In preparation for adding support to mount multiple single-disk
btrfs filesystems with the same FSID, wrap find_fsid() into
find_fsid_by_disk().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
My overcommit patch exposed a bug with btrfs/177 [1]. The problem here is
that when we grow the device we're not adding to ->free_chunk_space, so
subsequent allocations can cause ->free_chunk_space to wrap, which
causes problems in can_overcommit because we add this to ->total_bytes,
which causes the counter to wrap and gives us an unexpected ENOSPC.
Fix this by properly updating ->free_chunk_space with the new available
space in btrfs_grow_device.
[1] First version of the fix:
https://lore.kernel.org/linux-btrfs/b97e47ce0ce1d41d221878de7d6090b90aa7a597.1695065233.git.josef@toxicpanda.com/
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two bugs in how we adjust ->free_chunk_space in
btrfs_shrink_device. First we're removing the entire diff between
new_size and old_size from ->free_chunk_space. This only works if we're
reducing the free area, which we could potentially not be. So adjust
the math to only subtract the diff in the free space from
->free_chunk_space.
Additionally in the error case we're unconditionally adding the diff
back into ->free_chunk_space, which we need to only do if this device is
writeable.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previous commit ("btrfs: reject devices with CHANGING_FSID_V2") has
stopped the assembly of devices with the CHANGING_FSID_V2 flag in the
kernel. Such devices can be scanned but will not be registered and can't
be mounted without a manual fix by btrfstune. Remove the related logic
and now unused code.
The original motivation was to allow an interrupted partial conversion
fix itself on next mount, in case the system has to be rebooted. This is
a convenience but brings a lot of complexity the device scanning and
handling the partial states. It's hard to estimate if this was ever
needed in practice, expecting the typical use case like a manual
conversion of an unmounted filesystem where the user can verify the
success and rerun it eventually.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add historical context ]
Signed-off-by: David Sterba <dsterba@suse.com>
The BTRFS_SUPER_FLAG_CHANGING_FSID_V2 flag indicates a transient state
where the device in the userspace btrfstune -m|-M operation failed to
complete changing the fsid.
This flag makes the kernel to automatically determine the other
partner devices to which a given device can be associated, based on the
fsid, metadata_uuid and generation values.
btrfstune -m|M feature is especially useful in virtual cloud setups, where
compute instances (disk images) are quickly copied, fsid changed, and
launched. Given numerous disk images with the same metadata_uuid but
different fsid, there's no clear way a device can be correctly assembled
with the proper partners when the CHANGING_FSID_V2 flag is set. So, the
disk could be assembled incorrectly, as in the example below:
Before this patch:
Consider the following two filesystems:
/dev/loop[2-3] are raw copies of /dev/loop[0-1] and the btrsftune -m
operation fails.
In this scenario, as the /dev/loop0's fsid change is interrupted, and the
CHANGING_FSID_V2 flag is set as shown below.
$ p="device|devid|^metadata_uuid|^fsid|^incom|^generation|^flags"
$ btrfs inspect dump-super /dev/loop0 | egrep '$p'
superblock: bytenr=65536, device=/dev/loop0
flags 0x1000000001
fsid 7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
metadata_uuid bb040a9f-233a-4de2-ad84-49aa5a28059b
generation 9
num_devices 2
incompat_flags 0x741
dev_item.devid 1
$ btrfs inspect dump-super /dev/loop1 | egrep '$p'
superblock: bytenr=65536, device=/dev/loop1
flags 0x1
fsid 11d2af4d-1b71-45a9-83f6-f2100766939d
metadata_uuid bb040a9f-233a-4de2-ad84-49aa5a28059b
generation 10
num_devices 2
incompat_flags 0x741
dev_item.devid 2
$ btrfs inspect dump-super /dev/loop2 | egrep '$p'
superblock: bytenr=65536, device=/dev/loop2
flags 0x1
fsid 7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
metadata_uuid bb040a9f-233a-4de2-ad84-49aa5a28059b
generation 8
num_devices 2
incompat_flags 0x741
dev_item.devid 1
$ btrfs inspect dump-super /dev/loop3 | egrep '$p'
superblock: bytenr=65536, device=/dev/loop3
flags 0x1
fsid 7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
metadata_uuid bb040a9f-233a-4de2-ad84-49aa5a28059b
generation 8
num_devices 2
incompat_flags 0x741
dev_item.devid 2
It is normal that some devices aren't instantly discovered during
system boot or iSCSI discovery. The controlled scan below demonstrates
this.
$ btrfs device scan --forget
$ btrfs device scan /dev/loop0
Scanning for btrfs filesystems on '/dev/loop0'
$ mount /dev/loop3 /btrfs
$ btrfs filesystem show -m
Label: none uuid: 7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
Total devices 2 FS bytes used 144.00KiB
devid 1 size 300.00MiB used 48.00MiB path /dev/loop0
devid 2 size 300.00MiB used 40.00MiB path /dev/loop3
/dev/loop0 and /dev/loop3 are incorrectly partnered.
This kernel patch removes functions and code connected to the
CHANGING_FSID_V2 flag.
With this patch, now devices with the CHANGING_FSID_V2 flag are rejected.
And its partner will fail to mount with the extra -o degraded option.
The check is removed from open_ctree(), devices are rejected during
scanning which in turn fails the mount.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we have a raid-stripe-tree, we can do RAID0/1/10 on zoned devices
for data block groups. For metadata block groups, we don't actually
need anything special, as all metadata I/O is protected by the
btrfs_zoned_meta_io_lock() already.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Lookup the physical address from the raid stripe tree when a read on an
RAID volume formatted with the raid stripe tree was attempted.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add support for inserting stripe extents into the raid stripe tree on
completion of every write that needs an extra logical-to-physical
translation when using RAID.
Inserting the stripe extents happens after the data I/O has completed,
this is done to
a) support zone-append and
b) rule out the possibility of a RAID-write-hole.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(),
we check if its generation matches the running transaction and if not we
just print a warning. Such mismatch is an indicator that something really
went wrong and only printing a warning message (and stack trace) is not
enough to prevent a corruption. Allowing a transaction to commit with such
an extent buffer will trigger an error if we ever try to read it from disk
due to a generation mismatch with its parent generation.
So abort the current transaction with -EUCLEAN if we notice a generation
mismatch. For this we need to pass a transaction handle to
btrfs_mark_buffer_dirty() which is always available except in test code,
in which case we can pass NULL since it operates on dummy extent buffers
and all test roots have a single node/leaf (root node at level 0).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the commit 5f58d783fd ("btrfs: free device in btrfs_close_devices
for a single device filesystem") we unregister the device from the kernel
memory upon unmounting for a single device.
So, device registration that was performed before mounting if any is no
longer in the kernel memory.
However, in fact, note that device registration is unnecessary for a
single-device btrfs filesystem unless it's a seed device.
So for commands like 'btrfs device scan' or 'btrfs device ready' with a
non-seed single-device btrfs filesystem, they can return success just
after superblock verification and without the actual device scan. When
'device scan --forget' is called on such device no error is returned.
The seed device must remain in the kernel memory to allow the sprout
device to mount without the need to specify the seed device explicitly.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter @need_raid_map is mostly a legacy from the old days where
we don't yet have a solid definition on the @mirror_num, and only
check-integrity was using that parameter, while all other call sites
just pass 1 for that parameter.
Now since we have removed check-integrity functionality, we can also
remove the @need_raid_map parameter.
This change will also remove the ability to read P/Q stripe directly
when passing 0 as @need_raid_map.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function name in the comment does not bring much value to code not
exposed as API and we don't stick to the kdoc format anymore. Update
formatting of parameter descriptions.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Among all the callers, only the device_list_add() function uses the
second argument of alloc_fs_devices(). It passes metadata_uuid when
available, otherwise, it passes NULL. And in turn, alloc_fs_devices()
is designed to copy either metadata_uuid or fsid into
fs_devices::metadata_uuid.
So remove the second argument in alloc_fs_devices(), and always copy the
fsid. In the caller device_list_add() function, we will overwrite it
with metadata_uuid when it is available.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmURvloACgkQxWXV+ddt
WDt+CQ/+NgBtQn7eyABsdHzXWPxpFyGZrdw5ldKnly3G+WDW2GKMaZ6CpDuEZGNQ
vMAkSGX5LIHXvO79pDnGG0i+bRINWrc5HZVZ/p5Da6wplBTgIPlbLmxaZX9MJLbx
j7Oz37GXiQJY8BxnVCnsb+bhhTrTbO9HFUQr/nxefIvu22OBdL1WXYcfuBOeEsFG
qr/aeC52YqCVgXvt+8a5DqAKE0NWc4PFMFUMo4vlf1xuL652fvff7xiup1CAIgBh
qsCa17E7q+qjri2phAhbFNadfpH5wGfyjTWScOlaFuXjRhW2v2oqz3WU5IQj4dmu
PI+k++PLUzIxT0IcjD1YbZzRFaEI6fR2W0GA4LK08fjVehh2ao5jOjtRgLl8HlqG
qC5fslAPzUxRmwMmCjSGfXF14sgtyLy8eVWf69xn06/1cbEmfHDrWNXP1QHuq6eT
Jqy8Ywia3jRzzfZ1utABJPLBW4hFQKkyobtyd67fxslUFmtuLvLqGTiOdmVFiD9K
o+BF2xjEz2n8O1+aRZk5SFNC9zcaASaRg/wQrhvSI9qxM18fh4TXgKQOniLzAK7v
lZc+JkegFW4CVquCUpmbsdZAOpVNRXfPOJIt/w6G+oRbaiTvPUnrH+uyq8IGREbw
E7d8XIP0qlF0DQBGK4Mw/riZz/e5MmEKNjza6M+fj2uglpfWTv4=
=6WEW
-----END PGP SIGNATURE-----
Merge tag 'for-6.6-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- delayed refs fixes:
- fix race when refilling delayed refs block reserve
- prevent transaction block reserve underflow when starting
transaction
- error message and value adjustments
- fix build warnings with CONFIG_CC_OPTIMIZE_FOR_SIZE and
-Wmaybe-uninitialized
- fix for smatch report where uninitialized data from invalid extent
buffer range could be returned to the caller
- fix numeric overflow in statfs when calculating lower threshold
for a full filesystem
* tag 'for-6.6-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: initialize start_slot in btrfs_log_prealloc_extents
btrfs: make sure to initialize start and len in find_free_dev_extent
btrfs: reset destination buffer when read_extent_buffer() gets invalid range
btrfs: properly report 0 avail for very full file systems
btrfs: log message if extent item not found when running delayed extent op
btrfs: remove redundant BUG_ON() from __btrfs_inc_extent_ref()
btrfs: return -EUCLEAN for delayed tree ref with a ref count not equals to 1
btrfs: prevent transaction block reserve underflow when starting transaction
btrfs: fix race when refilling delayed refs block reserve
Jens reported a compiler error when using CONFIG_CC_OPTIMIZE_FOR_SIZE=y
that looks like this
In function ‘gather_device_info’,
inlined from ‘btrfs_create_chunk’ at fs/btrfs/volumes.c:5507:8:
fs/btrfs/volumes.c:5245:48: warning: ‘dev_offset’ may be used uninitialized [-Wmaybe-uninitialized]
5245 | devices_info[ndevs].dev_offset = dev_offset;
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~
fs/btrfs/volumes.c: In function ‘btrfs_create_chunk’:
fs/btrfs/volumes.c:5196:13: note: ‘dev_offset’ was declared here
5196 | u64 dev_offset;
This occurs because find_free_dev_extent is responsible for setting
dev_offset, however if we get an -ENOMEM at the top of the function
we'll return without setting the value.
This isn't actually a problem because we will see the -ENOMEM in
gather_device_info() and return and not use the uninitialized value,
however we also just don't want the compiler warning so rework the code
slightly in find_free_dev_extent() to make sure it's always setting
*start and *len to avoid the compiler warning.
