mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 3a95de5973
			
		
	
	
		3a95de5973
		
	
	
	
	
		
			
			Just pass bool flags from the different initcalls and use the flags to set the right pointers. This results in less pointers passed around in init. Cc: Cédric Le Goater <clg@kaod.org> Cc: Joel Stanley <joel@jms.id.au> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Link: https://lore.kernel.org/r/20210724224424.2085404-1-linus.walleij@linaro.org
		
			
				
	
	
		
			460 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			460 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Faraday Technology FTTMR010 timer driver
 | |
|  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
 | |
|  *
 | |
|  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
 | |
|  * Copyright (C) 2001-2006 Storlink, Corp.
 | |
|  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
 | |
|  */
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/sched_clock.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| /*
 | |
|  * Register definitions common for all the timer variants.
 | |
|  */
 | |
| #define TIMER1_COUNT		(0x00)
 | |
| #define TIMER1_LOAD		(0x04)
 | |
| #define TIMER1_MATCH1		(0x08)
 | |
| #define TIMER1_MATCH2		(0x0c)
 | |
| #define TIMER2_COUNT		(0x10)
 | |
| #define TIMER2_LOAD		(0x14)
 | |
| #define TIMER2_MATCH1		(0x18)
 | |
| #define TIMER2_MATCH2		(0x1c)
 | |
| #define TIMER3_COUNT		(0x20)
 | |
| #define TIMER3_LOAD		(0x24)
 | |
| #define TIMER3_MATCH1		(0x28)
 | |
| #define TIMER3_MATCH2		(0x2c)
 | |
| #define TIMER_CR		(0x30)
 | |
| 
 | |
| /*
 | |
|  * Control register set to clear for ast2600 only.
 | |
|  */
 | |
| #define AST2600_TIMER_CR_CLR	(0x3c)
 | |
| 
 | |
| /*
 | |
|  * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
 | |
|  */
 | |
| #define TIMER_1_CR_ENABLE	BIT(0)
 | |
| #define TIMER_1_CR_CLOCK	BIT(1)
 | |
| #define TIMER_1_CR_INT		BIT(2)
 | |
| #define TIMER_2_CR_ENABLE	BIT(3)
 | |
| #define TIMER_2_CR_CLOCK	BIT(4)
 | |
| #define TIMER_2_CR_INT		BIT(5)
 | |
| #define TIMER_3_CR_ENABLE	BIT(6)
 | |
| #define TIMER_3_CR_CLOCK	BIT(7)
 | |
| #define TIMER_3_CR_INT		BIT(8)
 | |
| #define TIMER_1_CR_UPDOWN	BIT(9)
 | |
| #define TIMER_2_CR_UPDOWN	BIT(10)
 | |
| #define TIMER_3_CR_UPDOWN	BIT(11)
 | |
| 
 | |
| /*
 | |
|  * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
 | |
|  * The aspeed timers move bits around in the control register and lacks
 | |
|  * bits for setting the timer to count upwards.
 | |
|  */
 | |
| #define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
 | |
| #define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
 | |
| #define TIMER_1_CR_ASPEED_INT		BIT(2)
 | |
| #define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
 | |
| #define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
 | |
| #define TIMER_2_CR_ASPEED_INT		BIT(6)
 | |
| #define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
 | |
| #define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
 | |
| #define TIMER_3_CR_ASPEED_INT		BIT(10)
 | |
| 
 | |
| /*
 | |
|  * Interrupt status/mask register definitions for fttmr010/gemini/moxart
 | |
|  * timers.
 | |
|  * The registers don't exist and they are not needed on aspeed timers
 | |
|  * because:
 | |
|  *   - aspeed timer overflow interrupt is controlled by bits in Control
 | |
|  *     Register (TMC30).
 | |
|  *   - aspeed timers always generate interrupt when either one of the
 | |
|  *     Match registers equals to Status register.
 | |
|  */
 | |
| #define TIMER_INTR_STATE	(0x34)
 | |
| #define TIMER_INTR_MASK		(0x38)
 | |
| #define TIMER_1_INT_MATCH1	BIT(0)
 | |
| #define TIMER_1_INT_MATCH2	BIT(1)
 | |
| #define TIMER_1_INT_OVERFLOW	BIT(2)
 | |
| #define TIMER_2_INT_MATCH1	BIT(3)
 | |
| #define TIMER_2_INT_MATCH2	BIT(4)
 | |
| #define TIMER_2_INT_OVERFLOW	BIT(5)
