mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-04 20:19:47 +08:00
documented (hopefully adequately) in the respective changelogs. Notable
series include:
- Lucas Stach has provided some page-mapping
cleanup/consolidation/maintainability work in the series "mm/treewide:
Remove pXd_huge() API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being allocated:
number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in largely
similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
Weiner has fixed the page allocator's handling of migratetype requests,
with resulting improvements in compaction efficiency.
- In the series "make the hugetlb migration strategy consistent" Baolin
Wang has fixed a hugetlb migration issue, which should improve hugetlb
allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when memory
almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting" Kairui
Song has optimized pagecache insertion, yielding ~10% performance
improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various page->flags
cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
"mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs. This
is a simple first-cut implementation for now. The series is "support
multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in the
series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts in
the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes
the initialization code so that migration between different memory types
works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant driver
in the series "mm: follow_pte() improvements and acrn follow_pte()
fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to folio
in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size THP's
in the series "mm: add per-order mTHP alloc and swpout counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His series
"mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback instrumentation
in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series "Fix
and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
series "Improve anon_vma scalability for anon VMAs". Intel's test bot
reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
=V3R/
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
351 lines
9.8 KiB
C
351 lines
9.8 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle
|
|
* Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
|
|
*/
|
|
#ifndef _ASM_PGTABLE_64_H
|
|
#define _ASM_PGTABLE_64_H
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/linkage.h>
|
|
|
|
#include <asm/addrspace.h>
|
|
#include <asm/page.h>
|
|
#include <asm/cachectl.h>
|
|
#include <asm/fixmap.h>
|
|
|
|
#if CONFIG_PGTABLE_LEVELS == 2
|
|
#include <asm-generic/pgtable-nopmd.h>
|
|
#elif CONFIG_PGTABLE_LEVELS == 3
|
|
#include <asm-generic/pgtable-nopud.h>
|
|
#else
|
|
#include <asm-generic/pgtable-nop4d.h>
|
|
#endif
|
|
|
|
/*
|
|
* Each address space has 2 4K pages as its page directory, giving 1024
|
|
* (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
|
|
* single 4K page, giving 512 (== PTRS_PER_PMD) 8 byte pointers to page
|
|
* tables. Each page table is also a single 4K page, giving 512 (==
|
|
* PTRS_PER_PTE) 8 byte ptes. Each pud entry is initialized to point to
|
|
* invalid_pmd_table, each pmd entry is initialized to point to
|
|
* invalid_pte_table, each pte is initialized to 0.
|
|
*
|
|
* Kernel mappings: kernel mappings are held in the swapper_pg_table.
|
|
* The layout is identical to userspace except it's indexed with the
|
|
* fault address - VMALLOC_START.
|
|
*/
|
|
|
|
|
|
/* PGDIR_SHIFT determines what a third-level page table entry can map */
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
#define PGDIR_SHIFT (PAGE_SHIFT + PAGE_SHIFT - 3)
|
|
#else
|
|
|
|
/* PMD_SHIFT determines the size of the area a second-level page table can map */
|
|
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3))
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
|
|
|
# ifdef __PAGETABLE_PUD_FOLDED
|
|
# define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + PMD_TABLE_ORDER - 3))
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
#define PUD_SHIFT (PMD_SHIFT + (PAGE_SHIFT + PMD_TABLE_ORDER - 3))
|
|
#define PUD_SIZE (1UL << PUD_SHIFT)
|
|
#define PUD_MASK (~(PUD_SIZE-1))
|
|
#define PGDIR_SHIFT (PUD_SHIFT + (PAGE_SHIFT + PUD_TABLE_ORDER - 3))
|
|
#endif
|
|
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
/*
|
|
* For 4kB page size we use a 3 level page tree and an 8kB pud, which
|
|
* permits us mapping 40 bits of virtual address space.
|
|
*
|
|
* We used to implement 41 bits by having an order 1 pmd level but that seemed
|
|
* rather pointless.
|
|
*
|
|
* For 8kB page size we use a 3 level page tree which permits a total of
|
|
* 8TB of address space. Alternatively a 33-bit / 8GB organization using
|
|
* two levels would be easy to implement.
|
|
*
|
|
* For 16kB page size we use a 2 level page tree which permits a total of
|
|
* 36 bits of virtual address space. We could add a third level but it seems
|
|
* like at the moment there's no need for this.
|
|
*
|
|
* For 64kB page size we use a 2 level page table tree for a total of 42 bits
|
|
* of virtual address space.
