the sync with the current pelt
window.
Even if we can't sync child cfs_rq and its group se, we can sync the group
se and its parent cfs_rq with current position in the PELT window. In fact,
we must keep them sync in order to stay also synced with others entities
and group entities that are already attached to the cfs_rq.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200506155301.14288-1-vincent.guittot@linaro.org
enqueue_task_fair jumps to enqueue_throttle label when cfs_rq_of(se) is
throttled which means that se can't be NULL in such case and we can move
the label after the if (!se) statement. Futhermore, the latter can be
removed because se is always NULL when reaching this point.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200513135502.4672-1-vincent.guittot@linaro.org
Although not exactly identical, unthrottle_cfs_rq() and enqueue_task_fair()
are quite close and follow the same sequence for enqueuing an entity in the
cfs hierarchy. Modify unthrottle_cfs_rq() to use the same pattern as
enqueue_task_fair(). This fixes a problem already faced with the latter and
add an optimization in the last for_each_sched_entity loop.
Fixes: fe61468b2c (sched/fair: Fix enqueue_task_fair warning)
Reported-by Tao Zhou <zohooouoto@zoho.com.cn>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Link: https://lkml.kernel.org/r/20200513135528.4742-1-vincent.guittot@linaro.org
sched/fair: Fix enqueue_task_fair warning some more
The recent patch, fe61468b2c (sched/fair: Fix enqueue_task_fair warning)
did not fully resolve the issues with the rq->tmp_alone_branch !=
&rq->leaf_cfs_rq_list warning in enqueue_task_fair. There is a case where
the first for_each_sched_entity loop exits due to on_rq, having incompletely
updated the list. In this case the second for_each_sched_entity loop can
further modify se. The later code to fix up the list management fails to do
what is needed because se does not point to the sched_entity which broke out
of the first loop. The list is not fixed up because the throttled parent was
already added back to the list by a task enqueue in a parallel child hierarchy.
Address this by calling list_add_leaf_cfs_rq if there are throttled parents
while doing the second for_each_sched_entity loop.
Fixes: fe61468b2c ("sched/fair: Fix enqueue_task_fair warning")
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200512135222.GC2201@lorien.usersys.redhat.com
The scheduler IPI has grown weird and wonderful over the years, time
for spring cleaning.
Move all the non-trivial stuff out of it and into a regular smp function
call IPI. This then reduces the schedule_ipi() to most of it's former NOP
glory and ensures to keep the interrupt vector lean and mean.
Aside of that avoiding the full irq_enter() in the x86 IPI implementation
is incorrect as scheduler_ipi() can be instrumented. To work around that
scheduler_ipi() had an irq_enter/exit() hack when heavy work was
pending. This is gone now.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134058.361859938@linutronix.de
The code is executed with preemption(and interrupts) disabled,
so it's safe to use __this_cpu_write().
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421144123.33580-1-songmuchun@bytedance.com
Function sched_init_granularity() is only called from __init
functions, so mark it __init as well.
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20200406074750.56533-1-songmuchun@bytedance.com
In order to prevent possible hardlockup of sched_cfs_period_timer()
loop, loop count is introduced to denote whether to scale quota and
period or not. However, scale is done between forwarding period timer
and refilling cfs bandwidth runtime, which means that period timer is
forwarded with old "period" while runtime is refilled with scaled
"quota".
Move do_sched_cfs_period_timer() before scaling to solve this.
Fixes: 2e8e192263 ("sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup")
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200420024421.22442-3-changhuaixin@linux.alibaba.com
After Commit 6e2df0581f ("sched: Fix pick_next_task() vs 'change'
pattern race"), there is no need to expose newidle_balance() as it
is only used within fair.c file. Change this function back to static again.
No functional change.
Reported-by: kbuild test robot <lkp@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/83cd3030b031ca5d646cd5e225be10e7a0fdd8f5.1587464698.git.yu.c.chen@intel.com
The SD_LOAD_BALANCE flag is set unconditionally for all domains in
sd_init(). By making the sched_domain->flags syctl interface read-only, we
have removed the last piece of code that could clear that flag - as such,
it will now be always present. Rather than to keep carrying it along, we
can work towards getting rid of it entirely.
cpusets don't need it because they can make CPUs be attached to the NULL
domain (e.g. cpuset with sched_load_balance=0), or to a partitioned
root_domain, i.e. a sched_domain hierarchy that doesn't span the entire
system (e.g. root cpuset with sched_load_balance=0 and sibling cpusets with
sched_load_balance=1).
isolcpus apply the same "trick": isolated CPUs are explicitly taken out of
the sched_domain rebuild (using housekeeping_cpumask()), so they get the
NULL domain treatment as well.
Remove the checks against SD_LOAD_BALANCE.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200415210512.805-4-valentin.schneider@arm.com
The last use of that parameter was removed by commit
57abff067a ("sched/fair: Rework find_idlest_group()")
Get rid of the parameter.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200415210512.805-2-valentin.schneider@arm.com
We only consider group_balance_cpu() after there is no idle
cpu. So, just do comparison before return at these two cases.
Signed-off-by: Peng Wang <rocking@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/245c792f0e580b3ca342ad61257f4c066ee0f84f.1586594833.git.rocking@linux.alibaba.com
This is mostly a revert of commit:
baa9be4ffb ("sched/fair: Fix throttle_list starvation with low CFS quota")
The primary use of distribute_running was to determine whether to add
throttled entities to the head or the tail of the throttled list. Now
that we always add to the tail, we can remove this field.
The other use of distribute_running is in the slack_timer, so that we
don't start a distribution while one is already running. However, even
in the event that this race occurs, it is fine to have two distributions
running (especially now that distribute grabs the cfs_b->lock to
determine remaining quota before assigning).
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Tested-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200410225208.109717-3-joshdon@google.com
There is a race window in which an entity begins throttling before quota
is added to the pool, but does not finish throttling until after we have
finished with distribute_cfs_runtime(). This entity is not observed by
distribute_cfs_runtime() because it was not on the throttled list at the
time that distribution was running. This race manifests as rare
period-length statlls for such entities.
Rather than heavy-weight the synchronization with the progress of
distribution, we can fix this by aborting throttling if bandwidth has
become available. Otherwise, we immediately add the entity to the
throttled list so that it can be observed by a subsequent distribution.
Additionally, we can remove the case of adding the throttled entity to
the head of the throttled list, and simply always add to the tail.
Thanks to 26a8b12747, distribute_cfs_runtime() no longer holds onto
its own pool of runtime. This means that if we do hit the !assign and
distribute_running case, we know that distribution is about to end.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200410225208.109717-2-joshdon@google.com
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
A negative imbalance value was observed after imbalance calculation,
this happens when the local sched group type is group_fully_busy,
and the average load of local group is greater than the selected
busiest group. Fix this problem by comparing the average load of the
local and busiest group before imbalance calculation formula.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1585201349-70192-1-git-send-email-aubrey.li@intel.com
Currently, there is a potential race between distribute_cfs_runtime()
and assign_cfs_rq_runtime(). Race happens when cfs_b->runtime is read,
distributes without holding lock and finds out there is not enough
runtime to charge against after distribution. Because
assign_cfs_rq_runtime() might be called during distribution, and use
cfs_b->runtime at the same time.
Fibtest is the tool to test this race. Assume all gcfs_rq is throttled
and cfs period timer runs, slow threads might run and sleep, returning
unused cfs_rq runtime and keeping min_cfs_rq_runtime in their local
pool. If all this happens sufficiently quickly, cfs_b->runtime will drop
a lot. If runtime distributed is large too, over-use of runtime happens.
A runtime over-using by about 70 percent of quota is seen when we
test fibtest on a 96-core machine. We run fibtest with 1 fast thread and
95 slow threads in test group, configure 10ms quota for this group and
see the CPU usage of fibtest is 17.0%, which is far more than the
expected 10%.
On a smaller machine with 32 cores, we also run fibtest with 96
threads. CPU usage is more than 12%, which is also more than expected
10%. This shows that on similar workloads, this race do affect CPU
bandwidth control.
Solve this by holding lock inside distribute_cfs_runtime().
Fixes: c06f04c704 ("sched: Fix potential near-infinite distribute_cfs_runtime() loop")
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/lkml/20200325092602.22471-1-changhuaixin@linux.alibaba.com/
sched/core.c uses update_avg() for rq->avg_idle and sched/fair.c uses an
open-coded version (with the exact same decay factor) for
rq->avg_scan_cost. On top of that, select_idle_cpu() expects to be able to
compare these two fields.
The only difference between the two is that rq->avg_scan_cost is computed
using a pure division rather than a shift. Turns out it actually matters,
first of all because the shifted value can be negative, and the standard
has this to say about it:
"""
The result of E1 >> E2 is E1 right-shifted E2 bit positions. [...] If E1
has a signed type and a negative value, the resulting value is
implementation-defined.