Reported-by: Jens Axboe <axboe@kernel.dk>
Tested-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmTskOwACgkQxWXV+ddt
WDsNJw/8CCi41Z7e3LdJsQd2iy3/+oJZUvIGuT5YvshYxTLCbV7AL+diBPnSQs4Q
/KFMGL7RZBgJzwVoSQtXnESXXgX8VOVfN1zY//k5g6z7BscCEQd73H/M0B8ciZy/
aBygm9tJ7EtWbGZWNR8yad8YtOgl6xoClrPnJK/DCLwMGPy2o+fnKP3Y9FOKY5KM
1Sl0Y4FlJ9dTJpxIwYbx4xmuyHrh2OivjU/KnS9SzQlHu0nl6zsIAE45eKem2/EG
1figY5aFBYPpPYfopbLDalEBR3bQGiViZVJuNEop3AimdcMOXw9jBF3EZYUb5Tgn
MleMDgmmjLGOE/txGhvTxKj9kci2aGX+fJn3jXbcIMksAA0OQFLPqzGvEQcrs6Ok
HA0RsmAkS5fWNDCuuo4ZPXEyUPvluTQizkwyoulOfnK+UPJCWaRqbEBMTsvm6M6X
wFT2czwLpaEU/W6loIZkISUhfbRqVoA3DfHy398QXNzRhSrg8fQJjma1f7mrHvTi
CzU+OD5YSC2nXktVOnklyTr0XT+7HF69cumlDbr8TS8u1qu8n1keU/7M3MBB4xZk
BZFJDz8pnsAqpwVA4T434E/w45MDnYlwBw5r+U8Xjyso8xlau+sYXKcim85vT2Q0
yx/L91P6tdekR1y97p4aDdxw/PgTzdkNGMnsTBMVzgtCj+5pMmE=
=N7Yn
-----END PGP SIGNATURE-----
Merge tag 'for-6.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"No new features, the bulk of the changes are fixes, refactoring and
cleanups. The notable fix is the scrub performance restoration after
rewrite in 6.4, though still only partial.
Fixes:
- scrub performance drop due to rewrite in 6.4 partially restored:
- do IO grouping by blg_plug/blk_unplug again
- avoid unnecessary tree searches when processing stripes, in
extent and checksum trees
- the drop is noticeable on fast PCIe devices, -66% and restored
to -33% of the original
- backports to 6.4 planned
- handle more corner cases of transaction commit during orphan
cleanup or delayed ref processing
- use correct fsid/metadata_uuid when validating super block
- copy directory permissions and time when creating a stub subvolume
Core:
- debugging feature integrity checker deprecated, to be removed in
6.7
- in zoned mode, zones are activated just before the write, making
error handling easier, now the overcommit mechanism can be enabled
again which improves performance by avoiding more frequent flushing
- v0 extent handling completely removed, deprecated long time ago
- error handling improvements
- tests:
- extent buffer bitmap tests
- pinned extent splitting tests
- cleanups and refactoring:
- compression writeback
- extent buffer bitmap
- space flushing, ENOSPC handling"
* tag 'for-6.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (110 commits)
btrfs: zoned: skip splitting and logical rewriting on pre-alloc write
btrfs: tests: test invalid splitting when skipping pinned drop extent_map
btrfs: tests: add a test for btrfs_add_extent_mapping
btrfs: tests: add extent_map tests for dropping with odd layouts
btrfs: scrub: move write back of repaired sectors to scrub_stripe_read_repair_worker()
btrfs: scrub: don't go ordered workqueue for dev-replace
btrfs: scrub: fix grouping of read IO
btrfs: scrub: avoid unnecessary csum tree search preparing stripes
btrfs: scrub: avoid unnecessary extent tree search preparing stripes
btrfs: copy dir permission and time when creating a stub subvolume
btrfs: remove pointless empty list check when reading delayed dir indexes
btrfs: drop redundant check to use fs_devices::metadata_uuid
btrfs: compare the correct fsid/metadata_uuid in btrfs_validate_super
btrfs: use the correct superblock to compare fsid in btrfs_validate_super
btrfs: simplify memcpy either of metadata_uuid or fsid
btrfs: add a helper to read the superblock metadata_uuid
btrfs: remove v0 extent handling
btrfs: output extra debug info if we failed to find an inline backref
btrfs: move the !zoned assert into run_delalloc_cow
btrfs: consolidate the error handling in run_delalloc_nocow
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZOXTKAAKCRCRxhvAZXjc
oifJAQCzi/p+AdQu8LA/0XvR7fTwaq64ZDCibU4BISuLGT2kEgEAuGbuoFZa0rs2
XYD/s4+gi64p9Z01MmXm2XO1pu3GPg0=
=eJz5
-----END PGP SIGNATURE-----
Merge tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs timestamp updates from Christian Brauner:
"This adds VFS support for multi-grain timestamps and converts tmpfs,
xfs, ext4, and btrfs to use them. This carries acks from all relevant
filesystems.
The VFS always uses coarse-grained timestamps when updating the ctime
and mtime after a change. This has the benefit of allowing filesystems
to optimize away a lot of metadata updates, down to around 1 per
jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide to invalidate the cache.
Even with NFSv4, a lot of exported filesystems don't properly support
a change attribute and are subject to the same problems with timestamp
granularity. Other applications have similar issues with timestamps
(e.g., backup applications).
If we were to always use fine-grained timestamps, that would improve
the situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.
This introduces fine-grained timestamps that are used when they are
actively queried.
This uses the 31st bit of the ctime tv_nsec field to indicate that
something has queried the inode for the mtime or ctime. When this flag
is set, on the next mtime or ctime update, the kernel will fetch a
fine-grained timestamp instead of the usual coarse-grained one.
As POSIX generally mandates that when the mtime changes, the ctime
must also change the kernel always stores normalized ctime values, so
only the first 30 bits of the tv_nsec field are ever used.
Filesytems can opt into this behavior by setting the FS_MGTIME flag in
the fstype. Filesystems that don't set this flag will continue to use
coarse-grained timestamps.
Various preparatory changes, fixes and cleanups are included:
- Fixup all relevant places where POSIX requires updating ctime
together with mtime. This is a wide-range of places and all
maintainers provided necessary Acks.
- Add new accessors for inode->i_ctime directly and change all
callers to rely on them. Plain accesses to inode->i_ctime are now
gone and it is accordingly rename to inode->__i_ctime and commented
as requiring accessors.
- Extend generic_fillattr() to pass in a request mask mirroring in a
sense the statx() uapi. This allows callers to pass in a request
mask to only get a subset of attributes filled in.
- Rework timestamp updates so it's possible to drop the @now
parameter the update_time() inode operation and associated helpers.
- Add inode_update_timestamps() and convert all filesystems to it
removing a bunch of open-coding"
* tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (107 commits)
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
tmpfs: add support for multigrain timestamps
fs: add infrastructure for multigrain timestamps
fs: drop the timespec64 argument from update_time
xfs: have xfs_vn_update_time gets its own timestamp
fat: make fat_update_time get its own timestamp
fat: remove i_version handling from fat_update_time
ubifs: have ubifs_update_time use inode_update_timestamps
btrfs: have it use inode_update_timestamps
fs: drop the timespec64 arg from generic_update_time
fs: pass the request_mask to generic_fillattr
fs: remove silly warning from current_time
gfs2: fix timestamp handling on quota inodes
fs: rename i_ctime field to __i_ctime
selinux: convert to ctime accessor functions
security: convert to ctime accessor functions
apparmor: convert to ctime accessor functions
sunrpc: convert to ctime accessor functions
...
There is a helper which provides either metadata_uuid or fsid as per
METADATA_UUID flag. So use it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In some cases, we need to read the FSID from the superblock when the
metadata_uuid is not set, and otherwise, read the metadata_uuid. So,
add a helper.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no point in having find_free_dev_extent() because it's just a
simple wrapper around find_free_dev_extent_start() which always passes a
value of 0 for the search_start argument. Since there are no other callers
of find_free_dev_extent_start(), remove find_free_dev_extent() and rename
find_free_dev_extent_start() to find_free_dev_extent(), removing its
search_start argument because it's always 0.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function find_free_dev_extent() is only used within volumes.c, so make
it static and remove its prototype from volumes.h.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a race between systemd and mount, as both of them try to register
the device in the kernel. When systemd loses the race, it prints the
following message:
BTRFS error: device /dev/sdb7 belongs to fsid 1b3bacbf-14db-49c9-a3ef-547998aacc4e, and the fs is already mounted.
The 'btrfs dev scan' registers one device at a time, so there is no way
for the mount thread to wait in the kernel for all the devices to have
registered as it won't know if all the devices are discovered.
For now, improve the error log by printing the command name and process
ID along with the error message.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
nr_alloc_stripes can't be one if we are writing to a replacement device,
as it is incremented for that case right above. Remove the duplicate
checks.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently find_first_extent_bit() returns a 0 if it found a range in the
given io tree and 1 if it didn't find any. There's no need to return any
errors, so make the return value a boolean and invert the logic to make
more sense: return true if it found a range and false if it didn't find
any range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_map_block() is a critical part of the btrfs storage
layer, which handles mapping of logical ranges to physical ranges.
Thus it's better to have some basic explanation, especially on the
following points:
- Segment split by various boundaries
As a continuous logical range may be split into different segments,
due to various factors like zones and RAID0/5/6/10 boundaries.
- The meaning of @mirror_num
- The possible single stripe optimization
- One deprecated parameter @need_raid_map
Just explicitly mark it deprecated so we're aware of the problem.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmTgyQQACgkQxWXV+ddt
WDvqSQ/+PFg0GwssGuiqWTGbfHV2bJCJWeuXUJNuKFo8PtEnpN0zf28ihsaRXAHF
ZDFKrRjEmb62n+EWJFDpC7wmnz6UJEoEtQteN2VBnLSIUQAKFI+g5flXrR85rk1D
d52JSXtaXSZeCtZH/wdYWdfkL19SJQqJrFDY1WmRLCylOsLHuG0a67fXNeL+5WM/
NgGUMk0bO/j2CKjiCwJT4EpsSP4tFj49TciuDESyXnS8aDbPLbAQkGpYlE+99HSj
D3vjZeqdVfmVhSjdIrK2eTlndzCl+HU+J1DXHzRE6I5XkXhzofJFtrlsvl++C9pv
UZL9bFyMFzybKME33RWvzXBhiRguZ4hfGBoh5FQbJl4yErU4I5RVZcd3/S/2V6n+
AzWemwkOdLEiiPD+aLV28EYdKpnd4GFweVTxeXjdXrJrSx/e4Vn/kPNq1aZJi6Qi
ex3hZWr0oN7JG/StN6i3ix09fEB8cyDzn/jaEwk5zb6uHVN8fw7whkVwZOvFkXx5
VcPxZOyxBFxwmN+L6JlxkIGEpu8UQC2RHa1JJzDTXJPqpz6W68d2wJ8jlDFJYUaf
fahDd8FoG/e/EYh8sPsOnp3gMY53UxxWLF8fuZXVScq9+g5zA3jfftF+a3TaA5bh
e119g0ml+KIGtTB7Q8nLob4PA12NNhNtHbKfdSPDhOfvz8heg9A=
=eFDQ
-----END PGP SIGNATURE-----
Merge tag 'for-6.5-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix infinite loop in readdir(), could happen in a big directory when
files get renamed during enumeration
- fix extent map handling of skipped pinned ranges
- fix a corner case when handling ordered extent length
- fix a potential crash when balance cancel races with pause
- verify correct uuid when starting scrub or device replace
* tag 'for-6.5-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix incorrect splitting in btrfs_drop_extent_map_range
btrfs: fix BUG_ON condition in btrfs_cancel_balance
btrfs: only subtract from len_to_oe_boundary when it is tracking an extent
btrfs: fix replace/scrub failure with metadata_uuid
btrfs: fix infinite directory reads
Pausing and canceling balance can race to interrupt balance lead to BUG_ON
panic in btrfs_cancel_balance. The BUG_ON condition in btrfs_cancel_balance
does not take this race scenario into account.
However, the race condition has no other side effects. We can fix that.
Reproducing it with panic trace like this:
kernel BUG at fs/btrfs/volumes.c:4618!
