mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 982785c6b0
			
		
	
	
		982785c6b0
		
	
	
	
	
		
			
			Currently, khugepaged does not permit swapin if there are enough young pages in a THP. The problem is when a THP does not have enough young pages, khugepaged leaks mapped ptes. This patch prohibits leaking mapped ptes. Link: http://lkml.kernel.org/r/1472820276-7831-1-git-send-email-ebru.akagunduz@gmail.com Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com> Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1924 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1924 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| 
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| enum scan_result {
 | |
| 	SCAN_FAIL,
 | |
| 	SCAN_SUCCEED,
 | |
| 	SCAN_PMD_NULL,
 | |
| 	SCAN_EXCEED_NONE_PTE,
 | |
| 	SCAN_PTE_NON_PRESENT,
 | |
| 	SCAN_PAGE_RO,
 | |
| 	SCAN_LACK_REFERENCED_PAGE,
 | |
| 	SCAN_PAGE_NULL,
 | |
| 	SCAN_SCAN_ABORT,
 | |
| 	SCAN_PAGE_COUNT,
 | |
| 	SCAN_PAGE_LRU,
 | |
| 	SCAN_PAGE_LOCK,
 | |
| 	SCAN_PAGE_ANON,
 | |
| 	SCAN_PAGE_COMPOUND,
 | |
| 	SCAN_ANY_PROCESS,
 | |
| 	SCAN_VMA_NULL,
 | |
| 	SCAN_VMA_CHECK,
 | |
| 	SCAN_ADDRESS_RANGE,
 | |
| 	SCAN_SWAP_CACHE_PAGE,
 | |
| 	SCAN_DEL_PAGE_LRU,
 | |
| 	SCAN_ALLOC_HUGE_PAGE_FAIL,
 | |
| 	SCAN_CGROUP_CHARGE_FAIL,
 | |
| 	SCAN_EXCEED_SWAP_PTE,
 | |
| 	SCAN_TRUNCATED,
 | |
| };
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/huge_memory.h>
 | |
| 
 | |
| /* default scan 8*512 pte (or vmas) every 30 second */
 | |
| static unsigned int khugepaged_pages_to_scan __read_mostly;
 | |
| static unsigned int khugepaged_pages_collapsed;
 | |
| static unsigned int khugepaged_full_scans;
 | |
| static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
 | |
| /* during fragmentation poll the hugepage allocator once every minute */
 | |
| static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
 | |
| static unsigned long khugepaged_sleep_expire;
 | |
| static DEFINE_SPINLOCK(khugepaged_mm_lock);
 | |
| static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
 | |
| /*
 | |
|  * default collapse hugepages if there is at least one pte mapped like
 | |
|  * it would have happened if the vma was large enough during page
 | |
|  * fault.
 | |
|  */
 | |
| static unsigned int khugepaged_max_ptes_none __read_mostly;
 | |
| static unsigned int khugepaged_max_ptes_swap __read_mostly;
 | |
| 
 | |
| #define MM_SLOTS_HASH_BITS 10
 | |
| static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 | |
| 
 | |
| static struct kmem_cache *mm_slot_cache __read_mostly;
 | |
| 
 | |
| /**
 | |
|  * struct mm_slot - hash lookup from mm to mm_slot
 | |
|  * @hash: hash collision list
 | |
|  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 | |
|  * @mm: the mm that this information is valid for
 | |
|  */
 | |
| struct mm_slot {
 | |
| 	struct hlist_node hash;
 | |
| 	struct list_head mm_node;
 | |
| 	struct mm_struct *mm;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct khugepaged_scan - cursor for scanning
 | |
|  * @mm_head: the head of the mm list to scan
 | |
|  * @mm_slot: the current mm_slot we are scanning
 | |
|  * @address: the next address inside that to be scanned
 | |
|  *
 | |
|  * There is only the one khugepaged_scan instance of this cursor structure.
 | |
|  */
 | |
| struct khugepaged_scan {
 | |
| 	struct list_head mm_head;
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	unsigned long address;
 | |
| };
 | |
| 
 | |
| static struct khugepaged_scan khugepaged_scan = {
 | |
| 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 | |
| };
 | |
| 
 | |
| static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 | |
| 					 struct kobj_attribute *attr,
 | |
| 					 char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 | |
| }
 | |
| 
 | |
| static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 | |
| 					  struct kobj_attribute *attr,
 | |
| 					  const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned long msecs;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &msecs);
 | |
| 	if (err || msecs > UINT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_scan_sleep_millisecs = msecs;
 | |
| 	khugepaged_sleep_expire = 0;
 | |
| 	wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute scan_sleep_millisecs_attr =
 | |
| 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 | |
| 	       scan_sleep_millisecs_store);
 | |
| 
 | |
| static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 | |
| 					  struct kobj_attribute *attr,
 | |
| 					  char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 | |
| }
 | |
| 
 | |
| static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 | |
| 					   struct kobj_attribute *attr,
 | |
| 					   const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned long msecs;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &msecs);
 | |
| 	if (err || msecs > UINT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_alloc_sleep_millisecs = msecs;
 | |
| 	khugepaged_sleep_expire = 0;
 | |
| 	wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute alloc_sleep_millisecs_attr =
 | |
| 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 | |
| 	       alloc_sleep_millisecs_store);
 | |
| 
 | |
| static ssize_t pages_to_scan_show(struct kobject *kobj,
 | |
| 				  struct kobj_attribute *attr,
 | |
| 				  char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 | |
| }
 | |
| static ssize_t pages_to_scan_store(struct kobject *kobj,
 | |
| 				   struct kobj_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long pages;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &pages);
 | |
| 	if (err || !pages || pages > UINT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_pages_to_scan = pages;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute pages_to_scan_attr =
 | |
| 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 | |
| 	       pages_to_scan_store);
 | |
| 
 | |
| static ssize_t pages_collapsed_show(struct kobject *kobj,
 | |
| 				    struct kobj_attribute *attr,
 | |
| 				    char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 | |
| }
 | |
| static struct kobj_attribute pages_collapsed_attr =
 | |
| 	__ATTR_RO(pages_collapsed);
 | |
| 
 | |
| static ssize_t full_scans_show(struct kobject *kobj,
 | |
| 			       struct kobj_attribute *attr,
 | |
| 			       char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_full_scans);
 | |
| }
 | |
| static struct kobj_attribute full_scans_attr =
 | |
| 	__ATTR_RO(full_scans);
 | |
| 
 | |
| static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 | |
| 				      struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_hugepage_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 | |
| }
 | |
| static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 | |
| 				       struct kobj_attribute *attr,
 | |
| 				       const char *buf, size_t count)
 | |
| {
 | |
| 	return single_hugepage_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 | |
| }
 | |
| static struct kobj_attribute khugepaged_defrag_attr =
 | |
| 	__ATTR(defrag, 0644, khugepaged_defrag_show,
 | |
| 	       khugepaged_defrag_store);
 | |
| 
 | |
| /*
 | |
|  * max_ptes_none controls if khugepaged should collapse hugepages over
 | |
|  * any unmapped ptes in turn potentially increasing the memory
 | |
|  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 | |
|  * reduce the available free memory in the system as it
 | |
|  * runs. Increasing max_ptes_none will instead potentially reduce the
 | |
|  * free memory in the system during the khugepaged scan.
