mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 a570e68fab
			
		
	
	
		a570e68fab
		
	
	
	
	
		
			
			remove_siblinginfo() initialises variable 'last', but never uses it. Drop unneeded code. CC: Ingo Molnar <mingo@kernel.org> CC: Peter Zijlstra <peterz@infradead.org> CC: Valentin Schneider <vschneid@redhat.com> CC: linux-ia64@vger.kernel.org CC: linux-kernel@vger.kernel.org Signed-off-by: Yury Norov <yury.norov@gmail.com> Acked-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			840 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			840 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * SMP boot-related support
 | |
|  *
 | |
|  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  * Copyright (C) 2001, 2004-2005 Intel Corp
 | |
|  * 	Rohit Seth <rohit.seth@intel.com>
 | |
|  * 	Suresh Siddha <suresh.b.siddha@intel.com>
 | |
|  * 	Gordon Jin <gordon.jin@intel.com>
 | |
|  *	Ashok Raj  <ashok.raj@intel.com>
 | |
|  *
 | |
|  * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 | |
|  * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 | |
|  * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 | |
|  *						smp_boot_cpus()/smp_commence() is replaced by
 | |
|  *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 | |
|  * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 | |
|  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 | |
|  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 | |
|  *						Add multi-threading and multi-core detection
 | |
|  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 | |
|  *						Setup cpu_sibling_map and cpu_core_map
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/bitops.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/current.h>
 | |
| #include <asm/delay.h>
 | |
| #include <asm/efi.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/mca.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/sal.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/unistd.h>
 | |
| 
 | |
| #define SMP_DEBUG 0
 | |
| 
 | |
| #if SMP_DEBUG
 | |
| #define Dprintk(x...)  printk(x)
 | |
| #else
 | |
| #define Dprintk(x...)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| #ifdef CONFIG_PERMIT_BSP_REMOVE
 | |
| #define bsp_remove_ok	1
 | |
| #else
 | |
| #define bsp_remove_ok	0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Global array allocated for NR_CPUS at boot time
 | |
|  */
 | |
| struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 | |
| 
 | |
| /*
 | |
|  * start_ap in head.S uses this to store current booting cpu
 | |
|  * info.
 | |
|  */
 | |
| struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 | |
| 
 | |
| #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 | |
| 
 | |
| #else
 | |
| #define set_brendez_area(x)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * ITC synchronization related stuff:
 | |
|  */
 | |
| #define MASTER	(0)
 | |
| #define SLAVE	(SMP_CACHE_BYTES/8)
 | |
| 
 | |
| #define NUM_ROUNDS	64	/* magic value */
 | |
| #define NUM_ITERS	5	/* likewise */
 | |
| 
 | |
| static DEFINE_SPINLOCK(itc_sync_lock);
 | |
| static volatile unsigned long go[SLAVE + 1];
 | |
| 
 | |
| #define DEBUG_ITC_SYNC	0
 | |
| 
 | |
| extern void start_ap (void);
 | |
| extern unsigned long ia64_iobase;
 | |
| 
 | |
| struct task_struct *task_for_booting_cpu;
 | |
| 
 | |
| /*
 | |
|  * State for each CPU
 | |
|  */
 | |
| DEFINE_PER_CPU(int, cpu_state);
 | |
| 
 | |
| cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
 | |
| EXPORT_SYMBOL(cpu_core_map);
 | |
| DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
 | |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 | |
| 
 | |
| int smp_num_siblings = 1;
 | |
| 
 | |
| /* which logical CPU number maps to which CPU (physical APIC ID) */
 | |
| volatile int ia64_cpu_to_sapicid[NR_CPUS];
 | |
| EXPORT_SYMBOL(ia64_cpu_to_sapicid);
 | |
| 
 | |
| static cpumask_t cpu_callin_map;
 | |
| 
 | |
| struct smp_boot_data smp_boot_data __initdata;
 | |
| 
 | |
| unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
 | |
| 
 | |