RIP: 0010:btrfs_cancel_balance+0x5cf/0x6a0
Call Trace:
<TASK>
? do_nanosleep+0x60/0x120
? hrtimer_nanosleep+0xb7/0x1a0
? sched_core_clone_cookie+0x70/0x70
btrfs_ioctl_balance_ctl+0x55/0x70
btrfs_ioctl+0xa46/0xd20
__x64_sys_ioctl+0x7d/0xa0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Race scenario as follows:
> mutex_unlock(&fs_info->balance_mutex);
> --------------------
> .......issue pause and cancel req in another thread
> --------------------
> ret = __btrfs_balance(fs_info);
>
> mutex_lock(&fs_info->balance_mutex);
> if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
> btrfs_info(fs_info, "balance: paused");
> btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
> }
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: xiaoshoukui <xiaoshoukui@ruijie.com.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all of the update_time operations are prepared for it, we can
drop the timespec64 argument from the update_time operation. Do that and
remove it from some associated functions like inode_update_time and
inode_needs_update_time.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230807-mgctime-v7-8-d1dec143a704@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmS4TjYACgkQxWXV+ddt
WDt8yw//b6E+Ab0QBBS6Dl9R3euv+aqQUa35Lg8z2L89oLjNlX/yZSj4ZIZ/467A
omDtCat1uwYSlzPgM7RtfvXew7ujULmK9UP5IdwEQgQ5qf+pIE50h78x64zCLG1R
g2C9OMGvNxU8kOR2sRFaBJ+Lf8Mth8ipOzDl8XPE4m7t87tLYdpmVoHJKzNj/AcF
UOruS8HilFYlc8Oqb/yxDPYeMmdUQaqahhq4tHkoIB/09aePaJwAiyhQ53v3TaAX
oBvBBrV65WdHu3epfB9WcPQRyd09ov+e14UXAX7CepkZ0RdIpU1CcszPGHTtOP94
fRaup2zFygolHSTMPFU3drtnI3CRIGntdfHFqDEH+M1ysvRxG4VUnAjWL6w9KZZC
3z2G6cYoVxpcbCch5wpn/97cr6PowRABK0AoirrreU0VA2Vkdi45N5eoT/2DTEVT
s5VirJsfC5IXCrvQf/h67jHlqk+23e+/uP8in+GWTgPEmddTSWNKCi9ZcHKQ/skf
5U9Y3vkFFl68cQEwcB6vYMlbCiCxCuimz8AvGFrxkU9qmah6gcgTnXwKqneAbr3f
jFwZvgh+E5ueK76/KLLWIKyfDx5cU8N/D5TlmZ+n/TAoWUFVs5V2ctB4EOsIotev
EN7sriJGUkfGp+EAs4Xux4OKGx6IinyogdZmQN9HmNIlGks02qk=
=yO9Y
-----END PGP SIGNATURE-----
Merge tag 'for-6.5-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Stable fixes:
- fix race between balance and cancel/pause
- various iput() fixes
- fix use-after-free of new block group that became unused
- fix warning when putting transaction with qgroups enabled after
abort
- fix crash in subpage mode when page could be released between map
and map read
- when scrubbing raid56 verify the P/Q stripes unconditionally
- fix minor memory leak in zoned mode when a block group with an
unexpected superblock is found
Regression fixes:
- fix ordered extent split error handling when submitting direct IO
- user irq-safe locking when adding delayed iputs"
* tag 'for-6.5-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix warning when putting transaction with qgroups enabled after abort
btrfs: fix ordered extent split error handling in btrfs_dio_submit_io
btrfs: set_page_extent_mapped after read_folio in btrfs_cont_expand
btrfs: raid56: always verify the P/Q contents for scrub
btrfs: use irq safe locking when running and adding delayed iputs
btrfs: fix iput() on error pointer after error during orphan cleanup
btrfs: fix double iput() on inode after an error during orphan cleanup
btrfs: zoned: fix memory leak after finding block group with super blocks
btrfs: fix use-after-free of new block group that became unused
btrfs: be a bit more careful when setting mirror_num_ret in btrfs_map_block
btrfs: fix race between balance and cancel/pause
The mirror_num_ret is allowed to be NULL, although it has to be set when
smap is set. Unfortunately that is not a well enough specifiable
invariant for static type checkers, so add a NULL check to make sure they
are fine.
Fixes: 03793cbbc8 ("btrfs: add fast path for single device io in __btrfs_map_block")
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Syzbot reported a panic that looks like this:
assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465
------------[ cut here ]------------
kernel BUG at fs/btrfs/messages.c:259!
RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259
Call Trace:
<TASK>
btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline]
btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline]
btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The reproducer is running a balance and a cancel or pause in parallel.
The way balance finishes is a bit wonky, if we were paused we need to
save the balance_ctl in the fs_info, but clear it otherwise and cleanup.
However we rely on the return values being specific errors, or having a
cancel request or no pause request. If balance completes and returns 0,
but we have a pause or cancel request we won't do the appropriate
cleanup, and then the next time we try to start a balance we'll trip
this ASSERT.
The error handling is just wrong here, we always want to clean up,
unless we got -ECANCELLED and we set the appropriate pause flag in the
exclusive op. With this patch the reproducer ran for an hour without
tripping, previously it would trip in less than a few minutes.
Reported-by: syzbot+c0f3acf145cb465426d5@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmSV8dwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpilGD/9Yys1oxIXJpRf00fzrylAlBthRxMjFQVWw
zAut106hAQiBHvU8IkmGA3MvEFVHxtzwYhHI7IR8K3aZBIqscweCqmVI9JyogJw9
U9Twnzel47VmuKdM94FeoN+hbj1fP8EWTjzmy67/zEEfFCdmHvNlMi3lSrGYIpFy
39LxTB99Y4UarM5PtWbes37GYYljzMSWKuo4AfBkvq1eQa+sZ0Vq2xAABKq3UM7f
apqhgHtkJooRePDP0eQp+kAyyVMgW2jIK+oIdJDxNF3CKTu2w40RzaYz6fp+jVSU
H4R/xS59GW4/xql+VBJDh/qJg9K62DPPYjlW8BmSR8+IjvfFpsyH3/MacE50CD3P
20fs/Mnj49H79fDrQEHJI53cOOb2EmUitbwLbvOcColNTPpt8loBtdQxjF2RMU8R
Nyort9DJPFclYCxky1LYg1CNEC2Ln4Zy/jD47wPvqRmOQphOoVlV/hPnOEqvjaZC
49Vn70W2DeE9cXvYI7ha+XIg6/oj+Gs3iusEbV08Ci7EAtXgI+ZUUsQ97K8UNiUh
h2lqSJtuI7lBpYP9sf+BeCch5UCC+xGYyTdoM5f58lehWBBPtbs0g7S9RyRyOYxe
n+yxEUo3dAGzJ/xsKAjinbZfeWIpr0b1TkAh4w3Cq/BKzRr9Bp8lBAxYuancbQ+Y
1ADPteUOTA==
=zP4Y
-----END PGP SIGNATURE-----
Merge tag 'for-6.5/block-2023-06-23' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
- NVMe pull request via Keith:
- Various cleanups all around (Irvin, Chaitanya, Christophe)
- Better struct packing (Christophe JAILLET)
- Reduce controller error logs for optional commands (Keith)
- Support for >=64KiB block sizes (Daniel Gomez)
- Fabrics fixes and code organization (Max, Chaitanya, Daniel
Wagner)
- bcache updates via Coly:
- Fix a race at init time (Mingzhe Zou)
- Misc fixes and cleanups (Andrea, Thomas, Zheng, Ye)
- use page pinning in the block layer for dio (David)
- convert old block dio code to page pinning (David, Christoph)
- cleanups for pktcdvd (Andy)
- cleanups for rnbd (Guoqing)
- use the unchecked __bio_add_page() for the initial single page
additions (Johannes)
- fix overflows in the Amiga partition handling code (Michael)
- improve mq-deadline zoned device support (Bart)
- keep passthrough requests out of the IO schedulers (Christoph, Ming)
- improve support for flush requests, making them less special to deal
with (Christoph)
- add bdev holder ops and shutdown methods (Christoph)
- fix the name_to_dev_t() situation and use cases (Christoph)
- decouple the block open flags from fmode_t (Christoph)
- ublk updates and cleanups, including adding user copy support (Ming)
- BFQ sanity checking (Bart)
- convert brd from radix to xarray (Pankaj)
- constify various structures (Thomas, Ivan)
- more fine grained persistent reservation ioctl capability checks
(Jingbo)
- misc fixes and cleanups (Arnd, Azeem, Demi, Ed, Hengqi, Hou, Jan,
Jordy, Li, Min, Yu, Zhong, Waiman)
* tag 'for-6.5/block-2023-06-23' of git://git.kernel.dk/linux: (266 commits)
scsi/sg: don't grab scsi host module reference
ext4: Fix warning in blkdev_put()
block: don't return -EINVAL for not found names in devt_from_devname
cdrom: Fix spectre-v1 gadget
block: Improve kernel-doc headers
blk-mq: don't insert passthrough request into sw queue
bsg: make bsg_class a static const structure
ublk: make ublk_chr_class a static const structure
aoe: make aoe_class a static const structure
block/rnbd: make all 'class' structures const
block: fix the exclusive open mask in disk_scan_partitions
block: add overflow checks for Amiga partition support
block: change all __u32 annotations to __be32 in affs_hardblocks.h
block: fix signed int overflow in Amiga partition support
block: add capacity validation in bdev_add_partition()
block: fine-granular CAP_SYS_ADMIN for Persistent Reservation
block: disallow Persistent Reservation on partitions
reiserfs: fix blkdev_put() warning from release_journal_dev()
block: fix wrong mode for blkdev_get_by_dev() from disk_scan_partitions()
block: document the holder argument to blkdev_get_by_path
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmSZ0YUACgkQxWXV+ddt
WDuF9g/+OsEZflGYIZj11trG0l5HWApnINKqhZ524J0TNy9KxY0KOTqPCOg0O41E
Vt7uJCMG06+ifvVEby8srjzUZxUutIuMeGIP91VyXUbt+CleAWunxnL8aKcTPS3T
QxyGx0VmukO2UHYCXhXQLRXo/+zPcBxnk6UgVzcBCIOecOMTB1KCeblBmqd3q86f
NVFse+BTkmtm86u/1rzEDqgY6lMHQ+jNoHhpRVGpzmSnSX8GELyOW3QnixS0LCo2
no0vvW0QXkRJ+S68V5zBWlqa3xr21jOYcmON2Ra2G8Etsjx7W5XKS3I9k/4uonxb
LbITmBwEZWt/aTzmLFT16S5M9BlRqH5Ffmsw7Ls+NDmdvH/f1zM8XeNAb7kpFTrn
T3aALjkcd65/JFmgyVmzdt4BSmrUkYm0EEmLirQec86HJ4NlQJpJ2B7cfMWKPyal
+VgaT4S+fLTc/HJD3nObMXTCxZrMf0sBUhU4/QXqL7TTjqqosSn26mlGNUocw7Ty
HaESk7j2L9TMPt640r1G98j9ND7sWmyBmiYsah8F3MKZCIS892qhtFs0m5g2tA1F
sjPv9u6M5Pi6ie5Eo8xs+SqKa7TPPVsbZ9XcMRBuzDc5AtUPAm6ii9QVwref8wTq
qO379jDepgPj4HZkXMzQKxd6rw6wrF854304XhjHZefk+ChhIc4=
=nN4X
-----END PGP SIGNATURE-----
Merge tag 'for-6.5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Mainly core changes, refactoring and optimizations.
Performance is improved in some areas, overall there may be a
cumulative improvement due to refactoring that removed lookups in the
IO path or simplified IO submission tracking.
Core:
- submit IO synchronously for fast checksums (crc32c and xxhash),
remove high priority worker kthread
- read extent buffer in one go, simplify IO tracking, bio submission
and locking
- remove additional tracking of redirtied extent buffers, originally
added for zoned mode but actually not needed
- track ordered extent pointer in bio to avoid rbtree lookups during
IO
- scrub, use recovered data stripes as cache to avoid unnecessary
read
- in zoned mode, optimize logical to physical mappings of extents
- remove PageError handling, not set by VFS nor writeback
- cleanups, refactoring, better structure packing
- lots of error handling improvements
- more assertions, lockdep annotations
- print assertion failure with the exact line where it happens
- tracepoint updates
- more debugging prints
Performance:
- speedup in fsync(), better tracking of inode logged status can
avoid transaction commit
- IO path structures track logical offsets in data structures and
does not need to look it up
User visible changes:
- don't commit transaction for every created subvolume, this can
reduce time when many subvolumes are created in a batch
- print affected files when relocation fails
- trigger orphan file cleanup during START_SYNC ioctl
Notable fixes:
- fix crash when disabling quota and relocation
- fix crashes when removing roots from drity list
- fix transacion abort during relocation when converting from newer
profiles not covered by fallback
- in zoned mode, stop reclaiming block groups if filesystem becomes
read-only
- fix rare race condition in tree mod log rewind that can miss some
btree node slots
- with enabled fsverity, drop up-to-date page bit in case the
verification fails"
* tag 'for-6.5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (194 commits)
btrfs: fix race between quota disable and relocation
btrfs: add comment to struct btrfs_fs_info::dirty_cowonly_roots
btrfs: fix race when deleting free space root from the dirty cow roots list
btrfs: fix race when deleting quota root from the dirty cow roots list
btrfs: tracepoints: also show actual number of the outstanding extents
btrfs: update i_version in update_dev_time
btrfs: make btrfs_compressed_bioset static
btrfs: add handling for RAID1C23/DUP to btrfs_reduce_alloc_profile
btrfs: scrub: remove btrfs_fs_info::scrub_wr_completion_workers
btrfs: scrub: remove scrub_ctx::csum_list member
btrfs: do not BUG_ON after failure to migrate space during truncation
btrfs: do not BUG_ON on failure to get dir index for new snapshot
btrfs: send: do not BUG_ON() on unexpected symlink data extent
btrfs: do not BUG_ON() when dropping inode items from log root
btrfs: replace BUG_ON() at split_item() with proper error handling
btrfs: do not BUG_ON() on tree mod log failures at btrfs_del_ptr()
btrfs: do not BUG_ON() on tree mod log failures at insert_ptr()
btrfs: do not BUG_ON() on tree mod log failure at insert_new_root()
btrfs: do not BUG_ON() on tree mod log failures at push_nodes_for_insert()
btrfs: abort transaction at update_ref_for_cow() when ref count is zero
...
