The build on x86_32 currently fails after commit
9bb2ec608a (objtool: Update Retpoline validation)
with:
arch/x86/kernel/../../x86/xen/xen-head.S:35: Error: no such instruction: `annotate_unret_safe'
ANNOTATE_UNRET_SAFE is defined in nospec-branch.h. And head_32.S is
missing this include. Fix this.
Fixes: 9bb2ec608a ("objtool: Update Retpoline validation")
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/63e23f80-033f-f64e-7522-2816debbc367@kernel.org
solved and the nightmare is complete, here's the next one: speculating
after RET instructions and leaking privileged information using the now
pretty much classical covert channels.
It is called RETBleed and the mitigation effort and controlling
functionality has been modelled similar to what already existing
mitigations provide.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLNdDYACgkQEsHwGGHe
VUrNAw/+OTFF7md0+17Ju6vvagc/nXfUxk/r0lWU9/KzbRXvPTZdPKTW4NN5c0IS
VnogyUGFFpzU3dKU2os9ejTD4kHNx0oLuBfQt4w7t4qR+g3+nAH0ywNjH/N1VTJt
iDpww7CxqloV+i9RCsWV+zQPMPfc2VMUhe6xqNB2CgEDrruzFrDASZR6zzarsKxY
x4rwHn0ZkV7zNJfcNpV2323qktqHgBtAFf7GlZK8hBsgsiSk+xDk9CODkfxfWIV7
o4BNvNmaUKDJL51hpuzvIzYwDSiRO5AXdjxHG/0CHc3r3dtA6Xt1elHbERAyUMuM
P+6XievP5ZV/xXXjoZ5Vla67o3bbGKmTo2WluvVGeg8ahzQEwyPGqeXn77hk+of+
BtasZyLgfdwSeWExxp0n5Nhh972TMpy5K4gqOFXcxvPSuTl6tTw77F1u0UQLaVVH
QzHNu+RO/2iQ/P30cOM11IbZ9sfcBOj+5mjfoDoR4qCtoCQfyfHK+HlwXjZ+uk98
xU/FnQbOKPRVxiyCVhrbKFxjW7iL7AIb0nRgxHzGGoIJ6A71Tbwa/5gGakE7WEBz
e7ce8NW2JFucGBFYyiBab6I6fB7lbvmqbNPerYEVoU5YxZkMu+xxyToqBnsyPfHZ
lxgEGREUaY8aZmGDfrD9EYyhhtQU/MwdpN+FY3xXQdUJkvkNaLg=
=0Ca0
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull lockdep fix for x86 retbleed from Borislav Petkov:
- Fix lockdep complaint for __static_call_fixup()
* tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/static_call: Serialize __static_call_fixup() properly
__static_call_fixup() invokes __static_call_transform() without holding
text_mutex, which causes lockdep to complain in text_poke_bp().
Adding the proper locking cures that, but as this is either used during
early boot or during module finalizing, it's not required to use
text_poke_bp(). Add an argument to __static_call_transform() which tells
it to use text_poke_early() for it.
Fixes: ee88d363d1 ("x86,static_call: Use alternative RET encoding")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
solved and the nightmare is complete, here's the next one: speculating
after RET instructions and leaking privileged information using the now
pretty much classical covert channels.
It is called RETBleed and the mitigation effort and controlling
functionality has been modelled similar to what already existing
mitigations provide.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLKqAgACgkQEsHwGGHe
VUoM5w/8CSvwPZ3otkhmu8MrJPtWc7eLDPjYN4qQP+19e+bt094MoozxeeWG2wmp
hkDJAYHT2Oik/qDuEdhFgNYwS7XGgbV3Py3B8syO4//5SD5dkOSG+QqFXvXMdFri
YsVqqNkjJOWk/YL9Ql5RS/xQewsrr0OqEyWWocuI6XAvfWV4kKvlRSd+6oPqtZEO
qYlAHTXElyIrA/gjmxChk1HTt5HZtK3uJLf4twNlUfzw7LYFf3+sw3bdNuiXlyMr
WcLXMwGpS0idURwP3mJa7JRuiVBzb4+kt8mWwWqA02FkKV45FRRRFhFUsy667r00
cdZBaWdy+b7dvXeliO3FN/x1bZwIEUxmaNy1iAClph4Ifh0ySPUkxAr8EIER7YBy
bstDJEaIqgYg8NIaD4oF1UrG0ZbL0ImuxVaFdhG1hopQsh4IwLSTLgmZYDhfn/0i
oSqU0Le+A7QW9s2A2j6qi7BoAbRW+gmBuCgg8f8ECYRkFX1ZF6mkUtnQxYrU7RTq
rJWGW9nhwM9nRxwgntZiTjUUJ2HtyXEgYyCNjLFCbEBfeG5QTg7XSGFhqDbgoymH
85vsmSXYxgTgQ/kTW7Fs26tOqnP2h1OtLJZDL8rg49KijLAnISClEgohYW01CWQf
ZKMHtz3DM0WBiLvSAmfGifScgSrLB5AjtvFHT0hF+5/okEkinVk=
=09fW
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 retbleed fixes from Borislav Petkov:
"Just when you thought that all the speculation bugs were addressed and
solved and the nightmare is complete, here's the next one: speculating
after RET instructions and leaking privileged information using the
now pretty much classical covert channels.
It is called RETBleed and the mitigation effort and controlling
functionality has been modelled similar to what already existing
mitigations provide"
* tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
x86/speculation: Disable RRSBA behavior
x86/kexec: Disable RET on kexec
x86/bugs: Do not enable IBPB-on-entry when IBPB is not supported
x86/entry: Move PUSH_AND_CLEAR_REGS() back into error_entry
x86/bugs: Add Cannon lake to RETBleed affected CPU list
x86/retbleed: Add fine grained Kconfig knobs
x86/cpu/amd: Enumerate BTC_NO
x86/common: Stamp out the stepping madness
KVM: VMX: Prevent RSB underflow before vmenter
x86/speculation: Fill RSB on vmexit for IBRS
KVM: VMX: Fix IBRS handling after vmexit
KVM: VMX: Prevent guest RSB poisoning attacks with eIBRS
KVM: VMX: Convert launched argument to flags
KVM: VMX: Flatten __vmx_vcpu_run()
objtool: Re-add UNWIND_HINT_{SAVE_RESTORE}
x86/speculation: Remove x86_spec_ctrl_mask
x86/speculation: Use cached host SPEC_CTRL value for guest entry/exit
x86/speculation: Fix SPEC_CTRL write on SMT state change
x86/speculation: Fix firmware entry SPEC_CTRL handling
x86/speculation: Fix RSB filling with CONFIG_RETPOLINE=n
...
Currently, the only way x86 can get an early boot RNG seed is via EFI,
which is generally always used now for physical machines, but is very
rarely used in VMs, especially VMs that are optimized for starting
"instantaneously", such as Firecracker's MicroVM. For tiny fast booting
VMs, EFI is not something you generally need or want.
Rather, the image loader or firmware should be able to pass a single
random seed, exactly as device tree platforms do with the "rng-seed"
property. Additionally, this is something that bootloaders can append,
with their own seed file management, which is something every other
major OS ecosystem has that Linux does not (yet).
Add SETUP_RNG_SEED, similar to the other eight setup_data entries that
are parsed at boot. It also takes care to zero out the seed immediately
after using, in order to retain forward secrecy. This all takes about 7
trivial lines of code.
Then, on kexec_file_load(), a new fresh seed is generated and passed to
the next kernel, just as is done on device tree architectures when
using kexec. And, importantly, I've tested that QEMU is able to properly
pass SETUP_RNG_SEED as well, making this work for every step of the way.
This code too is pretty straight forward.
Together these measures ensure that VMs and nested kexec()'d kernels
always receive a proper boot time RNG seed at the earliest possible
stage from their parents:
- Host [already has strongly initialized RNG]
- QEMU [passes fresh seed in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- ...
I've verified in several scenarios that this works quite well from a
host kernel to QEMU and down inwards, mixing and matching loaders, with
every layer providing a seed to the next.
[ bp: Massage commit message. ]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Link: https://lore.kernel.org/r/20220630113300.1892799-1-Jason@zx2c4.com
failures where the hypervisor verifies page tables and uninitialized
data in that range leads to bogus failures in those checks
- Add any potential setup_data entries supplied at boot to the identity
pagetable mappings to prevent kexec kernel boot failures. Usually, this
is not a problem for the normal kernel as those mappings are part of
the initially mapped 2M pages but if kexec gets to allocate the second
kernel somewhere else, those setup_data entries need to be mapped there
too.
- Fix objtool not to discard text references from the __tracepoints
section so that ENDBR validation still works
- Correct the setup_data types limit as it is user-visible, before 5.19
releases
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLKpf8ACgkQEsHwGGHe
VUrc5w/8DIVLQ8w+Balf2TGfp5Sl3mPkg+eoARH29qtXhvVBs5KJB9sbT1IGnxao
nE4yNeiIKhH5SEd17l11E7eWuUtNgZENLsUb3aiAdsItNS+MzOWQuEOPbnAwgJmk
oKdxiI1SHiVoPy5KVXOcyAS90PSJIkhhxwgR5MInGdmpSUzEFsx5SY82ZfOjOkZU
L7zCsJzeDfhJdWiR4N0MXWRaFbIvRxI1uXyqgv+Lo6JK5l8dyUUSEdWyLUqZ7E4M
GFo6LwR3lskQM2bE9vBWS0h1X00d5oDMzfono8kZzRGA/11plZHRI007PCez8yZh
4sUnnxsfCy2YF8/8hs4IhrHZdcWW9XoN4gTUsjD0wekGTHhOEqu5qpAnVSrXbvvM
ZfPF8vM+DLPTWQqAT0a4aj1vd1RflDIQPSXKDzJDjeF49zouAj1ae/3KSOYJDzN9
V6NGiKBnzj1rbtm0+8jOsTQusmh/oDage7uLlmel3hTfNOc2Ay0LXrJWcvqhj66V
4CtCd12sLeavin+mGptni6lXbsue61EolRtH44RvZJsXLVY8iclM4onl728xOrxj
CBtJo6bd3oQYy0SQsysXGDVR7BSXtwAYfArYR8BrMTtgHxuyULt/BDoew4r7XADB
Xxz7ADJZ3DI3Gqza5H6r89Tj6Oi3yXiBWUVUNXFCMYc6ZrqvZc0=
=tOvF
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.19_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Prepare for and clear .brk early in order to address XenPV guests
failures where the hypervisor verifies page tables and uninitialized
data in that range leads to bogus failures in those checks
- Add any potential setup_data entries supplied at boot to the identity
pagetable mappings to prevent kexec kernel boot failures. Usually,
this is not a problem for the normal kernel as those mappings are
part of the initially mapped 2M pages but if kexec gets to allocate
the second kernel somewhere else, those setup_data entries need to be
mapped there too.
- Fix objtool not to discard text references from the __tracepoints
section so that ENDBR validation still works
- Correct the setup_data types limit as it is user-visible, before 5.19
releases
* tag 'x86_urgent_for_v5.19_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Fix the setup data types max limit
x86/ibt, objtool: Don't discard text references from tracepoint section
x86/compressed/64: Add identity mappings for setup_data entries
x86: Fix .brk attribute in linker script
x86: Clear .brk area at early boot
x86/xen: Use clear_bss() for Xen PV guests
Some Intel processors may use alternate predictors for RETs on
RSB-underflow. This condition may be vulnerable to Branch History
Injection (BHI) and intramode-BTI.
Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines,
eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against
such attacks. However, on RSB-underflow, RET target prediction may
fallback to alternate predictors. As a result, RET's predicted target
may get influenced by branch history.
A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback
behavior when in kernel mode. When set, RETs will not take predictions
from alternate predictors, hence mitigating RETs as well. Support for
this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2).
For spectre v2 mitigation, when a user selects a mitigation that
protects indirect CALLs and JMPs against BHI and intramode-BTI, set
RRSBA_DIS_S also to protect RETs for RSB-underflow case.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
All the invocations unroll to __x86_return_thunk and this file
must be PIC independent.
This fixes kexec on 64-bit AMD boxes.
[ bp: Fix 32-bit build. ]
Reported-by: Edward Tran <edward.tran@oracle.com>
Reported-by: Awais Tanveer <awais.tanveer@oracle.com>
Suggested-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Storing the 'page_index' value in the sgx_backing struct is
dead code and no longer needed.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220708162124.8442-1-kristen@linux.intel.com
There are some VM configurations which have Skylake model but do not
support IBPB. In those cases, when using retbleed=ibpb, userspace is going
to be killed and kernel is going to panic.
If the CPU does not support IBPB, warn and proceed with the auto option. Also,
do not fallback to IBPB on AMD/Hygon systems if it is not supported.
Fixes: 3ebc170068 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The page reclaimer ensures availability of EPC pages across all
enclaves. In support of this it runs independently from the
individual enclaves in order to take locks from the different
enclaves as it writes pages to swap.
When needing to load a page from swap an EPC page needs to be
available for its contents to be loaded into. Loading an existing
enclave page from swap does not reclaim EPC pages directly if
none are available, instead the reclaimer is woken when the
available EPC pages are found to be below a watermark.
When iterating over a large number of pages in an oversubscribed
environment there is a race between the reclaimer woken up and
EPC pages reclaimed fast enough for the page operations to proceed.
Ensure there are EPC pages available before attempting to load
a page that may potentially be pulled from swap into an available
EPC page.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a0d8f037c4a075d56bf79f432438412985f7ff7a.1652137848.git.reinette.chatre@intel.com
The SGX2 page removal flow was introduced in previous patch and is
as follows:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES introduced in
previous patch.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES introduced here.