| char __initdata no_int_routing;
 | |
| 
 | |
| unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
 | |
| 
 | |
| #ifdef CONFIG_FORCE_CPEI_RETARGET
 | |
| #define CPEI_OVERRIDE_DEFAULT	(1)
 | |
| #else
 | |
| #define CPEI_OVERRIDE_DEFAULT	(0)
 | |
| #endif
 | |
| 
 | |
| unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
 | |
| 
 | |
| static int __init
 | |
| cmdl_force_cpei(char *str)
 | |
| {
 | |
| 	int value=0;
 | |
| 
 | |
| 	get_option (&str, &value);
 | |
| 	force_cpei_retarget = value;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("force_cpei=", cmdl_force_cpei);
 | |
| 
 | |
| static int __init
 | |
| nointroute (char *str)
 | |
| {
 | |
| 	no_int_routing = 1;
 | |
| 	printk ("no_int_routing on\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("nointroute", nointroute);
 | |
| 
 | |
| static void fix_b0_for_bsp(void)
 | |
| {
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	int cpuid;
 | |
| 	static int fix_bsp_b0 = 1;
 | |
| 
 | |
| 	cpuid = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * Cache the b0 value on the first AP that comes up
 | |
| 	 */
 | |
| 	if (!(fix_bsp_b0 && cpuid))
 | |
| 		return;
 | |
| 
 | |
| 	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
 | |
| 	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
 | |
| 
 | |
| 	fix_bsp_b0 = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| sync_master (void *arg)
 | |
| {
 | |
| 	unsigned long flags, i;
 | |
| 
 | |
| 	go[MASTER] = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	{
 | |
| 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
 | |
| 			while (!go[MASTER])
 | |
| 				cpu_relax();
 | |
| 			go[MASTER] = 0;
 | |
| 			go[SLAVE] = ia64_get_itc();
 | |
| 		}
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of cycles by which our itc differs from the itc on the master
 | |
|  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
 | |
|  * negative that it is behind.
 | |
|  */
 | |
| static inline long
 | |
| get_delta (long *rt, long *master)
 | |
| {
 | |
| 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 | |
| 	unsigned long tcenter, t0, t1, tm;
 | |
| 	long i;
 | |
| 
 | |
| 	for (i = 0; i < NUM_ITERS; ++i) {
 | |
| 		t0 = ia64_get_itc();
 | |
| 		go[MASTER] = 1;
 | |
| 		while (!(tm = go[SLAVE]))
 | |
| 			cpu_relax();
 | |
| 		go[SLAVE] = 0;
 | |
| 		t1 = ia64_get_itc();
 | |
| 
 | |
| 		if (t1 - t0 < best_t1 - best_t0)
 | |
| 			best_t0 = t0, best_t1 = t1, best_tm = tm;
 | |
| 	}
 | |
| 
 | |
| 	*rt = best_t1 - best_t0;
 | |
| 	*master = best_tm - best_t0;
 | |
| 
 | |
| 	/* average best_t0 and best_t1 without overflow: */
 | |
| 	tcenter = (best_t0/2 + best_t1/2);
 | |
| 	if (best_t0 % 2 + best_t1 % 2 == 2)
 | |
| 		++tcenter;
 | |
| 	return tcenter - best_tm;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
 | |
|  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
 | |
|  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
 | |
|  * step).  The basic idea is for the slave to ask the master what itc value it has and to
 | |
|  * read its own itc before and after the master responds.  Each iteration gives us three
 | |
|  * timestamps:
 | |
|  *
 | |
|  *	slave		master
 | |
|  *
 | |
|  *	t0 ---\
 | |
|  *             ---\
 | |
|  *		   --->
 | |
|  *			tm
 | |
|  *		   /---
 | |
|  *	       /---
 | |
|  *	t1 <---
 | |
|  *
 | |
|  *
 | |
|  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
 | |
|  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
 | |
|  * between the slave and the master is symmetric.  Even if the interconnect were
 | |
|  * asymmetric, we would still know that the synchronization error is smaller than the
 | |
|  * roundtrip latency (t0 - t1).
 | |
|  *
 | |
|  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
 | |
|  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
 | |
|  * accurate to within a round-trip time, which is typically in the range of several
 | |
|  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
 | |
|  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
 | |
|  * than half a micro second or so.