"""
Not only this, but (arithmetic) right shifting a negative value (using 2's
complement) is *not* equivalent to dividing it by the corresponding power
of 2. Let's look at a few examples:
-4 -> 0xF..FC
-4 >> 3 -> 0xF..FF == -1 != -4 / 8
-8 -> 0xF..F8
-8 >> 3 -> 0xF..FF == -1 == -8 / 8
-9 -> 0xF..F7
-9 >> 3 -> 0xF..FE == -2 != -9 / 8
Make update_avg() use a division, and export it to the private scheduler
header to reuse it where relevant. Note that this still lets compilers use
a shift here, but should prevent any unwanted surprise. The disassembly of
select_idle_cpu() remains unchanged on arm64, and ttwu_do_wakeup() gains 2
instructions; the diff sort of looks like this:
- sub x1, x1, x0
+ subs x1, x1, x0 // set condition codes
+ add x0, x1, #0x7
+ csel x0, x0, x1, mi // x0 = x1 < 0 ? x0 : x1
add x0, x3, x0, asr #3
which does the right thing (i.e. gives us the expected result while still
using an arithmetic shift)
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200330090127.16294-1-valentin.schneider@arm.com
In update_sg_wakeup_stats(), the comment says:
Computing avg_load makes sense only when group is fully
busy or overloaded.
But, the code below this comment does not check like this.
From reading the code about avg_load in other functions, I
confirm that avg_load should be calculated in fully busy or
overloaded case. The comment is correct and the checking
condition is wrong. So, change that condition.
Fixes: 57abff067a ("sched/fair: Rework find_idlest_group()")
Signed-off-by: Tao Zhou <ouwen210@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/Message-ID:
During load_balancing, a group with spare capacity will try to pull some
utilizations from an overloaded group. In such case, the load balance
looks for the runqueue with the highest utilization. Nevertheless, it
should also ensure that there are some pending tasks to pull otherwise
the load balance will fail to pull a task and the spread of the load will
be delayed.
This situation is quite transient but it's possible to highlight the
effect with a short run of sysbench test so the time to spread task impacts
the global result significantly.
Below are the average results for 15 iterations on an arm64 octo core:
sysbench --test=cpu --num-threads=8 --max-requests=1000 run
tip/sched/core +patchset
total time: 172ms 158ms
per-request statistics:
avg: 1.337ms 1.244ms
max: 21.191ms 10.753ms
The average max doesn't fully reflect the wide spread of the value which
ranges from 1.350ms to more than 41ms for the tip/sched/core and from
1.350ms to 21ms with the patch.
Other factors like waiting for an idle load balance or cache hotness
can delay the spreading of the tasks which explains why we can still
have up to 21ms with the patch.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200312165429.990-1-vincent.guittot@linaro.org
When a cfs rq is throttled, the latter and its child are removed from the
leaf list but their nr_running is not changed which includes staying higher
than 1. When a task is enqueued in this throttled branch, the cfs rqs must
be added back in order to ensure correct ordering in the list but this can
only happens if nr_running == 1.
When cfs bandwidth is used, we call unconditionnaly list_add_leaf_cfs_rq()
when enqueuing an entity to make sure that the complete branch will be
added.
Similarly unthrottle_cfs_rq() can stop adding cfs in the list when a parent
is throttled. Iterate the remaining entity to ensure that the complete
branch will be added in the list.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: stable@vger.kernel.org
Cc: stable@vger.kernel.org #v5.1+
Link: https://lkml.kernel.org/r/20200306135257.25044-1-vincent.guittot@linaro.org
Even when a cgroup is throttled, the group se of a child cgroup can still
be enqueued and its gse->on_rq stays true. When a task is enqueued on such
child, we still have to update the load_avg and increase
h_nr_running of the throttled cfs. Nevertheless, the 1st
for_each_sched_entity() loop is skipped because of gse->on_rq == true and the
2nd loop because the cfs is throttled whereas we have to update both
load_avg with the old h_nr_running and increase h_nr_running in such case.
The same sequence can happen during dequeue when se moves to parent before
breaking in the 1st loop.
Note that the update of load_avg will effectively happen only once in order
to sync up to the throttled time. Next call for updating load_avg will stop
early because the clock stays unchanged.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 6d4d22468d ("sched/fair: Reorder enqueue/dequeue_task_fair path")
Link: https://lkml.kernel.org/r/20200306084208.12583-1-vincent.guittot@linaro.org
When a cfs_rq is throttled, its group entity is dequeued and its running
tasks are removed. We must update runnable_avg with the old h_nr_running
and update group_se->runnable_weight with the new h_nr_running at each
level of the hierarchy.
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 9f68395333 ("sched/pelt: Add a new runnable average signal")
Link: https://lkml.kernel.org/r/20200227154115.8332-1-vincent.guittot@linaro.org
Qian Cai reported the following bug:
The linux-next commit ff7db0bf24 ("sched/numa: Prefer using an idle CPU as a
migration target instead of comparing tasks") introduced a boot warning,
[ 86.520534][ T1] WARNING: suspicious RCU usage
[ 86.520540][ T1] 5.6.0-rc3-next-20200227 #7 Not tainted
[ 86.520545][ T1] -----------------------------
[ 86.520551][ T1] kernel/sched/fair.c:5914 suspicious rcu_dereference_check() usage!
[ 86.520555][ T1]
[ 86.520555][ T1] other info that might help us debug this:
[ 86.520555][ T1]
[ 86.520561][ T1]
[ 86.520561][ T1] rcu_scheduler_active = 2, debug_locks = 1
[ 86.520567][ T1] 1 lock held by systemd/1:
[ 86.520571][ T1] #0: ffff8887f4b14848 (&mm->mmap_sem#2){++++}, at: do_page_fault+0x1d2/0x998
[ 86.520594][ T1]
[ 86.520594][ T1] stack backtrace:
[ 86.520602][ T1] CPU: 1 PID: 1 Comm: systemd Not tainted 5.6.0-rc3-next-20200227 #7
task_numa_migrate() checks for idle cores when updating NUMA-related statistics.
This relies on reading a RCU-protected structure in test_idle_cores() via this
call chain
task_numa_migrate
-> update_numa_stats
-> numa_idle_core
-> test_idle_cores
While the locking could be fine-grained, it is more appropriate to acquire
the RCU lock for the entire scan of the domain. This patch removes the
warning triggered at boot time.
Reported-by: Qian Cai <cai@lca.pw>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: ff7db0bf24 ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks")
Link: https://lkml.kernel.org/r/20200227191804.GJ3818@techsingularity.net
Building against the tip/sched/core as ff7db0bf24 ("sched/numa: Prefer
using an idle CPU as a migration target instead of comparing tasks") with
the arm64 defconfig (which doesn't have CONFIG_SCHED_SMT set) leads to:
kernel/sched/fair.c:1525:20: warning: 'test_idle_cores' declared 'static' but never defined [-Wunused-function]
static inline bool test_idle_cores(int cpu, bool def);
^~~~~~~~~~~~~~~
Rather than define it in its own CONFIG_SCHED_SMT #define island, bunch it
up with test_idle_cores().
Reported-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
[mgorman@techsingularity.net: Edit changelog, minor style change]
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: ff7db0bf24 ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks")
Link: https://lkml.kernel.org/r/20200303110258.1092-3-mgorman@techsingularity.net
Thermal pressure follows pelt signals which means the decay period for
thermal pressure is the default pelt decay period. Depending on SoC
characteristics and thermal activity, it might be beneficial to decay
thermal pressure slower, but still in-tune with the pelt signals. One way
to achieve this is to provide a command line parameter to set a decay
shift parameter to an integer between 0 and 10.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-10-thara.gopinath@linaro.org
cpu_capacity initially reflects the maximum possible capacity of a CPU.
Thermal pressure on a CPU means this maximum possible capacity is
unavailable due to thermal events. This patch subtracts the average
thermal pressure for a CPU from its maximum possible capacity so that
cpu_capacity reflects the remaining maximum capacity.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-8-thara.gopinath@linaro.org
Introduce support in scheduler periodic tick and other CFS bookkeeping
APIs to trigger the process of computing average thermal pressure for a
CPU. Also consider avg_thermal.load_avg in others_have_blocked which
allows for decay of pelt signals.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-7-thara.gopinath@linaro.org
sgs->group_weight is not set while gathering statistics in
update_sg_wakeup_stats(). This means that a group can be classified as
fully busy with 0 running tasks if utilization is high enough.
This path is mainly used for fork and exec.
Fixes: 57abff067a ("sched/fair: Rework find_idlest_group()")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20200218144534.4564-1-vincent.guittot@linaro.org
When domains are imbalanced or overloaded a search of all CPUs on the
target domain is searched and compared with task_numa_compare. In some
circumstances, a candidate is found that is an obvious win.
o A task can move to an idle CPU and an idle CPU is found
o A swap candidate is found that would move to its preferred domain
This patch terminates the search when either condition is met.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-14-mgorman@techsingularity.net
When swapping tasks for NUMA balancing, it is preferred that tasks move
to or remain on their preferred node. When considering an imbalance,
encourage tasks to move to their preferred node and discourage tasks from
moving away from their preferred node.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-13-mgorman@techsingularity.net
Multiple tasks can attempt to select and idle CPU but fail because
numa_migrate_on is already set and the migration fails. Instead of failing,
scan for an alternative idle CPU. select_idle_sibling is not used because
it requires IRQs to be disabled and it ignores numa_migrate_on allowing
multiple tasks to stack. This scan may still fail if there are idle
candidate CPUs due to races but if this occurs, it's best that a task
stay on an available CPU that move to a contended one.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-12-mgorman@techsingularity.net
task_numa_find_cpu() can scan a node multiple times. Minimally it scans to
gather statistics and later to find a suitable target. In some cases, the
second scan will simply pick an idle CPU if the load is not imbalanced.