Support the final step of the SGX2 page removal flow with ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES. With this ioctl() the user specifies
a page range that should be removed. All pages in the provided
range should have the SGX_PAGE_TYPE_TRIM page type and the request
will fail with EPERM (Operation not permitted) if a page that does
not have the correct type is encountered. Page removal can fail
on any page within the provided range. Support partial success by
returning the number of pages that were successfully removed.
Since actual page removal will succeed even if ENCLU[EACCEPT] was not
run from within the enclave the ENCLU[EMODPR] instruction with RWX
permissions is used as a no-op mechanism to ensure ENCLU[EACCEPT] was
successfully run from within the enclave before the enclave page is
removed.
If the user omits running SGX_IOC_ENCLAVE_REMOVE_PAGES the pages will
still be removed when the enclave is unloaded.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/b75ee93e96774e38bb44a24b8e9bbfb67b08b51b.1652137848.git.reinette.chatre@intel.com
Every enclave contains one or more Thread Control Structures (TCS). The
TCS contains meta-data used by the hardware to save and restore thread
specific information when entering/exiting the enclave. With SGX1 an
enclave needs to be created with enough TCSs to support the largest
number of threads expecting to use the enclave and enough enclave pages
to meet all its anticipated memory demands. In SGX1 all pages remain in
the enclave until the enclave is unloaded.
SGX2 introduces a new function, ENCLS[EMODT], that is used to change
the type of an enclave page from a regular (SGX_PAGE_TYPE_REG) enclave
page to a TCS (SGX_PAGE_TYPE_TCS) page or change the type from a
regular (SGX_PAGE_TYPE_REG) or TCS (SGX_PAGE_TYPE_TCS)
page to a trimmed (SGX_PAGE_TYPE_TRIM) page (setting it up for later
removal).
With the existing support of dynamically adding regular enclave pages
to an initialized enclave and changing the page type to TCS it is
possible to dynamically increase the number of threads supported by an
enclave.
Changing the enclave page type to SGX_PAGE_TYPE_TRIM is the first step
of dynamically removing pages from an initialized enclave. The complete
page removal flow is:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the SGX_IOC_ENCLAVE_MODIFY_TYPES ioctl() introduced here.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl() introduced in the
following patch.
Add ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES to support changing SGX
enclave page types within an initialized enclave. With
SGX_IOC_ENCLAVE_MODIFY_TYPES the user specifies a page range and the
enclave page type to be applied to all pages in the provided range.
The ioctl() itself can return an error code based on failures
encountered by the kernel. It is also possible for SGX specific
failures to be encountered. Add a result output parameter to
communicate the SGX return code. It is possible for the enclave page
type change request to fail on any page within the provided range.
Support partial success by returning the number of pages that were
successfully changed.
After the page type is changed the page continues to be accessible
from the kernel perspective with page table entries and internal
state. The page may be moved to swap. Any access until ENCLU[EACCEPT]
will encounter a page fault with SGX flag set in error code.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/babe39318c5bf16fc65fbfb38896cdee72161575.1652137848.git.reinette.chatre@intel.com
Before an enclave is initialized the enclave's memory range is unknown.
The enclave's memory range is learned at the time it is created via the
SGX_IOC_ENCLAVE_CREATE ioctl() where the provided memory range is
obtained from an earlier mmap() of /dev/sgx_enclave. After an enclave
is initialized its memory can be mapped into user space (mmap()) from
where it can be entered at its defined entry points.
With the enclave's memory range known after it is initialized there is
no reason why it should be possible to map memory outside this range.
Lock down access to the initialized enclave's memory range by denying
any attempt to map memory outside its memory range.
Locking down the memory range also makes adding pages to an initialized
enclave more efficient. Pages are added to an initialized enclave by
accessing memory that belongs to the enclave's memory range but not yet
backed by an enclave page. If it is possible for user space to map
memory that does not form part of the enclave then an access to this
memory would eventually fail. Failures range from a prompt general
protection fault if the access was an ENCLU[EACCEPT] from within the
enclave, or a page fault via the vDSO if it was another access from
within the enclave, or a SIGBUS (also resulting from a page fault) if
the access was from outside the enclave.
Disallowing invalid memory to be mapped in the first place avoids
preventable failures.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/6391460d75ae79cea2e81eef0f6ffc03c6e9cfe7.1652137848.git.reinette.chatre@intel.com
With SGX1 an enclave needs to be created with its maximum memory demands
allocated. Pages cannot be added to an enclave after it is initialized.
SGX2 introduces a new function, ENCLS[EAUG], that can be used to add
pages to an initialized enclave. With SGX2 the enclave still needs to
set aside address space for its maximum memory demands during enclave
creation, but all pages need not be added before enclave initialization.
Pages can be added during enclave runtime.
Add support for dynamically adding pages to an initialized enclave,
architecturally limited to RW permission at creation but allowed to
obtain RWX permissions after trusted enclave runs EMODPE. Add pages
via the page fault handler at the time an enclave address without a
backing enclave page is accessed, potentially directly reclaiming
pages if no free pages are available.
The enclave is still required to run ENCLU[EACCEPT] on the page before
it can be used. A useful flow is for the enclave to run ENCLU[EACCEPT]
on an uninitialized address. This will trigger the page fault handler
that will add the enclave page and return execution to the enclave to
repeat the ENCLU[EACCEPT] instruction, this time successful.
If the enclave accesses an uninitialized address in another way, for
example by expanding the enclave stack to a page that has not yet been
added, then the page fault handler would add the page on the first
write but upon returning to the enclave the instruction that triggered
the page fault would be repeated and since ENCLU[EACCEPT] was not run
yet it would trigger a second page fault, this time with the SGX flag
set in the page fault error code. This can only be recovered by entering
the enclave again and directly running the ENCLU[EACCEPT] instruction on
the now initialized address.
Accessing an uninitialized address from outside the enclave also
triggers this flow but the page will remain inaccessible (access will
result in #PF) until accepted from within the enclave via
ENCLU[EACCEPT].
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/a254a58eabea053803277449b24b6e4963a3883b.1652137848.git.reinette.chatre@intel.com
In the initial (SGX1) version of SGX, pages in an enclave need to be
created with permissions that support all usages of the pages, from the
time the enclave is initialized until it is unloaded. For example,
pages used by a JIT compiler or when code needs to otherwise be
relocated need to always have RWX permissions.
SGX2 includes a new function ENCLS[EMODPR] that is run from the kernel
and can be used to restrict the EPCM permissions of regular enclave
pages within an initialized enclave.
Introduce ioctl() SGX_IOC_ENCLAVE_RESTRICT_PERMISSIONS to support
restricting EPCM permissions. With this ioctl() the user specifies
a page range and the EPCM permissions to be applied to all pages in
the provided range. ENCLS[EMODPR] is run to restrict the EPCM
permissions followed by the ENCLS[ETRACK] flow that will ensure
no cached linear-to-physical address mappings to the changed
pages remain.
It is possible for the permission change request to fail on any
page within the provided range, either with an error encountered
by the kernel or by the SGX hardware while running
ENCLS[EMODPR]. To support partial success the ioctl() returns an
error code based on failures encountered by the kernel as well
as two result output parameters: one for the number of pages
that were successfully changed and one for the SGX return code.
The page table entry permissions are not impacted by the EPCM
permission changes. VMAs and PTEs will continue to allow the
maximum vetted permissions determined at the time the pages
are added to the enclave. The SGX error code in a page fault
will indicate if it was an EPCM permission check that prevented
an access attempt.
No checking is done to ensure that the permissions are actually
being restricted. This is because the enclave may have relaxed
the EPCM permissions from within the enclave without the kernel
knowing. An attempt to relax permissions using this call will
be ignored by the hardware.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/082cee986f3c1a2f4fdbf49501d7a8c5a98446f8.1652137848.git.reinette.chatre@intel.com
struct sgx_encl should be protected with the mutex
sgx_encl->lock. One exception is sgx_encl->page_cnt that
is incremented (in sgx_encl_grow()) when an enclave page
is added to the enclave. The reason the mutex is not held
is to allow the reclaimer to be called directly if there are
no EPC pages (in support of a new VA page) available at the time.
Incrementing sgx_encl->page_cnt without sgc_encl->lock held
is currently (before SGX2) safe from concurrent updates because
all paths in which sgx_encl_grow() is called occur before
enclave initialization and are protected with an atomic
operation on SGX_ENCL_IOCTL.
SGX2 includes support for dynamically adding pages after
enclave initialization where the protection of SGX_ENCL_IOCTL
is not available.
Make direct reclaim of EPC pages optional when new VA pages
are added to the enclave. Essentially the existing "reclaim"
flag used when regular EPC pages are added to an enclave
becomes available to the caller when used to allocate VA pages
instead of always being "true".
When adding pages without invoking the reclaimer it is possible
to do so with sgx_encl->lock held, gaining its protection against
concurrent updates to sgx_encl->page_cnt after enclave
initialization.
No functional change.
Reported-by: Haitao Huang <haitao.huang@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/42c5934c229982ee67982bb97c6ab34bde758620.1652137848.git.reinette.chatre@intel.com
Move sgx_encl_page_alloc() to encl.c and export it so that it can be
used in the implementation for support of adding pages to initialized
enclaves, which requires to allocate new enclave pages.
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/57ae71b4ea17998467670232e12d6617b95c6811.1652137848.git.reinette.chatre@intel.com
In order to use sgx_encl_{grow,shrink}() in the page augmentation code
located in encl.c, export these functions.
Suggested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d51730acf54b6565710b2261b3099517b38c2ec4.1652137848.git.reinette.chatre@intel.com
SGX2 functions are not allowed on all page types. For example,
ENCLS[EMODPR] is only allowed on regular SGX enclave pages and
ENCLS[EMODPT] is only allowed on TCS and regular pages. If these
functions are attempted on another type of page the hardware would
trigger a fault.
Keep a record of the SGX page type so that there is more
certainty whether an SGX2 instruction can succeed and faults
can be treated as real failures.
The page type is a property of struct sgx_encl_page
and thus does not cover the VA page type. VA pages are maintained
in separate structures and their type can be determined in
a different way. The SGX2 instructions needing the page type do not
operate on VA pages and this is thus not a scenario needing to
be covered at this time.
struct sgx_encl_page hosting this information is maintained for each
enclave page so the space consumed by the struct is important.
The existing sgx_encl_page->vm_max_prot_bits is already unsigned long
while only using three bits. Transition to a bitfield for the two
members to support the additional information without increasing
the space consumed by the struct.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a0a6939eefe7ba26514f6c49723521cde372de64.1652137848.git.reinette.chatre@intel.com
User provided offset and length is validated when parsing the parameters
of the SGX_IOC_ENCLAVE_ADD_PAGES ioctl(). Extract this validation
(with consistent use of IS_ALIGNED) into a utility that can be used
by the SGX2 ioctl()s that will also provide these values.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/767147bc100047abed47fe27c592901adfbb93a2.1652137848.git.reinette.chatre@intel.com
The ETRACK function followed by an IPI to all CPUs within an enclave
is a common pattern with more frequent use in support of SGX2.
Make the (empty) IPI callback function available internally in
preparation for usage by SGX2.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/1179ed4a9c3c1c2abf49d51bfcf2c30b493181cc.1652137848.git.reinette.chatre@intel.com
The SGX reclaimer removes page table entries pointing to pages that are
moved to swap.
SGX2 enables changes to pages belonging to an initialized enclave, thus
enclave pages may have their permission or type changed while the page
is being accessed by an enclave. Supporting SGX2 requires page table
entries to be removed so that any cached mappings to changed pages
are removed. For example, with the ability to change enclave page types
a regular enclave page may be changed to a Thread Control Structure
(TCS) page that may not be accessed by an enclave.
Factor out the code removing page table entries to a separate function
sgx_zap_enclave_ptes(), fixing accuracy of comments in the process,
and make it available to the upcoming SGX2 code.
Place sgx_zap_enclave_ptes() with the rest of the enclave code in
encl.c interacting with the page table since this code is no longer
unique to the reclaimer.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/b010cdf01d7ce55dd0f00e883b7ccbd9db57160a.1652137848.git.reinette.chatre@intel.com
sgx_encl_ewb_cpumask() is no longer unique to the reclaimer where it
is used during the EWB ENCLS leaf function when EPC pages are written
out to main memory and sgx_encl_ewb_cpumask() is used to learn which
CPUs might have executed the enclave to ensure that TLBs are cleared.
Upcoming SGX2 enabling will use sgx_encl_ewb_cpumask() during the
EMODPR and EMODT ENCLS leaf functions that make changes to enclave
pages. The function is needed for the same reason it is used now: to
learn which CPUs might have executed the enclave to ensure that TLBs
no longer point to the changed pages.
Rename sgx_encl_ewb_cpumask() to sgx_encl_cpumask() to reflect the
broader usage.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d4d08c449450a13d8dd3bb6c2b1af03895586d4f.1652137848.git.reinette.chatre@intel.com
Using sgx_encl_ewb_cpumask() to learn which CPUs might have executed
an enclave is useful to ensure that TLBs are cleared when changes are
made to enclave pages.
sgx_encl_ewb_cpumask() is used within the reclaimer when an enclave
page is evicted. The upcoming SGX2 support enables changes to be
made to enclave pages and will require TLBs to not refer to the
changed pages and thus will be needing sgx_encl_ewb_cpumask().
Relocate sgx_encl_ewb_cpumask() to be with the rest of the enclave
code in encl.c now that it is no longer unique to the reclaimer.
Take care to ensure that any future usage maintains the
current context requirement that ETRACK has been called first.
Expand the existing comments to highlight this while moving them
to a more prominent location before the function.
No functional change.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/05b60747fd45130cf9fc6edb1c373a69a18a22c5.1652137848.git.reinette.chatre@intel.com
sgx_encl_load_page() is used to find and load an enclave page into
enclave (EPC) memory, potentially loading it from the backing storage.
Both usages of sgx_encl_load_page() are during an access to the
enclave page from a VMA and thus the permissions of the VMA are
considered before the enclave page is loaded.
