mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 1066d1b697
			
		
	
	
		1066d1b697
		
	
	
	
	
		
			
			The task->flags is a 32-bits flag, in which 31 bits have already been consumed. So it is hardly to introduce other new per process flag. Currently there're still enough spaces in the bit-field section of task_struct, so we can define the memstall state as a single bit in task_struct instead. This patch also removes an out-of-date comment pointed by Matthew. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/1584408485-1921-1-git-send-email-laoar.shao@gmail.com
		
			
				
	
	
		
			276 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 
 | |
| /*
 | |
|  * Expects runqueue lock to be held for atomicity of update
 | |
|  */
 | |
| static inline void
 | |
| rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 | |
| {
 | |
| 	if (rq) {
 | |
| 		rq->rq_sched_info.run_delay += delta;
 | |
| 		rq->rq_sched_info.pcount++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expects runqueue lock to be held for atomicity of update
 | |
|  */
 | |
| static inline void
 | |
| rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 | |
| {
 | |
| 	if (rq)
 | |
| 		rq->rq_cpu_time += delta;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 | |
| {
 | |
| 	if (rq)
 | |
| 		rq->rq_sched_info.run_delay += delta;
 | |
| }
 | |
| #define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 | |
| #define __schedstat_inc(var)		do { var++; } while (0)
 | |
| #define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 | |
| #define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 | |
| #define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 | |
| #define __schedstat_set(var, val)	do { var = (val); } while (0)
 | |
| #define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 | |
| #define   schedstat_val(var)		(var)
 | |
| #define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 | |
| 
 | |
| #else /* !CONFIG_SCHEDSTATS: */
 | |
| static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 | |
| static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
 | |
| static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 | |
| # define   schedstat_enabled()		0
 | |
| # define __schedstat_inc(var)		do { } while (0)
 | |
| # define   schedstat_inc(var)		do { } while (0)
 | |
| # define __schedstat_add(var, amt)	do { } while (0)
 | |
| # define   schedstat_add(var, amt)	do { } while (0)
 | |
| # define __schedstat_set(var, val)	do { } while (0)
 | |
| # define   schedstat_set(var, val)	do { } while (0)
 | |
| # define   schedstat_val(var)		0
 | |
| # define   schedstat_val_or_zero(var)	0
 | |
| #endif /* CONFIG_SCHEDSTATS */
 | |
| 
 | |
| #ifdef CONFIG_PSI
 | |
| /*
 | |
|  * PSI tracks state that persists across sleeps, such as iowaits and
 | |
|  * memory stalls. As a result, it has to distinguish between sleeps,
 | |
|  * where a task's runnable state changes, and requeues, where a task
 | |
|  * and its state are being moved between CPUs and runqueues.
 | |
|  */
 | |
| static inline void psi_enqueue(struct task_struct *p, bool wakeup)
 | |
| {
 | |
| 	int clear = 0, set = TSK_RUNNING;
 | |
| 
 | |
| 	if (static_branch_likely(&psi_disabled))
 | |
| 		return;
 | |
| 
 | |
| 	if (!wakeup || p->sched_psi_wake_requeue) {
 | |
| 		if (p->in_memstall)
 | |
| 			set |= TSK_MEMSTALL;
 | |
| 		if (p->sched_psi_wake_requeue)
 | |
| 			p->sched_psi_wake_requeue = 0;
 | |
| 	} else {
 | |
| 		if (p->in_iowait)
 | |
| 			clear |= TSK_IOWAIT;
 | |
| 	}
 | |
| 
 | |
| 	psi_task_change(p, clear, set);
 | |
| }
 | |
| 
 | |
| static inline void psi_dequeue(struct task_struct *p, bool sleep)
 | |
| {
 | |
| 	int clear = TSK_RUNNING, set = 0;
 | |
| 
 | |
| 	if (static_branch_likely(&psi_disabled))
 | |
| 		return;
 | |
| 
 | |
| 	if (!sleep) {
 | |
| 		if (p->in_memstall)
 | |
| 			clear |= TSK_MEMSTALL;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * When a task sleeps, schedule() dequeues it before
 | |
| 		 * switching to the next one. Merge the clearing of
 | |
| 		 * TSK_RUNNING and TSK_ONCPU to save an unnecessary
 | |
| 		 * psi_task_change() call in psi_sched_switch().
 | |
| 		 */
 | |
| 		clear |= TSK_ONCPU;
 | |
| 
 | |
| 		if (p->in_iowait)
 | |
| 			set |= TSK_IOWAIT;
 | |
| 	}
 | |
| 
 | |
| 	psi_task_change(p, clear, set);
 | |
| }
 | |
| 
 | |
| static inline void psi_ttwu_dequeue(struct task_struct *p)
 | |
| {
 | |
| 	if (static_branch_likely(&psi_disabled))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Is the task being migrated during a wakeup? Make sure to
 | |
| 	 * deregister its sleep-persistent psi states from the old
 | |
| 	 * queue, and let psi_enqueue() know it has to requeue.
 | |
| 	 */
 | |
| 	if (unlikely(p->in_iowait || p->in_memstall)) {
 | |
| 		struct rq_flags rf;
 | |
| 		struct rq *rq;
 | |
| 		int clear = 0;
 | |
| 
 | |
| 		if (p->in_iowait)
 | |
| 			clear |= TSK_IOWAIT;
 | |
| 		if (p->in_memstall)
 | |
| 			clear |= TSK_MEMSTALL;
 | |
| 
 | |
| 		rq = __task_rq_lock(p, &rf);
 | |
| 		psi_task_change(p, clear, 0);
 | |
| 		p->sched_psi_wake_requeue = 1;
 | |
