mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-04 20:19:47 +08:00

After running the program 'ioctl_pidfd03' of Linux Test Project (LTP) or
the program 'pidfd_info_test' in 'tools/testing/selftests/pidfd' of the
kernel source, kmemleak reports the following memory leaks:
# cat /sys/kernel/debug/kmemleak
unreferenced object 0xff110020e5988000 (size 8216):
comm "ioctl_pidfd03", pid 10853, jiffies 4294800031
hex dump (first 32 bytes):
02 40 00 00 00 00 00 00 10 00 00 00 00 00 00 00 .@..............
00 00 00 00 af 01 00 00 80 00 00 00 00 00 00 00 ................
backtrace (crc 69483047):
kmem_cache_alloc_node_noprof+0x2fb/0x410
copy_process+0x178/0x1740
kernel_clone+0x99/0x3b0
__do_sys_clone3+0xbe/0x100
do_syscall_64+0x7b/0x2c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
...
unreferenced object 0xff11002097b70000 (size 8216):
comm "pidfd_info_test", pid 11840, jiffies 4294889165
hex dump (first 32 bytes):
06 40 00 00 00 00 00 00 10 00 00 00 00 00 00 00 .@..............
00 00 00 00 b5 00 00 00 80 00 00 00 00 00 00 00 ................
backtrace (crc a6286bb7):
kmem_cache_alloc_node_noprof+0x2fb/0x410
copy_process+0x178/0x1740
kernel_clone+0x99/0x3b0
__do_sys_clone3+0xbe/0x100
do_syscall_64+0x7b/0x2c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
...
The leak occurs because pidfd_info() obtains a task_struct via
get_pid_task() but never calls put_task_struct() to drop the reference,
leaving task->usage unbalanced.
Fix the issue by adding '__free(put_task) = NULL' to the local variable
'task', ensuring that put_task_struct() is automatically invoked when
the variable goes out of scope.
Fixes: 7477d7dce4
("pidfs: allow to retrieve exit information")
Signed-off-by: Adrian Huang (Lenovo) <adrianhuang0701@gmail.com>
Link: https://lore.kernel.org/20250814094453.15232-1-adrianhuang0701@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
1083 lines
28 KiB
C
1083 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/exportfs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pid.h>
|
|
#include <linux/pidfs.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/pseudo_fs.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/seq_file.h>
|
|
#include <uapi/linux/pidfd.h>
|
|
#include <linux/ipc_namespace.h>
|
|
#include <linux/time_namespace.h>
|
|
#include <linux/utsname.h>
|
|
#include <net/net_namespace.h>
|
|
#include <linux/coredump.h>
|
|
#include <linux/xattr.h>
|
|
|
|
#include "internal.h"
|
|
#include "mount.h"
|
|
|
|
#define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
|
|
|
|
static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
|
|
static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
|
|
|
|
static struct path pidfs_root_path = {};
|
|
|
|
void pidfs_get_root(struct path *path)
|
|
{
|
|
*path = pidfs_root_path;
|
|
path_get(path);
|
|
}
|
|
|
|
/*
|
|
* Stashes information that userspace needs to access even after the
|
|
* process has been reaped.
|
|
*/
|
|
struct pidfs_exit_info {
|
|
__u64 cgroupid;
|
|
__s32 exit_code;
|
|
__u32 coredump_mask;
|
|
};
|
|
|
|
struct pidfs_attr {
|
|
struct simple_xattrs *xattrs;
|
|
struct pidfs_exit_info __pei;
|
|
struct pidfs_exit_info *exit_info;
|
|
};
|
|
|
|
static struct rb_root pidfs_ino_tree = RB_ROOT;
|
|
|
|
#if BITS_PER_LONG == 32
|
|
static inline unsigned long pidfs_ino(u64 ino)
|
|
{
|
|
return lower_32_bits(ino);
|
|
}
|
|
|
|
/* On 32 bit the generation number are the upper 32 bits. */
|
|
static inline u32 pidfs_gen(u64 ino)
|
|
{
|
|
return upper_32_bits(ino);
|
|
}
|
|
|
|
#else
|
|
|
|
/* On 64 bit simply return ino. */
|
|
static inline unsigned long pidfs_ino(u64 ino)
|
|
{
|
|
return ino;
|
|
}
|
|
|
|
/* On 64 bit the generation number is 0. */
|
|
static inline u32 pidfs_gen(u64 ino)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
|
|
{
|
|
struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
|
|
struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
|
|
u64 pid_ino_a = pid_a->ino;
|
|
u64 pid_ino_b = pid_b->ino;
|
|
|
|
if (pid_ino_a < pid_ino_b)
|
|
return -1;
|
|
if (pid_ino_a > pid_ino_b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void pidfs_add_pid(struct pid *pid)
|
|
{
|
|
static u64 pidfs_ino_nr = 2;
|
|
|
|
/*
|
|
* On 64 bit nothing special happens. The 64bit number assigned
|
|
* to struct pid is the inode number.