SGX2 functions operating on enclave pages belonging to an initialized
enclave requiring the page to be in EPC. It is thus required to
support loading enclave pages into the EPC independent from a VMA.
Split the current sgx_encl_load_page() to support the two usages:
A new call, sgx_encl_load_page_in_vma(), behaves exactly like the
current sgx_encl_load_page() that takes VMA permissions into account,
while sgx_encl_load_page() just loads an enclave page into EPC.
VMA, PTE, and EPCM permissions continue to dictate whether
the pages can be accessed from within an enclave.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d4393513c1f18987c14a490bcf133bfb71a5dc43.1652137848.git.reinette.chatre@intel.com
Add a wrapper for the EAUG ENCLS leaf function used to
add a page to an initialized enclave.
EAUG:
1) Stores all properties of the new enclave page in the SGX
hardware's Enclave Page Cache Map (EPCM).
2) Sets the PENDING bit in the EPCM entry of the enclave page.
This bit is cleared by the enclave by invoking ENCLU leaf
function EACCEPT or EACCEPTCOPY.
Access from within the enclave to the new enclave page is not
possible until the PENDING bit is cleared.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/97a46754fe4764e908651df63694fb760f783d6e.1652137848.git.reinette.chatre@intel.com
Add a wrapper for the EMODT ENCLS leaf function used to
change the type of an enclave page as maintained in the
SGX hardware's Enclave Page Cache Map (EPCM).
EMODT:
1) Updates the EPCM page type of the enclave page.
2) Sets the MODIFIED bit in the EPCM entry of the enclave page.
This bit is reset by the enclave by invoking ENCLU leaf
function EACCEPT or EACCEPTCOPY.
Access from within the enclave to the enclave page is not possible
while the MODIFIED bit is set.
After changing the enclave page type by issuing EMODT the kernel
needs to collaborate with the hardware to ensure that no logical
processor continues to hold a reference to the changed page. This
is required to ensure no required security checks are circumvented
and is required for the enclave's EACCEPT/EACCEPTCOPY to succeed.
Ensuring that no references to the changed page remain is
accomplished with the ETRACK flow.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/dba63a8c0db1d510b940beee1ba2a8207efeb1f1.1652137848.git.reinette.chatre@intel.com
Add a wrapper for the EMODPR ENCLS leaf function used to
restrict enclave page permissions as maintained in the
SGX hardware's Enclave Page Cache Map (EPCM).
EMODPR:
1) Updates the EPCM permissions of an enclave page by treating
the new permissions as a mask. Supplying a value that attempts
to relax EPCM permissions has no effect on EPCM permissions
(PR bit, see below, is changed).
2) Sets the PR bit in the EPCM entry of the enclave page to
indicate that permission restriction is in progress. The bit
is reset by the enclave by invoking ENCLU leaf function
EACCEPT or EACCEPTCOPY.
The enclave may access the page throughout the entire process
if conforming to the EPCM permissions for the enclave page.
After performing the permission restriction by issuing EMODPR
the kernel needs to collaborate with the hardware to ensure that
all logical processors sees the new restricted permissions. This
is required for the enclave's EACCEPT/EACCEPTCOPY to succeed and
is accomplished with the ETRACK flow.
Expand enum sgx_return_code with the possible EMODPR return
values.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d15e7a769e13e4ca671fa2d0a0d3e3aec5aedbd4.1652137848.git.reinette.chatre@intel.com
The SGX ENCLS instruction uses EAX to specify an SGX function and
may require additional registers, depending on the SGX function.
ENCLS invokes the specified privileged SGX function for managing
and debugging enclaves. Macros are used to wrap the ENCLS
functionality and several wrappers are used to wrap the macros to
make the different SGX functions accessible in the code.
The wrappers of the supported SGX functions are cryptic. Add short
descriptions of each as a comment.
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/5e78a1126711cbd692d5b8132e0683873398f69e.1652137848.git.reinette.chatre@intel.com
Cannon lake is also affected by RETBleed, add it to the list.
Fixes: 6ad0ad2bf8 ("x86/bugs: Report Intel retbleed vulnerability")
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
commit 72f2ecb7ec ("ACPI: bus: Set CPPC _OSC bits for all and
when CPPC_LIB is supported") added support for claiming to
support CPPC in _OSC on non-Intel platforms.
This unfortunately caused a regression on a vartiety of AMD
platforms in the field because a number of AMD platforms don't set
the `_OSC` bit 5 or 6 to indicate CPPC or CPPC v2 support.
As these AMD platforms already claim CPPC support via a dedicated
MSR from `X86_FEATURE_CPPC`, use this enable this feature rather
than requiring the `_OSC` on platforms with a dedicated MSR.
If there is additional breakage on the shared memory designs also
missing this _OSC, additional follow up changes may be needed.
Fixes: 72f2ecb7ec ("Set CPPC _OSC bits for all and when CPPC_LIB is supported")
Reported-by: Perry Yuan <perry.yuan@amd.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On kexec file load, the Integrity Measurement Architecture (IMA)
subsystem may verify the IMA signature of the kernel and initramfs, and
measure it. The command line parameters passed to the kernel in the
kexec call may also be measured by IMA.
A remote attestation service can verify a TPM quote based on the TPM
event log, the IMA measurement list and the TPM PCR data. This can
be achieved only if the IMA measurement log is carried over from the
current kernel to the next kernel across the kexec call.
PowerPC and ARM64 both achieve this using device tree with a
"linux,ima-kexec-buffer" node. x86 platforms generally don't make use of
device tree, so use the setup_data mechanism to pass the IMA buffer to
the new kernel.
Signed-off-by: Jonathan McDowell <noodles@fb.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com> # IMA function definitions
Link: https://lore.kernel.org/r/YmKyvlF3my1yWTvK@noodles-fedora-PC23Y6EG
Commit in Fixes added the "NOLOAD" attribute to the .brk section as a
"failsafe" measure.
Unfortunately, this leads to the linker no longer covering the .brk
section in a program header, resulting in the kernel loader not knowing
that the memory for the .brk section must be reserved.
This has led to crashes when loading the kernel as PV dom0 under Xen,
but other scenarios could be hit by the same problem (e.g. in case an
uncompressed kernel is used and the initrd is placed directly behind
it).
So drop the "NOLOAD" attribute. This has been verified to correctly
cover the .brk section by a program header of the resulting ELF file.
Fixes: e32683c6f7 ("x86/mm: Fix RESERVE_BRK() for older binutils")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20220630071441.28576-4-jgross@suse.com
The .brk section has the same properties as .bss: it is an alloc-only
section and should be cleared before being used.
Not doing so is especially a problem for Xen PV guests, as the
hypervisor will validate page tables (check for writable page tables
and hypervisor private bits) before accepting them to be used.
Make sure .brk is initially zero by letting clear_bss() clear the brk
area, too.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220630071441.28576-3-jgross@suse.com
Instead of clearing the bss area in assembly code, use the clear_bss()
function.
This requires to pass the start_info address as parameter to
xen_start_kernel() in order to avoid the xen_start_info being zeroed
again.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20220630071441.28576-2-jgross@suse.com
Do fine-grained Kconfig for all the various retbleed parts.
NOTE: if your compiler doesn't support return thunks this will
silently 'upgrade' your mitigation to IBPB, you might not like this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
The platform can sometimes - depending on its settings - cause writes
to MCA_STATUS MSRs to get ignored, regardless of HWCR[McStatusWrEn]'s
value.
For further info see
PPR for AMD Family 19h, Model 01h, Revision B1 Processors, doc ID 55898
at https://bugzilla.kernel.org/show_bug.cgi?id=206537.
Therefore, probe for ignored writes to MCA_STATUS to determine if hardware
error injection is at all possible.
[ bp: Heavily massage commit message and patch. ]
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220214233640.70510-2-Smita.KoralahalliChannabasappa@amd.com
BTC_NO indicates that hardware is not susceptible to Branch Type Confusion.
Zen3 CPUs don't suffer BTC.
Hypervisors are expected to synthesise BTC_NO when it is appropriate
given the migration pool, to prevent kernels using heuristics.
[ bp: Massage. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The whole MMIO/RETBLEED enumeration went overboard on steppings. Get
rid of all that and simply use ANY.
If a future stepping of these models would not be affected, it had
better set the relevant ARCH_CAP_$FOO_NO bit in
IA32_ARCH_CAPABILITIES.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
On VMX, there are some balanced returns between the time the guest's
SPEC_CTRL value is written, and the vmenter.
Balanced returns (matched by a preceding call) are usually ok, but it's
at least theoretically possible an NMI with a deep call stack could
empty the RSB before one of the returns.
For maximum paranoia, don't allow *any* returns (balanced or otherwise)
between the SPEC_CTRL write and the vmenter.
[ bp: Fix 32-bit build. ]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a
bunch of comments to attempt to document the current state of tribal
knowledge about RSB attacks and what exactly is being mitigated.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
On eIBRS systems, the returns in the vmexit return path from
__vmx_vcpu_run() to vmx_vcpu_run() are exposed to RSB poisoning attacks.
Fix that by moving the post-vmexit spec_ctrl handling to immediately
after the vmexit.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
This mask has been made redundant by kvm_spec_ctrl_test_value(). And it
doesn't even work when MSR interception is disabled, as the guest can
just write to SPEC_CTRL directly.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
There's no need to recalculate the host value for every entry/exit.
Just use the cached value in spec_ctrl_current().
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
If the SMT state changes, SSBD might get accidentally disabled. Fix
that.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Zen2 uarchs have an undocumented, unnamed, MSR that contains a chicken
bit for some speculation behaviour. It needs setting.
Note: very belatedly AMD released naming; it's now officially called
MSR_AMD64_DE_CFG2 and MSR_AMD64_DE_CFG2_SUPPRESS_NOBR_PRED_BIT
but shall remain the SPECTRAL CHICKEN.
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Since entry asm is tricky, add a validation pass that ensures the
retbleed mitigation has been done before the first actual RET
instruction.
Entry points are those that either have UNWIND_HINT_ENTRY, which acts
as UNWIND_HINT_EMPTY but marks the instruction as an entry point, or
those that have UWIND_HINT_IRET_REGS at +0.
This is basically a variant of validate_branch() that is
intra-function and it will simply follow all branches from marked
entry points and ensures that all paths lead to ANNOTATE_UNRET_END.
If a path hits RET or an indirection the path is a fail and will be
reported.
There are 3 ANNOTATE_UNRET_END instances:
- UNTRAIN_RET itself
- exception from-kernel; this path doesn't need UNTRAIN_RET
- all early exceptions; these also don't need UNTRAIN_RET
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
When booting with retbleed=auto, if the kernel wasn't built with
CONFIG_CC_HAS_RETURN_THUNK, the mitigation falls back to IBPB. Make
sure a warning is printed in that case. The IBPB fallback check is done
twice, but it really only needs to be done once.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
jmp2ret mitigates the easy-to-attack case at relatively low overhead.
It mitigates the long speculation windows after a mispredicted RET, but
it does not mitigate the short speculation window from arbitrary
instruction boundaries.
On Zen2, there is a chicken bit which needs setting, which mitigates
"arbitrary instruction boundaries" down to just "basic block boundaries".
But there is no fix for the short speculation window on basic block
boundaries, other than to flush the entire BTB to evict all attacker
predictions.
On the spectrum of "fast & blurry" -> "safe", there is (on top of STIBP
or no-SMT):
1) Nothing System wide open
2) jmp2ret May stop a script kiddy
3) jmp2ret+chickenbit Raises the bar rather further
4) IBPB Only thing which can count as "safe".
Tentative numbers put IBPB-on-entry at a 2.5x hit on Zen2, and a 10x hit
on Zen1 according to lmbench.
[ bp: Fixup feature bit comments, document option, 32-bit build fix. ]
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Having IBRS enabled while the SMT sibling is idle unnecessarily slows
down the running sibling. OTOH, disabling IBRS around idle takes two
MSR writes, which will increase the idle latency.
Therefore, only disable IBRS around deeper idle states. Shallow idle
states are bounded by the tick in duration, since NOHZ is not allowed
for them by virtue of their short target residency.
Only do this for mwait-driven idle, since that keeps interrupts disabled
across idle, which makes disabling IBRS vs IRQ-entry a non-issue.
Note: C6 is a random threshold, most importantly C1 probably shouldn't
disable IBRS, benchmarking needed.
Suggested-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
retbleed will depend on spectre_v2, while spectre_v2_user depends on
retbleed. Break this cycle.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
When changing SPEC_CTRL for user control, the WRMSR can be delayed
until return-to-user when KERNEL_IBRS has been enabled.
This avoids an MSR write during context switch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Due to TIF_SSBD and TIF_SPEC_IB the actual IA32_SPEC_CTRL value can
differ from x86_spec_ctrl_base. As such, keep a per-CPU value
reflecting the current task's MSR content.
[jpoimboe: rename]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
For untrained return thunks to be fully effective, STIBP must be enabled
or SMT disabled.
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Add the "retbleed=<value>" boot parameter to select a mitigation for
RETBleed. Possible values are "off", "auto" and "unret"
(JMP2RET mitigation). The default value is "auto".
Currently, "retbleed=auto" will select the unret mitigation on
AMD and Hygon and no mitigation on Intel (JMP2RET is not effective on
Intel).
[peterz: rebase; add hygon]
[jpoimboe: cleanups]
Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Note: needs to be in a section distinct from Retpolines such that the
Retpoline RET substitution cannot possibly use immediate jumps.
ORC unwinding for zen_untrain_ret() and __x86_return_thunk() is a
little tricky but works due to the fact that zen_untrain_ret() doesn't
have any stack ops and as such will emit a single ORC entry at the
start (+0x3f).