This patch caches information on an idle core while gathering statistics
and uses it immediately if load is not imbalanced to avoid a second scan
of the node runqueues. Preference is given to an idle core rather than an
idle SMT sibling to avoid packing HT siblings due to linearly scanning the
node cpumask.
As a side-effect, even when the second scan is necessary, the importance
of using select_idle_sibling is much reduced because information on idle
CPUs is cached and can be reused.
Note that this patch actually makes is harder to move to an idle CPU
as multiple tasks can race for the same idle CPU due to a race checking
numa_migrate_on. This is addressed in the next patch.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-11-mgorman@techsingularity.net
Take into account the new runnable_avg signal to classify a group and to
mitigate the volatility of util_avg in face of intensive migration or
new task with random utilization.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-10-mgorman@techsingularity.net
Now that runnable_load_avg has been removed, we can replace it by a new
signal that will highlight the runnable pressure on a cfs_rq. This signal
track the waiting time of tasks on rq and can help to better define the
state of rqs.
At now, only util_avg is used to define the state of a rq:
A rq with more that around 80% of utilization and more than 1 tasks is
considered as overloaded.
But the util_avg signal of a rq can become temporaly low after that a task
migrated onto another rq which can bias the classification of the rq.
When tasks compete for the same rq, their runnable average signal will be
higher than util_avg as it will include the waiting time and we can use
this signal to better classify cfs_rqs.
The new runnable_avg will track the runnable time of a task which simply
adds the waiting time to the running time. The runnable _avg of cfs_rq
will be the /Sum of se's runnable_avg and the runnable_avg of group entity
will follow the one of the rq similarly to util_avg.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
Now that runnable_load_avg is no more used, we can remove it to make
space for a new signal.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-8-mgorman@techsingularity.net
The standard load balancer generally tries to keep the number of running
tasks or idle CPUs balanced between NUMA domains. The NUMA balancer allows
tasks to move if there is spare capacity but this causes a conflict and
utilisation between NUMA nodes gets badly skewed. This patch uses similar
logic between the NUMA balancer and load balancer when deciding if a task
migrating to its preferred node can use an idle CPU.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-7-mgorman@techsingularity.net
Similarly to what has been done for the normal load balancer, we can
replace runnable_load_avg by load_avg in numa load balancing and track the
other statistics like the utilization and the number of running tasks to
get to better view of the current state of a node.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-6-mgorman@techsingularity.net
The walk through the cgroup hierarchy during the enqueue/dequeue of a task
is split in 2 distinct parts for throttled cfs_rq without any added value
but making code less readable.
Change the code ordering such that everything related to a cfs_rq
(throttled or not) will be done in the same loop.
In addition, the same steps ordering is used when updating a cfs_rq:
- update_load_avg
- update_cfs_group
- update *h_nr_running
This reordering enables the use of h_nr_running in PELT algorithm.
No functional and performance changes are expected and have been noticed
during tests.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-5-mgorman@techsingularity.net
sched:sched_stick_numa is meant to fire when a task is unable to migrate
to the preferred node but from the trace, it's possibile to tell the
difference between "no CPU found", "migration to idle CPU failed" and
"tasks could not be swapped". Extend the tracepoint accordingly.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
[ Minor edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-4-mgorman@techsingularity.net
sched:sched_stick_numa is meant to fire when a task is unable to migrate
to the preferred node. The case where no candidate CPU could be found is
not traced which is an important gap. The tracepoint is not fired when
the task is not allowed to run on any CPU on the preferred node or the
task is already running on the target CPU but neither are interesting
corner cases.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-3-mgorman@techsingularity.net
Capacity-awareness in the wake-up path previously involved disabling
wake_affine in certain scenarios. We have just made select_idle_sibling()
capacity-aware, so this isn't needed anymore.
Remove wake_cap() entirely.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
[Changelog tweaks]
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[Changelog tweaks]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200206191957.12325-5-valentin.schneider@arm.com
Issue
=====
On asymmetric CPU capacity topologies, we currently rely on wake_cap() to
drive select_task_rq_fair() towards either:
- its slow-path (find_idlest_cpu()) if either the previous or
current (waking) CPU has too little capacity for the waking task
- its fast-path (select_idle_sibling()) otherwise
Commit:
3273163c67 ("sched/fair: Let asymmetric CPU configurations balance at wake-up")
points out that this relies on the assumption that "[...]the CPU capacities
within an SD_SHARE_PKG_RESOURCES domain (sd_llc) are homogeneous".
This assumption no longer holds on newer generations of big.LITTLE
systems (DynamIQ), which can accommodate CPUs of different compute capacity
within a single LLC domain. To hopefully paint a better picture, a regular
big.LITTLE topology would look like this:
+---------+ +---------+
| L2 | | L2 |
+----+----+ +----+----+
|CPU0|CPU1| |CPU2|CPU3|
+----+----+ +----+----+
^^^ ^^^
LITTLEs bigs
which would result in the following scheduler topology:
DIE [ ] <- sd_asym_cpucapacity
MC [ ] [ ] <- sd_llc
0 1 2 3
Conversely, a DynamIQ topology could look like:
+-------------------+
| L3 |
+----+----+----+----+
| L2 | L2 | L2 | L2 |
+----+----+----+----+
|CPU0|CPU1|CPU2|CPU3|
+----+----+----+----+
^^^^^ ^^^^^
LITTLEs bigs
which would result in the following scheduler topology:
MC [ ] <- sd_llc, sd_asym_cpucapacity
0 1 2 3
What this means is that, on DynamIQ systems, we could pass the wake_cap()
test (IOW presume the waking task fits on the CPU capacities of some LLC
domain), thus go through select_idle_sibling().
This function operates on an LLC domain, which here spans both bigs and
LITTLEs, so it could very well pick a CPU of too small capacity for the
task, despite there being fitting idle CPUs - it very much depends on the
CPU iteration order, on which we have absolutely no guarantees
capacity-wise.
Implementation
==============
Introduce yet another select_idle_sibling() helper function that takes CPU
capacity into account. The policy is to pick the first idle CPU which is
big enough for the task (task_util * margin < cpu_capacity). If no
idle CPU is big enough, we pick the idle one with the highest capacity.
Unlike other select_idle_sibling() helpers, this one operates on the
sd_asym_cpucapacity sched_domain pointer, which is guaranteed to span all
known CPU capacities in the system. As such, this will work for both
"legacy" big.LITTLE (LITTLEs & bigs split at MC, joined at DIE) and for
newer DynamIQ systems (e.g. LITTLEs and bigs in the same MC domain).
Note that this limits the scope of select_idle_sibling() to
select_idle_capacity() for asymmetric CPU capacity systems - the LLC domain
will not be scanned, and no further heuristic will be applied.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lkml.kernel.org/r/20200206191957.12325-2-valentin.schneider@arm.com
Fix kernel-doc warning in kernel/sched/fair.c, caused by a recent
function parameter removal:
../kernel/sched/fair.c:3526: warning: Excess function parameter 'flags' description in 'attach_entity_load_avg'
Fixes: a4f9a0e51b ("sched/fair: Remove redundant call to cpufreq_update_util()")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/cbe964e4-6879-fd08-41c9-ef1917414af4@infradead.org
The following XFS commit:
8ab39f11d9 ("xfs: prevent CIL push holdoff in log recovery")
changed the logic from using bound workqueues to using unbound
workqueues. Functionally this makes sense but it was observed at the
time that the dbench performance dropped quite a lot and CPU migrations
were increased.
The current pattern of the task migration is straight-forward. With XFS,
an IO issuer delegates work to xlog_cil_push_work ()on an unbound kworker.
This runs on a nearby CPU and on completion, dbench wakes up on its old CPU
as it is still idle and no migration occurs. dbench then queues the real
IO on the blk_mq_requeue_work() work item which runs on a bound kworker
which is forced to run on the same CPU as dbench. When IO completes,
the bound kworker wakes dbench but as the kworker is a bound but,
real task, the CPU is not considered idle and dbench gets migrated by
select_idle_sibling() to a new CPU. dbench may ping-pong between two CPUs
for a while but ultimately it starts a round-robin of all CPUs sharing
the same LLC. High-frequency migration on each IO completion has poor
performance overall. It has negative implications both in commication
costs and power management. mpstat confirmed that at low thread counts
that all CPUs sharing an LLC has low level of activity.