 | |
|  */
 | |
| static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 | |
| 					     struct kobj_attribute *attr,
 | |
| 					     char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 | |
| }
 | |
| static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 | |
| 					      struct kobj_attribute *attr,
 | |
| 					      const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long max_ptes_none;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &max_ptes_none);
 | |
| 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_max_ptes_none = max_ptes_none;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute khugepaged_max_ptes_none_attr =
 | |
| 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 | |
| 	       khugepaged_max_ptes_none_store);
 | |
| 
 | |
| static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
 | |
| 					     struct kobj_attribute *attr,
 | |
| 					     char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
 | |
| }
 | |
| 
 | |
| static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
 | |
| 					      struct kobj_attribute *attr,
 | |
| 					      const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long max_ptes_swap;
 | |
| 
 | |
| 	err  = kstrtoul(buf, 10, &max_ptes_swap);
 | |
| 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_max_ptes_swap = max_ptes_swap;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 | |
| 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
 | |
| 	       khugepaged_max_ptes_swap_store);
 | |
| 
 | |
| static struct attribute *khugepaged_attr[] = {
 | |
| 	&khugepaged_defrag_attr.attr,
 | |
| 	&khugepaged_max_ptes_none_attr.attr,
 | |
| 	&pages_to_scan_attr.attr,
 | |
| 	&pages_collapsed_attr.attr,
 | |
| 	&full_scans_attr.attr,
 | |
| 	&scan_sleep_millisecs_attr.attr,
 | |
| 	&alloc_sleep_millisecs_attr.attr,
 | |
| 	&khugepaged_max_ptes_swap_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| struct attribute_group khugepaged_attr_group = {
 | |
| 	.attrs = khugepaged_attr,
 | |
| 	.name = "khugepaged",
 | |
| };
 | |
| 
 | |
| #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 | |
| 
 | |
| int hugepage_madvise(struct vm_area_struct *vma,
 | |
| 		     unsigned long *vm_flags, int advice)
 | |
| {
 | |
| 	switch (advice) {
 | |
| 	case MADV_HUGEPAGE:
 | |
| #ifdef CONFIG_S390
 | |
| 		/*
 | |
| 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 | |
| 		 * can't handle this properly after s390_enable_sie, so we simply
 | |
| 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 | |
| 		 */
 | |
| 		if (mm_has_pgste(vma->vm_mm))
 | |
| 			return 0;
 | |
| #endif
 | |
| 		*vm_flags &= ~VM_NOHUGEPAGE;
 | |
| 		*vm_flags |= VM_HUGEPAGE;
 | |
| 		/*
 | |
| 		 * If the vma become good for khugepaged to scan,
 | |
| 		 * register it here without waiting a page fault that
 | |
| 		 * may not happen any time soon.
 | |
| 		 */
 | |
| 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
 | |
| 				khugepaged_enter_vma_merge(vma, *vm_flags))
 | |
| 			return -ENOMEM;
 | |
| 		break;
 | |
| 	case MADV_NOHUGEPAGE:
 | |
| 		*vm_flags &= ~VM_HUGEPAGE;
 | |
| 		*vm_flags |= VM_NOHUGEPAGE;
 | |
| 		/*
 | |
| 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 | |
| 		 * this vma even if we leave the mm registered in khugepaged if
 | |
| 		 * it got registered before VM_NOHUGEPAGE was set.
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init khugepaged_init(void)
 | |
| {
 | |
| 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 | |
| 					  sizeof(struct mm_slot),
 | |
| 					  __alignof__(struct mm_slot), 0, NULL);
 | |
| 	if (!mm_slot_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 | |
| 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 | |
| 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __init khugepaged_destroy(void)
 | |
| {
 | |
| 	kmem_cache_destroy(mm_slot_cache);
 | |
| }
 | |
| 
 | |
| static inline struct mm_slot *alloc_mm_slot(void)
 | |
| {
 | |
| 	if (!mm_slot_cache)	/* initialization failed */
 | |
| 		return NULL;
 | |
| 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| static inline void free_mm_slot(struct mm_slot *mm_slot)
 | |
| {
 | |
| 	kmem_cache_free(mm_slot_cache, mm_slot);
 | |
| }
 | |
| 
 | |
| static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 
 | |
| 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 | |
| 		if (mm == mm_slot->mm)
 | |
| 			return mm_slot;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void insert_to_mm_slots_hash(struct mm_struct *mm,
 | |
| 				    struct mm_slot *mm_slot)
 | |
| {
 | |
| 	mm_slot->mm = mm;
 | |
| 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 | |
| }
 | |
| 
 | |
| static inline int khugepaged_test_exit(struct mm_struct *mm)
 | |
| {
 | |
| 	return atomic_read(&mm->mm_users) == 0;
 | |
| }
 | |
| 
 | |
| int __khugepaged_enter(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	int wakeup;
 | |
| 
 | |
| 	mm_slot = alloc_mm_slot();
 | |
| 	if (!mm_slot)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* __khugepaged_exit() must not run from under us */
 | |
| 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 | |
| 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 | |
| 		free_mm_slot(mm_slot);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	insert_to_mm_slots_hash(mm, mm_slot);
 | |
| 	/*
 | |
| 	 * Insert just behind the scanning cursor, to let the area settle
 | |
| 	 * down a little.