 | |
|  */
 | |
| void
 | |
| ia64_sync_itc (unsigned int master)
 | |
| {
 | |
| 	long i, delta, adj, adjust_latency = 0, done = 0;
 | |
| 	unsigned long flags, rt, master_time_stamp, bound;
 | |
| #if DEBUG_ITC_SYNC
 | |
| 	struct {
 | |
| 		long rt;	/* roundtrip time */
 | |
| 		long master;	/* master's timestamp */
 | |
| 		long diff;	/* difference between midpoint and master's timestamp */
 | |
| 		long lat;	/* estimate of itc adjustment latency */
 | |
| 	} t[NUM_ROUNDS];
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure local timer ticks are disabled while we sync.  If
 | |
| 	 * they were enabled, we'd have to worry about nasty issues
 | |
| 	 * like setting the ITC ahead of (or a long time before) the
 | |
| 	 * next scheduled tick.
 | |
| 	 */
 | |
| 	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
 | |
| 
 | |
| 	go[MASTER] = 1;
 | |
| 
 | |
| 	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
 | |
| 		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (go[MASTER])
 | |
| 		cpu_relax();	/* wait for master to be ready */
 | |
| 
 | |
| 	spin_lock_irqsave(&itc_sync_lock, flags);
 | |
| 	{
 | |
| 		for (i = 0; i < NUM_ROUNDS; ++i) {
 | |
| 			delta = get_delta(&rt, &master_time_stamp);
 | |
| 			if (delta == 0) {
 | |
| 				done = 1;	/* let's lock on to this... */
 | |
| 				bound = rt;
 | |
| 			}
 | |
| 
 | |
| 			if (!done) {
 | |
| 				if (i > 0) {
 | |
| 					adjust_latency += -delta;
 | |
| 					adj = -delta + adjust_latency/4;
 | |
| 				} else
 | |
| 					adj = -delta;
 | |
| 
 | |
| 				ia64_set_itc(ia64_get_itc() + adj);
 | |
| 			}
 | |
| #if DEBUG_ITC_SYNC
 | |
| 			t[i].rt = rt;
 | |
| 			t[i].master = master_time_stamp;
 | |
| 			t[i].diff = delta;
 | |
| 			t[i].lat = adjust_latency/4;
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&itc_sync_lock, flags);
 | |
| 
 | |
| #if DEBUG_ITC_SYNC
 | |
| 	for (i = 0; i < NUM_ROUNDS; ++i)
 | |
| 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 | |
| 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 | |
| #endif
 | |
| 
 | |
| 	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
 | |
| 	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
 | |
|  */
 | |
| static inline void smp_setup_percpu_timer(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void
 | |
| smp_callin (void)
 | |
| {
 | |
| 	int cpuid, phys_id, itc_master;
 | |
| 	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
 | |
| 	extern void ia64_init_itm(void);
 | |
| 	extern volatile int time_keeper_id;
 | |
| 
 | |
| 	cpuid = smp_processor_id();
 | |
| 	phys_id = hard_smp_processor_id();
 | |
| 	itc_master = time_keeper_id;
 | |
| 
 | |
| 	if (cpu_online(cpuid)) {
 | |
| 		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
 | |
| 		       phys_id, cpuid);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	fix_b0_for_bsp();
 | |
| 
 | |
| 	/*
 | |
| 	 * numa_node_id() works after this.
 | |
| 	 */
 | |
| 	set_numa_node(cpu_to_node_map[cpuid]);
 | |
| 	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
 | |
| 
 | |
| 	spin_lock(&vector_lock);
 | |
| 	/* Setup the per cpu irq handling data structures */
 | |
| 	__setup_vector_irq(cpuid);
 | |
| 	notify_cpu_starting(cpuid);
 | |
| 	set_cpu_online(cpuid, true);
 | |
| 	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
 | |
| 	spin_unlock(&vector_lock);
 | |
| 
 | |
| 	smp_setup_percpu_timer();
 | |
| 
 | |
| 	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 | |
| 		/*
 | |
| 		 * Synchronize the ITC with the BP.  Need to do this after irqs are
 | |
| 		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
 | |
| 		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
 | |
| 		 * local_bh_enable(), which bugs out if irqs are not enabled...
 | |
| 		 */
 | |
| 		Dprintk("Going to syncup ITC with ITC Master.\n");
 | |
| 		ia64_sync_itc(itc_master);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get our bogomips.
 | |
| 	 */
 | |
| 	ia64_init_itm();
 | |
| 
 | |
| 	/*
 | |
| 	 * Delay calibration can be skipped if new processor is identical to the
 | |
| 	 * previous processor.