There was regression caused by a97699d1d6 ("btrfs: replace
map_lookup->stripe_len by BTRFS_STRIPE_LEN") and supposedly fixed by
a7299a18a1 ("btrfs: fix u32 overflows when left shifting stripe_nr").
To avoid code churn the fix was open coding the type casts but
unfortunately missed one which was still possible to hit [1].
The missing place was assignment of bioc->full_stripe_logical inside
btrfs_map_block().
Fix it by adding a helper that does the safe calculation of the offset
and use it everywhere even though it may not be strictly necessary due
to already using u64 types. This replaces all remaining
"<< BTRFS_STRIPE_LEN_SHIFT" calls.
[1] https://lore.kernel.org/linux-btrfs/20230622065438.86402-1-wqu@suse.com/
Fixes: a7299a18a1 ("btrfs: fix u32 overflows when left shifting stripe_nr")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
David reported an ASSERT() get triggered during fio load on 8 devices
with data/raid6 and metadata/raid1c3:
fio --rw=randrw --randrepeat=1 --size=3000m \
--bsrange=512b-64k --bs_unaligned \
--ioengine=libaio --fsync=1024 \
--name=job0 --name=job1 \
The ASSERT() is from rbio_add_bio() of raid56.c:
ASSERT(orig_logical >= full_stripe_start &&
orig_logical + orig_len <= full_stripe_start +
rbio->nr_data * BTRFS_STRIPE_LEN);
Which is checking if the target rbio is crossing the full stripe
boundary.
[100.789] assertion failed: orig_logical >= full_stripe_start && orig_logical + orig_len <= full_stripe_start + rbio->nr_data * BTRFS_STRIPE_LEN, in fs/btrfs/raid56.c:1622
[100.795] ------------[ cut here ]------------
[100.796] kernel BUG at fs/btrfs/raid56.c:1622!
[100.797] invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[100.798] CPU: 1 PID: 100 Comm: kworker/u8:4 Not tainted 6.4.0-rc6-default+ #124
[100.799] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552-rebuilt.opensuse.org 04/01/2014
[100.802] Workqueue: writeback wb_workfn (flush-btrfs-1)
[100.803] RIP: 0010:rbio_add_bio+0x204/0x210 [btrfs]
[100.806] RSP: 0018:ffff888104a8f300 EFLAGS: 00010246
[100.808] RAX: 00000000000000a1 RBX: ffff8881075907e0 RCX: ffffed1020951e01
[100.809] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 0000000000000001
[100.811] RBP: 0000000141d20000 R08: 0000000000000001 R09: ffff888104a8f04f
[100.813] R10: ffffed1020951e09 R11: 0000000000000003 R12: ffff88810e87f400
[100.815] R13: 0000000041d20000 R14: 0000000144529000 R15: ffff888101524000
[100.817] FS: 0000000000000000(0000) GS:ffff88811ac00000(0000) knlGS:0000000000000000
[100.821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[100.822] CR2: 000055d54e44c270 CR3: 000000010a9a1006 CR4: 00000000003706a0
[100.824] Call Trace:
[100.825] <TASK>
[100.825] ? die+0x32/0x80
[100.826] ? do_trap+0x12d/0x160
[100.827] ? rbio_add_bio+0x204/0x210 [btrfs]
[100.827] ? rbio_add_bio+0x204/0x210 [btrfs]
[100.829] ? do_error_trap+0x90/0x130
[100.830] ? rbio_add_bio+0x204/0x210 [btrfs]
[100.831] ? handle_invalid_op+0x2c/0x30
[100.833] ? rbio_add_bio+0x204/0x210 [btrfs]
[100.835] ? exc_invalid_op+0x29/0x40
[100.836] ? asm_exc_invalid_op+0x16/0x20
[100.837] ? rbio_add_bio+0x204/0x210 [btrfs]
[100.837] raid56_parity_write+0x64/0x270 [btrfs]
[100.838] btrfs_submit_chunk+0x26e/0x800 [btrfs]
[100.840] ? btrfs_bio_init+0x80/0x80 [btrfs]
[100.841] ? release_pages+0x503/0x6d0
[100.842] ? folio_unlock+0x2f/0x60
[100.844] ? __folio_put+0x60/0x60
[100.845] ? btrfs_do_readpage+0xae0/0xae0 [btrfs]
[100.847] btrfs_submit_bio+0x21/0x60 [btrfs]
[100.847] submit_one_bio+0x6a/0xb0 [btrfs]
[100.849] extent_write_cache_pages+0x395/0x680 [btrfs]
[100.850] ? __extent_writepage+0x520/0x520 [btrfs]
[100.851] ? mark_usage+0x190/0x190
[100.852] extent_writepages+0xdb/0x130 [btrfs]
[100.853] ? extent_write_locked_range+0x480/0x480 [btrfs]
[100.854] ? mark_usage+0x190/0x190
[100.854] ? attach_extent_buffer_page+0x220/0x220 [btrfs]
[100.855] ? reacquire_held_locks+0x178/0x280
[100.856] ? writeback_sb_inodes+0x245/0x7f0
[100.857] do_writepages+0x102/0x2e0
[100.858] ? page_writeback_cpu_online+0x10/0x10
[100.859] ? __lock_release.isra.0+0x14a/0x4d0
[100.860] ? reacquire_held_locks+0x280/0x280
[100.861] ? __lock_acquired+0x1e9/0x3d0
[100.862] ? do_raw_spin_lock+0x1b0/0x1b0
[100.863] __writeback_single_inode+0x94/0x450
[100.864] writeback_sb_inodes+0x372/0x7f0
[100.864] ? lock_sync+0xd0/0xd0
[100.865] ? do_raw_spin_unlock+0x93/0xf0
[100.866] ? sync_inode_metadata+0xc0/0xc0
[100.867] ? rwsem_optimistic_spin+0x340/0x340
[100.868] __writeback_inodes_wb+0x70/0x130
[100.869] wb_writeback+0x2d1/0x530
[100.869] ? __writeback_inodes_wb+0x130/0x130
[100.870] ? lockdep_hardirqs_on_prepare.part.0+0xf1/0x1c0
[100.870] wb_do_writeback+0x3eb/0x480
[100.871] ? wb_writeback+0x530/0x530
[100.871] ? mark_lock_irq+0xcd0/0xcd0
[100.872] wb_workfn+0xe0/0x3f0<
[CAUSE]
Commit a97699d1d6 ("btrfs: replace map_lookup->stripe_len by
BTRFS_STRIPE_LEN") changes how we calculate the map length, to reduce
u64 division.
Function btrfs_max_io_len() is to get the length to the stripe boundary.
It calculates the full stripe start offset (inside the chunk) by the
following code:
*full_stripe_start =
rounddown(*stripe_nr, nr_data_stripes(map)) <<
BTRFS_STRIPE_LEN_SHIFT;
The calculation itself is fine, but the value returned by rounddown() is
dependent on both @stripe_nr (which is u32) and nr_data_stripes() (which
returned int).
Thus the result is also u32, then we do the left shift, which can
overflow u32.
If such overflow happens, @full_stripe_start will be a value way smaller
than @offset, causing later "full_stripe_len - (offset -
*full_stripe_start)" to underflow, thus make later length calculation to
have no stripe boundary limit, resulting a write bio to exceed stripe
boundary.
There are some other locations like this, with a u32 @stripe_nr got left
shift, which can lead to a similar overflow.
[FIX]
Fix all @stripe_nr with left shift with a type cast to u64 before the
left shift.
Those involved @stripe_nr or similar variables are recording the stripe
number inside the chunk, which is small enough to be contained by u32,
but their offset inside the chunk can not fit into u32.
Thus for those specific left shifts, a type cast to u64 is necessary so
this patch does not touch them and the code will be cleaned up in the
future to keep the fix minimal.
Reported-by: David Sterba <dsterba@suse.com>
Fixes: a97699d1d6 ("btrfs: replace map_lookup->stripe_len by BTRFS_STRIPE_LEN")
Tested-by: David Sterba <dsterba@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When updating the ctime, we also want to update i_version.
This is just something I noticed by inspection. There is probably no way
to test this today unless you can somehow get to this inode via nfsd.
Still, I think it's the right thing to do for consistency's sake.
David Sterba's comment: I don't see anything wrong with setting the
iversion bit, however I also don't see where this would be useful.
Agreed with the consistency, otherwise the time is updated when device
super block is wiped or a device initialized, both are big events so
missing that due to lack of iversion update seems unlikely. I'll add it
to the queue, thanks.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
[ add comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
need_full_stripe is just a somewhat complicated way to say
"op != BTRFS_MAP_READ". Just spell that explicit check out, which makes
a lot of the code currently using the helper easier to understand.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_map_sblock just hard codes three arguments and calls
btrfs_map_sblock. Remove it as it doesn't provide any real value, but
makes following the btrfs_map_block call chains harder.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the old btrfs_map_block is gone, drop the leading underscores
from __btrfs_map_block.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are no users of btrfs_map_block left, so remove it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BTRFS_MAP_DISCARD is never set, as REQ_OP_DISCARD is never passed to
btrfs_op() only only checked in two ASSERTS.
Remove it and let the catchall WARN_ON in btrfs_op() deal with accidental
REQ_OP_DISCARDs leaked into btrfs_op(). Last use was in a4012f06f1
("btrfs: split discard handling out of btrfs_map_block").
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We often check if the metadata_uuid is not the same as fsid, and then we
check if the given fsid matches the metadata_uuid. This patch refactors
this logic into function match_fsid_changed and utilize it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Refactor the functions find_fsid() and find_fsid_with_metadata_uuid(),
as they currently share a common set of code to compare the fsid and
metadata_uuid. Create a common helper function, match_fsid_fs_devices().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Simplify has_metadata_uuid checks - by localizing the has_metadata_uuid
checked within alloc_fs_devices()'s second argument, it improves the
code readability.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently have redundant checks for the non-null value of fsid
simplify it.
And, no one is using alloc_fs_devices() with a NULL metadata_uuid
while fsid is not NULL, add an assert() to verify this condition.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_free_device() is never used outside of volumes.c, so
make it static and remove its prototype declaration at volumes.h.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only overlap between the block open flags mapped into the fmode_t and
other uses of fmode_t are FMODE_READ and FMODE_WRITE. Define a new
blk_mode_t instead for use in blkdev_get_by_{dev,path}, ->open and
->ioctl and stop abusing fmode_t.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jack Wang <jinpu.wang@ionos.com> [rnbd]
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/r/20230608110258.189493-28-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The current interface for exclusive opens is rather confusing as it
requires both the FMODE_EXCL flag and a holder. Remove the need to pass
FMODE_EXCL and just key off the exclusive open off a non-NULL holder.
For blkdev_put this requires adding the holder argument, which provides
better debug checking that only the holder actually releases the hold,
but at the same time allows removing the now superfluous mode argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Acked-by: Jack Wang <jinpu.wang@ionos.com> [rnbd]
Link: https://lore.kernel.org/r/20230608110258.189493-16-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Passing a holder to blkdev_get_by_path when FMODE_EXCL isn't set doesn't
make sense, so pass NULL instead and remove the holder argument from the
call chains the only end up in non-FMODE_EXCL blkdev_get_by_path calls.
Exclusive mode for device scanning is not used since commit 50d281fc43
("btrfs: scan device in non-exclusive mode")".
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: David Sterba <dsterba@suse.com>
Link: https://lore.kernel.org/r/20230608110258.189493-15-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add a new blk_holder_ops structure, which is passed to blkdev_get_by_* and
installed in the block_device for exclusive claims. It will be used to
allow the block layer to call back into the user of the block device for
thing like notification of a removed device or a device resize.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Link: https://lore.kernel.org/r/20230601094459.1350643-10-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When a device replace finishes, the source device is freed by calling
btrfs_free_device() at btrfs_rm_dev_replace_free_srcdev(), but the
allocation state, tracked in the device's alloc_state io tree, is never
freed.
This is a regression recently introduced by commit f0bb5474cf ("btrfs:
remove redundant release of btrfs_device::alloc_state"), which removed a
call to extent_io_tree_release() from btrfs_free_device(), with the
rationale that btrfs_close_one_device() already releases the allocation
state from a device and btrfs_close_one_device() is always called before
a device is freed with btrfs_free_device(). However that is not true for
the device replace case, as btrfs_free_device() is called without any
previous call to btrfs_close_one_device().