Note that even if the CIL patch was reverted, there still would
be migrations but the impact is less noticeable. It turns out that
individually the scheduler, XFS, blk-mq and workqueues all made sensible
decisions but in combination, the overall effect was sub-optimal.
This patch special cases the IO issue/completion pattern and allows
a bound kworker waker and a task wakee to stack on the same CPU if
there is a strong chance they are directly related. The expectation
is that the kworker is likely going back to sleep shortly. This is not
guaranteed as the IO could be queued asynchronously but there is a very
strong relationship between the task and kworker in this case that would
justify stacking on the same CPU instead of migrating. There should be
few concerns about kworker starvation given that the special casing is
only when the kworker is the waker.
DBench on XFS
MMTests config: io-dbench4-async modified to run on a fresh XFS filesystem
UMA machine with 8 cores sharing LLC
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack
Amean 1 22.63 ( 0.00%) 20.54 * 9.23%*
Amean 2 25.56 ( 0.00%) 23.40 * 8.44%*
Amean 4 28.63 ( 0.00%) 27.85 * 2.70%*
Amean 8 37.66 ( 0.00%) 37.68 ( -0.05%)
Amean 64 469.47 ( 0.00%) 468.26 ( 0.26%)
Stddev 1 1.00 ( 0.00%) 0.72 ( 28.12%)
Stddev 2 1.62 ( 0.00%) 1.97 ( -21.54%)
Stddev 4 2.53 ( 0.00%) 3.58 ( -41.19%)
Stddev 8 5.30 ( 0.00%) 5.20 ( 1.92%)
Stddev 64 86.36 ( 0.00%) 94.53 ( -9.46%)
NUMA machine, 48 CPUs total, 24 CPUs share cache
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack-v1r2
Amean 1 58.69 ( 0.00%) 30.21 * 48.53%*
Amean 2 60.90 ( 0.00%) 35.29 * 42.05%*
Amean 4 66.77 ( 0.00%) 46.55 * 30.28%*
Amean 8 81.41 ( 0.00%) 68.46 * 15.91%*
Amean 16 113.29 ( 0.00%) 107.79 * 4.85%*
Amean 32 199.10 ( 0.00%) 198.22 * 0.44%*
Amean 64 478.99 ( 0.00%) 477.06 * 0.40%*
Amean 128 1345.26 ( 0.00%) 1372.64 * -2.04%*
Stddev 1 2.64 ( 0.00%) 4.17 ( -58.08%)
Stddev 2 4.35 ( 0.00%) 5.38 ( -23.73%)
Stddev 4 6.77 ( 0.00%) 6.56 ( 3.00%)
Stddev 8 11.61 ( 0.00%) 10.91 ( 6.04%)
Stddev 16 18.63 ( 0.00%) 19.19 ( -3.01%)
Stddev 32 38.71 ( 0.00%) 38.30 ( 1.06%)
Stddev 64 100.28 ( 0.00%) 91.24 ( 9.02%)
Stddev 128 186.87 ( 0.00%) 160.34 ( 14.20%)
Dbench has been modified to report the time to complete a single "load
file". This is a more meaningful metric for dbench that a throughput
metric as the benchmark makes many different system calls that are not
throughput-related
Patch shows a 9.23% and 48.53% reduction in the time to process a load
file with the difference partially explained by the number of CPUs sharing
a LLC. In a separate run, task migrations were almost eliminated by the
patch for low client counts. In case people have issue with the metric
used for the benchmark, this is a comparison of the throughputs as
reported by dbench on the NUMA machine.
dbench4 Throughput (misleading but traditional)
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack-v1r2
Hmean 1 321.41 ( 0.00%) 617.82 * 92.22%*
Hmean 2 622.87 ( 0.00%) 1066.80 * 71.27%*
Hmean 4 1134.56 ( 0.00%) 1623.74 * 43.12%*
Hmean 8 1869.96 ( 0.00%) 2212.67 * 18.33%*
Hmean 16 2673.11 ( 0.00%) 2806.13 * 4.98%*
Hmean 32 3032.74 ( 0.00%) 3039.54 ( 0.22%)
Hmean 64 2514.25 ( 0.00%) 2498.96 * -0.61%*
Hmean 128 1778.49 ( 0.00%) 1746.05 * -1.82%*
Note that this is somewhat specific to XFS and ext4 shows no performance
difference as it does not rely on kworkers in the same way. No major
problem was observed running other workloads on different machines although
not all tests have completed yet.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200128154006.GD3466@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we loop through all threads of a core to evaluate if the core is
idle or not. This is unnecessary. If a thread of a core is not idle, skip
evaluating other threads of a core. Also while clearing the cpumask, bits
of all CPUs of a core can be cleared in one-shot.
Collecting ticks on a Power 9 SMT 8 system around select_idle_core
while running schbench shows us
(units are in ticks, hence lesser is better)
Without patch
N Min Max Median Avg Stddev
x 130 151 1083 284 322.72308 144.41494
With patch
N Min Max Median Avg Stddev Improvement
x 164 88 610 201 225.79268 106.78943 30.03%
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20191206172422.6578-1-srikar@linux.vnet.ibm.com
The CPU load balancer balances between different domains to spread load
and strives to have equal balance everywhere. Communicating tasks can
migrate so they are topologically close to each other but these decisions
are independent. On a lightly loaded NUMA machine, two communicating tasks
pulled together at wakeup time can be pushed apart by the load balancer.
In isolation, the load balancer decision is fine but it ignores the tasks
data locality and the wakeup/LB paths continually conflict. NUMA balancing
is also a factor but it also simply conflicts with the load balancer.
This patch allows a fixed degree of imbalance of two tasks to exist
between NUMA domains regardless of utilisation levels. In many cases,
this prevents communicating tasks being pulled apart. It was evaluated
whether the imbalance should be scaled to the domain size. However, no
additional benefit was measured across a range of workloads and machines
and scaling adds the risk that lower domains have to be rebalanced. While
this could change again in the future, such a change should specify the
use case and benefit.
The most obvious impact is on netperf TCP_STREAM -- two simple
communicating tasks with some softirq offload depending on the
transmission rate.
2-socket Haswell machine 48 core, HT enabled
netperf-tcp -- mmtests config config-network-netperf-unbound
baseline lbnuma-v3
Hmean 64 568.73 ( 0.00%) 577.56 * 1.55%*
Hmean 128 1089.98 ( 0.00%) 1128.06 * 3.49%*
Hmean 256 2061.72 ( 0.00%) 2104.39 * 2.07%*
Hmean 1024 7254.27 ( 0.00%) 7557.52 * 4.18%*
Hmean 2048 11729.20 ( 0.00%) 13350.67 * 13.82%*
Hmean 3312 15309.08 ( 0.00%) 18058.95 * 17.96%*
Hmean 4096 17338.75 ( 0.00%) 20483.66 * 18.14%*
Hmean 8192 25047.12 ( 0.00%) 27806.84 * 11.02%*
Hmean 16384 27359.55 ( 0.00%) 33071.88 * 20.88%*
Stddev 64 2.16 ( 0.00%) 2.02 ( 6.53%)
Stddev 128 2.31 ( 0.00%) 2.19 ( 5.05%)
Stddev 256 11.88 ( 0.00%) 3.22 ( 72.88%)
Stddev 1024 23.68 ( 0.00%) 7.24 ( 69.43%)
Stddev 2048 79.46 ( 0.00%) 71.49 ( 10.03%)
Stddev 3312 26.71 ( 0.00%) 57.80 (-116.41%)
Stddev 4096 185.57 ( 0.00%) 96.15 ( 48.19%)
Stddev 8192 245.80 ( 0.00%) 100.73 ( 59.02%)
Stddev 16384 207.31 ( 0.00%) 141.65 ( 31.67%)
In this case, there was a sizable improvement to performance and
a general reduction in variance. However, this is not univeral.
For most machines, the impact was roughly a 3% performance gain.
Ops NUMA base-page range updates 19796.00 292.00
Ops NUMA PTE updates 19796.00 292.00
Ops NUMA PMD updates 0.00 0.00
Ops NUMA hint faults 16113.00 143.00
Ops NUMA hint local faults % 8407.00 142.00
Ops NUMA hint local percent 52.18 99.30
Ops NUMA pages migrated 4244.00 1.00
Without the patch, only 52.18% of sampled accesses are local. In an
earlier changelog, 100% of sampled accesses are local and indeed on
most machines, this was still the case. In this specific case, the
local sampled rates was 99.3% but note the "base-page range updates"
and "PTE updates". The activity with the patch is negligible as were
the number of faults. The small number of pages migrated were related to
shared libraries. A 2-socket Broadwell showed better results on average
but are not presented for brevity as the performance was similar except
it showed 100% of the sampled NUMA hints were local. The patch holds up
for a 4-socket Haswell, an AMD EPYC and AMD Epyc 2 machine.
For dbench, the impact depends on the filesystem used and the number of
clients. On XFS, there is little difference as the clients typically
communicate with workqueues which have a separate class of scheduler
problem at the moment. For ext4, performance is generally better,
particularly for small numbers of clients as NUMA balancing activity is
negligible with the patch applied.
