mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 0a3a4b9d2b
			
		
	
	
		0a3a4b9d2b
		
	
	
	
	
		
			
			Variable _name_ hold mct_tick number per cpu and it is currently limited to 10. Which restrict the scalability of the MCT driver for the SoC which has more local timers interrupts (>= 12). Increase the length of it to make mct_tick printed correctly for each local timer interrupts per CPU. Signed-off-by: Alim Akhtar <alim.akhtar@samsung.com> Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com> Link: https://lore.kernel.org/r/20220221174547.26176-3-alim.akhtar@samsung.com Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
		
			
				
	
	
		
			637 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			637 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* linux/arch/arm/mach-exynos4/mct.c
 | |
|  *
 | |
|  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 | |
|  *		http://www.samsung.com
 | |
|  *
 | |
|  * Exynos4 MCT(Multi-Core Timer) support
 | |
| */
 | |
| 
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/sched_clock.h>
 | |
| 
 | |
| #define EXYNOS4_MCTREG(x)		(x)
 | |
| #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
 | |
| #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
 | |
| #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
 | |
| #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
 | |
| #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
 | |
| #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
 | |
| #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
 | |
| #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
 | |
| #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
 | |
| #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
 | |
| #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
 | |
| #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
 | |
| #define EXYNOS4_MCT_L_MASK		(0xffffff00)
 | |
| 
 | |
| #define MCT_L_TCNTB_OFFSET		(0x00)
 | |
| #define MCT_L_ICNTB_OFFSET		(0x08)
 | |
| #define MCT_L_TCON_OFFSET		(0x20)
 | |
| #define MCT_L_INT_CSTAT_OFFSET		(0x30)
 | |
| #define MCT_L_INT_ENB_OFFSET		(0x34)
 | |
| #define MCT_L_WSTAT_OFFSET		(0x40)
 | |
| #define MCT_G_TCON_START		(1 << 8)
 | |
| #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
 | |
| #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
 | |
| #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
 | |
| #define MCT_L_TCON_INT_START		(1 << 1)
 | |
| #define MCT_L_TCON_TIMER_START		(1 << 0)
 | |
| 
 | |
| #define TICK_BASE_CNT	1
 | |
| 
 | |
| #ifdef CONFIG_ARM
 | |
| /* Use values higher than ARM arch timer. See 6282edb72bed. */
 | |
| #define MCT_CLKSOURCE_RATING		450
 | |
| #define MCT_CLKEVENTS_RATING		500
 | |
| #else
 | |
| #define MCT_CLKSOURCE_RATING		350
 | |
| #define MCT_CLKEVENTS_RATING		350
 | |
| #endif
 | |
| 
 | |
| /* There are four Global timers starting with 0 offset */
 | |
| #define MCT_G0_IRQ	0
 | |
| /* Local timers count starts after global timer count */
 | |
| #define MCT_L0_IRQ	4
 | |
| /* Max number of IRQ as per DT binding document */
 | |
| #define MCT_NR_IRQS	20
 | |
| 
 | |
| enum {
 | |
| 	MCT_INT_SPI,
 | |
| 	MCT_INT_PPI
 | |
| };
 | |
| 
 | |
| static void __iomem *reg_base;
 | |
| static unsigned long clk_rate;
 | |
| static unsigned int mct_int_type;
 | |
| static int mct_irqs[MCT_NR_IRQS];
 | |
| 
 | |
| struct mct_clock_event_device {
 | |
| 	struct clock_event_device evt;
 | |
| 	unsigned long base;
 | |
| 	/**
 | |
| 	 *  The length of the name must be adjusted if number of
 | |
| 	 *  local timer interrupts grow over two digits
 | |
| 	 */
 | |
| 	char name[11];
 | |
| };
 | |
| 
 | |
| static void exynos4_mct_write(unsigned int value, unsigned long offset)
 | |
| {
 | |
| 	unsigned long stat_addr;
 | |
| 	u32 mask;
 | |
| 	u32 i;
 | |
| 
 | |
| 	writel_relaxed(value, reg_base + offset);
 | |
| 
 | |
| 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
 | |
| 		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
 | |
| 		switch (offset & ~EXYNOS4_MCT_L_MASK) {
 | |
| 		case MCT_L_TCON_OFFSET:
 | |
| 			mask = 1 << 3;		/* L_TCON write status */
 | |
| 			break;
 | |
| 		case MCT_L_ICNTB_OFFSET:
 | |