|
|
*
|
|
* On 32 bit the 64 bit number assigned to struct pid is split
|
|
* into two 32 bit numbers. The lower 32 bits are used as the
|
|
* inode number and the upper 32 bits are used as the inode
|
|
* generation number.
|
|
*
|
|
* On 32 bit pidfs_ino() will return the lower 32 bit. When
|
|
* pidfs_ino() returns zero a wrap around happened. When a
|
|
* wraparound happens the 64 bit number will be incremented by 2
|
|
* so inode numbering starts at 2 again.
|
|
*
|
|
* On 64 bit comparing two pidfds is as simple as comparing
|
|
* inode numbers.
|
|
*
|
|
* When a wraparound happens on 32 bit multiple pidfds with the
|
|
* same inode number are likely to exist (This isn't a problem
|
|
* since before pidfs pidfds used the anonymous inode meaning
|
|
* all pidfds had the same inode number.). Userspace can
|
|
* reconstruct the 64 bit identifier by retrieving both the
|
|
* inode number and the inode generation number to compare or
|
|
* use file handles.
|
|
*/
|
|
if (pidfs_ino(pidfs_ino_nr) == 0)
|
|
pidfs_ino_nr += 2;
|
|
|
|
pid->ino = pidfs_ino_nr;
|
|
pid->stashed = NULL;
|
|
pid->attr = NULL;
|
|
pidfs_ino_nr++;
|
|
|
|
write_seqcount_begin(&pidmap_lock_seq);
|
|
rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
|
|
write_seqcount_end(&pidmap_lock_seq);
|
|
}
|
|
|
|
void pidfs_remove_pid(struct pid *pid)
|
|
{
|
|
write_seqcount_begin(&pidmap_lock_seq);
|
|
rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
|
|
write_seqcount_end(&pidmap_lock_seq);
|
|
}
|
|
|
|
void pidfs_free_pid(struct pid *pid)
|
|
{
|
|
struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
|
|
struct simple_xattrs *xattrs __free(kfree) = NULL;
|
|
|
|
/*
|
|
* Any dentry must've been wiped from the pid by now.
|
|
* Otherwise there's a reference count bug.
|
|
*/
|
|
VFS_WARN_ON_ONCE(pid->stashed);
|
|
|
|
/*
|
|
* This if an error occurred during e.g., task creation that
|
|
* causes us to never go through the exit path.
|
|
*/
|
|
if (unlikely(!attr))
|
|
return;
|
|
|
|
/* This never had a pidfd created. */
|
|
if (IS_ERR(attr))
|
|
return;
|
|
|
|
xattrs = no_free_ptr(attr->xattrs);
|
|
if (xattrs)
|
|
simple_xattrs_free(xattrs, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/**
|
|
* pidfd_show_fdinfo - print information about a pidfd
|
|
* @m: proc fdinfo file
|
|
* @f: file referencing a pidfd
|
|
*
|
|
* Pid:
|
|
* This function will print the pid that a given pidfd refers to in the
|
|
* pid namespace of the procfs instance.
|
|
* If the pid namespace of the process is not a descendant of the pid
|
|
* namespace of the procfs instance 0 will be shown as its pid. This is
|
|
* similar to calling getppid() on a process whose parent is outside of
|
|
* its pid namespace.
|
|
*
|
|
* NSpid:
|
|
* If pid namespaces are supported then this function will also print
|
|
* the pid of a given pidfd refers to for all descendant pid namespaces
|
|
* starting from the current pid namespace of the instance, i.e. the
|
|
* Pid field and the first entry in the NSpid field will be identical.
|
|
* If the pid namespace of the process is not a descendant of the pid
|
|
* namespace of the procfs instance 0 will be shown as its first NSpid
|
|
* entry and no others will be shown.
|
|
* Note that this differs from the Pid and NSpid fields in
|
|
* /proc/<pid>/status where Pid and NSpid are always shown relative to
|
|
* the pid namespace of the procfs instance. The difference becomes
|
|
* obvious when sending around a pidfd between pid namespaces from a
|
|
* different branch of the tree, i.e. where no ancestral relation is
|
|
* present between the pid namespaces:
|
|
* - create two new pid namespaces ns1 and ns2 in the initial pid
|
|
* namespace (also take care to create new mount namespaces in the
|
|
* new pid namespace and mount procfs)
|
|
* - create a process with a pidfd in ns1
|
|
* - send pidfd from ns1 to ns2
|
|
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
|
|
* have exactly one entry, which is 0
|
|
*/
|
|
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
|
|
{
|
|
struct pid *pid = pidfd_pid(f);
|
|
struct pid_namespace *ns;
|
|
pid_t nr = -1;
|
|
|
|
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
|
|
ns = proc_pid_ns(file_inode(m->file)->i_sb);
|
|
nr = pid_nr_ns(pid, ns);
|
|
}
|
|
|
|
seq_put_decimal_ll(m, "Pid:\t", nr);
|
|
|
|
#ifdef CONFIG_PID_NS
|
|
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
|
|
if (nr > 0) {
|
|
int i;
|
|
|
|
/* If nr is non-zero it means that 'pid' is valid and that
|
|
* ns, i.e. the pid namespace associated with the procfs
|
|
* instance, is in the pid namespace hierarchy of pid.