A more interesting example is the Facebook schbench which uses a
number of messaging threads to communicate with worker threads. In this
configuration, one messaging thread is used per NUMA node and the number of
worker threads is varied. The 50, 75, 90, 95, 99, 99.5 and 99.9 percentiles
for response latency is then reported.
Lat 50.00th-qrtle-1 44.00 ( 0.00%) 37.00 ( 15.91%)
Lat 75.00th-qrtle-1 53.00 ( 0.00%) 41.00 ( 22.64%)
Lat 90.00th-qrtle-1 57.00 ( 0.00%) 42.00 ( 26.32%)
Lat 95.00th-qrtle-1 63.00 ( 0.00%) 43.00 ( 31.75%)
Lat 99.00th-qrtle-1 76.00 ( 0.00%) 51.00 ( 32.89%)
Lat 99.50th-qrtle-1 89.00 ( 0.00%) 52.00 ( 41.57%)
Lat 99.90th-qrtle-1 98.00 ( 0.00%) 55.00 ( 43.88%)
Lat 50.00th-qrtle-2 42.00 ( 0.00%) 42.00 ( 0.00%)
Lat 75.00th-qrtle-2 48.00 ( 0.00%) 47.00 ( 2.08%)
Lat 90.00th-qrtle-2 53.00 ( 0.00%) 52.00 ( 1.89%)
Lat 95.00th-qrtle-2 55.00 ( 0.00%) 53.00 ( 3.64%)
Lat 99.00th-qrtle-2 62.00 ( 0.00%) 60.00 ( 3.23%)
Lat 99.50th-qrtle-2 63.00 ( 0.00%) 63.00 ( 0.00%)
Lat 99.90th-qrtle-2 68.00 ( 0.00%) 66.00 ( 2.94%
For higher worker threads, the differences become negligible but it's
interesting to note the difference in wakeup latency at low utilisation
and mpstat confirms that activity was almost all on one node until
the number of worker threads increase.
Hackbench generally showed neutral results across a range of machines.
This is different to earlier versions of the patch which allowed imbalances
for higher degrees of utilisation. perf bench pipe showed negligible
differences in overall performance as the differences are very close to
the noise.
An earlier prototype of the patch showed major regressions for NAS C-class
when running with only half of the available CPUs -- 20-30% performance
hits were measured at the time. With this version of the patch, the impact
is negligible with small gains/losses within the noise measured. This is
because the number of threads far exceeds the small imbalance the aptch
cares about. Similarly, there were report of regressions for the autonuma
benchmark against earlier versions but again, normal load balancing now
applies for that workload.
In general, the patch simply seeks to avoid unnecessary cross-node
migrations in the basic case where imbalances are very small. For low
utilisation communicating workloads, this patch generally behaves better
with less NUMA balancing activity. For high utilisation, there is no
change in behaviour.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Phil Auld <pauld@redhat.com>
Tested-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200114101319.GO3466@techsingularity.net
sched_idle_cpu() isn't used for non SMP configuration and with a recent
change, we have started getting following warning:
kernel/sched/fair.c:5221:12: warning: ‘sched_idle_cpu’ defined but not used [-Wunused-function]
Fix that by defining sched_idle_cpu() only for SMP configurations.
Fixes: 323af6deaf ("sched/fair: Load balance aggressively for SCHED_IDLE CPUs")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/f0554f590687478b33914a4aff9f0e6a62886d44.1579499907.git.viresh.kumar@linaro.org
With commit
bef69dd878 ("sched/cpufreq: Move the cfs_rq_util_change() call to cpufreq_update_util()")
update_load_avg() has become the central point for calling cpufreq
(not including the update of blocked load). This change helps to
simplify further the number of calls to cpufreq_update_util() and to
remove last redundant ones. With update_load_avg(), we are now sure
that cpufreq_update_util() will be called after every task attachment
to a cfs_rq and especially after propagating this event down to the
util_avg of the root cfs_rq, which is the level that is used by
cpufreq governors like schedutil to set the frequency of a CPU.
The SCHED_CPUFREQ_MIGRATION flag forces an early call to cpufreq when
the migration happens in a cgroup whereas util_avg of root cfs_rq is
not yet updated and this call is duplicated with the one that happens
immediately after when the migration event reaches the root cfs_rq.
The dedicated flag SCHED_CPUFREQ_MIGRATION is now useless and can be
removed. The interface of attach_entity_load_avg() can also be
simplified accordingly.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/1579083620-24943-1-git-send-email-vincent.guittot@linaro.org
commit bf475ce0a3 ("sched/fair: Add per-CPU min capacity to
sched_group_capacity") introduced per-cpu min_capacity.
commit e3d6d0cb66 ("sched/fair: Add sched_group per-CPU max capacity")
introduced per-cpu max_capacity.
In the SD_OVERLAP case, the local variable 'capacity' represents the sum
of CPU capacity of all CPUs in the first sched group (sg) of the sched
domain (sd).
It is erroneously used to calculate sg's min and max CPU capacity.
To fix this use capacity_of(cpu) instead of 'capacity'.
The code which achieves this via cpu_rq(cpu)->sd->groups->sgc->capacity
(for rq->sd != NULL) can be removed since it delivers the same value as
capacity_of(cpu) which is currently only used for the (!rq->sd) case
(see update_cpu_capacity()).
An sg of the lowest sd (rq->sd or sd->child == NULL) represents a single
CPU (and hence sg->sgc->capacity == capacity_of(cpu)).
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20200104130828.GA7718@iZj6chx1xj0e0buvshuecpZ
Move the code of calculation for delta_sum/delta_avg to where
it is really needed to be done.
Signed-off-by: Peng Wang <rocking@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200103114400.17668-1-rocking@linux.alibaba.com
The fair scheduler performs periodic load balance on every CPU to check
if it can pull some tasks from other busy CPUs. The duration of this
periodic load balance is set to sd->balance_interval for the idle CPUs
and is calculated by multiplying the sd->balance_interval with the
sd->busy_factor (set to 32 by default) for the busy CPUs. The
multiplication is done for busy CPUs to avoid doing load balance too
often and rather spend more time executing actual task. While that is
the right thing to do for the CPUs busy with SCHED_OTHER or SCHED_BATCH
tasks, it may not be the optimal thing for CPUs running only SCHED_IDLE
tasks.
With the recent enhancements in the fair scheduler around SCHED_IDLE
CPUs, we now prefer to enqueue a newly-woken task to a SCHED_IDLE
CPU instead of other busy or idle CPUs. The same reasoning should be
applied to the load balancer as well to make it migrate tasks more
aggressively to a SCHED_IDLE CPU, as that will reduce the scheduling
latency of the migrated (SCHED_OTHER) tasks.
This patch makes minimal changes to the fair scheduler to do the next
load balance soon after the last non SCHED_IDLE task is dequeued from a
runqueue, i.e. making the CPU SCHED_IDLE. Also the sd->busy_factor is
ignored while calculating the balance_interval for such CPUs. This is
done to avoid delaying the periodic load balance by few hundred
milliseconds for SCHED_IDLE CPUs.
This is tested on ARM64 Hikey620 platform (octa-core) with the help of
rt-app and it is verified, using kernel traces, that the newly
SCHED_IDLE CPU does load balancing shortly after it becomes SCHED_IDLE
and pulls tasks from other busy CPUs.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/e485827eb8fe7db0943d6f3f6e0f5a4a70272781.1578471925.git.viresh.kumar@linaro.org
Similarly to calculate_imbalance() and find_busiest_group(), using the
number of idle CPUs when there is only 1 CPU in the group is not efficient
because we can't make a difference between a CPU running 1 task and a CPU
running dozens of small tasks competing for the same CPU but not enough
to overload it. More generally speaking, we should use the number of
running tasks when there is the same number of idle CPUs in a group instead
of blindly select the 1st one.
When the groups have spare capacity and the same number of idle CPUs, we
compare the number of running tasks to select the busiest group.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1576839893-26930-1-git-send-email-vincent.guittot@linaro.org
task_fits_capacity() has just been made uclamp-aware, and
find_energy_efficient_cpu() needs to go through the same treatment.
Things are somewhat different here however - using the task max clamp isn't
sufficient. Consider the following setup:
The target runqueue, rq:
rq.cpu_capacity_orig = 512
rq.cfs.avg.util_avg = 200
rq.uclamp.max = 768 // the max p.uclamp.max of all enqueued p's is 768
The waking task, p (not yet enqueued on rq):
p.util_est = 600
p.uclamp.max = 100
Now, consider the following code which doesn't use the rq clamps:
util = uclamp_task_util(p);
// Does the task fit in the spare CPU capacity?
cpu = cpu_of(rq);
fits_capacity(util, cpu_capacity(cpu) - cpu_util(cpu))
This would lead to:
util = 100;
fits_capacity(100, 512 - 200)
fits_capacity() would return true. However, enqueuing p on that CPU *will*
cause it to become overutilized since rq clamp values are max-aggregated,
so we'd remain with
rq.uclamp.max = 768
which comes from the other tasks already enqueued on rq. Thus, we could
select a high enough frequency to reach beyond 0.8 * 512 utilization
(== overutilized) after enqueuing p on rq. What find_energy_efficient_cpu()
needs here is uclamp_rq_util_with() which lets us peek at the future
utilization landscape, including rq-wide uclamp values.