| 			mask = 1 << 1;		/* L_ICNTB write status */
 | |
| 			break;
 | |
| 		case MCT_L_TCNTB_OFFSET:
 | |
| 			mask = 1 << 0;		/* L_TCNTB write status */
 | |
| 			break;
 | |
| 		default:
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (offset) {
 | |
| 		case EXYNOS4_MCT_G_TCON:
 | |
| 			stat_addr = EXYNOS4_MCT_G_WSTAT;
 | |
| 			mask = 1 << 16;		/* G_TCON write status */
 | |
| 			break;
 | |
| 		case EXYNOS4_MCT_G_COMP0_L:
 | |
| 			stat_addr = EXYNOS4_MCT_G_WSTAT;
 | |
| 			mask = 1 << 0;		/* G_COMP0_L write status */
 | |
| 			break;
 | |
| 		case EXYNOS4_MCT_G_COMP0_U:
 | |
| 			stat_addr = EXYNOS4_MCT_G_WSTAT;
 | |
| 			mask = 1 << 1;		/* G_COMP0_U write status */
 | |
| 			break;
 | |
| 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
 | |
| 			stat_addr = EXYNOS4_MCT_G_WSTAT;
 | |
| 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
 | |
| 			break;
 | |
| 		case EXYNOS4_MCT_G_CNT_L:
 | |
| 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 | |
| 			mask = 1 << 0;		/* G_CNT_L write status */
 | |
| 			break;
 | |
| 		case EXYNOS4_MCT_G_CNT_U:
 | |
| 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 | |
| 			mask = 1 << 1;		/* G_CNT_U write status */
 | |
| 			break;
 | |
| 		default:
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Wait maximum 1 ms until written values are applied */
 | |
| 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
 | |
| 		if (readl_relaxed(reg_base + stat_addr) & mask) {
 | |
| 			writel_relaxed(mask, reg_base + stat_addr);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
 | |
| }
 | |
| 
 | |
| /* Clocksource handling */
 | |
| static void exynos4_mct_frc_start(void)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 | |
| 	reg |= MCT_G_TCON_START;
 | |
| 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * exynos4_read_count_64 - Read all 64-bits of the global counter
 | |
|  *
 | |
|  * This will read all 64-bits of the global counter taking care to make sure
 | |
|  * that the upper and lower half match.  Note that reading the MCT can be quite
 | |
|  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
 | |
|  * only) version when possible.
 | |
|  *
 | |
|  * Returns the number of cycles in the global counter.
 | |
|  */
 | |
| static u64 exynos4_read_count_64(void)
 | |
| {
 | |
| 	unsigned int lo, hi;
 | |
| 	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 | |
| 
 | |
| 	do {
 | |
| 		hi = hi2;
 | |
| 		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 | |
| 		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 | |
| 	} while (hi != hi2);
 | |
| 
 | |
| 	return ((u64)hi << 32) | lo;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
 | |
|  *
 | |
|  * This will read just the lower 32-bits of the global counter.  This is marked
 | |
|  * as notrace so it can be used by the scheduler clock.
 | |
|  *
 | |
|  * Returns the number of cycles in the global counter (lower 32 bits).
 | |
|  */
 | |
| static u32 notrace exynos4_read_count_32(void)
 | |
| {
 | |
| 	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 | |
| }
 | |
| 
 | |
| static u64 exynos4_frc_read(struct clocksource *cs)
 | |
| {
 | |
| 	return exynos4_read_count_32();
 | |
| }
 | |
| 
 | |
| static void exynos4_frc_resume(struct clocksource *cs)
 | |
| {
 | |
| 	exynos4_mct_frc_start();
 | |
| }
 | |
| 
 | |
| static struct clocksource mct_frc = {
 | |
| 	.name		= "mct-frc",
 | |
| 	.rating		= MCT_CLKSOURCE_RATING,
 | |
| 	.read		= exynos4_frc_read,
 | |
| 	.mask		= CLOCKSOURCE_MASK(32),
 | |
| 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.resume		= exynos4_frc_resume,
 | |
| };
 | |
| 
 | |
| static u64 notrace exynos4_read_sched_clock(void)
 | |
| {
 | |
| 	return exynos4_read_count_32();
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_ARM)
 | |
| static struct delay_timer exynos4_delay_timer;
 | |
| 
 | |
| static cycles_t exynos4_read_current_timer(void)
 | |
| {
 | |
| 	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
 | |
| 			 "cycles_t needs to move to 32-bit for ARM64 usage");
 | |
| 	return exynos4_read_count_32();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __init exynos4_clocksource_init(void)
 | |
| {
 | |
| 	exynos4_mct_frc_start();