 | |
| 	 */
 | |
| 	wakeup = list_empty(&khugepaged_scan.mm_head);
 | |
| 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	atomic_inc(&mm->mm_count);
 | |
| 	if (wakeup)
 | |
| 		wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 | |
| 			       unsigned long vm_flags)
 | |
| {
 | |
| 	unsigned long hstart, hend;
 | |
| 	if (!vma->anon_vma)
 | |
| 		/*
 | |
| 		 * Not yet faulted in so we will register later in the
 | |
| 		 * page fault if needed.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
 | |
| 		/* khugepaged not yet working on file or special mappings */
 | |
| 		return 0;
 | |
| 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 | |
| 	hend = vma->vm_end & HPAGE_PMD_MASK;
 | |
| 	if (hstart < hend)
 | |
| 		return khugepaged_enter(vma, vm_flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __khugepaged_exit(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	int free = 0;
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	mm_slot = get_mm_slot(mm);
 | |
| 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 | |
| 		hash_del(&mm_slot->hash);
 | |
| 		list_del(&mm_slot->mm_node);
 | |
| 		free = 1;
 | |
| 	}
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	if (free) {
 | |
| 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 | |
| 		free_mm_slot(mm_slot);
 | |
| 		mmdrop(mm);
 | |
| 	} else if (mm_slot) {
 | |
| 		/*
 | |
| 		 * This is required to serialize against
 | |
| 		 * khugepaged_test_exit() (which is guaranteed to run
 | |
| 		 * under mmap sem read mode). Stop here (after we
 | |
| 		 * return all pagetables will be destroyed) until
 | |
| 		 * khugepaged has finished working on the pagetables
 | |
| 		 * under the mmap_sem.
 | |
| 		 */
 | |
| 		down_write(&mm->mmap_sem);
 | |
| 		up_write(&mm->mmap_sem);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void release_pte_page(struct page *page)
 | |
| {
 | |
| 	/* 0 stands for page_is_file_cache(page) == false */
 | |
| 	dec_node_page_state(page, NR_ISOLATED_ANON + 0);
 | |
| 	unlock_page(page);
 | |
| 	putback_lru_page(page);
 | |
| }
 | |
| 
 | |
| static void release_pte_pages(pte_t *pte, pte_t *_pte)
 | |
| {
 | |
| 	while (--_pte >= pte) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
 | |
| 			release_pte_page(pte_page(pteval));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 | |
| 					unsigned long address,
 | |
| 					pte_t *pte)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	pte_t *_pte;
 | |
| 	int none_or_zero = 0, result = 0, referenced = 0;
 | |
| 	bool writable = false;
 | |
| 
 | |
| 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 | |
| 	     _pte++, address += PAGE_SIZE) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		if (pte_none(pteval) || (pte_present(pteval) &&
 | |
| 				is_zero_pfn(pte_pfn(pteval)))) {
 | |
| 			if (!userfaultfd_armed(vma) &&
 | |
| 			    ++none_or_zero <= khugepaged_max_ptes_none) {
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_NONE_PTE;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!pte_present(pteval)) {
 | |
| 			result = SCAN_PTE_NON_PRESENT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		page = vm_normal_page(vma, address, pteval);
 | |
| 		if (unlikely(!page)) {
 | |
| 			result = SCAN_PAGE_NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		VM_BUG_ON_PAGE(PageCompound(page), page);
 | |
| 		VM_BUG_ON_PAGE(!PageAnon(page), page);
 | |
| 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 | |
| 
 | |
| 		/*
 | |
| 		 * We can do it before isolate_lru_page because the
 | |
| 		 * page can't be freed from under us. NOTE: PG_lock
 | |
| 		 * is needed to serialize against split_huge_page
 | |
| 		 * when invoked from the VM.
 | |
| 		 */
 | |
| 		if (!trylock_page(page)) {
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * cannot use mapcount: can't collapse if there's a gup pin.
 | |
| 		 * The page must only be referenced by the scanned process
 | |
| 		 * and page swap cache.
 | |
| 		 */
 | |
| 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
 | |
| 			unlock_page(page);
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (pte_write(pteval)) {
 | |
| 			writable = true;
 | |
| 		} else {
 | |
| 			if (PageSwapCache(page) &&
 | |
| 			    !reuse_swap_page(page, NULL)) {
 | |
| 				unlock_page(page);
 | |
| 				result = SCAN_SWAP_CACHE_PAGE;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Page is not in the swap cache. It can be collapsed
 | |
| 			 * into a THP.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Isolate the page to avoid collapsing an hugepage
 | |
| 		 * currently in use by the VM.