| 		__task_rq_unlock(rq, &rf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void psi_sched_switch(struct task_struct *prev,
 | |
| 				    struct task_struct *next,
 | |
| 				    bool sleep)
 | |
| {
 | |
| 	if (static_branch_likely(&psi_disabled))
 | |
| 		return;
 | |
| 
 | |
| 	psi_task_switch(prev, next, sleep);
 | |
| }
 | |
| 
 | |
| static inline void psi_task_tick(struct rq *rq)
 | |
| {
 | |
| 	if (static_branch_likely(&psi_disabled))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(rq->curr->in_memstall))
 | |
| 		psi_memstall_tick(rq->curr, cpu_of(rq));
 | |
| }
 | |
| #else /* CONFIG_PSI */
 | |
| static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
 | |
| static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
 | |
| static inline void psi_ttwu_dequeue(struct task_struct *p) {}
 | |
| static inline void psi_sched_switch(struct task_struct *prev,
 | |
| 				    struct task_struct *next,
 | |
| 				    bool sleep) {}
 | |
| static inline void psi_task_tick(struct rq *rq) {}
 | |
| #endif /* CONFIG_PSI */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_INFO
 | |
| static inline void sched_info_reset_dequeued(struct task_struct *t)
 | |
| {
 | |
| 	t->sched_info.last_queued = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are interested in knowing how long it was from the *first* time a
 | |
|  * task was queued to the time that it finally hit a CPU, we call this routine
 | |
|  * from dequeue_task() to account for possible rq->clock skew across CPUs. The
 | |
|  * delta taken on each CPU would annul the skew.
 | |
|  */
 | |
| static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 | |
| {
 | |
| 	unsigned long long now = rq_clock(rq), delta = 0;
 | |
| 
 | |
| 	if (sched_info_on()) {
 | |
| 		if (t->sched_info.last_queued)
 | |
| 			delta = now - t->sched_info.last_queued;
 | |
| 	}
 | |
| 	sched_info_reset_dequeued(t);
 | |
| 	t->sched_info.run_delay += delta;
 | |
| 
 | |
| 	rq_sched_info_dequeued(rq, delta);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when a task finally hits the CPU.  We can now calculate how
 | |
|  * long it was waiting to run.  We also note when it began so that we
 | |
|  * can keep stats on how long its timeslice is.
 | |
|  */
 | |
| static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 | |
| {
 | |
| 	unsigned long long now = rq_clock(rq), delta = 0;
 | |
| 
 | |
| 	if (t->sched_info.last_queued)
 | |
| 		delta = now - t->sched_info.last_queued;
 | |
| 	sched_info_reset_dequeued(t);
 | |
| 	t->sched_info.run_delay += delta;
 | |
| 	t->sched_info.last_arrival = now;
 | |
| 	t->sched_info.pcount++;
 | |
| 
 | |
| 	rq_sched_info_arrive(rq, delta);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is only called from enqueue_task(), but also only updates
 | |
|  * the timestamp if it is already not set.  It's assumed that
 | |
|  * sched_info_dequeued() will clear that stamp when appropriate.
 | |
|  */
 | |
| static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
 | |
| {
 | |
| 	if (sched_info_on()) {
 | |
| 		if (!t->sched_info.last_queued)
 | |
| 			t->sched_info.last_queued = rq_clock(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when a process ceases being the active-running process involuntarily
 | |
|  * due, typically, to expiring its time slice (this may also be called when
 | |
|  * switching to the idle task).  Now we can calculate how long we ran.
 | |
|  * Also, if the process is still in the TASK_RUNNING state, call
 | |
|  * sched_info_queued() to mark that it has now again started waiting on
 | |
|  * the runqueue.
 | |
|  */
 | |
| static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
 | |
| {
 | |
| 	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
 | |
| 
 | |
| 	rq_sched_info_depart(rq, delta);
 | |
| 
 | |
| 	if (t->state == TASK_RUNNING)
 | |
| 		sched_info_queued(rq, t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when tasks are switched involuntarily due, typically, to expiring
 | |
|  * their time slice.  (This may also be called when switching to or from
 | |
|  * the idle task.)  We are only called when prev != next.
 | |
|  */
 | |
| static inline void
 | |
| __sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 | |
| {
 | |
| 	/*
 | |
| 	 * prev now departs the CPU.  It's not interesting to record
 | |
| 	 * stats about how efficient we were at scheduling the idle
 | |
| 	 * process, however.
 | |
| 	 */
 | |
| 	if (prev != rq->idle)
 | |
| 		sched_info_depart(rq, prev);
 | |
| 
 | |
| 	if (next != rq->idle)
 | |
| 		sched_info_arrive(rq, next);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 | |
| {
 | |
| 	if (sched_info_on())
 | |
| 		__sched_info_switch(rq, prev, next);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_SCHED_INFO: */
 | |
| # define sched_info_queued(rq, t)	do { } while (0)
 | |
| # define sched_info_reset_dequeued(t)	do { } while (0)
 | |
| # define sched_info_dequeued(rq, t)	do { } while (0)
 | |
| # define sched_info_depart(rq, t)	do { } while (0)
 | |
| # define sched_info_arrive(rq, next)	do { } while (0)
 | |
| # define sched_info_switch(rq, t, next)	do { } while (0)
 | |
| #endif /* CONFIG_SCHED_INFO */
 |