 | |
| 
 | |
| #if defined(CONFIG_ARM)
 | |
| 	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
 | |
| 	exynos4_delay_timer.freq = clk_rate;
 | |
| 	register_current_timer_delay(&exynos4_delay_timer);
 | |
| #endif
 | |
| 
 | |
| 	if (clocksource_register_hz(&mct_frc, clk_rate))
 | |
| 		panic("%s: can't register clocksource\n", mct_frc.name);
 | |
| 
 | |
| 	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void exynos4_mct_comp0_stop(void)
 | |
| {
 | |
| 	unsigned int tcon;
 | |
| 
 | |
| 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 | |
| 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
 | |
| 
 | |
| 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
 | |
| 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
 | |
| }
 | |
| 
 | |
| static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
 | |
| {
 | |
| 	unsigned int tcon;
 | |
| 	u64 comp_cycle;
 | |
| 
 | |
| 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 | |
| 
 | |
| 	if (periodic) {
 | |
| 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
 | |
| 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
 | |
| 	}
 | |
| 
 | |
| 	comp_cycle = exynos4_read_count_64() + cycles;
 | |
| 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
 | |
| 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
 | |
| 
 | |
| 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
 | |
| 
 | |
| 	tcon |= MCT_G_TCON_COMP0_ENABLE;
 | |
| 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
 | |
| }
 | |
| 
 | |
| static int exynos4_comp_set_next_event(unsigned long cycles,
 | |
| 				       struct clock_event_device *evt)
 | |
| {
 | |
| 	exynos4_mct_comp0_start(false, cycles);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mct_set_state_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	exynos4_mct_comp0_stop();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mct_set_state_periodic(struct clock_event_device *evt)
 | |
| {
 | |
| 	unsigned long cycles_per_jiffy;
 | |
| 
 | |
| 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 | |
| 			    >> evt->shift);
 | |
| 	exynos4_mct_comp0_stop();
 | |
| 	exynos4_mct_comp0_start(true, cycles_per_jiffy);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct clock_event_device mct_comp_device = {
 | |
| 	.name			= "mct-comp",
 | |
| 	.features		= CLOCK_EVT_FEAT_PERIODIC |
 | |
| 				  CLOCK_EVT_FEAT_ONESHOT,
 | |
| 	.rating			= 250,
 | |
| 	.set_next_event		= exynos4_comp_set_next_event,
 | |
| 	.set_state_periodic	= mct_set_state_periodic,
 | |
| 	.set_state_shutdown	= mct_set_state_shutdown,
 | |
| 	.set_state_oneshot	= mct_set_state_shutdown,
 | |
| 	.set_state_oneshot_stopped = mct_set_state_shutdown,
 | |
| 	.tick_resume		= mct_set_state_shutdown,
 | |
| };
 | |
| 
 | |
| static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct clock_event_device *evt = dev_id;
 | |
| 
 | |
| 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
 | |
| 
 | |
| 	evt->event_handler(evt);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int exynos4_clockevent_init(void)
 | |
| {
 | |
| 	mct_comp_device.cpumask = cpumask_of(0);
 | |
| 	clockevents_config_and_register(&mct_comp_device, clk_rate,
 | |
| 					0xf, 0xffffffff);
 | |
| 	if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
 | |
| 			IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
 | |
| 			&mct_comp_device))
 | |
| 		pr_err("%s: request_irq() failed\n", "mct_comp_irq");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
 | |
| 
 | |
| /* Clock event handling */
 | |
| static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
 | |
| {
 | |
| 	unsigned long tmp;
 | |
| 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
 | |
| 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
 | |
| 
 | |
| 	tmp = readl_relaxed(reg_base + offset);
 | |
| 	if (tmp & mask) {
 | |
| 		tmp &= ~mask;
 | |
| 		exynos4_mct_write(tmp, offset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void exynos4_mct_tick_start(unsigned long cycles,
 | |
| 				   struct mct_clock_event_device *mevt)
 | |
| {
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	exynos4_mct_tick_stop(mevt);
 | |
| 
 | |