 | |
| 		 */
 | |
| 		if (isolate_lru_page(page)) {
 | |
| 			unlock_page(page);
 | |
| 			result = SCAN_DEL_PAGE_LRU;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/* 0 stands for page_is_file_cache(page) == false */
 | |
| 		inc_node_page_state(page, NR_ISOLATED_ANON + 0);
 | |
| 		VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 		VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 
 | |
| 		/* There should be enough young pte to collapse the page */
 | |
| 		if (pte_young(pteval) ||
 | |
| 		    page_is_young(page) || PageReferenced(page) ||
 | |
| 		    mmu_notifier_test_young(vma->vm_mm, address))
 | |
| 			referenced++;
 | |
| 	}
 | |
| 	if (likely(writable)) {
 | |
| 		if (likely(referenced)) {
 | |
| 			result = SCAN_SUCCEED;
 | |
| 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 | |
| 							    referenced, writable, result);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		result = SCAN_PAGE_RO;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	release_pte_pages(pte, _pte);
 | |
| 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 | |
| 					    referenced, writable, result);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 | |
| 				      struct vm_area_struct *vma,
 | |
| 				      unsigned long address,
 | |
| 				      spinlock_t *ptl)
 | |
| {
 | |
| 	pte_t *_pte;
 | |
| 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		struct page *src_page;
 | |
| 
 | |
| 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 | |
| 			clear_user_highpage(page, address);
 | |
| 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 | |
| 			if (is_zero_pfn(pte_pfn(pteval))) {
 | |
| 				/*
 | |
| 				 * ptl mostly unnecessary.
 | |
| 				 */
 | |
| 				spin_lock(ptl);
 | |
| 				/*
 | |
| 				 * paravirt calls inside pte_clear here are
 | |
| 				 * superfluous.
 | |
| 				 */
 | |
| 				pte_clear(vma->vm_mm, address, _pte);
 | |
| 				spin_unlock(ptl);
 | |
| 			}
 | |
| 		} else {
 | |
| 			src_page = pte_page(pteval);
 | |
| 			copy_user_highpage(page, src_page, address, vma);
 | |
| 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 | |
| 			release_pte_page(src_page);
 | |
| 			/*
 | |
| 			 * ptl mostly unnecessary, but preempt has to
 | |
| 			 * be disabled to update the per-cpu stats
 | |
| 			 * inside page_remove_rmap().
 | |
| 			 */
 | |
| 			spin_lock(ptl);
 | |
| 			/*
 | |
| 			 * paravirt calls inside pte_clear here are
 | |
| 			 * superfluous.
 | |
| 			 */
 | |
| 			pte_clear(vma->vm_mm, address, _pte);
 | |
| 			page_remove_rmap(src_page, false);
 | |
| 			spin_unlock(ptl);
 | |
| 			free_page_and_swap_cache(src_page);
 | |
| 		}
 | |
| 
 | |
| 		address += PAGE_SIZE;
 | |
| 		page++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void khugepaged_alloc_sleep(void)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	add_wait_queue(&khugepaged_wait, &wait);
 | |
| 	freezable_schedule_timeout_interruptible(
 | |
| 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 | |
| 	remove_wait_queue(&khugepaged_wait, &wait);
 | |
| }
 | |
| 
 | |
| static int khugepaged_node_load[MAX_NUMNODES];
 | |
| 
 | |
| static bool khugepaged_scan_abort(int nid)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If node_reclaim_mode is disabled, then no extra effort is made to
 | |
| 	 * allocate memory locally.
 | |
| 	 */
 | |
| 	if (!node_reclaim_mode)
 | |
| 		return false;
 | |
| 
 | |
| 	/* If there is a count for this node already, it must be acceptable */
 | |
| 	if (khugepaged_node_load[nid])
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		if (!khugepaged_node_load[i])
 | |
| 			continue;
 | |
| 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 | |
| static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 | |
| {
 | |
| 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static int khugepaged_find_target_node(void)
 | |
| {
 | |
| 	static int last_khugepaged_target_node = NUMA_NO_NODE;
 | |
| 	int nid, target_node = 0, max_value = 0;
 | |
| 
 | |
| 	/* find first node with max normal pages hit */
 | |
| 	for (nid = 0; nid < MAX_NUMNODES; nid++)
 | |
| 		if (khugepaged_node_load[nid] > max_value) {
 | |
| 			max_value = khugepaged_node_load[nid];
 | |
| 			target_node = nid;
 | |
| 		}
 | |
| 
 | |
| 	/* do some balance if several nodes have the same hit record */
 | |
| 	if (target_node <= last_khugepaged_target_node)
 | |
| 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 | |
| 				nid++)
 | |
| 			if (max_value == khugepaged_node_load[nid]) {
 | |
| 				target_node = nid;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 	last_khugepaged_target_node = target_node;
 | |
| 	return target_node;
 | |
| }
 | |
| 
 | |
| static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 | |
| {
 | |
| 	if (IS_ERR(*hpage)) {
 | |
| 		if (!*wait)
 | |
| 			return false;
 | |
| 
 | |
| 		*wait = false;
 | |
| 		*hpage = NULL;
 | |
| 		khugepaged_alloc_sleep();
 | |
| 	} else if (*hpage) {
 | |
| 		put_page(*hpage);
 | |
| 		*hpage = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct page *
 | |
| khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(*hpage, *hpage);
 | |
| 
 | |
| 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 | |
| 	if (unlikely(!*hpage)) {
 | |
| 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 | |
| 		*hpage = ERR_PTR(-ENOMEM);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	prep_transhuge_page(*hpage);
 | |
| 	count_vm_event(THP_COLLAPSE_ALLOC);
 | |
| 	return *hpage;
 | |
| }
 | |
| #else
 | |
| static int khugepaged_find_target_node(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct page *alloc_khugepaged_hugepage(void)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
 | |
| 			   HPAGE_PMD_ORDER);
 | |
| 	if (page)
 | |
| 		prep_transhuge_page(page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *khugepaged_alloc_hugepage(bool *wait)
 | |
| {
 | |
| 	struct page *hpage;
 | |
| 
 | |
| 	do {
 | |
| 		hpage = alloc_khugepaged_hugepage();
 | |
| 		if (!hpage) {
 | |
| 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 | |
| 			if (!*wait)
 | |
| 				return NULL;
 | |
| 
 | |
| 			*wait = false;
 | |
| 			khugepaged_alloc_sleep();
 | |
| 		} else
 | |
| 			count_vm_event(THP_COLLAPSE_ALLOC);
 | |
| 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
 | |
| 
 | |
| 	return hpage;
 | |
| }
 | |
| 
 | |
| static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 | |
| {
 | |
| 	if (!*hpage)
 | |
| 		*hpage = khugepaged_alloc_hugepage(wait);
 | |
| 
 | |
| 	if (unlikely(!*hpage))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct page *
 | |
| khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 | |
| {
 | |
| 	VM_BUG_ON(!*hpage);
 | |
| 
 | |
| 	return  *hpage;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool hugepage_vma_check(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
 | |
| 	    (vma->vm_flags & VM_NOHUGEPAGE))
 | |
| 		return false;
 | |
| 	if (shmem_file(vma->vm_file)) {
 | |
| 		if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
 | |
| 			return false;
 | |
| 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 | |
| 				HPAGE_PMD_NR);
 | |
| 	}
 | |
| 	if (!vma->anon_vma || vma->vm_ops)
 | |
| 		return false;
 | |
| 	if (is_vma_temporary_stack(vma))
 | |
| 		return false;
 | |
| 	return !(vma->vm_flags & VM_NO_KHUGEPAGED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If mmap_sem temporarily dropped, revalidate vma
 | |
|  * before taking mmap_sem.