The issue is trivial to reproduce, for example, by running test btrfs/027
from fstests:
$ ./check btrfs/027
$ rmmod btrfs
$ dmesg
(...)
[84519.395485] BTRFS info (device sdc): dev_replace from <missing disk> (devid 2) to /dev/sdg started
[84519.466224] BTRFS info (device sdc): dev_replace from <missing disk> (devid 2) to /dev/sdg finished
[84519.552251] BTRFS info (device sdc): scrub: started on devid 1
[84519.552277] BTRFS info (device sdc): scrub: started on devid 2
[84519.552332] BTRFS info (device sdc): scrub: started on devid 3
[84519.552705] BTRFS info (device sdc): scrub: started on devid 4
[84519.604261] BTRFS info (device sdc): scrub: finished on devid 4 with status: 0
[84519.609374] BTRFS info (device sdc): scrub: finished on devid 3 with status: 0
[84519.610818] BTRFS info (device sdc): scrub: finished on devid 1 with status: 0
[84519.610927] BTRFS info (device sdc): scrub: finished on devid 2 with status: 0
[84559.503795] BTRFS: state leak: start 1048576 end 1351614463 state 1 in tree 1 refs 1
[84559.506764] BTRFS: state leak: start 1048576 end 1347420159 state 1 in tree 1 refs 1
[84559.510294] BTRFS: state leak: start 1048576 end 1351614463 state 1 in tree 1 refs 1
So fix this by adding back the call to extent_io_tree_release() at
btrfs_free_device().
Fixes: f0bb5474cf ("btrfs: remove redundant release of btrfs_device::alloc_state")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are some warnings on older compilers (gcc 10, 7) or non-x86_64
architectures (aarch64). As btrfs wants to enable -Wmaybe-uninitialized
by default, fix the warnings even though it's not necessary on recent
compilers (gcc 12+).
../fs/btrfs/volumes.c: In function ‘btrfs_init_new_device’:
../fs/btrfs/volumes.c:2703:3: error: ‘seed_devices’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
2703 | btrfs_setup_sprout(fs_info, seed_devices);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../fs/btrfs/send.c: In function ‘get_cur_inode_state’:
../include/linux/compiler.h:70:32: error: ‘right_gen’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
70 | (__if_trace.miss_hit[1]++,1) : \
| ^
../fs/btrfs/send.c:1878:6: note: ‘right_gen’ was declared here
1878 | u64 right_gen;
| ^~~~~~~~~
Reported-by: k2ci <kernel-bot@kylinos.cn>
Signed-off-by: Genjian Zhang <zhanggenjian@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Both scrub and read-repair are utilizing a special repair writes that:
- Only writes back to a single device
Even for read-repair on RAID56, we only update the corrupted data
stripe itself, not triggering the full RMW path.
- Requires a valid @mirror_num
For RAID56 case, only @mirror_num == 1 is valid.
For non-RAID56 cases, we need @mirror_num to locate our stripe.
- No data csum generation needed
These two call sites still have some differences though:
- Read-repair goes plain bio
It doesn't need a full btrfs_bio, and goes submit_bio_wait().
- New scrub repair would go btrfs_bio
To simplify both read and write path.
So here this patch would:
- Introduce a common helper, btrfs_map_repair_block()
Due to the single device nature, we can use an on-stack
btrfs_io_stripe to pass device and its physical bytenr.
- Introduce a new interface, btrfs_submit_repair_bio(), for later scrub
code
This is for the incoming scrub code.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 321f69f86a ("btrfs: reset device back to allocation state when
removing") included adding extent_io_tree_release(&device->alloc_state)
to btrfs_close_one_device(), which had already been called in
btrfs_free_device().
The alloc_state tree (IO_TREE_DEVICE_ALLOC_STATE), is created in
btrfs_alloc_device() and released in btrfs_close_one_device(). Therefore,
the additional call to extent_io_tree_release(&device->alloc_state) in
btrfs_free_device() is unnecessary and can be removed.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During my recent search for the root cause of a reported bug, I realized
that it's a good idea to issue a warning for missed cleanup instead of
using debug-only assertions. Since most installations run with debug off,
missed cleanups and premature calls to close could go unnoticed. However,
these issues are serious enough to warrant reporting and fixing.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only caller of btrfs_make_block_group() always passes 0 as the value
for the bytes_used argument, so remove it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Currently btrfs can use dev-replace device as an extra mirror for
read-repair. But it can lead to NODATASUM corruption in the following
case:
There is a RAID1 data chunk, and dev-replace is running from
dev2 to dev0.
|//| = Replaced data
X X+1MB X+2MB
Dev 2: | | | <- Source dev
Dev 0: |///////| | <- Target dev
Then a read on dev 2 X+2MB happens.
And something wrong happened inside devid 2, causing an -EIO.
In that case, read-repair would try the next mirror, and since we can
use target device as an extra mirror, we will use that mirror instead.
But unfortunately since the read is beyond the current replace cursor,
we should not trust it at all, what we get would be just uninitialized
garbage.
But if this read is for NODATASUM range, then we just trust them and
cause data corruption.
[CAUSE]
We used to have some checks to make sure we only return such extra
mirror when the range is before our left cursor.
The first commit introducing this behavior is ad6d620e2a ("Btrfs:
allow repair code to include target disk when searching mirrors").
But later a fix, 22ab04e814 ("Btrfs: fix race between device replace
and chunk allocation") changed the behavior, to always let
btrfs_map_block() include the extra mirror to address a race in
dev-replace which can cause missing writes to target device.
This means, we lose the tracking of cursor for the extra mirror, thus
can lead to above corruption.
[FIX]
The extra mirror is never a reliable one, at the beginning of
dev-replace, the reliability is zero, while only at the end of the
replace it's a fully reliable mirror.
We either do the complex tracking, or never trust it.
IMHO it's much easier to maintain if we don't trust it at all, and the
extra mirror can only benefit for a limited period of time (during
replace).
Thus this patch would completely remove the ability to use target device
as an extra mirror.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_io_context structure, we have a pointer raid_map, which
indicates the logical bytenr for each stripe.
But considering we always call sort_parity_stripes(), the result
raid_map[] is always sorted, thus raid_map[0] is always the logical
bytenr of the full stripe.
So why we waste the space and time (for sorting) for raid_map?
This patch will replace btrfs_io_context::raid_map with a single u64
number, full_stripe_start, by:
- Replace btrfs_io_context::raid_map with full_stripe_start
- Replace call sites using raid_map[0] to use full_stripe_start
- Replace call sites using raid_map[i] to compare with nr_data_stripes.
The benefits are:
- Less memory wasted on raid_map
It's sizeof(u64) * num_stripes vs sizeof(u64).
It'll always save at least one u64, and the benefit grows larger with
num_stripes.
- No more weird alloc_btrfs_io_context() behavior
As there is only one fixed size + one variable length array.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For btrfs dev-replace, we have to duplicate writes to the source
device into the target device.
For non-RAID56, all writes into the same mapped ranges are sharing the
same content, thus they don't really need to bother anything.
(E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the
same write to all involved devices).
But for RAID56, all stripes contain different content, thus we must
have a clear mapping of which stripe is duplicated from which original
stripe.
Currently we use a complex way using tgtdev_map[] array, e.g:
num_tgtdevs = 1
tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace.
tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace,
and it's duplicated to stripes[3].
tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace.
But this is wasting some space, and ignores one important thing for
dev-replace, there is at most one running replace.
Thus we can change it to a fixed array to represent the mapping:
replace_nr_stripes = 1
replace_stripe_src = 1 <- Means stripes[1] is involved in replace.
thus the extra stripe is a copy of
stripes[1]
By this we can save some space for bioc on RAID56 chunks with many
devices. And we get rid of one variable sized array from bioc.
Thus the patch involves the following changes:
- Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes
and @replace_stripe_src.
@num_tgtdevs is just renamed to @replace_nr_stripes.
While the mapping is completely changed.
- Add extra ASSERT()s for RAID56 code
- Only add two more extra stripes for dev-replace cases.
As we have an upper limit on how many dev-replace stripes we can have.
- Unify the behavior of handle_ops_on_dev_replace()
Previously handle_ops_on_dev_replace() go two different paths for
WRITE and GET_READ_MIRRORS.
Now unify them by always going the WRITE path first (with at most 2
replace stripes), then if we're doing GET_READ_MIRRORS and we have 2
extra stripes, just drop one stripe.
- Remove the @real_stripes argument from alloc_btrfs_io_context()
As we don't need the old variable length array any more.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
That structure is our ultimate object for all __btrfs_map_block()
related functions. We have some hard to understand members, like
tgtdev_map, but without any comments.
This patch will improve the situation:
- Add extra comments for num_stripes, mirror_num, num_tgtdevs and
tgtdev_map[]
Especially for the last two members, add a dedicated (thus very long)
comments for them, with example to explain it.
- Shrink those int members to u16.
In fact our on-disk format is only using u16 for num_stripes, thus
no need to use int at all.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no memory re-allocation for handle_ops_on_dev_replace(), thus
we don't need to pass a btrfs_io_context pointer.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are quite some div64 calls inside btrfs_map_block() and its
variants.
Such calls are for @stripe_nr, where @stripe_nr is the number of
stripes before our logical bytenr inside a chunk.
However we can eliminate such div64 calls by just reducing the width of
@stripe_nr from 64 to 32.
This can be done because our chunk size limit is already 10G, with fixed
stripe length 64K.
Thus a U32 is definitely enough to contain the number of stripes.
With such width reduction, we can get rid of slower div64, and extra
warning for certain 32bit arch.
This patch would do:
- Add a new tree-checker chunk validation on chunk length
Make sure no chunk can reach 256G, which can also act as a bitflip
checker.
- Reduce the width from u64 to u32 for @stripe_nr variables
- Replace unnecessary div64 calls with regular modulo and division
32bit division and modulo are much faster than 64bit operations, and
we are finally free of the div64 fear at least in those involved
functions.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs doesn't support stripe lengths other than 64KiB.
This is already set in the tree-checker.
There is really no meaning to record that fixed value in map_lookup for
now, and can all be replaced with BTRFS_STRIPE_LEN.
Furthermore we can use the fix stripe length to do the following
optimization:
- Use BTRFS_STRIPE_LEN_SHIFT to replace some 64bit division
Now we only need to do a right shift.
And the value of BTRFS_STRIPE_LEN itself is already too large for bit
shift, thus if we accidentally use BTRFS_STRIPE_LEN to do bit shift,
a compiler warning would be triggered.
Thus this bit shift optimization would be safe.
- Use BTRFS_STRIPE_LEN_MASK to calculate the offset inside a stripe
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes mkfs/mount/check failures due to race with systemd-udevd
scan.
During the device scan initiated by systemd-udevd, other user space
EXCL operations such as mkfs, mount, or check may get blocked and result
in a "Device or resource busy" error. This is because the device
scan process opens the device with the EXCL flag in the kernel.
Two reports were received:
- btrfs/179 test case, where the fsck command failed with the -EBUSY
error
- LTP pwritev03 test case, where mkfs.vfs failed with
the -EBUSY error, when mkfs.vfs tried to overwrite old btrfs filesystem
on the device.
In both cases, fsck and mkfs (respectively) were racing with a
systemd-udevd device scan, and systemd-udevd won, resulting in the
-EBUSY error for fsck and mkfs.
Reproducing the problem has been difficult because there is a very
small window during which these userspace threads can race to
acquire the exclusive device open. Even on the system where the problem
was observed, the problem occurrences were anywhere between 10 to 400
iterations and chances of reproducing decreases with debug printk()s.
However, an exclusive device open is unnecessary for the scan process,
as there are no write operations on the device during scan. Furthermore,
during the mount process, the superblock is re-read in the below
function call chain:
btrfs_mount_root
btrfs_open_devices
open_fs_devices
btrfs_open_one_device
btrfs_get_bdev_and_sb
So, to fix this issue, removes the FMODE_EXCL flag from the scan
operation, and add a comment.
The case where mkfs may still write to the device and a scan is running,
the btrfs signature is not written at that time so scan will not
recognize such device.
Reported-by: Sherry Yang <sherry.yang@oracle.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/oe-lkp/202303170839.fdf23068-oliver.sang@intel.com
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
During my scrub rework, I did a stupid thing like this:
bio->bi_iter.bi_sector = stripe->logical;
btrfs_submit_bio(fs_info, bio, stripe->mirror_num);
Above bi_sector assignment is using logical address directly, which
lacks ">> SECTOR_SHIFT".
This results a read on a range which has no chunk mapping.
This results the following crash:
BTRFS critical (device dm-1): unable to find logical 11274289152 length 65536
assertion failed: !IS_ERR(em), in fs/btrfs/volumes.c:6387
Sure this is all my fault, but this shows a possible problem in real
world, that some bit flip in file extents/tree block can point to
unmapped ranges, and trigger above ASSERT(), or if CONFIG_BTRFS_ASSERT
is not configured, cause invalid pointer access.