|
|
* Start at one below the already printed level.
|
|
*/
|
|
for (i = ns->level + 1; i <= pid->level; i++)
|
|
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
|
|
}
|
|
#endif
|
|
seq_putc(m, '\n');
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Poll support for process exit notification.
|
|
*/
|
|
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
|
|
{
|
|
struct pid *pid = pidfd_pid(file);
|
|
struct task_struct *task;
|
|
__poll_t poll_flags = 0;
|
|
|
|
poll_wait(file, &pid->wait_pidfd, pts);
|
|
/*
|
|
* Don't wake waiters if the thread-group leader exited
|
|
* prematurely. They either get notified when the last subthread
|
|
* exits or not at all if one of the remaining subthreads execs
|
|
* and assumes the struct pid of the old thread-group leader.
|
|
*/
|
|
guard(rcu)();
|
|
task = pid_task(pid, PIDTYPE_PID);
|
|
if (!task)
|
|
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
|
|
else if (task->exit_state && !delay_group_leader(task))
|
|
poll_flags = EPOLLIN | EPOLLRDNORM;
|
|
|
|
return poll_flags;
|
|
}
|
|
|
|
static inline bool pid_in_current_pidns(const struct pid *pid)
|
|
{
|
|
const struct pid_namespace *ns = task_active_pid_ns(current);
|
|
|
|
if (ns->level <= pid->level)
|
|
return pid->numbers[ns->level].ns == ns;
|
|
|
|
return false;
|
|
}
|
|
|
|
static __u32 pidfs_coredump_mask(unsigned long mm_flags)
|
|
{
|
|
switch (__get_dumpable(mm_flags)) {
|
|
case SUID_DUMP_USER:
|
|
return PIDFD_COREDUMP_USER;
|
|
case SUID_DUMP_ROOT:
|
|
return PIDFD_COREDUMP_ROOT;
|
|
case SUID_DUMP_DISABLE:
|
|
return PIDFD_COREDUMP_SKIP;
|
|
default:
|
|
WARN_ON_ONCE(true);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
|
|
struct task_struct *task __free(put_task) = NULL;
|
|
struct pid *pid = pidfd_pid(file);
|
|
size_t usize = _IOC_SIZE(cmd);
|
|
struct pidfd_info kinfo = {};
|
|
struct pidfs_exit_info *exit_info;
|
|
struct user_namespace *user_ns;
|
|
struct pidfs_attr *attr;
|
|
const struct cred *c;
|
|
__u64 mask;
|
|
|
|
if (!uinfo)
|
|
return -EINVAL;
|
|
if (usize < PIDFD_INFO_SIZE_VER0)
|
|
return -EINVAL; /* First version, no smaller struct possible */
|
|
|
|
if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Restrict information retrieval to tasks within the caller's pid
|
|
* namespace hierarchy.
|
|
*/
|
|
if (!pid_in_current_pidns(pid))
|
|
return -ESRCH;
|
|
|
|
attr = READ_ONCE(pid->attr);
|
|
if (mask & PIDFD_INFO_EXIT) {
|
|
exit_info = READ_ONCE(attr->exit_info);
|
|
if (exit_info) {
|
|
kinfo.mask |= PIDFD_INFO_EXIT;
|
|
#ifdef CONFIG_CGROUPS
|
|
kinfo.cgroupid = exit_info->cgroupid;
|
|
kinfo.mask |= PIDFD_INFO_CGROUPID;
|
|
#endif
|
|
kinfo.exit_code = exit_info->exit_code;
|
|
}
|
|
}
|
|
|
|
if (mask & PIDFD_INFO_COREDUMP) {
|
|
kinfo.mask |= PIDFD_INFO_COREDUMP;
|
|
kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask);
|
|
}
|
|
|
|
task = get_pid_task(pid, PIDTYPE_PID);
|
|
if (!task) {
|
|
/*
|
|
* If the task has already been reaped, only exit
|
|
* information is available
|
|
*/
|
|
if (!(mask & PIDFD_INFO_EXIT))
|
|
return -ESRCH;
|
|
|
|
goto copy_out;
|
|
}
|
|
|
|
c = get_task_cred(task);
|
|
if (!c)
|
|
return -ESRCH;
|
|
|
|
if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) {
|
|
task_lock(task);
|
|
if (task->mm)
|
|
kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags);
|
|
task_unlock(task);
|
|
}
|
|
|
|
/* Unconditionally return identifiers and credentials, the rest only on request */
|
|
|
|
user_ns = current_user_ns();
|
|
kinfo.ruid = from_kuid_munged(user_ns, c->uid);
|
|
kinfo.rgid = from_kgid_munged(user_ns, c->gid);
|
|
kinfo.euid = from_kuid_munged(user_ns, c->euid);
|
|
kinfo.egid = from_kgid_munged(user_ns, c->egid);
|
|
kinfo.suid = from_kuid_munged(user_ns, c->suid);
|
|
kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
|
|
kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
|
|
kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
|
|
kinfo.mask |= PIDFD_INFO_CREDS;
|
|
put_cred(c);
|
|
|
|
#ifdef CONFIG_CGROUPS
|
|
if (!kinfo.cgroupid) {
|
|
struct cgroup *cgrp;
|
|
|
|
rcu_read_lock();
|
|
cgrp = task_dfl_cgroup(task);
|
|
kinfo.cgroupid = cgroup_id(cgrp);
|
|
kinfo.mask |= PIDFD_INFO_CGROUPID;
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Copy pid/tgid last, to reduce the chances the information might be
|
|
* stale. Note that it is not possible to ensure it will be valid as the
|
|
* task might return as soon as the copy_to_user finishes, but that's ok
|
|
* and userspace expects that might happen and can act accordingly, so
|
|
* this is just best-effort. What we can do however is checking that all
|
|
* the fields are set correctly, or return ESRCH to avoid providing
|
|
* incomplete information. */
|
|
|
|
kinfo.ppid = task_ppid_nr_ns(task, NULL);
|
|
kinfo.tgid = task_tgid_vnr(task);
|
|
kinfo.pid = task_pid_vnr(task);
|
|
kinfo.mask |= PIDFD_INFO_PID;
|
|
|
|
if (kinfo.pid == 0 || kinfo.tgid == 0)
|
|
return -ESRCH;
|
|
|
|
copy_out:
|
|
/*
|
|
* If userspace and the kernel have the same struct size it can just
|
|
* be copied. If userspace provides an older struct, only the bits that
|
|
* userspace knows about will be copied. If userspace provides a new
|
|
* struct, only the bits that the kernel knows about will be copied.
|
|
*/
|
|
return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
|
|
}
|
|
|
|
static bool pidfs_ioctl_valid(unsigned int cmd)
|
|
{
|
|
switch (cmd) {
|
|
case FS_IOC_GETVERSION:
|
|
case PIDFD_GET_CGROUP_NAMESPACE:
|
|
case PIDFD_GET_IPC_NAMESPACE:
|
|
case PIDFD_GET_MNT_NAMESPACE:
|
|
case PIDFD_GET_NET_NAMESPACE:
|
|
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
|
|
case PIDFD_GET_TIME_NAMESPACE:
|
|
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
|
|
case PIDFD_GET_UTS_NAMESPACE:
|
|
case PIDFD_GET_USER_NAMESPACE:
|
|
case PIDFD_GET_PID_NAMESPACE:
|
|
return true;
|
|
}
|
|
|
|
/* Extensible ioctls require some more careful checks. */
|
|
switch (_IOC_NR(cmd)) {
|
|
case _IOC_NR(PIDFD_GET_INFO):
|
|
/*
|
|
* Try to prevent performing a pidfd ioctl when someone
|
|
* erronously mistook the file descriptor for a pidfd.
|
|
* This is not perfect but will catch most cases.
|
|
*/
|
|
return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct task_struct *task __free(put_task) = NULL;
|
|
struct nsproxy *nsp __free(put_nsproxy) = NULL;
|
|
struct ns_common *ns_common = NULL;
|
|
struct pid_namespace *pid_ns;
|
|
|
|
if (!pidfs_ioctl_valid(cmd))
|
|
return -ENOIOCTLCMD;
|
|
|
|
if (cmd == FS_IOC_GETVERSION) {
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
__u32 __user *argp = (__u32 __user *)arg;
|
|
return put_user(file_inode(file)->i_generation, argp);
|
|
}
|
|
|
|
/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
|
|
if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
|
|
return pidfd_info(file, cmd, arg);
|
|
|
|
task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
|
|
if (!task)
|
|
return -ESRCH;
|
|
|
|
if (arg)
|
|
return -EINVAL;
|
|
|
|
scoped_guard(task_lock, task) {
|
|
nsp = task->nsproxy;
|
|
if (nsp)
|
|
get_nsproxy(nsp);
|
|
}
|
|
if (!nsp)
|
|
return -ESRCH; /* just pretend it didn't exist */
|
|
|
|
/*
|
|
* We're trying to open a file descriptor to the namespace so perform a
|
|
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
|
|
*/
|
|
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
|
|
return -EACCES;
|
|
|
|
switch (cmd) {
|
|
/* Namespaces that hang of nsproxy. */
|
|
case PIDFD_GET_CGROUP_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_CGROUPS)) {
|
|
get_cgroup_ns(nsp->cgroup_ns);
|
|
ns_common = to_ns_common(nsp->cgroup_ns);
|
|
}
|
|
break;
|
|
case PIDFD_GET_IPC_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_IPC_NS)) {
|
|
get_ipc_ns(nsp->ipc_ns);
|
|
ns_common = to_ns_common(nsp->ipc_ns);
|
|