 | |
| 	 */
 | |
| 	last_cpuinfo = cpu_data(cpuid - 1);
 | |
| 	this_cpuinfo = local_cpu_data;
 | |
| 	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
 | |
| 	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
 | |
| 	    last_cpuinfo->features != this_cpuinfo->features ||
 | |
| 	    last_cpuinfo->revision != this_cpuinfo->revision ||
 | |
| 	    last_cpuinfo->family != this_cpuinfo->family ||
 | |
| 	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
 | |
| 	    last_cpuinfo->model != this_cpuinfo->model)
 | |
| 		calibrate_delay();
 | |
| 	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow the master to continue.
 | |
| 	 */
 | |
| 	cpumask_set_cpu(cpuid, &cpu_callin_map);
 | |
| 	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Activate a secondary processor.  head.S calls this.
 | |
|  */
 | |
| int
 | |
| start_secondary (void *unused)
 | |
| {
 | |
| 	/* Early console may use I/O ports */
 | |
| 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 | |
| #ifndef CONFIG_PRINTK_TIME
 | |
| 	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
 | |
| #endif
 | |
| 	efi_map_pal_code();
 | |
| 	cpu_init();
 | |
| 	smp_callin();
 | |
| 
 | |
| 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
 | |
| {
 | |
| 	int timeout;
 | |
| 
 | |
| 	task_for_booting_cpu = idle;
 | |
| 	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
 | |
| 
 | |
| 	set_brendez_area(cpu);
 | |
| 	ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait 10s total for the AP to start
 | |
| 	 */
 | |
| 	Dprintk("Waiting on callin_map ...");
 | |
| 	for (timeout = 0; timeout < 100000; timeout++) {
 | |
| 		if (cpumask_test_cpu(cpu, &cpu_callin_map))
 | |
| 			break;  /* It has booted */
 | |
| 		barrier(); /* Make sure we re-read cpu_callin_map */
 | |
| 		udelay(100);
 | |
| 	}
 | |
| 	Dprintk("\n");
 | |
| 
 | |
| 	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
 | |
| 		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
 | |
| 		ia64_cpu_to_sapicid[cpu] = -1;
 | |
| 		set_cpu_online(cpu, false);  /* was set in smp_callin() */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init
 | |
| decay (char *str)
 | |
| {
 | |
| 	int ticks;
 | |
| 	get_option (&str, &ticks);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("decay=", decay);
 | |
| 
 | |
| /*
 | |
|  * Initialize the logical CPU number to SAPICID mapping
 | |
|  */
 | |
| void __init
 | |
| smp_build_cpu_map (void)
 | |
| {
 | |
| 	int sapicid, cpu, i;
 | |
| 	int boot_cpu_id = hard_smp_processor_id();
 | |
| 
 | |
| 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
 | |
| 		ia64_cpu_to_sapicid[cpu] = -1;
 | |
| 	}
 | |
| 
 | |
| 	ia64_cpu_to_sapicid[0] = boot_cpu_id;
 | |
| 	init_cpu_present(cpumask_of(0));
 | |
| 	set_cpu_possible(0, true);
 | |
| 	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
 | |
| 		sapicid = smp_boot_data.cpu_phys_id[i];
 | |
| 		if (sapicid == boot_cpu_id)
 | |
| 			continue;
 | |
| 		set_cpu_present(cpu, true);
 | |
| 		set_cpu_possible(cpu, true);
 | |
| 		ia64_cpu_to_sapicid[cpu] = sapicid;
 | |
| 		cpu++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cycle through the APs sending Wakeup IPIs to boot each.
 | |
|  */
 | |
| void __init
 | |
| smp_prepare_cpus (unsigned int max_cpus)
 | |
| {
 | |
| 	int boot_cpu_id = hard_smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the per-CPU profiling counter/multiplier
 | |
| 	 */
 | |
| 
 | |
| 	smp_setup_percpu_timer();
 | |
| 
 | |
| 	cpumask_set_cpu(0, &cpu_callin_map);
 | |
| 
 | |
| 	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
 | |
| 	ia64_cpu_to_sapicid[0] = boot_cpu_id;
 | |
| 
 | |
| 	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
 | |
| 
 | |
| 	current_thread_info()->cpu = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If SMP should be disabled, then really disable it!