|
|
*/
|
|
#ifdef CONFIG_PAGE_SIZE_4KB
|
|
# ifdef CONFIG_MIPS_VA_BITS_48
|
|
# define PGD_TABLE_ORDER 0
|
|
# define PUD_TABLE_ORDER 0
|
|
# else
|
|
# define PGD_TABLE_ORDER 1
|
|
# define PUD_TABLE_ORDER aieeee_attempt_to_allocate_pud
|
|
# endif
|
|
#define PMD_TABLE_ORDER 0
|
|
#endif
|
|
#ifdef CONFIG_PAGE_SIZE_8KB
|
|
#define PGD_TABLE_ORDER 0
|
|
#define PUD_TABLE_ORDER aieeee_attempt_to_allocate_pud
|
|
#define PMD_TABLE_ORDER 0
|
|
#endif
|
|
#ifdef CONFIG_PAGE_SIZE_16KB
|
|
#ifdef CONFIG_MIPS_VA_BITS_48
|
|
#define PGD_TABLE_ORDER 1
|
|
#else
|
|
#define PGD_TABLE_ORDER 0
|
|
#endif
|
|
#define PUD_TABLE_ORDER aieeee_attempt_to_allocate_pud
|
|
#define PMD_TABLE_ORDER 0
|
|
#endif
|
|
#ifdef CONFIG_PAGE_SIZE_32KB
|
|
#define PGD_TABLE_ORDER 0
|
|
#define PUD_TABLE_ORDER aieeee_attempt_to_allocate_pud
|
|
#define PMD_TABLE_ORDER 0
|
|
#endif
|
|
#ifdef CONFIG_PAGE_SIZE_64KB
|
|
#define PGD_TABLE_ORDER 0
|
|
#define PUD_TABLE_ORDER aieeee_attempt_to_allocate_pud
|
|
#ifdef CONFIG_MIPS_VA_BITS_48
|
|
#define PMD_TABLE_ORDER 0
|
|
#else
|
|
#define PMD_TABLE_ORDER aieeee_attempt_to_allocate_pmd
|
|
#endif
|
|
#endif
|
|
|
|
#define PTRS_PER_PGD ((PAGE_SIZE << PGD_TABLE_ORDER) / sizeof(pgd_t))
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
#define PTRS_PER_PUD ((PAGE_SIZE << PUD_TABLE_ORDER) / sizeof(pud_t))
|
|
#endif
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
#define PTRS_PER_PMD ((PAGE_SIZE << PMD_TABLE_ORDER) / sizeof(pmd_t))
|
|
#endif
|
|
#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
|
|
|
|
#define USER_PTRS_PER_PGD ((TASK_SIZE64 / PGDIR_SIZE)?(TASK_SIZE64 / PGDIR_SIZE):1)
|
|
|
|
/*
|
|
* TLB refill handlers also map the vmalloc area into xuseg. Avoid
|
|
* the first couple of pages so NULL pointer dereferences will still
|
|
* reliably trap.
|
|
*/
|
|
#define VMALLOC_START (MAP_BASE + (2 * PAGE_SIZE))
|
|
#define VMALLOC_END \
|
|
(MAP_BASE + \
|
|
min(PTRS_PER_PGD * PTRS_PER_PUD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE, \
|
|
(1UL << cpu_vmbits)) - (1UL << 32))
|
|
|
|
#if defined(CONFIG_MODULES) && defined(KBUILD_64BIT_SYM32) && \
|
|
VMALLOC_START != CKSSEG
|
|
/* Load modules into 32bit-compatible segment. */
|
|
#define MODULES_VADDR CKSSEG
|
|
#define MODULES_END (FIXADDR_START-2*PAGE_SIZE)
|
|
#endif
|
|
|
|
#define pte_ERROR(e) \
|
|
printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
#define pmd_ERROR(e) \
|
|
printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
|
|
#endif
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
#define pud_ERROR(e) \
|
|
printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
|
|
#endif
|
|
#define pgd_ERROR(e) \
|
|
printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
extern pte_t invalid_pte_table[PTRS_PER_PTE];
|
|
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
/*
|
|
* For 4-level pagetables we defines these ourselves, for 3-level the
|
|
* definitions are below, for 2-level the
|
|
* definitions are supplied by <asm-generic/pgtable-nopmd.h>.
|
|
*/
|
|
typedef struct { unsigned long pud; } pud_t;
|
|
#define pud_val(x) ((x).pud)
|
|
#define __pud(x) ((pud_t) { (x) })
|
|
|
|
extern pud_t invalid_pud_table[PTRS_PER_PUD];
|
|
|
|
/*
|
|
* Empty pgd entries point to the invalid_pud_table.
|
|
*/
|
|
static inline int p4d_none(p4d_t p4d)
|
|
{
|
|
return p4d_val(p4d) == (unsigned long)invalid_pud_table;
|
|
}
|
|
|
|
static inline int p4d_bad(p4d_t p4d)
|
|
{
|
|
if (unlikely(p4d_val(p4d) & ~PAGE_MASK))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int p4d_present(p4d_t p4d)
|
|
{
|
|
return p4d_val(p4d) != (unsigned long)invalid_pud_table;
|
|
}
|
|
|
|
static inline void p4d_clear(p4d_t *p4dp)
|
|
{
|
|
p4d_val(*p4dp) = (unsigned long)invalid_pud_table;
|
|
}
|
|
|
|
static inline pud_t *p4d_pgtable(p4d_t p4d)
|
|
{
|
|
return (pud_t *)p4d_val(p4d);
|
|
}
|
|
|
|
#define p4d_phys(p4d) virt_to_phys((void *)p4d_val(p4d))
|
|
#define p4d_page(p4d) (pfn_to_page(p4d_phys(p4d) >> PAGE_SHIFT))
|
|
|
|
#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
|
|
|
|
static inline void set_p4d(p4d_t *p4d, p4d_t p4dval)
|
|
{
|
|
*p4d = p4dval;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
/*
|
|
* For 3-level pagetables we defines these ourselves, for 2-level the
|
|
* definitions are supplied by <asm-generic/pgtable-nopmd.h>.