[PROBLEMS]
In the above call chain, we just don't handle the possible error from
btrfs_get_chunk_map() inside __btrfs_map_block().
[FIX]
The fix is straightforward, replace the ASSERT() with proper error
handling (callers handle errors already).
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_get_io_geometry has a single caller, we can massage it
into a form that is more suitable for that caller and remove the
marshalling into and out of struct btrfs_io_geometry.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
There quite a few spelling mistakes as found using codespell. Fix them.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this check to make sure we don't accidentally add older devices
that may have disappeared and re-appeared with an older generation from
being added to an fs_devices (such as a replace source device). This
makes sense, we don't want stale disks in our file system. However for
single disks this doesn't really make sense.
I've seen this in testing, but I was provided a reproducer from a
project that builds btrfs images on loopback devices. The loopback
device gets cached with the new generation, and then if it is re-used to
generate a new file system we'll fail to mount it because the new fs is
"older" than what we have in cache.
Fix this by freeing the cache when closing the device for a single device
filesystem. This will ensure that the mount command passed device path is
scanned successfully during the next mount.
CC: stable@vger.kernel.org # 5.10+
Reported-by: Daan De Meyer <daandemeyer@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There was a recent regression in btrfs/177 that started happening with
the size class patches ("btrfs: introduce size class to block group
allocator"). This however isn't a regression introduced by those
patches, but rather the bug was uncovered by a change in behavior in
these patches. The patches triggered more chunk allocations in the
^free-space-tree case, which uncovered a race with device shrink.
The problem is we will set the device total size to the new size, and
use this to find a hole for a device extent. However during shrink we
may have device extents allocated past this range, so we could
potentially find a hole in a range past our new shrink size. We don't
actually limit our found extent to the device size anywhere, we assume
that we will not find a hole past our device size. This isn't true with
shrink as we're relocating block groups and thus creating holes past the
device size.
Fix this by making sure we do not search past the new device size, and
if we wander into any device extents that start after our device size
simply break from the loop and use whatever hole we've already found.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
write_one_page is an awkward interface that expects the page locked and
->writepage to be implemented. Replace that by zeroing the signature
bytes and synchronize the block device page using the proper bdev
helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_scratch_superblocks open codes scratching super block of a
non-zoned super block. Split the code to read, zero and write the
superblock for regular devices into a separate helper.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When test case btrfs/219 (aka, mount a registered device but with a lower
generation) failed, there is not any useful information for the end user
to find out what's going wrong.
The mount failure just looks like this:
# mount -o loop /tmp/219.img2 /mnt/btrfs/
mount: /mnt/btrfs: mount(2) system call failed: File exists.
dmesg(1) may have more information after failed mount system call.
While the dmesg contains nothing but the loop device change:
loop1: detected capacity change from 0 to 524288
[CAUSE]
In device_list_add() we have a lot of extra checks to reject invalid
cases.
That function also contains the regular device scan result like the
following prompt:
BTRFS: device fsid 6222333e-f9f1-47e6-b306-55ddd4dcaef4 devid 1 transid 8 /dev/loop0 scanned by systemd-udevd (3027)
But unfortunately not all errors have their own error messages, thus if
we hit something wrong in device_add_list(), there may be no error
messages at all.
[FIX]
Add errors message for all non-ENOMEM errors.
For ENOMEM, I'd say we're in a much worse situation, and there should be
some OOM messages way before our call sites.
CC: stable@vger.kernel.org # 6.0+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Store the error code before freeing the extent_map. Though it's
reference counted structure, in that function it's the first and last
allocation so this would lead to a potential use-after-free.
The error can happen eg. when chunk is stored on a missing device and
the degraded mount option is missing.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721
Reported-by: eriri <1527030098@qq.com>
Fixes: adfb69af7d ("btrfs: add_missing_dev() should return the actual error")
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: void0red <void0red@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The code used by btrfs_submit_bio only interacts with the rest of
volumes.c through __btrfs_map_block (which itself is a more generic
version of two exported helpers) and does not really have anything
to do with volumes.c. Create a new bio.c file and a bio.h header
going along with it for the btrfs_bio-based storage layer, which
will grow even more going forward.
Also update the file with my copyright notice given that a large
part of the moved code was written or rewritten by me.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The __GFP_NOFAIL flag could loop indefinitely when allocation memory in
alloc_btrfs_io_context. The callers starting from __btrfs_map_block
already handle errors so it's safe to drop the flag.
Signed-off-by: Li zeming <zeming@nfschina.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If dev-replace failed to re-construct its data/metadata, the kernel
message would be incorrect for the missing device:
BTRFS info (device dm-1): dev_replace from <missing disk> (devid 2) to /dev/mapper/test-scratch2 started
BTRFS error (device dm-1): failed to rebuild valid logical 38862848 for dev (efault)
Note the above "dev (efault)" of the second line.
While the first line is properly reporting "<missing disk>".
[CAUSE]
Although dev-replace is using btrfs_dev_name(), the heavy lifting work
is still done by scrub (scrub is reused by both dev-replace and regular
scrub).
Unfortunately scrub code never uses btrfs_dev_name() helper, as it's
only declared locally inside dev-replace.c.
[FIX]
Fix the output by:
- Move the btrfs_dev_name() helper to volumes.h
- Use btrfs_dev_name() to replace open-coded rcu_str_deref() calls
Only zoned code is not touched, as I'm not familiar with degraded
zoned code.
- Constify return value and parameter
Now the output looks pretty sane:
BTRFS info (device dm-1): dev_replace from <missing disk> (devid 2) to /dev/mapper/test-scratch2 started
BTRFS error (device dm-1): failed to rebuild valid logical 38862848 for dev <missing disk>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a repeating code section in the parent function after calling
btrfs_alloc_device(), as below:
name = rcu_string_strdup(path, GFP_...);
if (!name) {
btrfs_free_device(device);
return ERR_PTR(-ENOMEM);
}
rcu_assign_pointer(device->name, name);
Except in add_missing_dev() for obvious reasons.
This patch consolidates that repeating code into the btrfs_alloc_device()
itself so that the parent function doesn't have to duplicate code.
This consolidation also helps to review issues regarding RCU lock
violation with device->name.
Parent function device_list_add() and add_missing_dev() use GFP_NOFS for
the allocation, whereas the rest of the parent functions use GFP_KERNEL,
so bring the NOFS allocation context using memalloc_nofs_save() in the
function device_list_add() and add_missing_dev() is already doing it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers except one pass NULL, so the parameter can be dropped and
the inode::io_tree initialization can be open coded.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The div_factor* helpers calculate fraction or percentage fraction. The
name is a bit confusing, we use it only for percentage calculations and
there are two helpers.
There's a helper mult_frac that's for general fractions, that tries to
be accurate but we multiply and divide by small numbers so we can use
the div_u64 helper.
Rename the div_factor* helpers and use 1..100 percentage range, also drop
the case checking for percentage == 100, it's never hit.
The conversions:
* div_factor calculates tenths and the numbers need to be adjusted
* div_factor_fine is direct replacement
Signed-off-by: David Sterba <dsterba@suse.com>
This will make syncing fs.h to user space a little easier if we can pull
the super block specific helpers out of fs.h and put them in super.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into scrub.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into relocation.h to cut down on code in
ctree.h
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into ioctl.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into uuid-tree.h to cut down on the code in
ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update, reformat or reword function comments. This also removes the kdoc
marker so we don't get reports when the function name is missing.
Changes made:
- remove kdoc markers
- reformat the brief description to be a proper sentence
- reword to imperative voice
- align parameter list
- fix typos
Signed-off-by: David Sterba <dsterba@suse.com>
This is a large patch, but because they're all macros it's impossible to
split up. Simply copy all of the item accessors in ctree.h and paste
them in accessors.h, and then update any files to include the header so
everything compiles.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
We have several fs wide related helpers in ctree.h. The bulk of these
are the incompat flag test helpers, but there are things such as
btrfs_fs_closing() and the read only helpers that also aren't directly
related to the ctree code. Move these into a fs.h header, which will
serve as the location for file system wide related helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a request to automatically enable async discard for capable
devices. We can do that, the async mode is designed to wait for larger
freed extents and is not intrusive, with limits to iops, kbps or latency.
The status and tunables will be exported in /sys/fs/btrfs/FSID/discard .
The automatic selection is done if there's at least one discard capable
device in the filesystem (not capable devices are skipped). Mounting
with any other discard option will honor that option, notably mounting
with nodiscard will keep it disabled.
Link: https://lore.kernel.org/linux-btrfs/CAEg-Je_b1YtdsCR0zS5XZ_SbvJgN70ezwvRwLiCZgDGLbeMB=w@mail.gmail.com/
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
When performing seeding on a zoned filesystem it is necessary to
initialize each zoned device's btrfs_zoned_device_info structure,
otherwise mounting the filesystem will cause a NULL pointer dereference.
This was uncovered by fstests' testcase btrfs/163.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When cloning a btrfs_device, we're not cloning the associated
btrfs_zoned_device_info structure of the device in case of a zoned
filesystem.
Later on this leads to a NULL pointer dereference when accessing the
device's zone_info for instance when setting a zone as active.
This was uncovered by fstests' testcase btrfs/161.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
syzkaller found a failed assertion:
assertion failed: (args->devid != (u64)-1) || args->missing, in fs/btrfs/volumes.c:6921
This can be triggered when we set devid to (u64)-1 by ioctl. In this
case, the match of devid will be skipped and the match of device may
succeed incorrectly.
Patch 562d7b1512 introduced this function which is used to match device.
This function contains two matching scenarios, we can distinguish them by
checking the value of args->missing rather than check whether args->devid
and args->uuid is default value.
Reported-by: syzbot+031687116258450f9853@syzkaller.appspotmail.com
Fixes: 562d7b1512 ("btrfs: handle device lookup with btrfs_dev_lookup_args")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are two reports (the earliest one from LKP, a more recent one from
kernel bugzilla) that we can have some chunks with 0 as sub_stripes.
This will cause divide-by-zero errors at btrfs_rmap_block, which is
introduced by a recent kernel patch ac0677348f ("btrfs: merge
calculations for simple striped profiles in btrfs_rmap_block"):
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID10)) {
stripe_nr = stripe_nr * map->num_stripes + i;
stripe_nr = div_u64(stripe_nr, map->sub_stripes); <<<
}
[CAUSE]
From the more recent report, it has been proven that we have some chunks
with 0 as sub_stripes, mostly caused by older mkfs.
It turns out that the mkfs.btrfs fix is only introduced in 6718ab4d33aa
("btrfs-progs: Initialize sub_stripes to 1 in btrfs_alloc_data_chunk")
which is included in v5.4 btrfs-progs release.
So there would be quite some old filesystems with such 0 sub_stripes.
[FIX]
Just don't trust the sub_stripes values from disk.
We have a trusted btrfs_raid_array[] to fetch the correct sub_stripes
numbers for each profile and that are fixed.
By this, we can keep the compatibility with older filesystems while
still avoid divide-by-zero bugs.
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Viktor Kuzmin <kvaster@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216559
Fixes: ac0677348f ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block")
CC: stable@vger.kernel.org # 6.0
Reviewed-by: Su Yue <glass@fydeos.io>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BACKGROUND]
There is an incident report that, one user hibernated the system, with
one btrfs on removable device still mounted.
Then by some incident, the btrfs got mounted and modified by another
system/OS, then back to the hibernated system.
After resuming from the hibernation, new write happened into the victim btrfs.
Now the fs is completely broken, since the underlying btrfs is no longer
the same one before the hibernation, and the user lost their data due to
various transid mismatch.
[REPRODUCER]
We can emulate the situation using the following small script:
truncate -s 1G $dev
mkfs.btrfs -f $dev
mount $dev $mnt
fsstress -w -d $mnt -n 500
sync
xfs_freeze -f $mnt
cp $dev $dev.backup
# There is no way to mount the same cloned fs on the same system,
# as the conflicting fsid will be rejected by btrfs.
# Thus here we have to wipe the fs using a different btrfs.
mkfs.btrfs -f $dev.backup
dd if=$dev.backup of=$dev bs=1M
xfs_freeze -u $mnt
fsstress -w -d $mnt -n 20
umount $mnt
btrfs check $dev
The final fsck will fail due to some tree blocks has incorrect fsid.
This is enough to emulate the problem hit by the unfortunate user.
[ENHANCEMENT]
Although such case should not be that common, it can still happen from
time to time.
From the view of btrfs, we can detect any unexpected super block change,
and if there is any unexpected change, we just mark the fs read-only,
and thaw the fs.
By this we can limit the damage to minimal, and I hope no one would lose
their data by this anymore.