 | |
| 	 */
 | |
| 	if (!max_cpus) {
 | |
| 		printk(KERN_INFO "SMP mode deactivated.\n");
 | |
| 		init_cpu_online(cpumask_of(0));
 | |
| 		init_cpu_present(cpumask_of(0));
 | |
| 		init_cpu_possible(cpumask_of(0));
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void smp_prepare_boot_cpu(void)
 | |
| {
 | |
| 	set_cpu_online(smp_processor_id(), true);
 | |
| 	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
 | |
| 	set_numa_node(cpu_to_node_map[smp_processor_id()]);
 | |
| 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static inline void
 | |
| clear_cpu_sibling_map(int cpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
 | |
| 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
 | |
| 	for_each_cpu(i, &cpu_core_map[cpu])
 | |
| 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
 | |
| 
 | |
| 	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| remove_siblinginfo(int cpu)
 | |
| {
 | |
| 	if (cpu_data(cpu)->threads_per_core == 1 &&
 | |
| 	    cpu_data(cpu)->cores_per_socket == 1) {
 | |
| 		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
 | |
| 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* remove it from all sibling map's */
 | |
| 	clear_cpu_sibling_map(cpu);
 | |
| }
 | |
| 
 | |
| extern void fixup_irqs(void);
 | |
| 
 | |
| int migrate_platform_irqs(unsigned int cpu)
 | |
| {
 | |
| 	int new_cpei_cpu;
 | |
| 	struct irq_data *data = NULL;
 | |
| 	const struct cpumask *mask;
 | |
| 	int 		retval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * dont permit CPEI target to removed.
 | |
| 	 */
 | |
| 	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
 | |
| 		printk ("CPU (%d) is CPEI Target\n", cpu);
 | |
| 		if (can_cpei_retarget()) {
 | |
| 			/*
 | |
| 			 * Now re-target the CPEI to a different processor
 | |
| 			 */
 | |
| 			new_cpei_cpu = cpumask_any(cpu_online_mask);
 | |
| 			mask = cpumask_of(new_cpei_cpu);
 | |
| 			set_cpei_target_cpu(new_cpei_cpu);
 | |
| 			data = irq_get_irq_data(ia64_cpe_irq);
 | |
| 			/*
 | |
| 			 * Switch for now, immediately, we need to do fake intr
 | |
| 			 * as other interrupts, but need to study CPEI behaviour with
 | |
| 			 * polling before making changes.
 | |
| 			 */
 | |
| 			if (data && data->chip) {
 | |
| 				data->chip->irq_disable(data);
 | |
| 				data->chip->irq_set_affinity(data, mask, false);
 | |
| 				data->chip->irq_enable(data);
 | |
| 				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
 | |
| 			}
 | |
| 		}
 | |
| 		if (!data) {
 | |
| 			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
 | |
| 			retval = -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* must be called with cpucontrol mutex held */
 | |
| int __cpu_disable(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * dont permit boot processor for now
 | |
| 	 */
 | |
| 	if (cpu == 0 && !bsp_remove_ok) {
 | |
| 		printk ("Your platform does not support removal of BSP\n");
 | |
| 		return (-EBUSY);
 | |
| 	}
 | |
| 
 | |
| 	set_cpu_online(cpu, false);
 | |
| 
 | |
| 	if (migrate_platform_irqs(cpu)) {
 | |
| 		set_cpu_online(cpu, true);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	remove_siblinginfo(cpu);
 | |
| 	fixup_irqs();
 | |
| 	local_flush_tlb_all();
 | |
| 	cpumask_clear_cpu(cpu, &cpu_callin_map);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cpu_die(unsigned int cpu)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		/* They ack this in play_dead by setting CPU_DEAD */
 | |
| 		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
 | |
| 		{
 | |
| 			printk ("CPU %d is now offline\n", cpu);
 | |
| 			return;
 | |
| 		}
 | |
| 		msleep(100);
 | |
| 	}
 | |
|  	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| void
 | |
| smp_cpus_done (unsigned int dummy)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long bogosum = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow the user to impress friends.