| 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
 | |
| 
 | |
| 	/* update interrupt count buffer */
 | |
| 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
 | |
| 
 | |
| 	/* enable MCT tick interrupt */
 | |
| 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
 | |
| 
 | |
| 	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
 | |
| 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
 | |
| 	       MCT_L_TCON_INTERVAL_MODE;
 | |
| 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
 | |
| }
 | |
| 
 | |
| static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
 | |
| {
 | |
| 	/* Clear the MCT tick interrupt */
 | |
| 	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
 | |
| 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
 | |
| }
 | |
| 
 | |
| static int exynos4_tick_set_next_event(unsigned long cycles,
 | |
| 				       struct clock_event_device *evt)
 | |
| {
 | |
| 	struct mct_clock_event_device *mevt;
 | |
| 
 | |
| 	mevt = container_of(evt, struct mct_clock_event_device, evt);
 | |
| 	exynos4_mct_tick_start(cycles, mevt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_state_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	struct mct_clock_event_device *mevt;
 | |
| 
 | |
| 	mevt = container_of(evt, struct mct_clock_event_device, evt);
 | |
| 	exynos4_mct_tick_stop(mevt);
 | |
| 	exynos4_mct_tick_clear(mevt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_state_periodic(struct clock_event_device *evt)
 | |
| {
 | |
| 	struct mct_clock_event_device *mevt;
 | |
| 	unsigned long cycles_per_jiffy;
 | |
| 
 | |
| 	mevt = container_of(evt, struct mct_clock_event_device, evt);
 | |
| 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 | |
| 			    >> evt->shift);
 | |
| 	exynos4_mct_tick_stop(mevt);
 | |
| 	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct mct_clock_event_device *mevt = dev_id;
 | |
| 	struct clock_event_device *evt = &mevt->evt;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is for supporting oneshot mode.
 | |
| 	 * Mct would generate interrupt periodically
 | |
| 	 * without explicit stopping.
 | |
| 	 */
 | |
| 	if (!clockevent_state_periodic(&mevt->evt))
 | |
| 		exynos4_mct_tick_stop(mevt);
 | |
| 
 | |
| 	exynos4_mct_tick_clear(mevt);
 | |
| 
 | |
| 	evt->event_handler(evt);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int exynos4_mct_starting_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct mct_clock_event_device *mevt =
 | |
| 		per_cpu_ptr(&percpu_mct_tick, cpu);
 | |
| 	struct clock_event_device *evt = &mevt->evt;
 | |
| 
 | |
| 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
 | |
| 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
 | |
| 
 | |
| 	evt->name = mevt->name;
 | |
| 	evt->cpumask = cpumask_of(cpu);
 | |
| 	evt->set_next_event = exynos4_tick_set_next_event;
 | |
| 	evt->set_state_periodic = set_state_periodic;
 | |
| 	evt->set_state_shutdown = set_state_shutdown;
 | |
| 	evt->set_state_oneshot = set_state_shutdown;
 | |
| 	evt->set_state_oneshot_stopped = set_state_shutdown;
 | |
| 	evt->tick_resume = set_state_shutdown;
 | |
| 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
 | |
| 			CLOCK_EVT_FEAT_PERCPU;
 | |
| 	evt->rating = MCT_CLKEVENTS_RATING;
 | |
| 
 | |
| 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
 | |
| 
 | |
| 	if (mct_int_type == MCT_INT_SPI) {
 | |
| 
 | |
| 		if (evt->irq == -1)
 | |
| 			return -EIO;
 | |
| 
 | |
| 		irq_force_affinity(evt->irq, cpumask_of(cpu));
 | |
| 		enable_irq(evt->irq);
 | |
| 	} else {
 | |
| 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
 | |
| 	}
 | |
| 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
 | |
| 					0xf, 0x7fffffff);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int exynos4_mct_dying_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct mct_clock_event_device *mevt =
 | |
| 		per_cpu_ptr(&percpu_mct_tick, cpu);
 | |
| 	struct clock_event_device *evt = &mevt->evt;
 | |
| 
 | |
| 	evt->set_state_shutdown(evt);
 | |
| 	if (mct_int_type == MCT_INT_SPI) {
 | |
| 		if (evt->irq != -1)
 | |
| 			disable_irq_nosync(evt->irq);
 | |
| 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
 | |
| 	} else {
 | |