 | |
|  * Return 0 if succeeds, otherwise return none-zero
 | |
|  * value (scan code).
 | |
|  */
 | |
| 
 | |
| static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 | |
| 		struct vm_area_struct **vmap)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long hstart, hend;
 | |
| 
 | |
| 	if (unlikely(khugepaged_test_exit(mm)))
 | |
| 		return SCAN_ANY_PROCESS;
 | |
| 
 | |
| 	*vmap = vma = find_vma(mm, address);
 | |
| 	if (!vma)
 | |
| 		return SCAN_VMA_NULL;
 | |
| 
 | |
| 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 | |
| 	hend = vma->vm_end & HPAGE_PMD_MASK;
 | |
| 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 | |
| 		return SCAN_ADDRESS_RANGE;
 | |
| 	if (!hugepage_vma_check(vma))
 | |
| 		return SCAN_VMA_CHECK;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bring missing pages in from swap, to complete THP collapse.
 | |
|  * Only done if khugepaged_scan_pmd believes it is worthwhile.
 | |
|  *
 | |
|  * Called and returns without pte mapped or spinlocks held,
 | |
|  * but with mmap_sem held to protect against vma changes.
 | |
|  */
 | |
| 
 | |
| static bool __collapse_huge_page_swapin(struct mm_struct *mm,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					unsigned long address, pmd_t *pmd,
 | |
| 					int referenced)
 | |
| {
 | |
| 	pte_t pteval;
 | |
| 	int swapped_in = 0, ret = 0;
 | |
| 	struct fault_env fe = {
 | |
| 		.vma = vma,
 | |
| 		.address = address,
 | |
| 		.flags = FAULT_FLAG_ALLOW_RETRY,
 | |
| 		.pmd = pmd,
 | |
| 	};
 | |
| 
 | |
| 	/* we only decide to swapin, if there is enough young ptes */
 | |
| 	if (referenced < HPAGE_PMD_NR/2) {
 | |
| 		trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 | |
| 		return false;
 | |
| 	}
 | |
| 	fe.pte = pte_offset_map(pmd, address);
 | |
| 	for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
 | |
| 			fe.pte++, fe.address += PAGE_SIZE) {
 | |
| 		pteval = *fe.pte;
 | |
| 		if (!is_swap_pte(pteval))
 | |
| 			continue;
 | |
| 		swapped_in++;
 | |
| 		ret = do_swap_page(&fe, pteval);
 | |
| 
 | |
| 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
 | |
| 		if (ret & VM_FAULT_RETRY) {
 | |
| 			down_read(&mm->mmap_sem);
 | |
| 			if (hugepage_vma_revalidate(mm, address, &fe.vma)) {
 | |
| 				/* vma is no longer available, don't continue to swapin */
 | |
| 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 | |
| 				return false;
 | |
| 			}
 | |
| 			/* check if the pmd is still valid */
 | |
| 			if (mm_find_pmd(mm, address) != pmd)
 | |
| 				return false;
 | |
| 		}
 | |
| 		if (ret & VM_FAULT_ERROR) {
 | |
| 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 | |
| 			return false;
 | |
| 		}
 | |
| 		/* pte is unmapped now, we need to map it */
 | |
| 		fe.pte = pte_offset_map(pmd, fe.address);
 | |
| 	}
 | |
| 	fe.pte--;
 | |
| 	pte_unmap(fe.pte);
 | |
| 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void collapse_huge_page(struct mm_struct *mm,
 | |
| 				   unsigned long address,
 | |
| 				   struct page **hpage,
 | |
| 				   int node, int referenced)
 | |
| {
 | |
| 	pmd_t *pmd, _pmd;
 | |
| 	pte_t *pte;
 | |
| 	pgtable_t pgtable;
 | |
| 	struct page *new_page;
 | |
| 	spinlock_t *pmd_ptl, *pte_ptl;
 | |
| 	int isolated = 0, result = 0;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 	gfp_t gfp;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 	/* Only allocate from the target node */
 | |
| 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Before allocating the hugepage, release the mmap_sem read lock.
 | |
| 	 * The allocation can take potentially a long time if it involves
 | |
| 	 * sync compaction, and we do not need to hold the mmap_sem during
 | |
| 	 * that. We will recheck the vma after taking it again in write mode.
 | |
| 	 */
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	new_page = khugepaged_alloc_page(hpage, gfp, node);
 | |
| 	if (!new_page) {
 | |
| 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 | |
| 		result = SCAN_CGROUP_CHARGE_FAIL;
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	result = hugepage_vma_revalidate(mm, address, &vma);
 | |
| 	if (result) {
 | |
| 		mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	pmd = mm_find_pmd(mm, address);
 | |
| 	if (!pmd) {
 | |
| 		result = SCAN_PMD_NULL;
 | |
| 		mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * __collapse_huge_page_swapin always returns with mmap_sem locked.