Meanwhile, unwinding an IP, including the __x86_return_thunk() one
(+0x40) will search for the largest ORC entry smaller or equal to the
IP, these will find the one ORC entry (+0x3f) and all works.
[ Alexandre: SVM part. ]
[ bp: Build fix, massages. ]
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
In addition to teaching static_call about the new way to spell 'RET',
there is an added complication in that static_call() is allowed to
rewrite text before it is known which particular spelling is required.
In order to deal with this; have a static_call specific fixup in the
apply_return() 'alternative' patching routine that will rewrite the
static_call trampoline to match the definite sequence.
This in turn creates the problem of uniquely identifying static call
trampolines. Currently trampolines are 8 bytes, the first 5 being the
jmp.d32/ret sequence and the final 3 a byte sequence that spells out
'SCT'.
This sequence is used in __static_call_validate() to ensure it is
patching a trampoline and not a random other jmp.d32. That is,
false-positives shouldn't be plenty, but aren't a big concern.
OTOH the new __static_call_fixup() must not have false-positives, and
'SCT' decodes to the somewhat weird but semi plausible sequence:
push %rbx
rex.XB push %r12
Additionally, there are SLS concerns with immediate jumps. Combined it
seems like a good moment to change the signature to a single 3 byte
trap instruction that is unique to this usage and will not ever get
generated by accident.
As such, change the signature to: '0x0f, 0xb9, 0xcc', which decodes
to:
ud1 %esp, %ecx
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Instead of defaulting to patching NOP opcodes at init time, and leaving
it to the architectures to override this if this is not needed, switch
to a model where doing nothing is the default. This is the common case
by far, as only MIPS requires NOP patching at init time. On all other
architectures, the correct encodings are emitted by the compiler and so
no initial patching is needed.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220615154142.1574619-4-ardb@kernel.org
MIPS is the only remaining architecture that needs to patch jump label
NOP encodings to initialize them at load time. So let's move the module
patching part of that from generic code into arch/mips, and drop it from
the others.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220615154142.1574619-3-ardb@kernel.org
VMWARE_CMD_VCPU_RESERVED is bit 31 and that would mean undefined
behavior when shifting an int but the kernel is built with
-fno-strict-overflow which will wrap around using two's complement.
Use the BIT() macro to improve readability and avoid any potential
overflow confusion because it uses an unsigned long.
[ bp: Clarify commit message. ]
Signed-off-by: Shreenidhi Shedi <sshedi@vmware.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Link: https://lore.kernel.org/r/20220601101820.535031-1-sshedi@vmware.com
Make sure to free the platform device in the unlikely event that
registration fails.
Fixes: 7a67832c7e ("libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option")
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220620140723.9810-1-johan@kernel.org
kfree can handle NULL pointer as its argument.
According to coccinelle isnullfree check, remove NULL check
before kfree operation.
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Message-Id: <20220614133458.147314-1-dzm91@hust.edu.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Make RESERVE_BRK() work again with older binutils. The recent
'simplification' broke that.
- Make early #VE handling increment RIP when successful.
- Make the #VE code consistent vs. the RIP adjustments and add comments.
- Handle load_unaligned_zeropad() across page boundaries correctly in #VE
when the second page is shared.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKvIG4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaqCD/9NAUyHTjKDqdWuMD/ITU8ymDr+Ix8z
vUlysdXbxJg6MvT12ZbhJUFTKAsXskGAAnXz/EtZ8zTQQVzTjis/HooJh4XLeuO4
NLh9KV9FvH7w69e6Jg31MGkOUJU3BV+WYUx1f34zbQ8FHftxUwu+M47UYExPYKDR
VIbNeQIpqoBfjTSPVGXlWl/panuZG6RV+PRcvxV3yeRRA8zyCB/WTmNkoDjbw4fl
YCWwJF7/m4iT3LtoaFXWVGFzSRZoGHbhSdgEOZGIZ7sjvydoaQo402JuhW3WLI2m
oXLVZ+2wOPGBKp3WQ1t3mpfScBvCiN3SW4pSPDQ+E8fT/RQiRMb29c9S6ANdm3nT
27fYMJOq+xxex5gOYzdgLz7O99M08uOn2bxJwB+IBIr5jEFH9b4EffeEWsfdZBsi
1AzkXCi+Ib0ZYAndxUP068m+4iW0LtuApm0fg6LhtdDmBGquj+88OZOUK7Z/kW/N
IkjgCeqFgmdNb/+Z3XrdYobaAl6J4toIqA4A+O8yL6gJfn9PnaMGsYtA8c5yQchD
kFoTu5pCALY2KjZkKFRMuEbMH2oj3sjjb7f6mYAHxec6jikIx2c5HswA4sLmzHAN
GG2MDUH12bWoLfeA4IRwTRz/vh8IeZNq5ZzdCnS6KHUNk5OJRGLtRphKy8z+pOYx
+i9ThZFBV8pBzg==
=sRtG
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- Make RESERVE_BRK() work again with older binutils. The recent
'simplification' broke that.
- Make early #VE handling increment RIP when successful.
- Make the #VE code consistent vs. the RIP adjustments and add
comments.
- Handle load_unaligned_zeropad() across page boundaries correctly in
#VE when the second page is shared.
* tag 'x86-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tdx: Handle load_unaligned_zeropad() page-cross to a shared page
x86/tdx: Clarify RIP adjustments in #VE handler
x86/tdx: Fix early #VE handling
x86/mm: Fix RESERVE_BRK() for older binutils
- Remove obsolete CONFIG_X86_SMAP reference from objtool
- Fix overlapping text section failures in faddr2line for real
- Remove OBJECT_FILES_NON_STANDARD usage from x86 ftrace and replace it
with finegrained annotations so objtool can validate that code
correctly.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKvHbwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQlsEADC7BotE1Mi8HITScIlHT19bkZ7Bm6M
g46RCtUw0u+lo7BclIetNYGWQ0z+D+1DbmZTBv5D22N/Wd6MrwOuuwRVtJ2dEosF
l/EK1qKLxCGMdQ1x0KOmrjzHB4WmcUH0pQwDHa5N5s5IyrJRRFHtoLk3EYp6QIhi
mIZTJgGUEe/aS7BtFM5xARprm7JxdbhXgXVbnC1ctzpOi2y6O7F4Ek3x4j5zTGV/
49iuO2ljqmKdoFlPa1fhuw+O9sTUf+RmKLPEU+2nm7Wg+wlIwKIB3yDDBoZ9Q7lm
YdorW0/506x4qOwa8KAjxXEb2qgZkL/fQcMS0jQQKNNDD8GHU+3YdjCNbrmZjA+T
Ib0rs9YsxgLstnmqzU3QfarhgtdzIMhzF0cofoFDK0a8tHLqOhZF4j7wLmYo52ec
6Hrt8IvJPW2b3TC6KfRAF+uWsDDoaum0OOFVjVu1b9G6fFf0i8h5JGWdkJh8cau9
0qvAYg0sDjRf7zAZ6kbbGDVCljECyypIdCBF3ihA6yMhJX16VihEWTJyqIaoO+a0
0XzPvkhX+6mY0kqn+5HvvhLEY4POA8pFKeTPx4eABvKnw7m01I9cJfHa7HEBQHe6
ZJA7qWMBRrPfK2Ogrx8zohj2sOdHMHlIQU+6Ai+7+BHs13Nje4umGMu2YuZrnfIF
gQ1ayCN8OsUwVA==
=12KJ
-----END PGP SIGNATURE-----
Merge tag 'objtool-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull build tooling updates from Thomas Gleixner:
- Remove obsolete CONFIG_X86_SMAP reference from objtool
- Fix overlapping text section failures in faddr2line for real
- Remove OBJECT_FILES_NON_STANDARD usage from x86 ftrace and replace it
with finegrained annotations so objtool can validate that code
correctly.
* tag 'objtool-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ftrace: Remove OBJECT_FILES_NON_STANDARD usage
faddr2line: Fix overlapping text section failures, the sequel
objtool: Fix obsolete reference to CONFIG_X86_SMAP
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmKs17UUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vzlVQ//Qygje8u1x0qQqGFykMf3+cev2ECV
/sfOHtRoG9qZ4gKQOGShr9gyeV+9VFl0+CEJE4z9/YiAnoOr5JMAMixYRjHQU9MB
k3TFkDqD0KBgmXdAubVP5HQGZgA+mryvtEhr5rm45PooJJSjuh1ds87YYO+Z/t7s
c2AzvpHFLjECB6LRHqHieyp4CeWn5tw8im7uMUmfKkkXF5ckqw3e+7gwJzRrAukg
GgbLb2JZLzXSl1HOx/2GvPW8RzyXRbbJmpvu9LsNKeoqP006F3chDVIncqG3Q9QQ
LvrjudC/eY/2Fee3tpP6gjl9A5ALvXT/k4gTw4Lwm8OlaxrYZ3gwcBHZepp3F08s
qVCncjFooeHAMiJDkGvtf6N8k8VnOy4zvg2qDpKOl2NO3jH95nGi0LGMf0/GXvfh
P4bwqjGcWKSo9C2amagZ49rzaJBIQRms8ItM6WPvCYirjyYi3PeUMl/dylstbnuq
DQuprZtgOEGlPGUg/CO4fCpCIkKzpvOV6157z39mZS5HOT5ugvF4k+hwSxZd0hsM
rJI7Te48Z46Y/qoFesgOglJwwEZs4RqHAvMTGC+V5Ftj9gHe7wo2oOxlhCyFW1Qd
jec3UhXEzTVxnjsu7peHyfwwmGWFUkG16P17hWpncpG6azW1dybQOCsRy21/F+q2
i1nd61lXpuhKQKQ=
=5y1d
-----END PGP SIGNATURE-----
Merge tag 'pci-v5.19-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci fix from Bjorn Helgaas:
"Revert clipping of PCI host bridge windows to avoid E820 regions,
which broke several machines by forcing unnecessary BAR reassignments
(Hans de Goede)"
* tag 'pci-v5.19-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci:
x86/PCI: Revert "x86/PCI: Clip only host bridge windows for E820 regions"
This reverts commit 4c5e242d3e.
Prior to 4c5e242d3e ("x86/PCI: Clip only host bridge windows for E820
regions"), E820 regions did not affect PCI host bridge windows. We only
looked at E820 regions and avoided them when allocating new MMIO space.
If firmware PCI bridge window and BAR assignments used E820 regions, we
left them alone.
After 4c5e242d3e, we removed E820 regions from the PCI host bridge
windows before looking at BARs, so firmware assignments in E820 regions
looked like errors, and we moved things around to fit in the space left
(if any) after removing the E820 regions. This unnecessary BAR
reassignment broke several machines.
Guilherme reported that Steam Deck fails to boot after 4c5e242d3e. We
clipped the window that contained most 32-bit BARs:
BIOS-e820: [mem 0x00000000a0000000-0x00000000a00fffff] reserved
acpi PNP0A08:00: clipped [mem 0x80000000-0xf7ffffff window] to [mem 0xa0100000-0xf7ffffff window] for e820 entry [mem 0xa0000000-0xa00fffff]
which forced us to reassign all those BARs, for example, this NVMe BAR:
pci 0000:00:01.2: PCI bridge to [bus 01]
pci 0000:00:01.2: bridge window [mem 0x80600000-0x806fffff]
pci 0000:01:00.0: BAR 0: [mem 0x80600000-0x80603fff 64bit]
pci 0000:00:01.2: can't claim window [mem 0x80600000-0x806fffff]: no compatible bridge window
pci 0000:01:00.0: can't claim BAR 0 [mem 0x80600000-0x80603fff 64bit]: no compatible bridge window
pci 0000:00:01.2: bridge window: assigned [mem 0xa0100000-0xa01fffff]
pci 0000:01:00.0: BAR 0: assigned [mem 0xa0100000-0xa0103fff 64bit]
All the reassignments were successful, so the devices should have been
functional at the new addresses, but some were not.
Andy reported a similar failure on an Intel MID platform. Benjamin
reported a similar failure on a VMWare Fusion VM.
Note: this is not a clean revert; this revert keeps the later change to
make the clipping dependent on a new pci_use_e820 bool, moving the checking
of this bool to arch_remove_reservations().
[bhelgaas: commit log, add more reporters and testers]
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=216109
Reported-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Reported-by: Benjamin Coddington <bcodding@redhat.com>
Reported-by: Jongman Heo <jongman.heo@gmail.com>
Fixes: 4c5e242d3e ("x86/PCI: Clip only host bridge windows for E820 regions")
Link: https://lore.kernel.org/r/20220612144325.85366-1-hdegoede@redhat.com
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Tested-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Stale Data.
They are a class of MMIO-related weaknesses which can expose stale data
by propagating it into core fill buffers. Data which can then be leaked
using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKXMkMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWGPD/idalLIhhV5F2+hZIKm0WSnsBxAOh9K
7y8xBxpQQ5FUfW3vm7Pg3ro6VJp7w2CzKoD4lGXzGHriusn3qst3vkza9Ay8xu8g
RDwKe6hI+p+Il9BV9op3f8FiRLP9bcPMMReW/mRyYsOnJe59hVNwRAL8OG40PY4k
hZgg4Psfvfx8bwiye5efjMSe4fXV7BUCkr601+8kVJoiaoszkux9mqP+cnnB5P3H
zW1d1jx7d6eV1Y063h7WgiNqQRYv0bROZP5BJkufIoOHUXDpd65IRF3bDnCIvSEz
KkMYJNXb3qh7EQeHS53NL+gz2EBQt+Tq1VH256qn6i3mcHs85HvC68gVrAkfVHJE
QLJE3MoXWOqw+mhwzCRrEXN9O1lT/PqDWw8I4M/5KtGG/KnJs+bygmfKBbKjIVg4
2yQWfMmOgQsw3GWCRjgEli7aYbDJQjany0K/qZTq54I41gu+TV8YMccaWcXgDKrm
cXFGUfOg4gBm4IRjJ/RJn+mUv6u+/3sLVqsaFTs9aiib1dpBSSUuMGBh548Ft7g2
5VbFVSDaLjB2BdlcG7enlsmtzw0ltNssmqg7jTK/L7XNVnvxwUoXw+zP7RmCLEYt
UV4FHXraMKNt2ZketlomC8ui2hg73ylUp4pPdMXCp7PIXp9sVamRTbpz12h689VJ
/s55bWxHkR6S
=LBxT
-----END PGP SIGNATURE-----
Merge tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
With binutils 2.26, RESERVE_BRK() causes a build failure:
/tmp/ccnGOKZ5.s: Assembler messages:
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: junk at end of line, first unrecognized
character is `U'
The problem is this line:
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE)
Specifically, the INIT_PGT_BUF_SIZE macro which (via PAGE_SIZE's use
_AC()) has a "1UL", which makes older versions of the assembler unhappy.