Suggested-by: Goffredo Baroncelli <kreijack@libero.it>
Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The I/O context structure is only used to pass the btrfs_device to
the end I/O handler for I/Os that go to a single device.
Stop allocating the I/O context for these cases by passing the optional
btrfs_io_stripe argument to __btrfs_map_block to query the mapping
information and then using a fast path submission and I/O completion
handler. As the old btrfs_io_context based I/O submission path is
only used for mirrored writes, rename the functions to make that
clear and stop setting the btrfs_bio device and mirror_num field
that is only used for reads.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no need for most of the btrfs_io_context when doing I/O to a
single device. To support such I/O without the extra btrfs_io_context
allocation, turn the mirror_num argument into a pointer so that it can
be used to output the selected mirror number, and add an optional
argument that points to a btrfs_io_stripe structure, which will be
filled with a single extent if provided by the caller.
In that case the btrfs_io_context allocation can be skipped as all
information for the single device I/O is provided in the mirror_num
argument and the on-stack btrfs_io_stripe. A caller that makes use of
this new argument will be added in the next commit.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the orig_bio argument as it can be derived from the bioc, and
the clone argument as it can be calculated from bioc and dev_nr.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Split out a low-level btrfs_submit_dev_bio helper that just submits
the bio without any cloning decisions or setting up the end I/O handler
for future reuse by a different caller.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_bio end I/O handling is a bit of a mess. The bi_end_io
handler and bi_private pointer of the embedded struct bio are both used
to handle the completion of the high-level btrfs_bio and for the I/O
completion for the low-level device that the embedded bio ends up being
sent to.
To support this bi_end_io and bi_private are saved into the
btrfs_io_context structure and then restored after the bio sent to the
underlying device has completed the actual I/O.
Untangle this by adding an end I/O handler and private data to struct
btrfs_bio for the high-level btrfs_bio based completions, and leave the
actual bio bi_end_io handler and bi_private pointer entirely to the
low-level device I/O.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The parity raid write/recover functionality is currently not very well
abstracted from the bio submission and completion handling in volumes.c:
- the raid56 code directly completes the original btrfs_bio fed into
btrfs_submit_bio instead of dispatching back to volumes.c
- the raid56 code consumes the bioc and bio_counter references taken
by volumes.c, which also leads to special casing of the calls from
the scrub code into the raid56 code
To fix this up supply a bi_end_io handler that calls back into the
volumes.c machinery, which then puts the bioc, decrements the bio_counter
and completes the original bio, and updates the scrub code to also
take ownership of the bioc and bio_counter in all cases.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The stripes_pending in the btrfs_io_context counts number of inflight
low-level bios for an upper btrfs_bio. For reads this is generally
one as reads are never cloned, while for writes we can trivially use
the bio remaining mechanisms that is used for chained bios.
To be able to make use of that mechanism, split out a separate trivial
end_io handler for the cloned bios that does a minimal amount of error
tracking and which then calls bio_endio on the original bio to transfer
control to that, with the remaining counter making sure it is completed
last. This then allows to merge btrfs_end_bioc into the original bio
bi_end_io handler.
To make this all work all error handling needs to happen through the
bi_end_io handler, which requires a small amount of reshuffling in
submit_stripe_bio so that the bio is cloned already by the time the
suitability of the device is checked.
This reduces the size of the btrfs_io_context and prepares splitting
the btrfs_bio at the stripe boundary.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Stop grabbing an extra bio_counter reference for each clone bio in a
mirrored write and instead just release the one original reference in
btrfs_end_bioc once all the bios for a single btrfs_bio have completed
instead of at the end of btrfs_submit_bio once all bios have been
submitted.
This means the reference is now carried by the "upper" btrfs_bio only
instead of each lower bio.
Also remove the now unused btrfs_bio_counter_inc_noblocked helper.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the operation to btrfs_bio_alloc, matching what bio_alloc_bioset
set does.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
volumes.c is the place that implements the storage layer using the
btrfs_bio structure, so move the bio_set and allocation helpers there
as well.
To make up for the new initialization boilerplate, merge the two
init/exit helpers in extent_io.c into a single one.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before when this was modifying the bit field we had to protect it with
the bg->lock, however now we're using bit helpers so we can stop
using the bg->lock.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use this during device replace for zoned devices, we were simply
taking the lock because it was in a bit field and we needed the lock to
be safe with other modifications in the bitfield. With the bit helpers
we no longer require that locking.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use a bit field in the btrfs_block_group for different flags, however
this is awkward because we have to hold the block_group->lock for any
modification of any of these fields, and makes the code clunky for a few
of these flags. Convert these to a properly flags setup so we can
utilize the bit helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BEHAVIOR CHANGE]
Since commit f6fca3917b ("btrfs: store chunk size in space-info
struct"), btrfs no longer can create larger data chunks than 1G:
mkfs.btrfs -f -m raid1 -d raid0 $dev1 $dev2 $dev3 $dev4
mount $dev1 $mnt
btrfs balance start --full $mnt
btrfs balance start --full $mnt
umount $mnt
btrfs ins dump-tree -t chunk $dev1 | grep "DATA|RAID0" -C 2
Before that offending commit, what we got is a 4G data chunk:
item 6 key (FIRST_CHUNK_TREE CHUNK_ITEM 9492758528) itemoff 15491 itemsize 176
length 4294967296 owner 2 stripe_len 65536 type DATA|RAID0
io_align 65536 io_width 65536 sector_size 4096
num_stripes 4 sub_stripes 1
Now what we got is only 1G data chunk:
item 6 key (FIRST_CHUNK_TREE CHUNK_ITEM 6271533056) itemoff 15491 itemsize 176
length 1073741824 owner 2 stripe_len 65536 type DATA|RAID0
io_align 65536 io_width 65536 sector_size 4096
num_stripes 4 sub_stripes 1
This will increase the number of data chunks by the number of devices,
not only increase system chunk usage, but also greatly increase mount
time.
Without a proper reason, we should not change the max chunk size.
[CAUSE]
Previously, we set max data chunk size to 10G, while max data stripe
length to 1G.
Commit f6fca3917b ("btrfs: store chunk size in space-info struct")
completely ignored the 10G limit, but use 1G max stripe limit instead,
causing above shrink in max data chunk size.
[FIX]
Fix the max data chunk size to 10G, and in decide_stripe_size_regular()
we limit stripe_size to 1G manually.
This should only affect data chunks, as for metadata chunks we always
set the max stripe size the same as max chunk size (256M or 1G
depending on fs size).
Now the same script result the same old result:
item 6 key (FIRST_CHUNK_TREE CHUNK_ITEM 9492758528) itemoff 15491 itemsize 176
length 4294967296 owner 2 stripe_len 65536 type DATA|RAID0
io_align 65536 io_width 65536 sector_size 4096
num_stripes 4 sub_stripes 1
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Fixes: f6fca3917b ("btrfs: store chunk size in space-info struct")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_get_dev_args_from_path(), btrfs_get_bdev_and_sb() can fail if
the path is invalid. In this case, btrfs_get_dev_args_from_path()
returns directly without freeing args->uuid and args->fsid allocated
before, which causes memory leak.
To fix these possible leaks, when btrfs_get_bdev_and_sb() fails,
btrfs_put_dev_args_from_path() is called to clean up the memory.
Reported-by: TOTE Robot <oslab@tsinghua.edu.cn>
Fixes: faa775c41d ("btrfs: add a btrfs_get_dev_args_from_path helper")
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Zixuan Fu <r33s3n6@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fold it into the only caller.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Transfer the bio counter reference acquired by btrfs_submit_bio to
raid56_parity_write and raid56_parity_recovery together with the bio
that the reference was acquired for instead of acquiring another
reference in those helpers and dropping the original one in
btrfs_submit_bio.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission does and avoids any confusion on who
needs to handle errors.
Also use the proper bool type for the generic_io argument.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission does and avoids any confusion on who
needs to handle errors.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches
what the block layer submission does and avoids any confusion on who
needs to handle errors.
As this requires touching all the callers, rename the function to
btrfs_submit_bio, which describes the functionality much better.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
For profiles other than RAID56, __btrfs_map_block() returns @map_length
as min(stripe_end, logical + *length), which is also the same result
from btrfs_get_io_geometry().
But for RAID56, __btrfs_map_block() returns @map_length as stripe_len.
This strange behavior is going to hurt incoming bio split at
btrfs_map_bio() time, as we will use @map_length as bio split size.
Fix this behavior by returning @map_length by the same calculation as
for other profiles.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The raid56 code assumes a fixed stripe length BTRFS_STRIPE_LEN but there
are functions passing it as arguments, this is not necessary. The fixed
value has been used for a long time and though the stripe length should
be configurable by super block member stripesize, this hasn't been
implemented and would require more changes so we don't need to keep this
code around until then.
Partially based on a patch from Qu Wenruo.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The chained assignments may be convenient to write, but make readability
a bit worse as it's too easy to overlook that there are several values
set on the same line while this is rather an exception. Making it
consistent everywhere avoids surprises.
The pattern where inode times are initialized reuses the first value and
the order is mtime, ctime. In other blocks the assignments are expanded
so the order of variables is similar to the neighboring code.
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs on-disk format has reserved the first 1MiB for the primary super
block (at 64KiB offset) and bootloaders may also use this space.
This behavior is only introduced since v4.1 btrfs-progs release,
although kernel can ensure we never touch the reserved range of super
blocks, it's better to inform the end users, and a balance will resolve
the problem.
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ update changelog and message ]
Signed-off-by: David Sterba <dsterba@suse.com>
There's a reserved space on each device of size 1MiB that can be used by
bootloaders or to avoid accidental overwrite. Use a symbolic constant
with the explaining comment instead of hard coding the value and
multiple comments.
Note: since btrfs-progs v4.1, mkfs.btrfs will reserve the first 1MiB for
the primary super block (at offset 64KiB), until then the range could
have been used by mistake. Kernel has been always respecting the 1MiB
range for writes.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
For all non-RAID56 profiles, we can use btrfs_raid_array[].ncopies
directly, only for RAID5 and RAID6 we need some extra handling as
there's no table value for that.
For RAID10 there's a change from sub_stripes to ncopies. The values are
the same but semantically we want to use number of copies, as this is
what btrfs_num_copies does.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the raid table instead of hard coded values and rename the helper as
it is exported. This could make later extension on RAID56 based
profiles easier.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In __btrfs_map_block() we have an assignment to @max_errors using
nr_parity_stripes().
Although it works for RAID56 it's confusing. Replace it with
btrfs_chunk_max_errors().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For scrub_stripe() we can easily calculate the dev extent length as we
have the full info of the chunk.
Thus there is no need to pass @dev_extent_len from the caller, and we
introduce a helper, btrfs_calc_stripe_length(), to do the calculation
from extent_map structure.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Mapping block for discard doesn't really share any code with the regular
block mapping case. Split it out into an entirely separate helper
that just returns an array of btrfs_discard_stripe structures and the
number of stripes.
This removes the need for the length field in the btrfs_io_context
structure, so remove tht.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bios submitted from btrfs_map_bio don't really interact with the
rest of btrfs and the only btrfs_bio member actually used in the
low-level bios is the pointer to the btrfs_io_context used for endio
handler.
Use a union in struct btrfs_io_stripe that allows the endio handler to
find the btrfs_io_context and remove the spurious ->device assignment
so that a plain fs_bio_set bio can be used for the low-level bios
allocated inside btrfs_map_bio.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Move all per-stripe handling into submit_stripe_bio and use a label to
cleanup instead of duplicating the logic.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
All reads bio that go through btrfs_map_bio need to be completed in
user context. And read I/Os are the most common and timing critical
in almost any file system workloads.
Embed a work_struct into struct btrfs_bio and use it to complete all
read bios submitted through btrfs_map, using the REQ_META flag to decide
which workqueue they are placed on.
This removes the need for a separate 128 byte allocation (typically
rounded up to 192 bytes by slab) for all reads with a size increase
of 24 bytes for struct btrfs_bio. Future patches will reorganize
struct btrfs_bio to make use of this extra space for writes as well.
(All sizes are based a on typical 64-bit non-debug build)
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Assign ->mirror_num and ->bi_status in btrfs_end_bioc instead of
duplicating the logic in the callers. Also remove the bio argument as
it always must be bioc->orig_bio and the now pointless bioc_error that
did nothing but assign bi_sector to the same value just sampled in the
caller.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The chunk size is stored in the btrfs_space_info structure. It is
initialized at the start and is then used.
A new API is added to update the current chunk size. This API is used
to be able to expose the chunk_size as a sysfs setting.
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename and merge helpers, switch atomic type to u64, style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
The following functions do special handling for RAID56 chunks:
- btrfs_is_parity_mirror()
Check if the range is in RAID56 chunks.