}
|
|
break;
|
|
case PIDFD_GET_MNT_NAMESPACE:
|
|
get_mnt_ns(nsp->mnt_ns);
|
|
ns_common = to_ns_common(nsp->mnt_ns);
|
|
break;
|
|
case PIDFD_GET_NET_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_NET_NS)) {
|
|
ns_common = to_ns_common(nsp->net_ns);
|
|
get_net_ns(ns_common);
|
|
}
|
|
break;
|
|
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_PID_NS)) {
|
|
get_pid_ns(nsp->pid_ns_for_children);
|
|
ns_common = to_ns_common(nsp->pid_ns_for_children);
|
|
}
|
|
break;
|
|
case PIDFD_GET_TIME_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_TIME_NS)) {
|
|
get_time_ns(nsp->time_ns);
|
|
ns_common = to_ns_common(nsp->time_ns);
|
|
}
|
|
break;
|
|
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_TIME_NS)) {
|
|
get_time_ns(nsp->time_ns_for_children);
|
|
ns_common = to_ns_common(nsp->time_ns_for_children);
|
|
}
|
|
break;
|
|
case PIDFD_GET_UTS_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_UTS_NS)) {
|
|
get_uts_ns(nsp->uts_ns);
|
|
ns_common = to_ns_common(nsp->uts_ns);
|
|
}
|
|
break;
|
|
/* Namespaces that don't hang of nsproxy. */
|
|
case PIDFD_GET_USER_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_USER_NS)) {
|
|
rcu_read_lock();
|
|
ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
|
|
rcu_read_unlock();
|
|
}
|
|
break;
|
|
case PIDFD_GET_PID_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_PID_NS)) {
|
|
rcu_read_lock();
|
|
pid_ns = task_active_pid_ns(task);
|
|
if (pid_ns)
|
|
ns_common = to_ns_common(get_pid_ns(pid_ns));
|
|
rcu_read_unlock();
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
if (!ns_common)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* open_namespace() unconditionally consumes the reference */
|
|
return open_namespace(ns_common);
|
|
}
|
|
|
|
static const struct file_operations pidfs_file_operations = {
|
|
.poll = pidfd_poll,
|
|
#ifdef CONFIG_PROC_FS
|
|
.show_fdinfo = pidfd_show_fdinfo,
|
|
#endif
|
|
.unlocked_ioctl = pidfd_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
};
|
|
|
|
struct pid *pidfd_pid(const struct file *file)
|
|
{
|
|
if (file->f_op != &pidfs_file_operations)
|
|
return ERR_PTR(-EBADF);
|
|
return file_inode(file)->i_private;
|
|
}
|
|
|
|
/*
|
|
* We're called from release_task(). We know there's at least one
|
|
* reference to struct pid being held that won't be released until the
|
|
* task has been reaped which cannot happen until we're out of
|
|
* release_task().
|
|
*
|
|
* If this struct pid has at least once been referred to by a pidfd then
|
|
* pid->attr will be allocated. If not we mark the struct pid as dead so
|
|
* anyone who is trying to register it with pidfs will fail to do so.
|
|
* Otherwise we would hand out pidfs for reaped tasks without having
|
|
* exit information available.
|
|
*
|
|
* Worst case is that we've filled in the info and the pid gets freed
|
|
* right away in free_pid() when no one holds a pidfd anymore. Since
|
|
* pidfs_exit() currently is placed after exit_task_work() we know that
|
|
* it cannot be us aka the exiting task holding a pidfd to itself.
|
|
*/
|
|
void pidfs_exit(struct task_struct *tsk)
|
|
{
|
|
struct pid *pid = task_pid(tsk);
|
|
struct pidfs_attr *attr;
|
|
struct pidfs_exit_info *exit_info;
|
|
#ifdef CONFIG_CGROUPS
|
|
struct cgroup *cgrp;
|
|
#endif
|
|
|
|
might_sleep();
|
|
|
|
guard(spinlock_irq)(&pid->wait_pidfd.lock);
|
|
attr = pid->attr;
|
|
if (!attr) {
|
|
/*
|
|
* No one ever held a pidfd for this struct pid.
|
|
* Mark it as dead so no one can add a pidfs
|
|
* entry anymore. We're about to be reaped and
|
|
* so no exit information would be available.
|
|
*/
|
|
pid->attr = PIDFS_PID_DEAD;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If @pid->attr is set someone might still legitimately hold a
|
|
* pidfd to @pid or someone might concurrently still be getting
|
|
* a reference to an already stashed dentry from @pid->stashed.