Unfortunately the _AC() macro doesn't work for inline asm.
Inline asm was only needed here to convince the toolchain to add the
STT_NOBITS flag. However, if a C variable is placed in a section whose
name is prefixed with ".bss", GCC and Clang automatically set
STT_NOBITS. In fact, ".bss..page_aligned" already relies on this trick.
So fix the build failure (and simplify the macro) by allocating the
variable in C.
Also, add NOLOAD to the ".brk" output section clause in the linker
script. This is a failsafe in case the ".bss" prefix magic trick ever
stops working somehow. If there's a section type mismatch, the GNU
linker will force the ".brk" output section to be STT_NOBITS. The LLVM
linker will fail with a "section type mismatch" error.
Note this also changes the name of the variable from .brk.##name to
__brk_##name. The variable names aren't actually used anywhere, so it's
harmless.
Fixes: a1e2c031ec ("x86/mm: Simplify RESERVE_BRK()")
Reported-by: Joe Damato <jdamato@fastly.com>
Reported-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Joe Damato <jdamato@fastly.com>
Link: https://lore.kernel.org/r/22d07a44c80d8e8e1e82b9a806ddc8c6bbb2606e.1654759036.git.jpoimboe@kernel.org
Remove vendor checks from prefer_mwait_c1_over_halt function. Restore
the decision tree to support MWAIT C1 as the default idle state based on
CPUID checks as done by Thomas Gleixner in
commit 09fd4b4ef5 ("x86: use cpuid to check MWAIT support for C1")
The decision tree is removed in
commit 69fb3676df ("x86 idle: remove mwait_idle() and "idle=mwait" cmdline param")
Prefer MWAIT when the following conditions are satisfied:
1. CPUID_Fn00000001_ECX [Monitor] should be set
2. CPUID_Fn00000005 should be supported
3. If CPUID_Fn00000005_ECX [EMX] is set then there should be
at least one C1 substate available, indicated by
CPUID_Fn00000005_EDX [MWaitC1SubStates] bits.
Otherwise use HLT for default_idle function.
HPC customers who want to optimize for lower latency are known to
disable Global C-States in the BIOS. In fact, some vendors allow
choosing a BIOS 'performance' profile which explicitly disables
C-States. In this scenario, the cpuidle driver will not be loaded and
the kernel will continue with the default idle state chosen at boot
time. On AMD systems currently the default idle state is HLT which has
a higher exit latency compared to MWAIT.
The reason for the choice of HLT over MWAIT on AMD systems is:
1. Families prior to 10h didn't support MWAIT
2. Families 10h-15h supported MWAIT, but not MWAIT C1. Hence it was
preferable to use HLT as the default state on these systems.
However, AMD Family 17h onwards supports MWAIT as well as MWAIT C1. And
it is preferable to use MWAIT as the default idle state on these
systems, as it has lower exit latencies.
The below table represents the exit latency for HLT and MWAIT on AMD
Zen 3 system. Exit latency is measured by issuing a wakeup (IPI) to
other CPU and measuring how many clock cycles it took to wakeup. Each
iteration measures 10K wakeups by pinning source and destination.
HLT:
25.0000th percentile : 1900 ns
50.0000th percentile : 2000 ns
75.0000th percentile : 2300 ns
90.0000th percentile : 2500 ns
95.0000th percentile : 2600 ns
99.0000th percentile : 2800 ns
99.5000th percentile : 3000 ns
99.9000th percentile : 3400 ns
99.9500th percentile : 3600 ns
99.9900th percentile : 5900 ns
Min latency : 1700 ns
Max latency : 5900 ns
Total Samples 9999
MWAIT:
25.0000th percentile : 1400 ns
50.0000th percentile : 1500 ns
75.0000th percentile : 1700 ns
90.0000th percentile : 1800 ns
95.0000th percentile : 1900 ns
99.0000th percentile : 2300 ns
99.5000th percentile : 2500 ns
99.9000th percentile : 3200 ns
99.9500th percentile : 3500 ns
99.9900th percentile : 4600 ns
Min latency : 1200 ns
Max latency : 4600 ns
Total Samples 9997
Improvement (99th percentile): 21.74%
Below is another result for context_switch2 micro-benchmark, which
brings out the impact of improved wakeup latency through increased
context-switches per second.
with HLT:
-------------------------------
50.0000th percentile : 190184
75.0000th percentile : 191032
90.0000th percentile : 192314
95.0000th percentile : 192520
99.0000th percentile : 192844
MIN : 190148
MAX : 192852
with MWAIT:
-------------------------------
50.0000th percentile : 277444
75.0000th percentile : 278268
90.0000th percentile : 278888
95.0000th percentile : 279164
99.0000th percentile : 280504
MIN : 273278
MAX : 281410
Improvement(99th percentile): ~ 45.46%
Signed-off-by: Wyes Karny <wyes.karny@amd.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://ozlabs.org/~anton/junkcode/context_switch2.c
Link: https://lkml.kernel.org/r/0cc675d8fd1f55e41b510e10abf2e21b6e9803d5.1654538381.git-series.wyes.karny@amd.com
When kernel is booted with idle=nomwait do not use MWAIT as the
default idle state.
If the user boots the kernel with idle=nomwait, it is a clear
direction to not use mwait as the default idle state.
However, the current code does not take this into consideration
while selecting the default idle state on x86.
Fix it by checking for the idle=nomwait boot option in
prefer_mwait_c1_over_halt().
Also update the documentation around idle=nomwait appropriately.
[ dhansen: tweak commit message ]
Signed-off-by: Wyes Karny <wyes.karny@amd.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lkml.kernel.org/r/fdc2dc2d0a1bc21c2f53d989ea2d2ee3ccbc0dbe.1654538381.git-series.wyes.karny@amd.com
A new 64-bit control field "tertiary processor-based VM-execution
controls", is defined [1]. It's controlled by bit 17 of the primary
processor-based VM-execution controls.
Different from its brother VM-execution fields, this tertiary VM-
execution controls field is 64 bit. So it occupies 2 vmx_feature_leafs,
TERTIARY_CTLS_LOW and TERTIARY_CTLS_HIGH.
Its companion VMX capability reporting MSR,MSR_IA32_VMX_PROCBASED_CTLS3
(0x492), is also semantically different from its brothers, whose 64 bits
consist of all allow-1, rather than 32-bit allow-0 and 32-bit allow-1 [1][2].
Therefore, its init_vmx_capabilities() is a little different from others.
[1] ISE 6.2 "VMCS Changes"
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
[2] SDM Vol3. Appendix A.3
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153240.11549-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The file-wide OBJECT_FILES_NON_STANDARD annotation is used with
CONFIG_FRAME_POINTER to tell objtool to skip the entire file when frame
pointers are enabled. However that annotation is now deprecated because
it doesn't work with IBT, where objtool runs on vmlinux.o instead of
individual translation units.
Instead, use more fine-grained function-specific annotations:
- The 'save_mcount_regs' macro does funny things with the frame pointer.
Use STACK_FRAME_NON_STANDARD_FP to tell objtool to ignore the
functions using it.
- The return_to_handler() "function" isn't actually a callable function.
Instead of being called, it's returned to. The real return address
isn't on the stack, so unwinding is already doomed no matter which
unwinder is used. So just remove the STT_FUNC annotation, telling
objtool to ignore it. That also removes the implicit
ANNOTATE_NOENDBR, which now needs to be made explicit.
Fixes the following warning:
vmlinux.o: warning: objtool: __fentry__+0x16: return with modified stack frame
Fixes: ed53a0d971 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/b7a7a42fe306aca37826043dac89e113a1acdbac.1654268610.git.jpoimboe@kernel.org
- fixes for material merged during this merge window
- cc:stable fixes for more longstanding issues
- minor mailmap and MAINTAINERS updates
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYpz1+QAKCRDdBJ7gKXxA
jrudAP9EvjTg4KhmXDoUpgJYc2oPg27nIhu1LWT8VFdsVQ6mPwEA//HPvPhjah8u
C1M183VxKL9trZf22DBn2BbD3kBDIAo=
=9LgC
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm hotfixes from Andrew Morton:
"Fixups for various recently-added and longer-term issues and a few
minor tweaks:
- fixes for material merged during this merge window
- cc:stable fixes for more longstanding issues
- minor mailmap and MAINTAINERS updates"
* tag 'mm-hotfixes-stable-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mm/oom_kill.c: fix vm_oom_kill_table[] ifdeffery
x86/kexec: fix memory leak of elf header buffer
mm/memremap: fix missing call to untrack_pfn() in pagemap_range()
mm: page_isolation: use compound_nr() correctly in isolate_single_pageblock()
mm: hugetlb_vmemmap: fix CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON
MAINTAINERS: add maintainer information for z3fold
mailmap: update Josh Poimboeuf's email
SGX enclave is accounted to the wrong memory control group.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcd1MTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaalD/0TdNTH+LiM0BpEZ4VHIAFhE9mgfaU/
1HIZcXEvAzPqS+iLMYAPo2dS7hNKv1GCCD8HcuOdEwC/CyTdrcpvhCNeQXCagF38
BHtzVCMFd/Y6U7ERNVsaHiuHFSkF+3QHef4Gzljzblgj1FK7s55z9tlQmE3pElOg
UGfRoD32ODUtQPmOCjlOhFjsUUtFpdpXFCbjPPFdOqJ80LbdKR2s/0IBpHMk1xoz
ESmS10tVC3a5np1/4Ge8vRCZnewOpulL/Is84Q8MbCvxI8NQh9pD7Imom/wRjSAS
19N+sWh7ywuUtAOVqJ23dDc6SOL3yjM4HbmsEYRGPsgzuJ5crezLcrKgCFeGmz/4
4zbU3R9hzzXQy8ZqNjbj71FKswfUDcMLb26GA/62d2N6zR7O0TSzfIrpIYp+GwJ3
5KaM0LiKoW/LXGfwEdEBWpCkK1OKgMXmZ5IQlr5bRz3Qihqzkk65Dgfo66XRt+jb
DhMHW+cMfLwSX72QER6LyP2jPfUSCZgy5Pn8LfXUH30fc084gyrAPq2eqtVnf0lf
Hq5/r1nMosPE0CtxHM1vNRj5M052nQxXhDhdsTcoO6PVBrvEjJbkanj3XbNRk66T
FDWGWmdtDC2su6p0ezwbARMxYnsSS40GVsp/DoOu+SHxlAm9VkomY+QDJ2FuoJnb
K0XfW5vV9MEsvw==
=cuLD
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGX fix from Thomas Gleixner:
"A single fix for x86/SGX to prevent that memory which is allocated for
an SGX enclave is accounted to the wrong memory control group"
* tag 'x86-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Set active memcg prior to shmem allocation
- Disable late microcode loading by default. Unless the HW people get
their act together and provide a required minimum version in the
microcode header for making a halfways informed decision its just
lottery and broken.
- Warn and taint the kernel when microcode is loaded late
- Remove the old unused microcode loader interface
- Remove a redundant perf callback from the microcode loader
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcdjETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUUTD/92cLMB0g7XP8yFN+ZiHl7uoaDtE0UR
WfapnMNL3tKKVnuwEMg83AjtyQ+O1JNZ6iS5K8jmiBnBByg6EQccz8pfe3jUQ6Ar
gOLWV1F4tRbJD2NqqiWOo/l5qs5hJaz/QeE+oyCP0fvw6DOZixepG5RzveFSSwAa
G2Q03GsGEu84SXlVAjagMSU6tYlBnlZBfKRB8NiNxkW8CLcJY0NfDCunbN6icEbH
AQHXeviM3GWMKJA9R9DeSvYq9PbN5o2UVmcFQWsDAzZ8Ne2qCqskjoGNjuQ9s+72
G35fm5d7dtIcrYg4PSJN0JDJP4HbcfSjhUrbdH4iAClTkGnNQERfuDV9O92/lYJE
hd9c8yCegD0NWQ4dMNNrM5PSbWbQK7ajqRYVvqqouJZpH+IDtajA1jxEe+1msB8P
xmXQDcdSMOyVs+Bw3Djf3tt8Qqhu4jxnf3y711oLklPwwh9lq9SvaWiX9ZFoYgdn
1HVtQUAOdgDmncs5BQ8dpuwtoYXH5p31n0wh57emyFXl7wA93eWouuFczQ6mSol9
LLdd9c+q9mBFIo0ult+fVhEOTDJF+27s3YXOpge6BAqei/SQIU4c5oq51CukV7ap
TPzWAayq0lsAwXn1k6r86Zkewh1C2SQTyk1J3zMehZlSVpwSWbEQASYlKywmh6YB
N+6/0XtHDAVK5Q==
=DQjr
-----END PGP SIGNATURE-----
Merge tag 'x86-microcode-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode updates from Thomas Gleixner:
- Disable late microcode loading by default. Unless the HW people get
their act together and provide a required minimum version in the
microcode header for making a halfways informed decision its just
lottery and broken.