Make find_energy_efficient_cpu() use uclamp_rq_util_with() for its
fits_capacity() check. This is in line with what compute_energy() ends up
using for estimating utilization.
Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com>
Suggested-by: Quentin Perret <qperret@google.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191211113851.24241-6-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_fits_capacity() drives CPU selection at wakeup time, and is also used
to detect misfit tasks. Right now it does so by comparing task_util_est()
with a CPU's capacity, but doesn't take into account uclamp restrictions.
There's a few interesting uses that can come out of doing this. For
instance, a low uclamp.max value could prevent certain tasks from being
flagged as misfit tasks, so they could merrily remain on low-capacity CPUs.
Similarly, a high uclamp.min value would steer tasks towards high capacity
CPUs at wakeup (and, should that fail, later steered via misfit balancing),
so such "boosted" tasks would favor CPUs of higher capacity.
Introduce uclamp_task_util() and make task_fits_capacity() use it.
Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191211113851.24241-5-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are instances where we keep searching for an idle CPU despite
already having a sched-idle CPU (in find_idlest_group_cpu(),
select_idle_smt() and select_idle_cpu() and then there are places where
we don't necessarily do that and return a sched-idle CPU as soon as we
find one (in select_idle_sibling()). This looks a bit inconsistent and
it may be worth having the same policy everywhere.
On the other hand, choosing a sched-idle CPU over a idle one shall be
beneficial from performance and power point of view as well, as we don't
need to get the CPU online from a deep idle state which wastes quite a
lot of time and energy and delays the scheduling of the newly woken up
task.
This patch tries to simplify code around sched-idle CPU selection and
make it consistent throughout.
Testing is done with the help of rt-app on hikey board (ARM64 octa-core,
2 clusters, 0-3 and 4-7). The cpufreq governor was set to performance to
avoid any side affects from CPU frequency. Following are the tests
performed:
Test 1: 1-cfs-task:
A single SCHED_NORMAL task is pinned to CPU5 which runs for 2333 us
out of 7777 us (so gives time for the cluster to go in deep idle
state).
Test 2: 1-cfs-1-idle-task:
A single SCHED_NORMAL task is pinned on CPU5 and single SCHED_IDLE
task is pinned on CPU6 (to make sure cluster 1 doesn't go in deep idle
state).
Test 3: 1-cfs-8-idle-task:
A single SCHED_NORMAL task is pinned on CPU5 and eight SCHED_IDLE
tasks are created which run forever (not pinned anywhere, so they run
on all CPUs). Checked with kernelshark that as soon as NORMAL task
sleeps, the SCHED_IDLE task starts running on CPU5.
And here are the results on mean latency (in us), using the "st" tool.
$ st 1-cfs-task/rt-app-cfs_thread-0.log
N min max sum mean stddev
642 90 592 197180 307.134 109.906
$ st 1-cfs-1-idle-task/rt-app-cfs_thread-0.log
N min max sum mean stddev
642 67 311 113850 177.336 41.4251
$ st 1-cfs-8-idle-task/rt-app-cfs_thread-0.log
N min max sum mean stddev
643 29 173 41364 64.3297 13.2344
The mean latency when we need to:
- wakeup from deep idle state is 307 us.
- wakeup from shallow idle state is 177 us.
- preempt a SCHED_IDLE task is 64 us.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/b90cbcce608cef4e02a7bbfe178335f76d201bab.1573728344.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
select_idle_cpu() will scan the LLC domain for idle CPUs,
it's always expensive. so the next commit :
1ad3aaf3fc ("sched/core: Implement new approach to scale select_idle_cpu()")
introduces a way to limit how many CPUs we scan.
But it consume some CPUs out of 'nr' that are not allowed
for the task and thus waste our attempts. The function
always return nr_cpumask_bits, and we can't find a CPU
which our task is allowed to run.
Cpumask may be too big, similar to select_idle_core(), use
per_cpu_ptr 'select_idle_mask' to prevent stack overflow.
Fixes: 1ad3aaf3fc ("sched/core: Implement new approach to scale select_idle_cpu()")
Signed-off-by: Cheng Jian <cj.chengjian@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20191213024530.28052-1-cj.chengjian@huawei.com
The runqueue of a fair task being remotely reniced is going to get a
resched IPI in order to reassess which task should be the current
running on the CPU. However that evaluation is useless if the fair task
is running alone, in which case we can spare that IPI, preventing
nohz_full CPUs from being disturbed.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20191203160106.18806-2-frederic@kernel.org
The load balance can fail to find a suitable task during the periodic check
because the imbalance is smaller than half of the load of the waiting
tasks. This results in the increase of the number of failed load balance,
which can end up to start an active migration. This active migration is
useless because the current running task is not a better choice than the
waiting ones. In fact, the current task was probably not running but
waiting for the CPU during one of the previous attempts and it had already
not been selected.
When load balance fails too many times to migrate a task, we should relax
the contraint on the maximum load of the tasks that can be migrated
similarly to what is done with cache hotness.
Before the rework, load balance used to set the imbalance to the average
load_per_task in order to mitigate such situation. This increased the
likelihood of migrating a task but also of selecting a larger task than
needed while more appropriate ones were in the list.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1575036287-6052-1-git-send-email-vincent.guittot@linaro.org
Because of CPU affinity, the local group can be skipped which breaks the
assumption that statistics are always collected for local group. With
uninitialized local_sgs, the comparison is meaningless and the behavior
unpredictable. This can even end up to use local pointer which is to
NULL in this case.
If the local group has been skipped because of CPU affinity, we return
the idlest group.
Fixes: 57abff067a ("sched/fair: Rework find_idlest_group()")
Reported-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: John Stultz <john.stultz@linaro.org>
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: mingo@redhat.com
Cc: mgorman@suse.de
Cc: juri.lelli@redhat.com
Cc: dietmar.eggemann@arm.com
Cc: bsegall@google.com
Cc: qais.yousef@arm.com
Link: https://lkml.kernel.org/r/1575483700-22153-1-git-send-email-vincent.guittot@linaro.org
update_cfs_rq_load_avg() calls cfs_rq_util_change() every time PELT decays,
which might be inefficient when the cpufreq driver has rate limitation.
When a task is attached on a CPU, we have this call path:
update_load_avg()
update_cfs_rq_load_avg()
cfs_rq_util_change -- > trig frequency update
attach_entity_load_avg()
cfs_rq_util_change -- > trig frequency update
The 1st frequency update will not take into account the utilization of the
newly attached task and the 2nd one might be discarded because of rate
limitation of the cpufreq driver.
update_cfs_rq_load_avg() is only called by update_blocked_averages()
and update_load_avg() so we can move the call to
cfs_rq_util_change/cpufreq_update_util() into these two functions.
It's also interesting to note that update_load_avg() already calls
cfs_rq_util_change() directly for the !SMP case.
This change will also ensure that cpufreq_update_util() is called even
when there is no more CFS rq in the leaf_cfs_rq_list to update, but only
IRQ, RT or DL PELT signals.
[ mingo: Minor updates. ]
Reported-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@redhat.com
Cc: linux-pm@vger.kernel.org
Cc: mgorman@suse.de
Cc: rostedt@goodmis.org
Cc: sargun@sargun.me
Cc: srinivas.pandruvada@linux.intel.com
Cc: tj@kernel.org
Cc: xiexiuqi@huawei.com
Cc: xiezhipeng1@huawei.com
Fixes: 039ae8bcf7 ("sched/fair: Fix O(nr_cgroups) in the load balancing path")
Link: https://lkml.kernel.org/r/1574083279-799-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add comments to describe each state of goup_type and to add some details
about the load balance at NUMA level.
[ Valentin Schneider: Updates to the comments. ]
[ mingo: Other updates to the comments. ]
Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1573570243-1903-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The task, for which the scheduler looks for the idlest group of CPUs, must
be discounted from all statistics in order to get a fair comparison
between groups. This includes utilization, load, nr_running and idle_cpus.
Such unfairness can be easily highlighted with the unixbench execl 1 task.
This test continuously call execve() and the scheduler looks for the idlest
group/CPU on which it should place the task. Because the task runs on the
local group/CPU, the latter seems already busy even if there is nothing
else running on it. As a result, the scheduler will always select another
group/CPU than the local one.
This recovers most of the performance regression on my system from the
recent load-balancer rewrite.
[ mingo: Minor cleanups. ]
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Fixes: 57abff067a ("sched/fair: Rework find_idlest_group()")
Link: https://lkml.kernel.org/r/1571762798-25900-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ever since we moved the sched_class definitions into their own files,
the constant expression {fair,idle}_sched_class.pick_next_task() is
not in fact a compile time constant anymore and results in an indirect
call (barring LTO).