|
|
* So defer cleaning @pid->attr until the last reference to @pid
|
|
* is put
|
|
*/
|
|
|
|
exit_info = &attr->__pei;
|
|
|
|
#ifdef CONFIG_CGROUPS
|
|
rcu_read_lock();
|
|
cgrp = task_dfl_cgroup(tsk);
|
|
exit_info->cgroupid = cgroup_id(cgrp);
|
|
rcu_read_unlock();
|
|
#endif
|
|
exit_info->exit_code = tsk->exit_code;
|
|
|
|
/* Ensure that PIDFD_GET_INFO sees either all or nothing. */
|
|
smp_store_release(&attr->exit_info, &attr->__pei);
|
|
}
|
|
|
|
#ifdef CONFIG_COREDUMP
|
|
void pidfs_coredump(const struct coredump_params *cprm)
|
|
{
|
|
struct pid *pid = cprm->pid;
|
|
struct pidfs_exit_info *exit_info;
|
|
struct pidfs_attr *attr;
|
|
__u32 coredump_mask = 0;
|
|
|
|
attr = READ_ONCE(pid->attr);
|
|
|
|
VFS_WARN_ON_ONCE(!attr);
|
|
VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
|
|
|
|
exit_info = &attr->__pei;
|
|
/* Note how we were coredumped. */
|
|
coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
|
|
/* Note that we actually did coredump. */
|
|
coredump_mask |= PIDFD_COREDUMPED;
|
|
/* If coredumping is set to skip we should never end up here. */
|
|
VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
|
|
smp_store_release(&exit_info->coredump_mask, coredump_mask);
|
|
}
|
|
#endif
|
|
|
|
static struct vfsmount *pidfs_mnt __ro_after_init;
|
|
|
|
/*
|
|
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
|
|
* implemented. Let's reject it completely until we have a clean
|
|
* permission concept for pidfds.
|
|
*/
|
|
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
|
|
struct iattr *attr)
|
|
{
|
|
return anon_inode_setattr(idmap, dentry, attr);
|
|
}
|
|
|
|
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
|
|
struct kstat *stat, u32 request_mask,
|
|
unsigned int query_flags)
|
|
{
|
|
return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
|
|
}
|
|
|
|
static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct pid *pid = inode->i_private;
|
|
struct pidfs_attr *attr = pid->attr;
|
|
struct simple_xattrs *xattrs;
|
|
|
|
xattrs = READ_ONCE(attr->xattrs);
|
|
if (!xattrs)
|
|
return 0;
|
|
|
|
return simple_xattr_list(inode, xattrs, buf, size);
|
|
}
|
|
|
|
static const struct inode_operations pidfs_inode_operations = {
|
|
.getattr = pidfs_getattr,
|
|
.setattr = pidfs_setattr,
|
|
.listxattr = pidfs_listxattr,
|
|
};
|
|
|
|
static void pidfs_evict_inode(struct inode *inode)
|
|
{
|
|
struct pid *pid = inode->i_private;
|
|
|
|
clear_inode(inode);
|
|
put_pid(pid);
|
|
}
|
|
|
|
static const struct super_operations pidfs_sops = {
|
|
.drop_inode = generic_delete_inode,
|
|
.evict_inode = pidfs_evict_inode,
|
|
.statfs = simple_statfs,
|
|
};
|
|
|
|
/*
|
|
* 'lsof' has knowledge of out historical anon_inode use, and expects
|
|
* the pidfs dentry name to start with 'anon_inode'.
|
|
*/
|
|
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
|
|
{
|
|
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
|
|
}
|
|
|
|
const struct dentry_operations pidfs_dentry_operations = {
|
|
.d_dname = pidfs_dname,
|
|
.d_prune = stashed_dentry_prune,
|
|
};
|
|
|
|
static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
|
|
struct inode *parent)
|
|
{
|
|
const struct pid *pid = inode->i_private;
|
|
|
|
if (*max_len < 2) {
|
|
*max_len = 2;
|
|
return FILEID_INVALID;
|
|
}
|
|
|
|
*max_len = 2;
|
|
*(u64 *)fh = pid->ino;
|
|
return FILEID_KERNFS;
|
|
}
|
|
|
|
static int pidfs_ino_find(const void *key, const struct rb_node *node)
|
|
{
|
|
const u64 pid_ino = *(u64 *)key;
|
|
const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
|
|
|
|
if (pid_ino < pid->ino)
|
|
return -1;
|
|
if (pid_ino > pid->ino)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Find a struct pid based on the inode number. */
|
|
static struct pid *pidfs_ino_get_pid(u64 ino)
|
|
{
|
|
struct pid *pid;
|
|
struct rb_node *node;
|
|
unsigned int seq;
|
|
|
|
guard(rcu)();
|
|
do {
|
|
seq = read_seqcount_begin(&pidmap_lock_seq);
|
|
node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
|
|
if (node)
|
|
break;
|
|
} while (read_seqcount_retry(&pidmap_lock_seq, seq));
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
pid = rb_entry(node, struct pid, pidfs_node);
|
|
|
|
/* Within our pid namespace hierarchy? */
|
|
if (pid_vnr(pid) == 0)
|
|
return NULL;
|
|
|
|
return get_pid(pid);
|
|
}
|
|
|
|
static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
|
|
struct fid *fid, int fh_len,
|
|
int fh_type)
|
|
{
|
|
int ret;
|
|
u64 pid_ino;
|
|
struct path path;
|
|
struct pid *pid;
|
|
|
|
if (fh_len < 2)
|
|
return NULL;
|
|
|
|
switch (fh_type) {
|
|
case FILEID_KERNFS:
|
|
pid_ino = *(u64 *)fid;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
pid = pidfs_ino_get_pid(pid_ino);
|
|
if (!pid)
|
|
return NULL;
|
|
|
|
ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
VFS_WARN_ON_ONCE(!pid->attr);
|
|
|
|
mntput(path.mnt);
|
|
return path.dentry;
|
|
}
|
|
|
|
/*
|
|
* Make sure that we reject any nonsensical flags that users pass via
|
|
* open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
|
|
* PIDFD_NONBLOCK as O_NONBLOCK.