 | |
| 	 * If it fails, we release mmap_sem and jump out_nolock.
 | |
| 	 * Continuing to collapse causes inconsistency.
 | |
| 	 */
 | |
| 	if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
 | |
| 		mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	/*
 | |
| 	 * Prevent all access to pagetables with the exception of
 | |
| 	 * gup_fast later handled by the ptep_clear_flush and the VM
 | |
| 	 * handled by the anon_vma lock + PG_lock.
 | |
| 	 */
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	result = hugepage_vma_revalidate(mm, address, &vma);
 | |
| 	if (result)
 | |
| 		goto out;
 | |
| 	/* check if the pmd is still valid */
 | |
| 	if (mm_find_pmd(mm, address) != pmd)
 | |
| 		goto out;
 | |
| 
 | |
| 	anon_vma_lock_write(vma->anon_vma);
 | |
| 
 | |
| 	pte = pte_offset_map(pmd, address);
 | |
| 	pte_ptl = pte_lockptr(mm, pmd);
 | |
| 
 | |
| 	mmun_start = address;
 | |
| 	mmun_end   = address + HPAGE_PMD_SIZE;
 | |
| 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 | |
| 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
 | |
| 	/*
 | |
| 	 * After this gup_fast can't run anymore. This also removes
 | |
| 	 * any huge TLB entry from the CPU so we won't allow
 | |
| 	 * huge and small TLB entries for the same virtual address
 | |
| 	 * to avoid the risk of CPU bugs in that area.
 | |
| 	 */
 | |
| 	_pmd = pmdp_collapse_flush(vma, address, pmd);
 | |
| 	spin_unlock(pmd_ptl);
 | |
| 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	spin_lock(pte_ptl);
 | |
| 	isolated = __collapse_huge_page_isolate(vma, address, pte);
 | |
| 	spin_unlock(pte_ptl);
 | |
| 
 | |
| 	if (unlikely(!isolated)) {
 | |
| 		pte_unmap(pte);
 | |
| 		spin_lock(pmd_ptl);
 | |
| 		BUG_ON(!pmd_none(*pmd));
 | |
| 		/*
 | |
| 		 * We can only use set_pmd_at when establishing
 | |
| 		 * hugepmds and never for establishing regular pmds that
 | |
| 		 * points to regular pagetables. Use pmd_populate for that
 | |
| 		 */
 | |
| 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
 | |
| 		spin_unlock(pmd_ptl);
 | |
| 		anon_vma_unlock_write(vma->anon_vma);
 | |
| 		result = SCAN_FAIL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All pages are isolated and locked so anon_vma rmap
 | |
| 	 * can't run anymore.
 | |
| 	 */
 | |
| 	anon_vma_unlock_write(vma->anon_vma);
 | |
| 
 | |
| 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
 | |
| 	pte_unmap(pte);
 | |
| 	__SetPageUptodate(new_page);
 | |
| 	pgtable = pmd_pgtable(_pmd);
 | |
| 
 | |
| 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
 | |
| 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * spin_lock() below is not the equivalent of smp_wmb(), so
 | |
| 	 * this is needed to avoid the copy_huge_page writes to become
 | |
| 	 * visible after the set_pmd_at() write.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	spin_lock(pmd_ptl);
 | |
| 	BUG_ON(!pmd_none(*pmd));
 | |
| 	page_add_new_anon_rmap(new_page, vma, address, true);
 | |
| 	mem_cgroup_commit_charge(new_page, memcg, false, true);
 | |
| 	lru_cache_add_active_or_unevictable(new_page, vma);
 | |
| 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 	set_pmd_at(mm, address, pmd, _pmd);
 | |
| 	update_mmu_cache_pmd(vma, address, pmd);
 | |
| 	spin_unlock(pmd_ptl);
 | |
| 
 | |
| 	*hpage = NULL;
 | |
| 
 | |
| 	khugepaged_pages_collapsed++;
 | |
| 	result = SCAN_SUCCEED;
 | |
| out_up_write:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| out_nolock:
 | |
| 	trace_mm_collapse_huge_page(mm, isolated, result);
 | |
| 	return;
 | |
| out:
 | |
| 	mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 	goto out_up_write;
 | |
| }
 | |
| 
 | |
| static int khugepaged_scan_pmd(struct mm_struct *mm,
 | |
| 			       struct vm_area_struct *vma,
 | |
| 			       unsigned long address,
 | |
| 			       struct page **hpage)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte, *_pte;
 | |
| 	int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
 | |
| 	struct page *page = NULL;
 | |
| 	unsigned long _address;
 | |
| 	spinlock_t *ptl;
 | |
| 	int node = NUMA_NO_NODE, unmapped = 0;
 | |
| 	bool writable = false;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 	pmd = mm_find_pmd(mm, address);
 | |
| 	if (!pmd) {
 | |
| 		result = SCAN_PMD_NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
 | |
| 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 | |
| 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
 | |
| 	     _pte++, _address += PAGE_SIZE) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		if (is_swap_pte(pteval)) {
 | |
| 			if (++unmapped <= khugepaged_max_ptes_swap) {
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_SWAP_PTE;
 | |
| 				goto out_unmap;
 | |
| 			}
 | |
| 		}
 | |
| 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 | |
| 			if (!userfaultfd_armed(vma) &&
 | |
| 			    ++none_or_zero <= khugepaged_max_ptes_none) {
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_NONE_PTE;
 | |
| 				goto out_unmap;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!pte_present(pteval)) {
 | |
| 			result = SCAN_PTE_NON_PRESENT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (pte_write(pteval))
 | |
| 			writable = true;
 | |
| 
 | |
| 		page = vm_normal_page(vma, _address, pteval);
 | |
| 		if (unlikely(!page)) {
 | |
| 			result = SCAN_PAGE_NULL;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/* TODO: teach khugepaged to collapse THP mapped with pte */
 | |
| 		if (PageCompound(page)) {
 | |
| 			result = SCAN_PAGE_COMPOUND;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Record which node the original page is from and save this
 | |
| 		 * information to khugepaged_node_load[].