Fix that by exposing pick_next_task_{fair,idle}() directly, this gets
rid of the indirect call (and RETPOLINE) on the fast path.
Also remove the unlikely() from the idle case, it is in fact /the/ way
we select idle -- and that is a very common thing to do.
Performance for will-it-scale/sched_yield improves by 2% (as reported
by 0-day).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.603037345@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 67692435c4 ("sched: Rework pick_next_task() slow-path")
inadvertly introduced a race because it changed a previously
unexplored dependency between dropping the rq->lock and
sched_class::put_prev_task().
The comments about dropping rq->lock, in for example
newidle_balance(), only mentions the task being current and ->on_cpu
being set. But when we look at the 'change' pattern (in for example
sched_setnuma()):
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
It becomes obvious that if we do this after put_prev_task() has
already been called on @p, things go sideways. This is exactly what
the commit in question allows to happen when it does:
prev->sched_class->put_prev_task(rq, prev, rf);
if (!rq->nr_running)
newidle_balance(rq, rf);
The newidle_balance() call will drop rq->lock after we've called
put_prev_task() and that allows the above 'change' pattern to
interleave and mess up the state.
Furthermore, it turns out we lost the RT-pull when we put the last DL
task.
Fix both problems by extracting the balancing from put_prev_task() and
doing a multi-class balance() pass before put_prev_task().
Fixes: 67692435c4 ("sched: Rework pick_next_task() slow-path")
Reported-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Quentin Perret <qperret@google.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
The estimated utilization for a task:
util_est = max(util_avg, est.enqueue, est.ewma)
is defined based on:
- util_avg: the PELT defined utilization
- est.enqueued: the util_avg at the end of the last activation
- est.ewma: a exponential moving average on the est.enqueued samples
According to this definition, when a task suddenly changes its bandwidth
requirements from small to big, the EWMA will need to collect multiple
samples before converging up to track the new big utilization.
This slow convergence towards bigger utilization values is not
aligned to the default scheduler behavior, which is to optimize for
performance. Moreover, the est.ewma component fails to compensate for
temporarely utilization drops which spans just few est.enqueued samples.
To let util_est do a better job in the scenario depicted above, change
its definition by making util_est directly follow upward motion and
only decay the est.ewma on downward.
Signed-off-by: Patrick Bellasi <patrick.bellasi@matbug.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Douglas Raillard <douglas.raillard@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <qperret@google.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191023205630.14469-1-patrick.bellasi@matbug.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The slow wake up path computes per sched_group statisics to select the
idlest group, which is quite similar to what load_balance() is doing
for selecting busiest group. Rework find_idlest_group() to classify the
sched_group and select the idlest one following the same steps as
load_balance().
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-12-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Runnable load was originally introduced to take into account the case where
blocked load biases the wake up path which may end to select an overloaded
CPU with a large number of runnable tasks instead of an underutilized
CPU with a huge blocked load.
Tha wake up path now starts looking for idle CPUs before comparing
runnable load and it's worth aligning the wake up path with the
load_balance() logic.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-10-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Utilization is used to detect a misfit task but the load is then used to
select the task on the CPU which can lead to select a small task with
high weight instead of the task that triggered the misfit migration.
Check that task can't fit the CPU's capacity when selecting the misfit
task instead of using the load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/1571405198-27570-9-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'runnable load' was originally introduced to take into account the case
where blocked load biases the load balance decision which was selecting
underutilized groups with huge blocked load whereas other groups were
overloaded.
The load is now only used when groups are overloaded. In this case,
it's worth being conservative and taking into account the sleeping
tasks that might wake up on the CPU.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CFS load_balance() only takes care of CFS tasks whereas CPUs can be used by
other scheduling classes. Typically, a CFS task preempted by an RT or deadline
task will not get a chance to be pulled by another CPU because
load_balance() doesn't take into account tasks from other classes.
Add sum of nr_running in the statistics and use it to detect such
situations.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The load_balance() algorithm contains some heuristics which have become
meaningless since the rework of the scheduler's metrics like the
introduction of PELT.
Furthermore, load is an ill-suited metric for solving certain task
placement imbalance scenarios.
For instance, in the presence of idle CPUs, we should simply try to get at
least one task per CPU, whereas the current load-based algorithm can actually
leave idle CPUs alone simply because the load is somewhat balanced.
The current algorithm ends up creating virtual and meaningless values like
the avg_load_per_task or tweaks the state of a group to make it overloaded
whereas it's not, in order to try to migrate tasks.
load_balance() should better qualify the imbalance of the group and clearly
define what has to be moved to fix this imbalance.
The type of sched_group has been extended to better reflect the type of
imbalance. We now have:
group_has_spare
group_fully_busy
group_misfit_task
group_asym_packing
group_imbalanced
group_overloaded
Based on the type of sched_group, load_balance now sets what it wants to
move in order to fix the imbalance. It can be some load as before but also
some utilization, a number of task or a type of task:
migrate_task
migrate_util
migrate_load
migrate_misfit
This new load_balance() algorithm fixes several pending wrong tasks
placement:
- the 1 task per CPU case with asymmetric system
- the case of cfs task preempted by other class
- the case of tasks not evenly spread on groups with spare capacity
Also the load balance decisions have been consolidated in the 3 functions
below after removing the few bypasses and hacks of the current code:
- update_sd_pick_busiest() select the busiest sched_group.
- find_busiest_group() checks if there is an imbalance between local and
busiest group.
- calculate_imbalance() decides what have to be moved.
Finally, the now unused field total_running of struct sd_lb_stats has been
removed.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-5-git-send-email-vincent.guittot@linaro.org
[ Small readability and spelling updates. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename sum_nr_running to sum_h_nr_running because it effectively tracks
cfs->h_nr_running so we can use sum_nr_running to track rq->nr_running
when needed.
There are no functional changes.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/1571405198-27570-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clean up asym packing to follow the default load balance behavior:
- classify the group by creating a group_asym_packing field.
- calculate the imbalance in calculate_imbalance() instead of bypassing it.
We don't need to test twice same conditions anymore to detect asym packing
and we consolidate the calculation of imbalance in calculate_imbalance().
There is no functional changes.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The quota/period ratio is used to ensure a child task group won't get
more bandwidth than the parent task group, and is calculated as:
normalized_cfs_quota() = [(quota_us << 20) / period_us]
If the quota/period ratio was changed during this scaling due to
precision loss, it will cause inconsistency between parent and child
task groups.
See below example:
A userspace container manager (kubelet) does three operations:
1) Create a parent cgroup, set quota to 1,000us and period to 10,000us.
2) Create a few children cgroups.
3) Set quota to 1,000us and period to 10,000us on a child cgroup.
These operations are expected to succeed. However, if the scaling of
147/128 happens before step 3, quota and period of the parent cgroup
will be changed:
new_quota: 1148437ns, 1148us
new_period: 11484375ns, 11484us
And when step 3 comes in, the ratio of the child cgroup will be
104857, which will be larger than the parent cgroup ratio (104821),
and will fail.
Scaling them by a factor of 2 will fix the problem.
Tested-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Xuewei Zhang <xueweiz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Fixes: 2e8e192263 ("sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup")
Link: https://lkml.kernel.org/r/20191004001243.140897-1-xueweiz@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The EAS wake-up path computes the system energy for several CPU
candidates: the CPU with maximum spare capacity in each performance
domain, and the prev_cpu. However, if prev_cpu also happens to be the
CPU with maximum spare capacity in its performance domain, the energy
calculation is still done twice, unnecessarily.
Add a condition to filter out this corner case before doing the energy
calculation.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Quentin Perret <qperret@qperret.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: qais.yousef@arm.com
Cc: rjw@rjwysocki.net
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Fixes: eb92692b25 ("sched/fair: Speed-up energy-aware wake-ups")
Link: https://lkml.kernel.org/r/20190920094115.GA11503@qperret.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
de53fd7aed ("sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices")
introduced a few compilation warnings:
kernel/sched/fair.c: In function '__refill_cfs_bandwidth_runtime':
kernel/sched/fair.c:4365:6: warning: variable 'now' set but not used [-Wunused-but-set-variable]
kernel/sched/fair.c: In function 'start_cfs_bandwidth':
kernel/sched/fair.c:4992:6: warning: variable 'overrun' set but not used [-Wunused-but-set-variable]
Also, __refill_cfs_bandwidth_runtime() does no longer update the
expiration time, so fix the comments accordingly.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Dave Chiluk <chiluk+linux@indeed.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pauld@redhat.com
Fixes: de53fd7aed ("sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices")
Link: https://lkml.kernel.org/r/1566326455-8038-1-git-send-email-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove work arounds that were written before there was a grace period
after tasks left the runqueue in finish_task_switch().
In particular now that there tasks exiting the runqueue exprience
a RCU grace period none of the work performed by task_rcu_dereference()
excpet the rcu_dereference() is necessary so replace task_rcu_dereference()
with rcu_dereference().
Remove the code in rcuwait_wait_event() that checks to ensure the current
task has not exited. It is no longer necessary as it is guaranteed
that any running task will experience a RCU grace period after it
leaves the run queueue.