 | |
| #define TIMER_3_INT_MATCH1	BIT(6)
 | |
| #define TIMER_3_INT_MATCH2	BIT(7)
 | |
| #define TIMER_3_INT_OVERFLOW	BIT(8)
 | |
| #define TIMER_INT_ALL_MASK	0x1ff
 | |
| 
 | |
| struct fttmr010 {
 | |
| 	void __iomem *base;
 | |
| 	unsigned int tick_rate;
 | |
| 	bool is_aspeed;
 | |
| 	u32 t1_enable_val;
 | |
| 	struct clock_event_device clkevt;
 | |
| 	int (*timer_shutdown)(struct clock_event_device *evt);
 | |
| #ifdef CONFIG_ARM
 | |
| 	struct delay_timer delay_timer;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * A local singleton used by sched_clock and delay timer reads, which are
 | |
|  * fast and stateless
 | |
|  */
 | |
| static struct fttmr010 *local_fttmr;
 | |
| 
 | |
| static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
 | |
| {
 | |
| 	return container_of(evt, struct fttmr010, clkevt);
 | |
| }
 | |
| 
 | |
| static unsigned long fttmr010_read_current_timer_up(void)
 | |
| {
 | |
| 	return readl(local_fttmr->base + TIMER2_COUNT);
 | |
| }
 | |
| 
 | |
| static unsigned long fttmr010_read_current_timer_down(void)
 | |
| {
 | |
| 	return ~readl(local_fttmr->base + TIMER2_COUNT);
 | |
| }
 | |
| 
 | |
| static u64 notrace fttmr010_read_sched_clock_up(void)
 | |
| {
 | |
| 	return fttmr010_read_current_timer_up();
 | |
| }
 | |
| 
 | |
| static u64 notrace fttmr010_read_sched_clock_down(void)
 | |
| {
 | |
| 	return fttmr010_read_current_timer_down();
 | |
| }
 | |
| 
 | |
| static int fttmr010_timer_set_next_event(unsigned long cycles,
 | |
| 				       struct clock_event_device *evt)
 | |
| {
 | |
| 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
 | |
| 	u32 cr;
 | |
| 
 | |
| 	/* Stop */
 | |
| 	fttmr010->timer_shutdown(evt);
 | |
| 
 | |
| 	if (fttmr010->is_aspeed) {
 | |
| 		/*
 | |
| 		 * ASPEED Timer Controller will load TIMER1_LOAD register
 | |
| 		 * into TIMER1_COUNT register when the timer is re-enabled.
 | |
| 		 */
 | |
| 		writel(cycles, fttmr010->base + TIMER1_LOAD);
 | |
| 	} else {
 | |
| 		/* Setup the match register forward in time */
 | |
| 		cr = readl(fttmr010->base + TIMER1_COUNT);
 | |
| 		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
 | |
| 	}
 | |
| 
 | |
| 	/* Start */
 | |
| 	cr = readl(fttmr010->base + TIMER_CR);
 | |
| 	cr |= fttmr010->t1_enable_val;
 | |
| 	writel(cr, fttmr010->base + TIMER_CR);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ast2600_timer_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
 | |
| 
 | |
| 	/* Stop */
 | |
| 	writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fttmr010_timer_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
 | |
| 	u32 cr;
 | |
| 
 | |
| 	/* Stop */
 | |
| 	cr = readl(fttmr010->base + TIMER_CR);
 | |
| 	cr &= ~fttmr010->t1_enable_val;
 | |
| 	writel(cr, fttmr010->base + TIMER_CR);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
 | |
| {
 | |
| 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
 | |
| 	u32 cr;
 | |
| 
 | |
| 	/* Stop */
 | |
| 	fttmr010->timer_shutdown(evt);
 | |
| 
 | |
| 	/* Setup counter start from 0 or ~0 */
 | |
| 	writel(0, fttmr010->base + TIMER1_COUNT);
 | |
| 	if (fttmr010->is_aspeed) {
 | |
| 		writel(~0, fttmr010->base + TIMER1_LOAD);
 | |
| 	} else {
 | |
| 		writel(0, fttmr010->base + TIMER1_LOAD);
 | |
| 
 | |
| 		/* Enable interrupt */
 | |
| 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
 | |
| 		cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
 | |
| 		cr |= TIMER_1_INT_MATCH1;
 | |
| 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
 | |
| {
 | |
| 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
 | |
| 	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
 | |
| 	u32 cr;
 | |
| 
 | |
| 	/* Stop */
 | |
| 	fttmr010->timer_shutdown(evt);
 | |
| 
 | |
| 	/* Setup timer to fire at 1/HZ intervals. */
 | |
| 	if (fttmr010->is_aspeed) {