 | |
| 	 */
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		bogosum += cpu_data(cpu)->loops_per_jiffy;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 | |
| 	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
 | |
| }
 | |
| 
 | |
| static inline void set_cpu_sibling_map(int cpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
 | |
| 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
 | |
| 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
 | |
| 			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
 | |
| 				cpumask_set_cpu(i,
 | |
| 						&per_cpu(cpu_sibling_map, cpu));
 | |
| 				cpumask_set_cpu(cpu,
 | |
| 						&per_cpu(cpu_sibling_map, i));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| __cpu_up(unsigned int cpu, struct task_struct *tidle)
 | |
| {
 | |
| 	int ret;
 | |
| 	int sapicid;
 | |
| 
 | |
| 	sapicid = ia64_cpu_to_sapicid[cpu];
 | |
| 	if (sapicid == -1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Already booted cpu? not valid anymore since we dont
 | |
| 	 * do idle loop tightspin anymore.
 | |
| 	 */
 | |
| 	if (cpumask_test_cpu(cpu, &cpu_callin_map))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 | |
| 	/* Processor goes to start_secondary(), sets online flag */
 | |
| 	ret = do_boot_cpu(sapicid, cpu, tidle);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (cpu_data(cpu)->threads_per_core == 1 &&
 | |
| 	    cpu_data(cpu)->cores_per_socket == 1) {
 | |
| 		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
 | |
| 		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	set_cpu_sibling_map(cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Assume that CPUs have been discovered by some platform-dependent interface.  For
 | |
|  * SoftSDV/Lion, that would be ACPI.
 | |
|  *
 | |
|  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
 | |
|  */
 | |
| void __init
 | |
| init_smp_config(void)
 | |
| {
 | |
| 	struct fptr {
 | |
| 		unsigned long fp;
 | |
| 		unsigned long gp;
 | |
| 	} *ap_startup;
 | |
| 	long sal_ret;
 | |
| 
 | |
| 	/* Tell SAL where to drop the APs.  */
 | |
| 	ap_startup = (struct fptr *) start_ap;
 | |
| 	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
 | |
| 				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
 | |
| 	if (sal_ret < 0)
 | |
| 		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
 | |
| 		       ia64_sal_strerror(sal_ret));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * identify_siblings(cpu) gets called from identify_cpu. This populates the 
 | |
|  * information related to logical execution units in per_cpu_data structure.
 | |
|  */
 | |
| void identify_siblings(struct cpuinfo_ia64 *c)
 | |
| {
 | |
| 	long status;
 | |
| 	u16 pltid;
 | |
| 	pal_logical_to_physical_t info;
 | |
| 
 | |
| 	status = ia64_pal_logical_to_phys(-1, &info);
 | |
| 	if (status != PAL_STATUS_SUCCESS) {
 | |
| 		if (status != PAL_STATUS_UNIMPLEMENTED) {
 | |
| 			printk(KERN_ERR
 | |
| 				"ia64_pal_logical_to_phys failed with %ld\n",
 | |
| 				status);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		info.overview_ppid = 0;
 | |
| 		info.overview_cpp  = 1;
 | |
| 		info.overview_tpc  = 1;
 | |
| 	}
 | |
| 
 | |
| 	status = ia64_sal_physical_id_info(&pltid);
 | |
| 	if (status != PAL_STATUS_SUCCESS) {
 | |
| 		if (status != PAL_STATUS_UNIMPLEMENTED)
 | |
| 			printk(KERN_ERR
 | |
| 				"ia64_sal_pltid failed with %ld\n",
 | |
| 				status);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	c->socket_id =  (pltid << 8) | info.overview_ppid;
 | |
| 
 | |
| 	if (info.overview_cpp == 1 && info.overview_tpc == 1)
 | |
| 		return;
 | |
| 
 | |
| 	c->cores_per_socket = info.overview_cpp;
 | |
| 	c->threads_per_core = info.overview_tpc;
 | |
| 	c->num_log = info.overview_num_log;
 | |
| 
 | |
| 	c->core_id = info.log1_cid;
 | |
| 	c->thread_id = info.log1_tid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns non zero, if multi-threading is enabled
 | |
|  * on at least one physical package. Due to hotplug cpu
 | |
|  * and (maxcpus=), all threads may not necessarily be enabled
 | |
|  * even though the processor supports multi-threading.
 | |
|  */
 | |
| int is_multithreading_enabled(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	for_each_present_cpu(i) {
 | |
| 		for_each_present_cpu(j) {
 | |
| 			if (j == i)
 | |
| 				continue;
 | |
| 			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
 | |
| 				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
 | |
| 					return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(is_multithreading_enabled);
 |