Remove the comment in rcuwait_wake_up() as it is no longer relevant.
Ref: 8f95c90ceb ("sched/wait, RCU: Introduce rcuwait machinery")
Ref: 150593bf86 ("sched/api: Introduce task_rcu_dereference() and try_get_task_struct()")
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87lfurdpk9.fsf_-_@x220.int.ebiederm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cfs_rq_clock_task() was first introduced and used in:
f1b17280ef ("sched: Maintain runnable averages across throttled periods")
Over time its use has been graduately removed by the following commits:
d31b1a66cb ("sched/fair: Factorize PELT update")
2312729688 ("sched/fair: Update scale invariance of PELT")
Today, there is no single user left, so it can be safely removed.
Found via the -Wunused-function build warning.
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1568668775-2127-1-git-send-email-cai@lca.pw
[ Rewrote the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
EAS computes the energy impact of migrating a waking task when deciding
on which CPU it should run. However, the current approach is known to
have a high algorithmic complexity, which can result in prohibitively
high wake-up latencies on systems with complex energy models, such as
systems with per-CPU DVFS. On such systems, the algorithm complexity is
in O(n^2) (ignoring the cost of searching for performance states in the
EM) with 'n' the number of CPUs.
To address this, re-factor the EAS wake-up path to compute the energy
'delta' (with and without the task) on a per-performance domain basis,
rather than system-wide, which brings the complexity down to O(n).
No functional changes intended.
Test results
~~~~~~~~~~~~
* Setup: Tested on a Google Pixel 3, with a Snapdragon 845 (4+4 CPUs,
A55/A75). Base kernel is 5.3-rc5 + Pixel3 specific patches. Android
userspace, no graphics.
* Test case: Run a periodic rt-app task, with 16ms period, ramping down
from 70% to 10%, in 5% steps of 500 ms each (json avail. at [1]).
Frequencies of all CPUs are pinned to max (using scaling_min_freq
CPUFreq sysfs entries) to reduce variability. The time to run
select_task_rq_fair() is measured using the function profiler
(/sys/kernel/debug/tracing/trace_stat/function*). See the test script
for more details [2].
Test 1:
I hacked the DT to 'fake' per-CPU DVFS. That is, we end up with one
CPUFreq policy per CPU (8 policies in total). Since all frequencies are
pinned to max for the test, this should have no impact on the actual
frequency selection, but it does in the EAS calculation.
+---------------------------+----------------------------------+
| Without patch | With patch |
+-----+-----+----------+----------+-----+-----------------+----------+
| CPU | Hit | Avg (us) | s^2 (us) | Hit | Avg (us) | s^2 (us) |
|-----+-----+----------+----------+-----+-----------------+----------+
| 0 | 274 | 38.303 | 1750.239 | 401 | 14.126 (-63.1%) | 146.625 |
| 1 | 197 | 49.529 | 1695.852 | 314 | 16.135 (-67.4%) | 167.525 |
| 2 | 142 | 34.296 | 1758.665 | 302 | 14.133 (-58.8%) | 130.071 |
| 3 | 172 | 31.734 | 1490.975 | 641 | 14.637 (-53.9%) | 139.189 |
| 4 | 316 | 7.834 | 178.217 | 425 | 5.413 (-30.9%) | 20.803 |
| 5 | 447 | 8.424 | 144.638 | 556 | 5.929 (-29.6%) | 27.301 |
| 6 | 581 | 14.886 | 346.793 | 456 | 5.711 (-61.6%) | 23.124 |
| 7 | 456 | 10.005 | 211.187 | 997 | 4.708 (-52.9%) | 21.144 |
+-----+-----+----------+----------+-----+-----------------+----------+
* Hit, Avg and s^2 are as reported by the function profiler
Test 2:
I also ran the same test with a normal DT, with 2 CPUFreq policies, to
see if this causes regressions in the most common case.
+---------------------------+----------------------------------+
| Without patch | With patch |
+-----+-----+----------+----------+-----+-----------------+----------+
| CPU | Hit | Avg (us) | s^2 (us) | Hit | Avg (us) | s^2 (us) |
|-----+-----+----------+----------+-----+-----------------+----------+
| 0 | 345 | 22.184 | 215.321 | 580 | 18.635 (-16.0%) | 146.892 |
| 1 | 358 | 18.597 | 200.596 | 438 | 12.934 (-30.5%) | 104.604 |
| 2 | 359 | 25.566 | 200.217 | 397 | 10.826 (-57.7%) | 74.021 |
| 3 | 362 | 16.881 | 200.291 | 718 | 11.455 (-32.1%) | 102.280 |
| 4 | 457 | 3.822 | 9.895 | 757 | 4.616 (+20.8%) | 13.369 |
| 5 | 344 | 4.301 | 7.121 | 594 | 5.320 (+23.7%) | 18.798 |
| 6 | 472 | 4.326 | 7.849 | 464 | 5.648 (+30.6%) | 22.022 |
| 7 | 331 | 4.630 | 13.937 | 408 | 5.299 (+14.4%) | 18.273 |
+-----+-----+----------+----------+-----+-----------------+----------+
* Hit, Avg and s^2 are as reported by the function profiler
In addition to these two tests, I also ran 50 iterations of the Lisa
EAS functional test suite [3] with this patch applied on Arm Juno r0,
Arm Juno r2, Arm TC2 and Hikey960, and could not see any regressions
(all EAS functional tests are passing).
[1] https://paste.debian.net/1100055/
[2] https://paste.debian.net/1100057/
[3] https://github.com/ARM-software/lisa/blob/master/lisa/tests/scheduler/eas_behaviour.py
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: qais.yousef@arm.com
Cc: qperret@qperret.net
Cc: rjw@rjwysocki.net
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190912094404.13802-1-qperret@qperret.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
do_sched_cfs_period_timer() will refill cfs_b runtime and call
distribute_cfs_runtime to unthrottle cfs_rq, sometimes cfs_b->runtime
will allocate all quota to one cfs_rq incorrectly, then other cfs_rqs
attached to this cfs_b can't get runtime and will be throttled.
We find that one throttled cfs_rq has non-negative
cfs_rq->runtime_remaining and cause an unexpetced cast from s64 to u64
in snippet:
distribute_cfs_runtime() {
runtime = -cfs_rq->runtime_remaining + 1;
}
The runtime here will change to a large number and consume all
cfs_b->runtime in this cfs_b period.
According to Ben Segall, the throttled cfs_rq can have
account_cfs_rq_runtime called on it because it is throttled before
idle_balance, and the idle_balance calls update_rq_clock to add time
that is accounted to the task.
This commit prevents cfs_rq to be assgined new runtime if it has been
throttled until that distribute_cfs_runtime is called.
Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: shanpeic@linux.alibaba.com
Cc: stable@vger.kernel.org
Cc: xlpang@linux.alibaba.com
Fixes: d3d9dc3302 ("sched: Throttle entities exceeding their allowed bandwidth")
Link: https://lkml.kernel.org/r/20190826121633.6538-1-liangyan.peng@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Enabling WARN_DOUBLE_CLOCK in /sys/kernel/debug/sched_features causes
warning to fire in update_rq_clock. This seems to be caused by onlining
a new fair sched group not using the rq lock wrappers.
[] rq->clock_update_flags & RQCF_UPDATED
[] WARNING: CPU: 5 PID: 54385 at kernel/sched/core.c:210 update_rq_clock+0xec/0x150
[] Call Trace:
[] online_fair_sched_group+0x53/0x100
[] cpu_cgroup_css_online+0x16/0x20
[] online_css+0x1c/0x60
[] cgroup_apply_control_enable+0x231/0x3b0
[] cgroup_mkdir+0x41b/0x530
[] kernfs_iop_mkdir+0x61/0xa0
[] vfs_mkdir+0x108/0x1a0
[] do_mkdirat+0x77/0xe0
[] do_syscall_64+0x55/0x1d0
[] entry_SYSCALL_64_after_hwframe+0x44/0xa9
Using the wrappers in online_fair_sched_group instead of the raw locking
removes this warning.
[ tglx: Use rq_*lock_irq() ]
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20190801133749.11033-1-pauld@redhat.com
Avoid the RETRY_TASK case in the pick_next_task() slow path.
By doing the put_prev_task() early, we get the rt/deadline pull done,
and by testing rq->nr_running we know if we need newidle_balance().
This then gives a stable state to pick a task from.
Since the fast-path is fair only; it means the other classes will
always have pick_next_task(.prev=NULL, .rf=NULL) and we can simplify.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/aa34d24b36547139248f32a30138791ac6c02bd6.1559129225.git.vpillai@digitalocean.com
Currently the pick_next_task() loop is convoluted and ugly because of
how it can drop the rq->lock and needs to restart the picking.
For the RT/Deadline classes, it is put_prev_task() where we do
balancing, and we could do this before the picking loop. Make this
possible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/e4519f6850477ab7f3d257062796e6425ee4ba7c.1559129225.git.vpillai@digitalocean.com