 | |
| 		writel(period, fttmr010->base + TIMER1_LOAD);
 | |
| 	} else {
 | |
| 		cr = 0xffffffff - (period - 1);
 | |
| 		writel(cr, fttmr010->base + TIMER1_COUNT);
 | |
| 		writel(cr, fttmr010->base + TIMER1_LOAD);
 | |
| 
 | |
| 		/* Enable interrupt on overflow */
 | |
| 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
 | |
| 		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
 | |
| 		cr |= TIMER_1_INT_OVERFLOW;
 | |
| 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
 | |
| 	}
 | |
| 
 | |
| 	/* Start the timer */
 | |
| 	cr = readl(fttmr010->base + TIMER_CR);
 | |
| 	cr |= fttmr010->t1_enable_val;
 | |
| 	writel(cr, fttmr010->base + TIMER_CR);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IRQ handler for the timer
 | |
|  */
 | |
| static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct clock_event_device *evt = dev_id;
 | |
| 
 | |
| 	evt->event_handler(evt);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct clock_event_device *evt = dev_id;
 | |
| 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
 | |
| 
 | |
| 	writel(0x1, fttmr010->base + TIMER_INTR_STATE);
 | |
| 
 | |
| 	evt->event_handler(evt);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int __init fttmr010_common_init(struct device_node *np,
 | |
| 				       bool is_aspeed, bool is_ast2600)
 | |
| {
 | |
| 	struct fttmr010 *fttmr010;
 | |
| 	int irq;
 | |
| 	struct clk *clk;
 | |
| 	int ret;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/*
 | |
| 	 * These implementations require a clock reference.
 | |
| 	 * FIXME: we currently only support clocking using PCLK
 | |
| 	 * and using EXTCLK is not supported in the driver.
 | |
| 	 */
 | |
| 	clk = of_clk_get_by_name(np, "PCLK");
 | |
| 	if (IS_ERR(clk)) {
 | |
| 		pr_err("could not get PCLK\n");
 | |
| 		return PTR_ERR(clk);
 | |
| 	}
 | |
| 	ret = clk_prepare_enable(clk);
 | |
| 	if (ret) {
 | |
| 		pr_err("failed to enable PCLK\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
 | |
| 	if (!fttmr010) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_disable_clock;
 | |
| 	}
 | |
| 	fttmr010->tick_rate = clk_get_rate(clk);
 | |
| 
 | |
| 	fttmr010->base = of_iomap(np, 0);
 | |
| 	if (!fttmr010->base) {
 | |
| 		pr_err("Can't remap registers\n");
 | |
| 		ret = -ENXIO;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	/* IRQ for timer 1 */
 | |
| 	irq = irq_of_parse_and_map(np, 0);
 | |
| 	if (irq <= 0) {
 | |
| 		pr_err("Can't parse IRQ\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_unmap;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The Aspeed timers move bits around in the control register.
 | |
| 	 */
 | |
| 	if (is_aspeed) {
 | |
| 		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
 | |
| 			TIMER_1_CR_ASPEED_INT;
 | |
| 		fttmr010->is_aspeed = true;
 | |
| 	} else {
 | |
| 		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
 | |
| 
 | |
| 		/*
 | |
| 		 * Reset the interrupt mask and status
 | |
| 		 */
 | |
| 		writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
 | |
| 		writel(0, fttmr010->base + TIMER_INTR_STATE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
 | |
| 	 * where everything just counts down.
 | |
| 	 */
 | |
| 	if (is_aspeed)
 | |
| 		val = TIMER_2_CR_ASPEED_ENABLE;
 | |
| 	else {
 | |
| 		val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
 | |
| 			TIMER_2_CR_UPDOWN;
 | |
| 	}
 | |
| 	writel(val, fttmr010->base + TIMER_CR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup free-running clocksource timer (interrupts
 | |
| 	 * disabled.)
 | |
| 	 */
 | |
| 	local_fttmr = fttmr010;
 | |
| 	writel(0, fttmr010->base + TIMER2_COUNT);
 | |
| 	writel(0, fttmr010->base + TIMER2_MATCH1);
 | |
| 	writel(0, fttmr010->base + TIMER2_MATCH2);
 | |
| 
 | |
| 	if (fttmr010->is_aspeed) {
 | |