|
|
*/
|
|
#define VALID_FILE_HANDLE_OPEN_FLAGS \
|
|
(O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
|
|
|
|
static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
|
|
unsigned int oflags)
|
|
{
|
|
if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* pidfd_ino_get_pid() will verify that the struct pid is part
|
|
* of the caller's pid namespace hierarchy. No further
|
|
* permission checks are needed.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static struct file *pidfs_export_open(struct path *path, unsigned int oflags)
|
|
{
|
|
/*
|
|
* Clear O_LARGEFILE as open_by_handle_at() forces it and raise
|
|
* O_RDWR as pidfds always are.
|
|
*/
|
|
oflags &= ~O_LARGEFILE;
|
|
return dentry_open(path, oflags | O_RDWR, current_cred());
|
|
}
|
|
|
|
static const struct export_operations pidfs_export_operations = {
|
|
.encode_fh = pidfs_encode_fh,
|
|
.fh_to_dentry = pidfs_fh_to_dentry,
|
|
.open = pidfs_export_open,
|
|
.permission = pidfs_export_permission,
|
|
};
|
|
|
|
static int pidfs_init_inode(struct inode *inode, void *data)
|
|
{
|
|
const struct pid *pid = data;
|
|
|
|
inode->i_private = data;
|
|
inode->i_flags |= S_PRIVATE | S_ANON_INODE;
|
|
/* We allow to set xattrs. */
|
|
inode->i_flags &= ~S_IMMUTABLE;
|
|
inode->i_mode |= S_IRWXU;
|
|
inode->i_op = &pidfs_inode_operations;
|
|
inode->i_fop = &pidfs_file_operations;
|
|
inode->i_ino = pidfs_ino(pid->ino);
|
|
inode->i_generation = pidfs_gen(pid->ino);
|
|
return 0;
|
|
}
|
|
|
|
static void pidfs_put_data(void *data)
|
|
{
|
|
struct pid *pid = data;
|
|
put_pid(pid);
|
|
}
|
|
|
|
/**
|
|
* pidfs_register_pid - register a struct pid in pidfs
|
|
* @pid: pid to pin
|
|
*
|
|
* Register a struct pid in pidfs.
|
|
*
|
|
* Return: On success zero, on error a negative error code is returned.
|
|
*/
|
|
int pidfs_register_pid(struct pid *pid)
|
|
{
|
|
struct pidfs_attr *new_attr __free(kfree) = NULL;
|
|
struct pidfs_attr *attr;
|
|
|
|
might_sleep();
|
|
|
|
if (!pid)
|
|
return 0;
|
|
|
|
attr = READ_ONCE(pid->attr);
|
|
if (unlikely(attr == PIDFS_PID_DEAD))
|
|
return PTR_ERR(PIDFS_PID_DEAD);
|
|
if (attr)
|
|
return 0;
|
|
|
|
new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
|
|
if (!new_attr)
|
|
return -ENOMEM;
|
|
|
|
/* Synchronize with pidfs_exit(). */
|
|
guard(spinlock_irq)(&pid->wait_pidfd.lock);
|
|
|
|
attr = pid->attr;
|
|
if (unlikely(attr == PIDFS_PID_DEAD))
|
|
return PTR_ERR(PIDFS_PID_DEAD);
|
|
if (unlikely(attr))
|
|
return 0;
|
|
|
|
pid->attr = no_free_ptr(new_attr);
|
|
return 0;
|
|
}
|
|
|
|
static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
|
|
struct dentry *dentry)
|
|
{
|
|
int ret;
|
|
struct pid *pid = d_inode(dentry)->i_private;
|
|
|
|
VFS_WARN_ON_ONCE(stashed != &pid->stashed);
|
|
|
|
ret = pidfs_register_pid(pid);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return stash_dentry(stashed, dentry);
|
|
}
|
|
|
|
static const struct stashed_operations pidfs_stashed_ops = {
|
|
.stash_dentry = pidfs_stash_dentry,
|
|
.init_inode = pidfs_init_inode,
|
|
.put_data = pidfs_put_data,
|
|
};
|
|
|
|
static int pidfs_xattr_get(const struct xattr_handler *handler,
|
|
struct dentry *unused, struct inode *inode,
|
|
const char *suffix, void *value, size_t size)
|
|
{
|
|
struct pid *pid = inode->i_private;
|
|
struct pidfs_attr *attr = pid->attr;
|
|
const char *name;
|
|
struct simple_xattrs *xattrs;
|
|
|
|
xattrs = READ_ONCE(attr->xattrs);
|
|