- Warn and taint the kernel when microcode is loaded late
- Remove the old unused microcode loader interface
- Remove a redundant perf callback from the microcode loader
* tag 'x86-microcode-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Remove unnecessary perf callback
x86/microcode: Taint and warn on late loading
x86/microcode: Default-disable late loading
x86/microcode: Rip out the OLD_INTERFACE
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcdNYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYod9oD/9Y3JOKOKfXKz6VTZeIkaq8bwizjCxX
tzTdeDy6pCYHv1z63rhwTpB4lUl+dt5CUiaf9YjEU3bdgNBtba/C0j6rx2Zf7Qk0
hw2CjsPahEdFGRRgzbMF6fOUHxsOV/fZ5S4w9XcV7u5QAMkoj/w3rl7Eh2Vn9KbL
B8I7Cl+Vyec2feknWau3s9vt4GRt+EYR08YmjWL1bxzjFss8JTs0mpzVnuR/QurU
O20UIGS/167EvacmC15Ehht3EJEOykte3iWVFCMgEwFsZTOpByCQGGnDQCVik0o9
6gYESc6fRNfTbC+rRGMs2LWXwsYfJMAqYLkSQIfOIETqysxu2HoWoCFWhpmaKLYr
DEL3mVTy1LB7TqY6+C0P2UCeU9CuNr3fejQf4SsDIsNmTlUuv+FHrDCfi9cotX/G
gmRa/29BASMgoVzF/QnzrEUGvEqU5S7wJgBxAD0cTw4IwvXz80KgbHNEl9utOCjB
ceXoPh3zOaEnBZn7B5HXRq52r2KOA+T7dL/6blPfuYokZrKftq8z9fLDXEqKSLFY
2lSxtowzAZiUxZDI5Z6qoBmEeEXrbxK3r7ro42KXetvudDWAoCspf2Qz8kEgZOCV
ykDMPEnhesL8eE1LJzaJBSggz3LmQAslxIZ+CcZlFMAI+vOmbFEbMYVYxDzyJECN
LEK9uNoEY1mMeQ==
=gNpf
-----END PGP SIGNATURE-----
Merge tag 'x86-boot-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot update from Thomas Gleixner:
"Use strlcpy() instead of strscpy() in arch_setup()"
* tag 'x86-boot-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/setup: Use strscpy() to replace deprecated strlcpy()
of Peter Zijlstra was encountering with ptrace in his freezer rewrite
I identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habbit of the ptrace code to change task->__state
from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No
other code in the kernel does that and it is straight forward to update
signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers for
a process are only reliably available when the process is stopped in
the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly.
According to our testing and our understanding of userspace nothing
cares that spurious SIGTRAPs can be generated in that case.
The entire discussion can be found at:
https://lkml.kernel.org/r/87a6bv6dl6.fsf_-_@email.froward.int.ebiederm.org
Eric W. Biederman (11):
signal: Rename send_signal send_signal_locked
signal: Replace __group_send_sig_info with send_signal_locked
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace: Remove arch_ptrace_attach
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
ptrace: Document that wait_task_inactive can't fail
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Don't change __state
ptrace: Always take siglock in ptrace_resume
Peter Zijlstra (1):
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
arch/ia64/include/asm/ptrace.h | 4 --
arch/ia64/kernel/ptrace.c | 57 ----------------
arch/um/include/asm/thread_info.h | 2 +
arch/um/kernel/exec.c | 2 +-
arch/um/kernel/process.c | 2 +-
arch/um/kernel/ptrace.c | 8 +--
arch/um/kernel/signal.c | 4 +-
arch/x86/kernel/step.c | 3 +-
arch/xtensa/kernel/ptrace.c | 4 +-
arch/xtensa/kernel/signal.c | 4 +-
drivers/tty/tty_jobctrl.c | 4 +-
include/linux/ptrace.h | 7 --
include/linux/sched.h | 10 ++-
include/linux/sched/jobctl.h | 8 +++
include/linux/sched/signal.h | 20 ++++--
include/linux/signal.h | 3 +-
kernel/ptrace.c | 87 ++++++++---------------
kernel/sched/core.c | 5 +-
kernel/signal.c | 140 +++++++++++++++++---------------------
kernel/time/posix-cpu-timers.c | 6 +-
20 files changed, 140 insertions(+), 240 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaXaYACgkQC/v6Eiaj
j0CgoA/+JncSQ6PY2D5Jh1apvHzmnRsFXzr3DRvtv/CVx4oIebOXRQFyVDeD5tRn
TmMgB29HpBlHRDLojlmlZRGAld1HR/aPEW9j8W1D3Sy/ZFO5L8lQitv9aDHO9Ntw
4lZvlhS1M0KhATudVVBqSPixiG6CnV5SsGmixqdOyg7xcXSY6G1l2nB7Zk9I3Tat
ZlmhuZ6R5Z5qsm4MEq0vUSrnsHiGxYrpk6uQOaVz8Wkv8ZFmbutt6XgxF0tsyZNn
mHSmWSiZzIgBjTlaibEmxi8urYJTPj3vGBeJQVYHblFwLFi6+Oy7bDxQbWjQvaZh
DsgWPScfBF4Jm0+8hhCiSYpvPp8XnZuklb4LNCeok/VFr+KfSmpJTIhn00kagQ1u
vxQDqLws8YLW4qsfGydfx9uUIFCbQE/V2VDYk5J3Re3gkUNDOOR1A56hPniKv6VB
2aqGO2Fl0RdBbUa3JF+XI5Pwq5y1WrqR93EUvj+5+u5W9rZL/8WLBHBMEz6gbmfD
DhwFE0y8TG2WRlWJVEDRId+5zo3di/YvasH0vJZ5HbrxhS2RE/yIGAd+kKGx/lZO
qWDJC7IHvFJ7Mw5KugacyF0SHeNdloyBM7KZW6HeXmgKn9IMJBpmwib92uUkRZJx
D8j/bHHqD/zsgQ39nO+c4M0MmhO/DsPLG/dnGKrRCu7v1tmEnkY=
=ZUuO
-----END PGP SIGNATURE-----
Merge tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ptrace_stop cleanups from Eric Biederman:
"While looking at the ptrace problems with PREEMPT_RT and the problems
Peter Zijlstra was encountering with ptrace in his freezer rewrite I
identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habit of the ptrace code to change
task->__state from the tracer to suppress TASK_WAKEKILL from waking up
the tracee. No other code in the kernel does that and it is straight
forward to update signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers
for a process are only reliably available when the process is stopped
in the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly. According
to our testing and our understanding of userspace nothing cares that
spurious SIGTRAPs can be generated in that case"
* tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
ptrace: Always take siglock in ptrace_resume
ptrace: Don't change __state
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Document that wait_task_inactive can't fail
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Remove arch_ptrace_attach
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
signal: Replace __group_send_sig_info with send_signal_locked
signal: Rename send_signal send_signal_locked
ordinary user mode tasks.
In commit 40966e316f ("kthread: Ensure struct kthread is present for
all kthreads") caused init and the user mode helper threads that call
kernel_execve to have struct kthread allocated for them. This struct
kthread going away during execve in turned made a use after free of
struct kthread possible.
The commit 343f4c49f2 ("kthread: Don't allocate kthread_struct for
init and umh") is enough to fix the use after free and is simple enough
to be backportable.
The rest of the changes pass struct kernel_clone_args to clean things
up and cause the code to make sense.
In making init and the user mode helpers tasks purely user mode tasks
I ran into two complications. The function task_tick_numa was
detecting tasks without an mm by testing for the presence of
PF_KTHREAD. The initramfs code in populate_initrd_image was using
flush_delayed_fput to ensuere the closing of all it's file descriptors
was complete, and flush_delayed_fput does not work in a userspace thread.
I have looked and looked and more complications and in my code review
I have not found any, and neither has anyone else with the code sitting
in linux-next.
Link: https://lkml.kernel.org/r/87mtfu4up3.fsf@email.froward.int.ebiederm.org
Eric W. Biederman (8):
kthread: Don't allocate kthread_struct for init and umh
fork: Pass struct kernel_clone_args into copy_thread
fork: Explicity test for idle tasks in copy_thread
fork: Generalize PF_IO_WORKER handling
init: Deal with the init process being a user mode process
fork: Explicitly set PF_KTHREAD
fork: Stop allowing kthreads to call execve
sched: Update task_tick_numa to ignore tasks without an mm
arch/alpha/kernel/process.c | 13 ++++++------
arch/arc/kernel/process.c | 13 ++++++------
arch/arm/kernel/process.c | 12 ++++++-----
arch/arm64/kernel/process.c | 12 ++++++-----
arch/csky/kernel/process.c | 15 ++++++-------
arch/h8300/kernel/process.c | 10 ++++-----
arch/hexagon/kernel/process.c | 12 ++++++-----
arch/ia64/kernel/process.c | 15 +++++++------
arch/m68k/kernel/process.c | 12 ++++++-----
arch/microblaze/kernel/process.c | 12 ++++++-----
arch/mips/kernel/process.c | 13 ++++++------
arch/nios2/kernel/process.c | 12 ++++++-----
arch/openrisc/kernel/process.c | 12 ++++++-----
arch/parisc/kernel/process.c | 18 +++++++++-------
arch/powerpc/kernel/process.c | 15 +++++++------
arch/riscv/kernel/process.c | 12 ++++++-----
arch/s390/kernel/process.c | 12 ++++++-----
arch/sh/kernel/process_32.c | 12 ++++++-----
arch/sparc/kernel/process_32.c | 12 ++++++-----
arch/sparc/kernel/process_64.c | 12 ++++++-----
arch/um/kernel/process.c | 15 +++++++------
arch/x86/include/asm/fpu/sched.h | 2 +-
arch/x86/include/asm/switch_to.h | 8 +++----
arch/x86/kernel/fpu/core.c | 4 ++--
arch/x86/kernel/process.c | 18 +++++++++-------
arch/xtensa/kernel/process.c | 17 ++++++++-------
fs/exec.c | 8 ++++---
include/linux/sched/task.h | 8 +++++--
init/initramfs.c | 2 ++
init/main.c | 2 +-
kernel/fork.c | 46 +++++++++++++++++++++++++++++++++-------
kernel/sched/fair.c | 2 +-
kernel/umh.c | 6 +++---
33 files changed, 234 insertions(+), 160 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaR/MACgkQC/v6Eiaj
j0Aayg/7Bx66872d9c6igkJ+MPCTuh+v9QKCGwiYEmiU4Q5sVAFB0HPJO27qC14u
630X0RFNZTkPzNNEJNIW4kw6Dj8s8YRKf+FgQAVt4SzdRwT7eIPDjk1nGraopPJ3
O04pjvuTmUyidyViRyFcf2ptx/pnkrwP8jUSc+bGTgfASAKAgAokqKE5ecjewbBc
Y/EAkQ6QW7KxPjeSmpAHwI+t3BpBev9WEC4PbhRhsBCQFO2+PJiklvqdhVNBnIjv
qUezll/1xv9UYgniB15Q4Nb722SmnWSU3r8as1eFPugzTHizKhufrrpyP+KMK1A0
tdtEJNs5t2DZF7ZbGTFSPqJWmyTYLrghZdO+lOmnaSjHxK4Nda1d4NzbefJ0u+FE
tutewowvHtBX6AFIbx+H3O+DOJM2IgNMf+ReQDU/TyNyVf3wBrTbsr9cLxypIJIp
zze8npoLMlB7B4yxVo5ES5e63EXfi3iHl0L3/1EhoGwriRz1kWgVLUX/VZOUpscL
RkJHsW6bT8sqxPWAA5kyWjEN+wNR2PxbXi8OE4arT0uJrEBMUgDCzydzOv5tJB00
mSQdytxH9LVdsmxBKAOBp5X6WOLGA4yb1cZ6E/mEhlqXMpBDF1DaMfwbWqxSYi4q
sp5zU3SBAW0qceiZSsWZXInfbjrcQXNV/DkDRDO9OmzEZP4m1j0=
=x6fy
-----END PGP SIGNATURE-----
Merge tag 'kthread-cleanups-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull kthread updates from Eric Biederman:
"This updates init and user mode helper tasks to be ordinary user mode
tasks.
Commit 40966e316f ("kthread: Ensure struct kthread is present for
all kthreads") caused init and the user mode helper threads that call
kernel_execve to have struct kthread allocated for them. This struct
kthread going away during execve in turned made a use after free of
struct kthread possible.
Here, commit 343f4c49f2 ("kthread: Don't allocate kthread_struct for
init and umh") is enough to fix the use after free and is simple
enough to be backportable.
The rest of the changes pass struct kernel_clone_args to clean things
up and cause the code to make sense.
In making init and the user mode helpers tasks purely user mode tasks
I ran into two complications. The function task_tick_numa was
detecting tasks without an mm by testing for the presence of
PF_KTHREAD. The initramfs code in populate_initrd_image was using
flush_delayed_fput to ensuere the closing of all it's file descriptors
was complete, and flush_delayed_fput does not work in a userspace
thread.
I have looked and looked and more complications and in my code review
I have not found any, and neither has anyone else with the code
sitting in linux-next"
* tag 'kthread-cleanups-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
sched: Update task_tick_numa to ignore tasks without an mm
fork: Stop allowing kthreads to call execve
fork: Explicitly set PF_KTHREAD
init: Deal with the init process being a user mode process
fork: Generalize PF_IO_WORKER handling
fork: Explicity test for idle tasks in copy_thread
fork: Pass struct kernel_clone_args into copy_thread
kthread: Don't allocate kthread_struct for init and umh
When the system runs out of enclave memory, SGX can reclaim EPC pages
by swapping to normal RAM. These backing pages are allocated via a
per-enclave shared memory area. Since SGX allows unlimited over
commit on EPC memory, the reclaimer thread can allocate a large
number of backing RAM pages in response to EPC memory pressure.