- btrfs_full_stripe_len()
Either return sectorsize for non-RAID56 profiles or full stripe length
for RAID56 chunks.
But if a filesystem without any RAID56 chunks, it will not have RAID56
incompat flags, and we can skip the chunk tree looking up completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmKLxJAACgkQxWXV+ddt
WDvC4BAAnSNwZ15FJKe5Y423f6PS6EXjyMuc5t/fW6UumTTbI+tsS+Glkis+JNBf
BiDZSlVQmiK9WoQSJe04epZgHaK8MaCARyZaRaxjDC4Nvfq4DlD9mbAU9D6e7tZY
Mo8M99D8wDW+SB+P8RBpNjwB/oGCMmE3nKC83g+1ObmA0FVRCyQ1Kazf8RzNT1rZ
DiaJoKTvU1/wDN3/1rw5yG+EfW2m9A14gRCihslhFYaDV7jhpuabl8wLT7MftZtE
MtJ6EOOQbgIDjnp5BEIrPmowW/N0tKDT/gorF7cWgLG2R1cbSlKgqSH1Sq7CjFUE
AKj/DwfqZArPLpqMThWklCwy2B9qDEezrQSy7renP/vkeFLbOp8hQuIY5KRzohdG
oDI8ThlQGtCVjbny6NX/BbCnWRAfTz0TquCgag3Xl8NbkRFgFJtkf/cSxzb+3LW1
tFeiUyTVLXVDS1cZLwgcb29Rrtp4bjd5/v3uECQlVD+or5pcAqSMkQgOBlyQJGbE
Xb0nmPRihzQ8D4vINa63WwRyq0+QczVjvBxKj1daas0VEKGd32PIBS/0Qha+EpGl
uFMiHBMSfqyl8QcShFk0cCbcgPMcNc7I6IAbXCE/WhhFG0ytqm9vpmlLqsTrXmHH
z7/Eye/waqgACNEXoA8C4pyYzduQ4i1CeLDOdcsvBU6XQSuicSM=
=lv6P
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Features:
- subpage:
- support for PAGE_SIZE > 4K (previously only 64K)
- make it work with raid56
- repair super block num_devices automatically if it does not match
the number of device items
- defrag can convert inline extents to regular extents, up to now
inline files were skipped but the setting of mount option
max_inline could affect the decision logic
- zoned:
- minimal accepted zone size is explicitly set to 4MiB
- make zone reclaim less aggressive and don't reclaim if there are
enough free zones
- add per-profile sysfs tunable of the reclaim threshold
- allow automatic block group reclaim for non-zoned filesystems, with
sysfs tunables
- tree-checker: new check, compare extent buffer owner against owner
rootid
Performance:
- avoid blocking on space reservation when doing nowait direct io
writes (+7% throughput for reads and writes)
- NOCOW write throughput improvement due to refined locking (+3%)
- send: reduce pressure to page cache by dropping extent pages right
after they're processed
Core:
- convert all radix trees to xarray
- add iterators for b-tree node items
- support printk message index
- user bulk page allocation for extent buffers
- switch to bio_alloc API, use on-stack bios where convenient, other
bio cleanups
- use rw lock for block groups to favor concurrent reads
- simplify workques, don't allocate high priority threads for all
normal queues as we need only one
- refactor scrub, process chunks based on their constraints and
similarity
- allocate direct io structures on stack and pass around only
pointers, avoids allocation and reduces potential error handling
Fixes:
- fix count of reserved transaction items for various inode
operations
- fix deadlock between concurrent dio writes when low on free data
space
- fix a few cases when zones need to be finished
VFS, iomap:
- add helper to check if sb write has started (usable for assertions)
- new helper iomap_dio_alloc_bio, export iomap_dio_bio_end_io"
* tag 'for-5.19-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (173 commits)
btrfs: zoned: introduce a minimal zone size 4M and reject mount
btrfs: allow defrag to convert inline extents to regular extents
btrfs: add "0x" prefix for unsupported optional features
btrfs: do not account twice for inode ref when reserving metadata units
btrfs: zoned: fix comparison of alloc_offset vs meta_write_pointer
btrfs: send: avoid trashing the page cache
btrfs: send: keep the current inode open while processing it
btrfs: allocate the btrfs_dio_private as part of the iomap dio bio
btrfs: move struct btrfs_dio_private to inode.c
btrfs: remove the disk_bytenr in struct btrfs_dio_private
btrfs: allocate dio_data on stack
iomap: add per-iomap_iter private data
iomap: allow the file system to provide a bio_set for direct I/O
btrfs: add a btrfs_dio_rw wrapper
btrfs: zoned: zone finish unused block group
btrfs: zoned: properly finish block group on metadata write
btrfs: zoned: finish block group when there are no more allocatable bytes left
btrfs: zoned: consolidate zone finish functions
btrfs: zoned: introduce btrfs_zoned_bg_is_full
btrfs: improve error reporting in lookup_inline_extent_backref
...
In function btrfs_bg_flags_to_raid_index(), we use quite some if () to
convert the BTRFS_BLOCK_GROUP_* bits to a index number.
But the truth is, there is really no such need for so many branches at
all.
Since all BTRFS_BLOCK_GROUP_* flags are just one single bit set inside
BTRFS_BLOCK_GROUP_PROFILES_MASK, we can easily use ilog2() to calculate
their values.
This calculation has an anchor point, the lowest PROFILE bit, which is
RAID0.
Even it's fixed on-disk format and should never change, here I added
extra compile time checks to make it super safe:
1. Make sure RAID0 is always the lowest bit in PROFILE_MASK
This is done by finding the first (least significant) bit set of
RAID0 and PROFILE_MASK & ~RAID0.
2. Make sure RAID0 bit set beyond the highest bit of TYPE_MASK
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now the btrfs RAID56 infrastructure has migrated to use sector_ptr
interface, it should be safe to enable subpage support for RAID56.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs uses fixed stripe length (64K), thus u32 is wide enough
for the usage.
Furthermore, even in the future we choose to enlarge stripe length to
larger values, I don't believe we would want stripe as large as 4G or
larger.
So this patch will reduce the width for all in-memory structures and
parameters, this involves:
- RAID56 related function argument lists
This allows us to do direct division related to stripe_len.
Although we will use bits shift to replace the division anyway.
- btrfs_io_geometry structure
This involves one change to simplify the calculation of both @stripe_nr
and @stripe_offset, using div64_u64_rem().
And add extra sanity check to make sure @stripe_offset is always small
enough for u32.
This saves 8 bytes for the structure.
- map_lookup structure
This convert @stripe_len to u32, which saves 8 bytes. (saved 4 bytes,
and removed a 4-bytes hole)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a report that a btrfs has a bad super block num devices.
This makes btrfs to reject the fs completely.
BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here
BTRFS error (device sdd3): failed to read chunk tree: -22
BTRFS error (device sdd3): open_ctree failed
[CAUSE]
During btrfs device removal, chunk tree and super block num devs are
updated in two different transactions:
btrfs_rm_device()
|- btrfs_rm_dev_item(device)
| |- trans = btrfs_start_transaction()
| | Now we got transaction X
| |
| |- btrfs_del_item()
| | Now device item is removed from chunk tree
| |
| |- btrfs_commit_transaction()
| Transaction X got committed, super num devs untouched,
| but device item removed from chunk tree.
| (AKA, super num devs is already incorrect)
|
|- cur_devices->num_devices--;
|- cur_devices->total_devices--;
|- btrfs_set_super_num_devices()
All those operations are not in transaction X, thus it will
only be written back to disk in next transaction.
So after the transaction X in btrfs_rm_dev_item() committed, but before
transaction X+1 (which can be minutes away), a power loss happen, then
we got the super num mismatch.
This has been fixed by commit bbac58698a ("btrfs: remove device item
and update super block in the same transaction").
[FIX]
Make the super_num_devices check less strict, converting it from a hard
error to a warning, and reset the value to a correct one for the current
or next transaction commit.
As the number of device items is the critical information where the
super block num_devices is only a cached value (and also useful for
cross checking), it's safe to automatically update it. Other device
related problems like missing device are handled after that and may
require other means to resolve, like degraded mount. With this fix,
potentially affected filesystems won't fail mount and require the manual
repair by btrfs check.
Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the block_device to bio_alloc_clone instead of setting it later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepare for additional refactoring, btrfs_map_bio is direct caller of
submit_stripe_bio.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Require a separate call to the integrity checking helpers from the
actual bio submission.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Explicit type casts are not necessary when it's void* to another pointer
type.
Signed-off-by: Yu Zhe <yuzhe@nfschina.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In function btrfs_read_sys_array(), we allocate a real extent buffer
using btrfs_find_create_tree_block().
Such extent buffer will be even cached into buffer_radix tree, and using
btree inode address space.
However we only use such extent buffer to enable the accessors, thus we
don't even need to bother using real extent buffer, a dummy one is
what we really need.
And for dummy extent buffer, we no longer need to do any special
handling for the first page, as subpage helper is already doing it
properly.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function can be simplified by refactoring to use the new iterator
macro. No functional changes.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper to check the nonrot flag based on the block_device instead
of having to poke into the block layer internal request_queue.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220415045258.199825-12-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Use and embedded bios that is initialized when used instead of
bio_kmalloc plus bio_reset.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220406061228.410163-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When btrfs balance is interrupted with umount, the background balance
resumes on the next mount. There is a potential deadlock with FS freezing
here like as described in commit 26559780b953 ("btrfs: zoned: mark
relocation as writing"). Mark the process as sb_writing to avoid it.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a report that a btrfs has a bad super block num devices.
This makes btrfs to reject the fs completely.
BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here
BTRFS error (device sdd3): failed to read chunk tree: -22
BTRFS error (device sdd3): open_ctree failed
[CAUSE]
During btrfs device removal, chunk tree and super block num devs are
updated in two different transactions:
btrfs_rm_device()
|- btrfs_rm_dev_item(device)
| |- trans = btrfs_start_transaction()
| | Now we got transaction X
| |
| |- btrfs_del_item()
| | Now device item is removed from chunk tree
| |
| |- btrfs_commit_transaction()
| Transaction X got committed, super num devs untouched,
| but device item removed from chunk tree.
| (AKA, super num devs is already incorrect)
|
|- cur_devices->num_devices--;
|- cur_devices->total_devices--;
|- btrfs_set_super_num_devices()
All those operations are not in transaction X, thus it will
only be written back to disk in next transaction.
So after the transaction X in btrfs_rm_dev_item() committed, but before
transaction X+1 (which can be minutes away), a power loss happen, then
we got the super num mismatch.
[FIX]
Instead of starting and committing a transaction inside
btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and
pass it to btrfs_rm_dev_item().
And only commit the transaction after everything is done.
Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Syzbot reported a possible use-after-free in printing information
in device_list_add.
Very similar with the bug fixed by commit 0697d9a610 ("btrfs: don't
access possibly stale fs_info data for printing duplicate device"),
but this time the use occurs in btrfs_info_in_rcu.
Call Trace:
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
btrfs_printk+0x395/0x425 fs/btrfs/super.c:244
device_list_add.cold+0xd7/0x2ed fs/btrfs/volumes.c:957
btrfs_scan_one_device+0x4c7/0x5c0 fs/btrfs/volumes.c:1387
btrfs_control_ioctl+0x12a/0x2d0 fs/btrfs/super.c:2409
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this by modifying device->fs_info to NULL too.
Reported-and-tested-by: syzbot+82650a4e0ed38f218363@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a hung_task issue with running generic/068 on an SMR
device. The hang occurs while a process is trying to thaw the
filesystem. The process is trying to take sb->s_umount to thaw the
FS. The lock is held by fsstress, which calls btrfs_sync_fs() and is
waiting for an ordered extent to finish. However, as the FS is frozen,
the ordered extents never finish.
Having an ordered extent while the FS is frozen is the root cause of
the hang. The ordered extent is initiated from btrfs_relocate_chunk()
which is called from btrfs_reclaim_bgs_work().
This commit adds sb_*_write() around btrfs_relocate_chunk() call
site. For the usual "btrfs balance" command, we already call it with
mnt_want_file() in btrfs_ioctl_balance().
Fixes: 18bb8bbf13 ("btrfs: zoned: automatically reclaim zones")
CC: stable@vger.kernel.org # 5.13+
Link: https://github.com/naota/linux/issues/56
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Device add, remove, and replace all require balance, which doesn't work
right now on extent tree v2, so disable these for now.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With global root id's it makes it problematic to do backref lookups for
balance. This isn't hard to deal with, but future changes are going to
make it impossible to lookup backrefs on any COWonly roots, so go ahead
and disable balance for now on extent tree v2 until we can add balance
support back in future patches.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pointer to struct request_queue is used only to get device type
rotating or the non-rotating. So use it directly.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>