if (!xattrs)
|
|
return 0;
|
|
|
|
name = xattr_full_name(handler, suffix);
|
|
return simple_xattr_get(xattrs, name, value, size);
|
|
}
|
|
|
|
static int pidfs_xattr_set(const struct xattr_handler *handler,
|
|
struct mnt_idmap *idmap, struct dentry *unused,
|
|
struct inode *inode, const char *suffix,
|
|
const void *value, size_t size, int flags)
|
|
{
|
|
struct pid *pid = inode->i_private;
|
|
struct pidfs_attr *attr = pid->attr;
|
|
const char *name;
|
|
struct simple_xattrs *xattrs;
|
|
struct simple_xattr *old_xattr;
|
|
|
|
/* Ensure we're the only one to set @attr->xattrs. */
|
|
WARN_ON_ONCE(!inode_is_locked(inode));
|
|
|
|
xattrs = READ_ONCE(attr->xattrs);
|
|
if (!xattrs) {
|
|
xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
|
|
if (!xattrs)
|
|
return -ENOMEM;
|
|
|
|
simple_xattrs_init(xattrs);
|
|
smp_store_release(&pid->attr->xattrs, xattrs);
|
|
}
|
|
|
|
name = xattr_full_name(handler, suffix);
|
|
old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
|
|
if (IS_ERR(old_xattr))
|
|
return PTR_ERR(old_xattr);
|
|
|
|
simple_xattr_free(old_xattr);
|
|
return 0;
|
|
}
|
|
|
|
static const struct xattr_handler pidfs_trusted_xattr_handler = {
|
|
.prefix = XATTR_TRUSTED_PREFIX,
|
|
.get = pidfs_xattr_get,
|
|
.set = pidfs_xattr_set,
|
|
};
|
|
|
|
static const struct xattr_handler *const pidfs_xattr_handlers[] = {
|
|
&pidfs_trusted_xattr_handler,
|
|
NULL
|
|
};
|
|
|
|
static int pidfs_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct pseudo_fs_context *ctx;
|
|
|
|
ctx = init_pseudo(fc, PID_FS_MAGIC);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
fc->s_iflags |= SB_I_NOEXEC;
|
|
fc->s_iflags |= SB_I_NODEV;
|
|
ctx->ops = &pidfs_sops;
|
|
ctx->eops = &pidfs_export_operations;
|
|
ctx->dops = &pidfs_dentry_operations;
|
|
ctx->xattr = pidfs_xattr_handlers;
|
|
fc->s_fs_info = (void *)&pidfs_stashed_ops;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type pidfs_type = {
|
|
.name = "pidfs",
|
|
.init_fs_context = pidfs_init_fs_context,
|
|
.kill_sb = kill_anon_super,
|
|
};
|
|
|
|
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
|
|
{
|
|
struct file *pidfd_file;
|
|
struct path path __free(path_put) = {};
|
|
int ret;
|
|
|
|
/*
|
|
* Ensure that PIDFD_STALE can be passed as a flag without
|
|
* overloading other uapi pidfd flags.
|
|
*/
|
|
BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
|
|
BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
|
|
|
|
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
VFS_WARN_ON_ONCE(!pid->attr);
|
|
|
|
flags &= ~PIDFD_STALE;
|
|
flags |= O_RDWR;
|
|
pidfd_file = dentry_open(&path, flags, current_cred());
|
|
/* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
|
|
if (!IS_ERR(pidfd_file))
|
|
pidfd_file->f_flags |= (flags & PIDFD_THREAD);
|
|
|
|
return pidfd_file;
|
|
}
|
|
|
|
void __init pidfs_init(void)
|
|
{
|
|
pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
|
|
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
|
|
SLAB_ACCOUNT | SLAB_PANIC), NULL);
|
|
|
|
pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
|
|
sizeof(struct simple_xattrs), 0,
|
|
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
|
|
SLAB_ACCOUNT | SLAB_PANIC), NULL);
|
|
|
|
pidfs_mnt = kern_mount(&pidfs_type);
|
|
if (IS_ERR(pidfs_mnt))
|
|
panic("Failed to mount pidfs pseudo filesystem");
|
|
|
|
pidfs_root_path.mnt = pidfs_mnt;
|
|
pidfs_root_path.dentry = pidfs_mnt->mnt_root;
|
|
}
|