When the shared memory backing RAM allocation occurs during
the reclaimer thread context, the shared memory is charged to
the root memory control group, and the shmem usage of the enclave
is not properly accounted for, making cgroups ineffective at
limiting the amount of RAM an enclave can consume.
For example, when using a cgroup to launch a set of test
enclaves, the kernel does not properly account for 50% - 75% of
shmem page allocations on average. In the worst case, when
nearly all allocations occur during the reclaimer thread, the
kernel accounts less than a percent of the amount of shmem used
by the enclave's cgroup to the correct cgroup.
SGX stores a list of mm_structs that are associated with
an enclave. Pick one of them during reclaim and charge that
mm's memcg with the shmem allocation. The one that gets picked
is arbitrary, but this list almost always only has one mm. The
cases where there is more than one mm with different memcg's
are not worth considering.
Create a new function - sgx_encl_alloc_backing(). This function
is used whenever a new backing storage page needs to be
allocated. Previously the same function was used for page
allocation as well as retrieving a previously allocated page.
Prior to backing page allocation, if there is a mm_struct associated
with the enclave that is requesting the allocation, it is set
as the active memory control group.
[ dhansen: - fix merge conflict with ELDU fixes
- check against actual ksgxd_tsk, not ->mm ]
Cc: stable@vger.kernel.org
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Link: https://lkml.kernel.org/r/20220520174248.4918-1-kristen@linux.intel.com
This is reported by kmemleak detector:
unreferenced object 0xffffc900002a9000 (size 4096):
comm "kexec", pid 14950, jiffies 4295110793 (age 373.951s)
hex dump (first 32 bytes):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............
04 00 3e 00 01 00 00 00 00 00 00 00 00 00 00 00 ..>.............
backtrace:
[<0000000016a8ef9f>] __vmalloc_node_range+0x101/0x170
[<000000002b66b6c0>] __vmalloc_node+0xb4/0x160
[<00000000ad40107d>] crash_prepare_elf64_headers+0x8e/0xcd0
[<0000000019afff23>] crash_load_segments+0x260/0x470
[<0000000019ebe95c>] bzImage64_load+0x814/0xad0
[<0000000093e16b05>] arch_kexec_kernel_image_load+0x1be/0x2a0
[<000000009ef2fc88>] kimage_file_alloc_init+0x2ec/0x5a0
[<0000000038f5a97a>] __do_sys_kexec_file_load+0x28d/0x530
[<0000000087c19992>] do_syscall_64+0x3b/0x90
[<0000000066e063a4>] entry_SYSCALL_64_after_hwframe+0x44/0xae
In crash_prepare_elf64_headers(), a buffer is allocated via vmalloc() to
store elf headers. While it's not freed back to system correctly when
kdump kernel is reloaded or unloaded. Then memory leak is caused. Fix it
by introducing x86 specific function arch_kimage_file_post_load_cleanup(),
and freeing the buffer there.
And also remove the incorrect elf header buffer freeing code. Before
calling arch specific kexec_file loading function, the image instance has
been initialized. So 'image->elf_headers' must be NULL. It doesn't make
sense to free the elf header buffer in the place.
Three different people have reported three bugs about the memory leak on
x86_64 inside Redhat.
Link: https://lkml.kernel.org/r/20220223113225.63106-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
c93dc84cbe ("perf/x86: Add a microcode revision check for SNB-PEBS")
checks whether the microcode revision has fixed PEBS issues.
This can happen either:
1. At PEBS init time, where the early microcode has been loaded already
2. During late loading, in the microcode_check() callback.
So remove the unnecessary call in the microcode loader init routine.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220525161232.14924-5-bp@alien8.de
Warn before it is attempted and taint the kernel. Late loading microcode
can lead to malfunction of the kernel when the microcode update changes
behaviour. There is no way for the kernel to determine whether its safe or
not.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220525161232.14924-4-bp@alien8.de
It is dangerous and it should not be used anyway - there's a nice early
loading already.
Requested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220525161232.14924-3-bp@alien8.de
- Add Tegra234 cpufreq support (Sumit Gupta).
- Clean up and enhance the Mediatek cpufreq driver (Wan Jiabing,
Rex-BC Chen, and Jia-Wei Chang).
- Fix up the CPPC cpufreq driver after recent changes (Zheng Bin,
Pierre Gondois).
- Minor update to dt-binding for Qcom's opp-v2-kryo-cpu (Yassine
Oudjana).
- Use list iterator only inside the list_for_each_entry loop (Xiaomeng
Tong, and Jakob Koschel).
- New APIs related to finding OPP based on interconnect bandwidth
(Krzysztof Kozlowski).
- Fix the missing of_node_put() in _bandwidth_supported() (Dan
Carpenter).
- Cleanups (Krzysztof Kozlowski, and Viresh Kumar).
- Add Out of Band mode description to the intel-speed-select utility
documentation (Srinivas Pandruvada).
- Add power sequences support to the system reboot and power off
code and make related platform-specific changes for multiple
platforms (Dmitry Osipenko, Geert Uytterhoeven).
-----BEGIN PGP SIGNATURE-----
iQJFBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmKU8lESHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxVz0P91LNCbkDSt60jzNkXdEjsvUnI/YjJ+QJ
/+ta7iCwf90obb6s9soBkTyU8Ia7hJ/IWDJW/5xhdG0ySYF17hGNIGKK9xKGsJFK
tzzWtjFsvT3PeUZQERekqWp8OYskHYmQMj8o4jqqFF7DZD/AswTgkVLALUd7YhVL
UvLmcKsUA7eXy3ZrhtrGSzVSEbKOGXBLFyjy3IuWjfz6Uk/nGQRNKGf7byRWLM44
y7zb75/5+p4MPyyJP8M/uiXzEYDKuubRtfx9PdmLgBUSMbtho6eB1x47dZWooaxe
YKmcFjF80AmnwxHb+Te2rZHPeIYr+5hLBaEq7xaLQf/nAS3y5z1PIfI2wVQ5mXPz
D599jHHda/6oSAKCVTq2fKfnlR6fetm5j66xOQINpD+G5b5tNSpllXJDamFZxFgP
DiQAOFzdnRYnK7yTiLWVl1q76SVRxqsGz7/5Ak+NRj2OQK2wRkLzHuZfiV/8r0pk
ksi6Ew9TerXkstoTQsSToPQxB2VvosSajNU3Oy27pmM0oal1XxP0LIPz9sMor5/g
tfk5f6Yz/+FFIfXj3cZffZNdhsJgejmcqPdrSdCOV3sBrblnIMQNpHiYg4jGztoj
IjYKYPVpSaWiSZLQOaK2moTEvm9CfQz1TQCF+/Kz88LX6/7ZaDJFxHG2FDEob0sg
6KVbrZWweLI=
=PAh+
-----END PGP SIGNATURE-----
Merge tag 'pm-5.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These update the ARM cpufreq drivers and fix up the CPPC cpufreq
driver after recent changes, update the OPP code and PM documentation
and add power sequences support to the system reboot and power off
code.
Specifics:
- Add Tegra234 cpufreq support (Sumit Gupta)
- Clean up and enhance the Mediatek cpufreq driver (Wan Jiabing,
Rex-BC Chen, and Jia-Wei Chang)
- Fix up the CPPC cpufreq driver after recent changes (Zheng Bin,
Pierre Gondois)
- Minor update to dt-binding for Qcom's opp-v2-kryo-cpu (Yassine
Oudjana)
- Use list iterator only inside the list_for_each_entry loop
(Xiaomeng Tong, and Jakob Koschel)
- New APIs related to finding OPP based on interconnect bandwidth
(Krzysztof Kozlowski)
- Fix the missing of_node_put() in _bandwidth_supported() (Dan
Carpenter)
- Cleanups (Krzysztof Kozlowski, and Viresh Kumar)
- Add Out of Band mode description to the intel-speed-select utility
documentation (Srinivas Pandruvada)
- Add power sequences support to the system reboot and power off code
and make related platform-specific changes for multiple platforms
(Dmitry Osipenko, Geert Uytterhoeven)"
* tag 'pm-5.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (60 commits)
cpufreq: CPPC: Fix unused-function warning
cpufreq: CPPC: Fix build error without CONFIG_ACPI_CPPC_CPUFREQ_FIE
Documentation: admin-guide: PM: Add Out of Band mode
kernel/reboot: Change registration order of legacy power-off handler
m68k: virt: Switch to new sys-off handler API
kernel/reboot: Add devm_register_restart_handler()
kernel/reboot: Add devm_register_power_off_handler()
soc/tegra: pmc: Use sys-off handler API to power off Nexus 7 properly
reboot: Remove pm_power_off_prepare()
regulator: pfuze100: Use devm_register_sys_off_handler()
ACPI: power: Switch to sys-off handler API
memory: emif: Use kernel_can_power_off()
mips: Use do_kernel_power_off()
ia64: Use do_kernel_power_off()
x86: Use do_kernel_power_off()
sh: Use do_kernel_power_off()
m68k: Switch to new sys-off handler API
powerpc: Use do_kernel_power_off()
xen/x86: Use do_kernel_power_off()
parisc: Use do_kernel_power_off()
...
- The majority of the changes are for fixes and clean ups.
Noticeable changes:
- Rework trace event triggers code to be easier to interact with.
- Support for embedding bootconfig with the kernel (as suppose to having it
embedded in initram). This is useful for embedded boards without initram
disks.
- Speed up boot by parallelizing the creation of tracefs files.
- Allow absolute ring buffer timestamps handle timestamps that use more than
59 bits.
- Added new tracing clock "TAI" (International Atomic Time)
- Have weak functions show up in available_filter_function list as:
__ftrace_invalid_address___<invalid-offset>
instead of using the name of the function before it.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCYpOgXRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qjkKAQDbpemxvpFyJlZqT8KgEIXubu+ag2/q
p0XDHaPS0zF9OQEAjTxg6GMEbnFYl6fzxZtOoEbiaQ7ppfdhRI8t6sSMVA8=
=+nDD
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The majority of the changes are for fixes and clean ups.
Notable changes:
- Rework trace event triggers code to be easier to interact with.
- Support for embedding bootconfig with the kernel (as suppose to
having it embedded in initram). This is useful for embedded boards
without initram disks.
- Speed up boot by parallelizing the creation of tracefs files.
- Allow absolute ring buffer timestamps handle timestamps that use
more than 59 bits.
- Added new tracing clock "TAI" (International Atomic Time)
- Have weak functions show up in available_filter_function list as:
__ftrace_invalid_address___<invalid-offset> instead of using the
name of the function before it"
* tag 'trace-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (52 commits)
ftrace: Add FTRACE_MCOUNT_MAX_OFFSET to avoid adding weak function
tracing: Fix comments for event_trigger_separate_filter()
x86/traceponit: Fix comment about irq vector tracepoints
x86,tracing: Remove unused headers
ftrace: Clean up hash direct_functions on register failures
tracing: Fix comments of create_filter()
tracing: Disable kcov on trace_preemptirq.c
tracing: Initialize integer variable to prevent garbage return value
ftrace: Fix typo in comment
ftrace: Remove return value of ftrace_arch_modify_*()
tracing: Cleanup code by removing init "char *name"
tracing: Change "char *" string form to "char []"
tracing/timerlat: Do not wakeup the thread if the trace stops at the IRQ
tracing/timerlat: Print stacktrace in the IRQ handler if needed
tracing/timerlat: Notify IRQ new max latency only if stop tracing is set
kprobes: Fix build errors with CONFIG_KRETPROBES=n
tracing: Fix return value of trace_pid_write()
tracing: Fix potential double free in create_var_ref()
tracing: Use strim() to remove whitespace instead of doing it manually
ftrace: Deal with error return code of the ftrace_process_locs() function
...
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmKSSbcTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXgJyCACeyMOcFws5lyqqdk0R0zGr2KFfKsJn
YQR9nvldT2p/1y0ykvU208UIq0HHmXOb9pD8gOUzGYGp4XlEaC1f4V37mmzgLcRu
vL/HcFqBl2cQEfaQxiXZrmsIIVszwbc57EGqpl93cS2er4hp/NXmredKCId7Mpt8
FjxjgVGzdhEUKbJZYjkDM5pYAnJ9QVwuK3MaarKMK86Oj1P5YtKgIb4ZSt/NHvsC
Mukx3nivSH29XfK3fRsFDJUQr9WNYh1cmTtyhB0tWVXQCYFc4angZRtCJwyXzkp2
P5GBIQoMZcXX2XWkUBTtA1w5g/aZZsBExb3YGhQjsQP+jb6MtDnvOEo9
=Z2E+
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20220528' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Harden hv_sock driver (Andrea Parri)
- Harden Hyper-V PCI driver (Andrea Parri)
- Fix multi-MSI for Hyper-V PCI driver (Jeffrey Hugo)
- Fix Hyper-V PCI to reduce boot time (Dexuan Cui)
- Remove code for long EOL'ed Hyper-V versions (Michael Kelley, Saurabh
Sengar)
- Fix balloon driver error handling (Shradha Gupta)
- Fix a typo in vmbus driver (Julia Lawall)
- Ignore vmbus IMC device (Michael Kelley)
- Add a new error message to Hyper-V DRM driver (Saurabh Sengar)
* tag 'hyperv-next-signed-20220528' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (28 commits)
hv_balloon: Fix balloon_probe() and balloon_remove() error handling
scsi: storvsc: Removing Pre Win8 related logic
Drivers: hv: vmbus: fix typo in comment
PCI: hv: Fix synchronization between channel callback and hv_pci_bus_exit()
PCI: hv: Add validation for untrusted Hyper-V values
PCI: hv: Fix interrupt mapping for multi-MSI
PCI: hv: Reuse existing IRTE allocation in compose_msi_msg()
drm/hyperv: Remove support for Hyper-V 2008 and 2008R2/Win7
video: hyperv_fb: Remove support for Hyper-V 2008 and 2008R2/Win7
scsi: storvsc: Remove support for Hyper-V 2008 and 2008R2/Win7
Drivers: hv: vmbus: Remove support for Hyper-V 2008 and Hyper-V 2008R2/Win7
x86/hyperv: Disable hardlockup detector by default in Hyper-V guests
drm/hyperv: Add error message for fb size greater than allocated
PCI: hv: Do not set PCI_COMMAND_MEMORY to reduce VM boot time
PCI: hv: Fix hv_arch_irq_unmask() for multi-MSI
Drivers: hv: vmbus: Refactor the ring-buffer iterator functions
Drivers: hv: vmbus: Accept hv_sock offers in isolated guests
hv_sock: Add validation for untrusted Hyper-V values
hv_sock: Copy packets sent by Hyper-V out of the ring buffer
hv_sock: Check hv_pkt_iter_first_raw()'s return value
...