 | |
| 		 * Khupaged will allocate hugepage from the node has the max
 | |
| 		 * hit record.
 | |
| 		 */
 | |
| 		node = page_to_nid(page);
 | |
| 		if (khugepaged_scan_abort(node)) {
 | |
| 			result = SCAN_SCAN_ABORT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		khugepaged_node_load[node]++;
 | |
| 		if (!PageLRU(page)) {
 | |
| 			result = SCAN_PAGE_LRU;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (PageLocked(page)) {
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (!PageAnon(page)) {
 | |
| 			result = SCAN_PAGE_ANON;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * cannot use mapcount: can't collapse if there's a gup pin.
 | |
| 		 * The page must only be referenced by the scanned process
 | |
| 		 * and page swap cache.
 | |
| 		 */
 | |
| 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (pte_young(pteval) ||
 | |
| 		    page_is_young(page) || PageReferenced(page) ||
 | |
| 		    mmu_notifier_test_young(vma->vm_mm, address))
 | |
| 			referenced++;
 | |
| 	}
 | |
| 	if (writable) {
 | |
| 		if (referenced) {
 | |
| 			result = SCAN_SUCCEED;
 | |
| 			ret = 1;
 | |
| 		} else {
 | |
| 			result = SCAN_LACK_REFERENCED_PAGE;
 | |
| 		}
 | |
| 	} else {
 | |
| 		result = SCAN_PAGE_RO;
 | |
| 	}
 | |
| out_unmap:
 | |
| 	pte_unmap_unlock(pte, ptl);
 | |
| 	if (ret) {
 | |
| 		node = khugepaged_find_target_node();
 | |
| 		/* collapse_huge_page will return with the mmap_sem released */
 | |
| 		collapse_huge_page(mm, address, hpage, node, referenced);
 | |
| 	}
 | |
| out:
 | |
| 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
 | |
| 				     none_or_zero, result, unmapped);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void collect_mm_slot(struct mm_slot *mm_slot)
 | |
| {
 | |
| 	struct mm_struct *mm = mm_slot->mm;
 | |
| 
 | |
| 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
 | |
| 
 | |
| 	if (khugepaged_test_exit(mm)) {
 | |
| 		/* free mm_slot */
 | |
| 		hash_del(&mm_slot->hash);
 | |
| 		list_del(&mm_slot->mm_node);
 | |
| 
 | |
| 		/*
 | |
| 		 * Not strictly needed because the mm exited already.
 | |
| 		 *
 | |
| 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 | |
| 		 */
 | |
| 
 | |
| 		/* khugepaged_mm_lock actually not necessary for the below */
 | |
| 		free_mm_slot(mm_slot);
 | |
| 		mmdrop(mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 | |
| static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long addr;
 | |
| 	pmd_t *pmd, _pmd;
 | |
| 
 | |
| 	i_mmap_lock_write(mapping);
 | |
| 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 | |
| 		/* probably overkill */
 | |
| 		if (vma->anon_vma)
 | |
| 			continue;
 | |
| 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 		if (addr & ~HPAGE_PMD_MASK)
 | |
| 			continue;
 | |
| 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
 | |
| 			continue;
 | |
| 		pmd = mm_find_pmd(vma->vm_mm, addr);
 | |
| 		if (!pmd)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * We need exclusive mmap_sem to retract page table.
 | |
| 		 * If trylock fails we would end up with pte-mapped THP after
 | |
| 		 * re-fault. Not ideal, but it's more important to not disturb
 | |
| 		 * the system too much.
 | |
| 		 */
 | |
| 		if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
 | |
| 			spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 			/* assume page table is clear */
 | |
| 			_pmd = pmdp_collapse_flush(vma, addr, pmd);
 | |
| 			spin_unlock(ptl);
 | |
| 			up_write(&vma->vm_mm->mmap_sem);
 | |
| 			atomic_long_dec(&vma->vm_mm->nr_ptes);
 | |
| 			pte_free(vma->vm_mm, pmd_pgtable(_pmd));
 | |
| 		}
 | |
| 	}
 | |
| 	i_mmap_unlock_write(mapping);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
 | |
|  *
 | |
|  * Basic scheme is simple, details are more complex:
 | |
|  *  - allocate and freeze a new huge page;
 | |
|  *  - scan over radix tree replacing old pages the new one
 | |
|  *    + swap in pages if necessary;
 | |
|  *    + fill in gaps;
 | |
|  *    + keep old pages around in case if rollback is required;
 | |
|  *  - if replacing succeed:
 | |
|  *    + copy data over;
 | |
|  *    + free old pages;
 | |
|  *    + unfreeze huge page;
 | |
|  *  - if replacing failed;
 | |
|  *    + put all pages back and unfreeze them;
 | |
|  *    + restore gaps in the radix-tree;
 | |
|  *    + free huge page;
 | |
|  */
 | |
| static void collapse_shmem(struct mm_struct *mm,
 | |
| 		struct address_space *mapping, pgoff_t start,
 | |
| 		struct page **hpage, int node)
 | |
| {
 | |
| 	gfp_t gfp;
 | |
| 	struct page *page, *new_page, *tmp;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	pgoff_t index, end = start + HPAGE_PMD_NR;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	struct radix_tree_iter iter;
 | |
| 	void **slot;
 | |
| 	int nr_none = 0, result = SCAN_SUCCEED;
 | |
| 
 | |
| 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
 | |
| 
 | |
| 	/* Only allocate from the target node */
 | |
| 	gfp = alloc_hugepage_khugepaged_gfpmask() |
 | |
| 		__GFP_OTHER_NODE | __GFP_THISNODE;
 | |
| 
 | |
| 	new_page = khugepaged_alloc_page(hpage, gfp, node);
 | |
| 	if (!new_page) {
 | |
| 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 | |
| 		result = SCAN_CGROUP_CHARGE_FAIL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	new_page->index = start;
 | |
| 	new_page->mapping = mapping;
 | |
| 	__SetPageSwapBacked(new_page);
 | |
| 	__SetPageLocked(new_page);
 | |
| 	BUG_ON(!page_ref_freeze(new_page, 1));
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point the new_page is 'frozen' (page_count() is zero), locked
 | |
| 	 * and not up-to-date. It's safe to insert it into radix tree, because
 | |
| 	 * nobody would be able to map it or use it in other way until we
 | |
| 	 * unfreeze it.