| 		writel(~0, fttmr010->base + TIMER2_LOAD);
 | |
| 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 | |
| 				      "FTTMR010-TIMER2",
 | |
| 				      fttmr010->tick_rate,
 | |
| 				      300, 32, clocksource_mmio_readl_down);
 | |
| 		sched_clock_register(fttmr010_read_sched_clock_down, 32,
 | |
| 				     fttmr010->tick_rate);
 | |
| 	} else {
 | |
| 		writel(0, fttmr010->base + TIMER2_LOAD);
 | |
| 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 | |
| 				      "FTTMR010-TIMER2",
 | |
| 				      fttmr010->tick_rate,
 | |
| 				      300, 32, clocksource_mmio_readl_up);
 | |
| 		sched_clock_register(fttmr010_read_sched_clock_up, 32,
 | |
| 				     fttmr010->tick_rate);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup clockevent timer (interrupt-driven) on timer 1.
 | |
| 	 */
 | |
| 	writel(0, fttmr010->base + TIMER1_COUNT);
 | |
| 	writel(0, fttmr010->base + TIMER1_LOAD);
 | |
| 	writel(0, fttmr010->base + TIMER1_MATCH1);
 | |
| 	writel(0, fttmr010->base + TIMER1_MATCH2);
 | |
| 
 | |
| 	if (is_ast2600) {
 | |
| 		fttmr010->timer_shutdown = ast2600_timer_shutdown;
 | |
| 		ret = request_irq(irq, ast2600_timer_interrupt,
 | |
| 				  IRQF_TIMER, "FTTMR010-TIMER1",
 | |
| 				  &fttmr010->clkevt);
 | |
| 	} else {
 | |
| 		fttmr010->timer_shutdown = fttmr010_timer_shutdown;
 | |
| 		ret = request_irq(irq, fttmr010_timer_interrupt,
 | |
| 				  IRQF_TIMER, "FTTMR010-TIMER1",
 | |
| 				  &fttmr010->clkevt);
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		pr_err("FTTMR010-TIMER1 no IRQ\n");
 | |
| 		goto out_unmap;
 | |
| 	}
 | |
| 
 | |
| 	fttmr010->clkevt.name = "FTTMR010-TIMER1";
 | |
| 	/* Reasonably fast and accurate clock event */
 | |
| 	fttmr010->clkevt.rating = 300;
 | |
| 	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
 | |
| 		CLOCK_EVT_FEAT_ONESHOT;
 | |
| 	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
 | |
| 	fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
 | |
| 	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
 | |
| 	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
 | |
| 	fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
 | |
| 	fttmr010->clkevt.cpumask = cpumask_of(0);
 | |
| 	fttmr010->clkevt.irq = irq;
 | |
| 	clockevents_config_and_register(&fttmr010->clkevt,
 | |
| 					fttmr010->tick_rate,
 | |
| 					1, 0xffffffff);
 | |
| 
 | |
| #ifdef CONFIG_ARM
 | |
| 	/* Also use this timer for delays */
 | |
| 	if (fttmr010->is_aspeed)
 | |
| 		fttmr010->delay_timer.read_current_timer =
 | |
| 			fttmr010_read_current_timer_down;
 | |
| 	else
 | |
| 		fttmr010->delay_timer.read_current_timer =
 | |
| 			fttmr010_read_current_timer_up;
 | |
| 	fttmr010->delay_timer.freq = fttmr010->tick_rate;
 | |
| 	register_current_timer_delay(&fttmr010->delay_timer);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_unmap:
 | |
| 	iounmap(fttmr010->base);
 | |
| out_free:
 | |
| 	kfree(fttmr010);
 | |
| out_disable_clock:
 | |
| 	clk_disable_unprepare(clk);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __init int ast2600_timer_init(struct device_node *np)
 | |
| {
 | |
| 	return fttmr010_common_init(np, true, true);
 | |
| }
 | |
| 
 | |
| static __init int aspeed_timer_init(struct device_node *np)
 | |
| {
 | |
| 	return fttmr010_common_init(np, true, false);
 | |
| }
 | |
| 
 | |
| static __init int fttmr010_timer_init(struct device_node *np)
 | |
| {
 | |
| 	return fttmr010_common_init(np, false, false);
 | |
| }
 | |
| 
 | |
| TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
 | |
| TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
 | |
| TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
 | |
| TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
 | |
| TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
 | |
| TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
 |