- Add support for clearing memory error via pwrite(2) on DAX
- Fix 'security overwrite' support in the presence of media errors
- Miscellaneous cleanups and fixes for nfit_test (nvdimm unit tests)
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYpFPcQAKCRDfioYZHlFs
Z9A3AQCdfoT5sY3OK+I/3oTvJ//6lw2MtXrnXFM046ICKPi9sgD8CzR9mRAHA+vj
kxOtJEU2bA9naninXGORsDUndiNkwQo=
=gVIn
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and DAX updates from Dan Williams:
"New support for clearing memory errors when a file is in DAX mode,
alongside with some other fixes and cleanups.
Previously it was only possible to clear these errors using a truncate
or hole-punch operation to trigger the filesystem to reallocate the
block, now, any page aligned write can opportunistically clear errors
as well.
This change spans x86/mm, nvdimm, and fs/dax, and has received the
appropriate sign-offs. Thanks to Jane for her work on this.
Summary:
- Add support for clearing memory error via pwrite(2) on DAX
- Fix 'security overwrite' support in the presence of media errors
- Miscellaneous cleanups and fixes for nfit_test (nvdimm unit tests)"
* tag 'libnvdimm-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
pmem: implement pmem_recovery_write()
pmem: refactor pmem_clear_poison()
dax: add .recovery_write dax_operation
dax: introduce DAX_RECOVERY_WRITE dax access mode
mce: fix set_mce_nospec to always unmap the whole page
x86/mce: relocate set{clear}_mce_nospec() functions
acpi/nfit: rely on mce->misc to determine poison granularity
testing: nvdimm: asm/mce.h is not needed in nfit.c
testing: nvdimm: iomap: make __nfit_test_ioremap a macro
nvdimm: Allow overwrite in the presence of disabled dimms
tools/testing/nvdimm: remove unneeded flush_workqueue
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmKP/tQUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vzH0xAAojQowrSWzZ5FKTqI+L/L9ZXoAb+e
9IvQljKc9taJldmXp+EB9wkS/5B+VtQcC2qUQuWEQXUoECF8qHlcB4l+XQyd1tWO
O0vZxETH22xjLLrjG2F3l5rrfkJZAf2nEugwbDk97YEgiimeOiRcv3bx6AUCtj6I
rPJ13Fop3Jke7sQMcXYJe3gQLT1o1AKiQGghiCFNi/gzx2lXI6mmHBgLxFoiqcby
WpfXbvbJti95HRaahUR3HaDFfHj4HVkQNLlTtIykJ3Tl2/rOhWEJjI8JOIQpAA+M
WBrWw9rfgbScTiGV+dZ3h7hKiPnHKl9YETIX7L0oA2sj0jZcIs0d6mSBZx0kYuI9
eAlx+qSK9xpbQQr/fdYaUdF1q4QdtU0BYOvOWOzWsqYCECMRJ1PUHFSMbmR/+PNB
P5lHnAbggRSoxdAtwFYv1HTr+VpGH9S+5oxHCz3ohpMjYy6mkCZwHpZn3doaU3ci
KG6yIoVKftm3fZdtFvL03qHl/I8+X24ZhT/T/278PRGjkhSyr56hZo8hg0gqqTct
ngip8qNABmSbqpr73/W6Vl42zAbYtNk1BykYahbKupgW8FbT7hqaZTB05V87pVu+
Ko1aJM6VoOP9rMlKHI9ba8eYCzDrZbLZUFn7ljNPDpzutf0tAwtgwzvZBXN3za6+
Z9+D5dxmvrZEIbA=
=hEti
-----END PGP SIGNATURE-----
Merge tag 'pci-v5.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci updates from Bjorn Helgaas:
"Resource management:
- Restrict E820 clipping to PCI host bridge windows (Bjorn Helgaas)
- Log E820 clipping better (Bjorn Helgaas)
- Add kernel cmdline options to enable/disable E820 clipping (Hans de
Goede)
- Disable E820 reserved region clipping for IdeaPads, Yoga, Yoga
Slip, Acer Spin 5, Clevo Barebone systems where clipping leaves no
usable address space for touchpads, Thunderbolt devices, etc (Hans
de Goede)
- Disable E820 clipping by default starting in 2023 (Hans de Goede)
PCI device hotplug:
- Include files to remove implicit dependencies (Christophe Leroy)
- Only put Root Ports in D3 if they can signal and wake from D3 so
AMD Yellow Carp doesn't miss hotplug events (Mario Limonciello)
Power management:
- Define pci_restore_standard_config() only for CONFIG_PM_SLEEP since
it's unused otherwise (Krzysztof Kozlowski)
- Power up devices completely, including anything platform firmware
needs to do, during runtime resume (Rafael J. Wysocki)
- Move pci_resume_bus() to PM callbacks so we observe the required
bridge power-up delays (Rafael J. Wysocki)
- Drop unneeded runtime_d3cold device flag (Rafael J. Wysocki)
- Split pci_raw_set_power_state() between pci_power_up() and a new
pci_set_low_power_state() (Rafael J. Wysocki)
- Set current_state to D3cold if config read returns ~0, indicating
the device is not accessible (Rafael J. Wysocki)
- Do not call pci_update_current_state() from pci_power_up() so BARs
and ASPM config are restored correctly (Rafael J. Wysocki)
- Write 0 to PMCSR in pci_power_up() in all cases (Rafael J. Wysocki)
- Split pci_power_up() to pci_set_full_power_state() to avoid some
redundant operations (Rafael J. Wysocki)
- Skip restoring BARs if device is not in D0 (Rafael J. Wysocki)
- Rearrange and clarify pci_set_power_state() (Rafael J. Wysocki)
- Remove redundant BAR restores from pci_pm_thaw_noirq() (Rafael J.
Wysocki)
Virtualization:
- Acquire device lock before config space access lock to avoid AB/BA
deadlock with sriov_numvfs_store() (Yicong Yang)
Error handling:
- Clear MULTI_ERR_COR/UNCOR_RCV bits, which a race could previously
leave permanently set (Kuppuswamy Sathyanarayanan)
Peer-to-peer DMA:
- Whitelist Intel Skylake-E Root Ports regardless of which devfn they
are (Shlomo Pongratz)
ASPM:
- Override L1 acceptable latency advertised by Intel DG2 so ASPM L1
can be enabled (Mika Westerberg)
Cadence PCIe controller driver:
- Set up device-specific register to allow PTM Responder to be
enabled by the normal architected bit (Christian Gmeiner)
- Override advertised FLR support since the controller doesn't
implement FLR correctly (Parshuram Thombare)
Cadence PCIe endpoint driver:
- Correct bitmap size for the ob_region_map of outbound window usage
(Dan Carpenter)
Freescale i.MX6 PCIe controller driver:
- Fix PERST# assertion/deassertion so we observe the required delays
before accessing device (Francesco Dolcini)
Freescale Layerscape PCIe controller driver:
- Add "big-endian" DT property (Hou Zhiqiang)
- Update SCFG DT property (Hou Zhiqiang)
- Add "aer", "pme", "intr" DT properties (Li Yang)
- Add DT compatible strings for ls1028a (Xiaowei Bao)
Intel VMD host bridge driver:
- Assign VMD IRQ domain before enumeration to avoid IOMMU interrupt
remapping errors when MSI-X remapping is disabled (Nirmal Patel)
- Revert VMD workaround that kept MSI-X remapping enabled when IOMMU
remapping was enabled (Nirmal Patel)
Marvell MVEBU PCIe controller driver:
- Add of_pci_get_slot_power_limit() to parse the
'slot-power-limit-milliwatt' DT property (Pali Rohár)
- Add mvebu support for sending Set_Slot_Power_Limit message (Pali
Rohár)
MediaTek PCIe controller driver:
- Fix refcount leak in mtk_pcie_subsys_powerup() (Miaoqian Lin)
MediaTek PCIe Gen3 controller driver:
- Reset PHY and MAC at probe time (AngeloGioacchino Del Regno)
Microchip PolarFlare PCIe controller driver:
- Add chained_irq_enter()/chained_irq_exit() calls to mc_handle_msi()
and mc_handle_intx() to avoid lost interrupts (Conor Dooley)
- Fix interrupt handling race (Daire McNamara)
NVIDIA Tegra194 PCIe controller driver:
- Drop tegra194 MSI register save/restore, which is unnecessary since
the DWC core does it (Jisheng Zhang)
Qualcomm PCIe controller driver:
- Add SM8150 SoC DT binding and support (Bhupesh Sharma)
- Fix pipe clock imbalance (Johan Hovold)
- Fix runtime PM imbalance on probe errors (Johan Hovold)
- Fix PHY init imbalance on probe errors (Johan Hovold)
- Convert DT binding to YAML (Dmitry Baryshkov)
- Update DT binding to show that resets aren't required for
MSM8996/APQ8096 platforms (Dmitry Baryshkov)
- Add explicit register names per chipset in DT binding (Dmitry
Baryshkov)
- Add sc7280-specific clock and reset definitions to DT binding
(Dmitry Baryshkov)
Rockchip PCIe controller driver:
- Fix bitmap size when searching for free outbound region (Dan
Carpenter)
Rockchip DesignWare PCIe controller driver:
- Remove "snps,dw-pcie" from rockchip-dwc DT "compatible" property
because it's not fully compatible with rockchip (Peter Geis)
- Reset rockchip-dwc controller at probe (Peter Geis)
- Add rockchip-dwc INTx support (Peter Geis)
Synopsys DesignWare PCIe controller driver:
- Return error instead of success if DMA mapping of MSI area fails
(Jiantao Zhang)
Miscellaneous:
- Change pci_set_dma_mask() documentation references to
dma_set_mask() (Alex Williamson)"
* tag 'pci-v5.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (64 commits)
dt-bindings: PCI: qcom: Add schema for sc7280 chipset
dt-bindings: PCI: qcom: Specify reg-names explicitly
dt-bindings: PCI: qcom: Do not require resets on msm8996 platforms
dt-bindings: PCI: qcom: Convert to YAML
PCI: qcom: Fix unbalanced PHY init on probe errors
PCI: qcom: Fix runtime PM imbalance on probe errors
PCI: qcom: Fix pipe clock imbalance
PCI: qcom: Add SM8150 SoC support
dt-bindings: pci: qcom: Document PCIe bindings for SM8150 SoC
x86/PCI: Disable E820 reserved region clipping starting in 2023
x86/PCI: Disable E820 reserved region clipping via quirks
x86/PCI: Add kernel cmdline options to use/ignore E820 reserved regions
PCI: microchip: Fix potential race in interrupt handling
PCI/AER: Clear MULTI_ERR_COR/UNCOR_RCV bits
PCI: cadence: Clear FLR in device capabilities register
PCI: cadence: Allow PTM Responder to be enabled
PCI: vmd: Revert 2565e5b69c ("PCI: vmd: Do not disable MSI-X remapping if interrupt remapping is enabled by IOMMU.")
PCI: vmd: Assign VMD IRQ domain before enumeration
PCI: Avoid pci_dev_lock() AB/BA deadlock with sriov_numvfs_store()
PCI: rockchip-dwc: Add legacy interrupt support
...
subsystems. Most notably some maintenance work in ocfs2 and initramfs.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYo/6xQAKCRDdBJ7gKXxA
jkD9AQCPczLBbRWpe1edL+5VHvel9ePoHQmvbHQnufdTh9rB5QEAu0Uilxz4q9cx
xSZypNhj2n9f8FCYca/ZrZneBsTnAA8=
=AJEO
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2022-05-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc updates from Andrew Morton:
"The non-MM patch queue for this merge window.
Not a lot of material this cycle. Many singleton patches against
various subsystems. Most notably some maintenance work in ocfs2
and initramfs"
* tag 'mm-nonmm-stable-2022-05-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (65 commits)
kcov: update pos before writing pc in trace function
ocfs2: dlmfs: fix error handling of user_dlm_destroy_lock
ocfs2: dlmfs: don't clear USER_LOCK_ATTACHED when destroying lock
fs/ntfs: remove redundant variable idx
fat: remove time truncations in vfat_create/vfat_mkdir
fat: report creation time in statx
fat: ignore ctime updates, and keep ctime identical to mtime in memory
fat: split fat_truncate_time() into separate functions
MAINTAINERS: add Muchun as a memcg reviewer
proc/sysctl: make protected_* world readable
ia64: mca: drop redundant spinlock initialization
tty: fix deadlock caused by calling printk() under tty_port->lock
relay: remove redundant assignment to pointer buf
fs/ntfs3: validate BOOT sectors_per_clusters
lib/string_helpers: fix not adding strarray to device's resource list
kernel/crash_core.c: remove redundant check of ck_cmdline
ELF, uapi: fixup ELF_ST_TYPE definition
ipc/mqueue: use get_tree_nodev() in mqueue_get_tree()
ipc: update semtimedop() to use hrtimer
ipc/sem: remove redundant assignments
...