|
|
*/
|
|
typedef struct { unsigned long pmd; } pmd_t;
|
|
#define pmd_val(x) ((x).pmd)
|
|
#define __pmd(x) ((pmd_t) { (x) } )
|
|
|
|
|
|
extern pmd_t invalid_pmd_table[PTRS_PER_PMD];
|
|
#endif
|
|
|
|
/*
|
|
* Empty pgd/pmd entries point to the invalid_pte_table.
|
|
*/
|
|
static inline int pmd_none(pmd_t pmd)
|
|
{
|
|
return pmd_val(pmd) == (unsigned long) invalid_pte_table;
|
|
}
|
|
|
|
static inline int pmd_bad(pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
|
|
/* pmd_leaf(pmd) but inline */
|
|
if (unlikely(pmd_val(pmd) & _PAGE_HUGE))
|
|
return 0;
|
|
#endif
|
|
|
|
if (unlikely(pmd_val(pmd) & ~PAGE_MASK))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int pmd_present(pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
|
|
if (unlikely(pmd_val(pmd) & _PAGE_HUGE))
|
|
return pmd_val(pmd) & _PAGE_PRESENT;
|
|
#endif
|
|
|
|
return pmd_val(pmd) != (unsigned long) invalid_pte_table;
|
|
}
|
|
|
|
static inline void pmd_clear(pmd_t *pmdp)
|
|
{
|
|
pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
|
|
}
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
|
|
/*
|
|
* Empty pud entries point to the invalid_pmd_table.
|
|
*/
|
|
static inline int pud_none(pud_t pud)
|
|
{
|
|
return pud_val(pud) == (unsigned long) invalid_pmd_table;
|
|
}
|
|
|
|
static inline int pud_bad(pud_t pud)
|
|
{
|
|
return pud_val(pud) & ~PAGE_MASK;
|
|
}
|
|
|
|
static inline int pud_present(pud_t pud)
|
|
{
|
|
return pud_val(pud) != (unsigned long) invalid_pmd_table;
|
|
}
|
|
|
|
static inline void pud_clear(pud_t *pudp)
|
|
{
|
|
pud_val(*pudp) = ((unsigned long) invalid_pmd_table);
|
|
}
|
|
#endif
|
|
|
|
#define pte_page(x) pfn_to_page(pte_pfn(x))
|
|
|
|
#define pte_pfn(x) ((unsigned long)((x).pte >> PFN_PTE_SHIFT))
|
|
#define pfn_pte(pfn, prot) __pte(((pfn) << PFN_PTE_SHIFT) | pgprot_val(prot))
|
|
#define pfn_pmd(pfn, prot) __pmd(((pfn) << PFN_PTE_SHIFT) | pgprot_val(prot))
|
|
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
static inline pmd_t *pud_pgtable(pud_t pud)
|
|
{
|
|
return (pmd_t *)pud_val(pud);
|
|
}
|
|
#define pud_phys(pud) virt_to_phys((void *)pud_val(pud))
|
|
#define pud_page(pud) (pfn_to_page(pud_phys(pud) >> PAGE_SHIFT))
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Initialize a new pgd / pud / pmd table with invalid pointers.
|
|
*/
|
|
extern void pgd_init(void *addr);
|
|
extern void pud_init(void *addr);
|
|
extern void pmd_init(void *addr);
|
|
|
|
/*
|
|
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
|
|
* are !pte_none() && !pte_present().
|
|
*
|
|
* Format of swap PTEs:
|
|
*
|
|
* 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
|
|
* 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2
|
|
* <--------------------------- offset ---------------------------
|
|
*
|
|
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
|
|
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
|
* --------------> E <-- type ---> <---------- zeroes ----------->
|
|
*
|
|
* E is the exclusive marker that is not stored in swap entries.
|
|
*/
|
|
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
|
|
{ pte_t pte; pte_val(pte) = ((type & 0x7f) << 16) | (offset << 24); return pte; }
|
|
|
|
#define __swp_type(x) (((x).val >> 16) & 0x7f)
|
|
#define __swp_offset(x) ((x).val >> 24)
|
|
#define __swp_entry(type, offset) ((swp_entry_t) { pte_val(mk_swap_pte((type), (offset))) })
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
|
|
|
|
/* We borrow bit 23 to store the exclusive marker in swap PTEs. */
|
|
#define _PAGE_SWP_EXCLUSIVE (1 << 23)
|
|
|
|
#endif /* _ASM_PGTABLE_64_H */
|