| 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init exynos4_timer_resources(struct device_node *np)
 | |
| {
 | |
| 	struct clk *mct_clk, *tick_clk;
 | |
| 
 | |
| 	reg_base = of_iomap(np, 0);
 | |
| 	if (!reg_base)
 | |
| 		panic("%s: unable to ioremap mct address space\n", __func__);
 | |
| 
 | |
| 	tick_clk = of_clk_get_by_name(np, "fin_pll");
 | |
| 	if (IS_ERR(tick_clk))
 | |
| 		panic("%s: unable to determine tick clock rate\n", __func__);
 | |
| 	clk_rate = clk_get_rate(tick_clk);
 | |
| 
 | |
| 	mct_clk = of_clk_get_by_name(np, "mct");
 | |
| 	if (IS_ERR(mct_clk))
 | |
| 		panic("%s: unable to retrieve mct clock instance\n", __func__);
 | |
| 	clk_prepare_enable(mct_clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init exynos4_timer_interrupts(struct device_node *np,
 | |
| 					   unsigned int int_type)
 | |
| {
 | |
| 	int nr_irqs, i, err, cpu;
 | |
| 
 | |
| 	mct_int_type = int_type;
 | |
| 
 | |
| 	/* This driver uses only one global timer interrupt */
 | |
| 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find out the number of local irqs specified. The local
 | |
| 	 * timer irqs are specified after the four global timer
 | |
| 	 * irqs are specified.
 | |
| 	 */
 | |
| 	nr_irqs = of_irq_count(np);
 | |
| 	if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
 | |
| 		pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
 | |
| 			nr_irqs);
 | |
| 		nr_irqs = ARRAY_SIZE(mct_irqs);
 | |
| 	}
 | |
| 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
 | |
| 		mct_irqs[i] = irq_of_parse_and_map(np, i);
 | |
| 
 | |
| 	if (mct_int_type == MCT_INT_PPI) {
 | |
| 
 | |
| 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
 | |
| 					 exynos4_mct_tick_isr, "MCT",
 | |
| 					 &percpu_mct_tick);
 | |
| 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
 | |
| 		     mct_irqs[MCT_L0_IRQ], err);
 | |
| 	} else {
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			int mct_irq;
 | |
| 			struct mct_clock_event_device *pcpu_mevt =
 | |
| 				per_cpu_ptr(&percpu_mct_tick, cpu);
 | |
| 
 | |
| 			pcpu_mevt->evt.irq = -1;
 | |
| 			if (MCT_L0_IRQ + cpu >= ARRAY_SIZE(mct_irqs))
 | |
| 				break;
 | |
| 			mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
 | |
| 
 | |
| 			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
 | |
| 			if (request_irq(mct_irq,
 | |
| 					exynos4_mct_tick_isr,
 | |
| 					IRQF_TIMER | IRQF_NOBALANCING,
 | |
| 					pcpu_mevt->name, pcpu_mevt)) {
 | |
| 				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
 | |
| 									cpu);
 | |
| 
 | |
| 				continue;
 | |
| 			}
 | |
| 			pcpu_mevt->evt.irq = mct_irq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Install hotplug callbacks which configure the timer on this CPU */
 | |
| 	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
 | |
| 				"clockevents/exynos4/mct_timer:starting",
 | |
| 				exynos4_mct_starting_cpu,
 | |
| 				exynos4_mct_dying_cpu);
 | |
| 	if (err)
 | |
| 		goto out_irq;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_irq:
 | |
| 	if (mct_int_type == MCT_INT_PPI) {
 | |
| 		free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
 | |
| 	} else {
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct mct_clock_event_device *pcpu_mevt =
 | |
| 				per_cpu_ptr(&percpu_mct_tick, cpu);
 | |
| 
 | |
| 			if (pcpu_mevt->evt.irq != -1) {
 | |
| 				free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
 | |
| 				pcpu_mevt->evt.irq = -1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = exynos4_timer_resources(np);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = exynos4_timer_interrupts(np, int_type);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = exynos4_clocksource_init();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return exynos4_clockevent_init();
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __init mct_init_spi(struct device_node *np)
 | |
| {
 | |
| 	return mct_init_dt(np, MCT_INT_SPI);
 | |
| }
 | |
| 
 | |
| static int __init mct_init_ppi(struct device_node *np)
 | |
| {
 | |
| 	return mct_init_dt(np, MCT_INT_PPI);
 | |
| }
 | |
| TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
 | |
| TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
 |