 | |
| 	 */
 | |
| 
 | |
| 	index = start;
 | |
| 	spin_lock_irq(&mapping->tree_lock);
 | |
| 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 | |
| 		int n = min(iter.index, end) - index;
 | |
| 
 | |
| 		/*
 | |
| 		 * Handle holes in the radix tree: charge it from shmem and
 | |
| 		 * insert relevant subpage of new_page into the radix-tree.
 | |
| 		 */
 | |
| 		if (n && !shmem_charge(mapping->host, n)) {
 | |
| 			result = SCAN_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 		nr_none += n;
 | |
| 		for (; index < min(iter.index, end); index++) {
 | |
| 			radix_tree_insert(&mapping->page_tree, index,
 | |
| 					new_page + (index % HPAGE_PMD_NR));
 | |
| 		}
 | |
| 
 | |
| 		/* We are done. */
 | |
| 		if (index >= end)
 | |
| 			break;
 | |
| 
 | |
| 		page = radix_tree_deref_slot_protected(slot,
 | |
| 				&mapping->tree_lock);
 | |
| 		if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
 | |
| 			spin_unlock_irq(&mapping->tree_lock);
 | |
| 			/* swap in or instantiate fallocated page */
 | |
| 			if (shmem_getpage(mapping->host, index, &page,
 | |
| 						SGP_NOHUGE)) {
 | |
| 				result = SCAN_FAIL;
 | |
| 				goto tree_unlocked;
 | |
| 			}
 | |
| 			spin_lock_irq(&mapping->tree_lock);
 | |
| 		} else if (trylock_page(page)) {
 | |
| 			get_page(page);
 | |
| 		} else {
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The page must be locked, so we can drop the tree_lock
 | |
| 		 * without racing with truncate.
 | |
| 		 */
 | |
| 		VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 		VM_BUG_ON_PAGE(!PageUptodate(page), page);
 | |
| 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 | |
| 
 | |
| 		if (page_mapping(page) != mapping) {
 | |
| 			result = SCAN_TRUNCATED;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 
 | |
| 		if (isolate_lru_page(page)) {
 | |
| 			result = SCAN_DEL_PAGE_LRU;
 | |
| 			goto out_isolate_failed;
 | |
| 		}
 | |
| 
 | |
| 		if (page_mapped(page))
 | |
| 			unmap_mapping_range(mapping, index << PAGE_SHIFT,
 | |
| 					PAGE_SIZE, 0);
 | |
| 
 | |
| 		spin_lock_irq(&mapping->tree_lock);
 | |
| 
 | |
| 		VM_BUG_ON_PAGE(page_mapped(page), page);
 | |
| 
 | |
| 		/*
 | |
| 		 * The page is expected to have page_count() == 3:
 | |
| 		 *  - we hold a pin on it;
 | |
| 		 *  - one reference from radix tree;
 | |
| 		 *  - one from isolate_lru_page;
 | |
| 		 */
 | |
| 		if (!page_ref_freeze(page, 3)) {
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			goto out_lru;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Add the page to the list to be able to undo the collapse if
 | |
| 		 * something go wrong.
 | |
| 		 */
 | |
| 		list_add_tail(&page->lru, &pagelist);
 | |
| 
 | |
| 		/* Finally, replace with the new page. */
 | |
| 		radix_tree_replace_slot(slot,
 | |
| 				new_page + (index % HPAGE_PMD_NR));
 | |
| 
 | |
| 		index++;
 | |
| 		continue;
 | |
| out_lru:
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 		putback_lru_page(page);
 | |
| out_isolate_failed:
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		goto tree_unlocked;
 | |
| out_unlock:
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle hole in radix tree at the end of the range.
 | |
| 	 * This code only triggers if there's nothing in radix tree
 | |
| 	 * beyond 'end'.
 | |
| 	 */
 | |
| 	if (result == SCAN_SUCCEED && index < end) {
 | |
| 		int n = end - index;
 | |
| 
 | |
| 		if (!shmem_charge(mapping->host, n)) {
 | |
| 			result = SCAN_FAIL;
 | |
| 			goto tree_locked;
 | |
| 		}
 | |
| 
 | |
| 		for (; index < end; index++) {
 | |
| 			radix_tree_insert(&mapping->page_tree, index,
 | |
| 					new_page + (index % HPAGE_PMD_NR));
 | |
| 		}
 | |
| 		nr_none += n;
 | |
| 	}
 | |
| 
 | |
| tree_locked:
 | |
| 	spin_unlock_irq(&mapping->tree_lock);
 | |
| tree_unlocked:
 | |
| 
 | |
| 	if (result == SCAN_SUCCEED) {
 | |
| 		unsigned long flags;
 | |
| 		struct zone *zone = page_zone(new_page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Replacing old pages with new one has succeed, now we need to
 | |
| 		 * copy the content and free old pages.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
 | |
| 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
 | |
| 					page);
 | |
| 			list_del(&page->lru);
 | |
| 			unlock_page(page);
 | |
| 			page_ref_unfreeze(page, 1);
 | |
| 			page->mapping = NULL;
 | |
| 			ClearPageActive(page);
 | |
| 			ClearPageUnevictable(page);
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		__inc_node_page_state(new_page, NR_SHMEM_THPS);
 | |
| 		if (nr_none) {
 | |
| 			__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
 | |
| 			__mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
 | |
| 		}
 | |
| 		local_irq_restore(flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove pte page tables, so we can re-faulti
 | |
| 		 * the page as huge.
 | |
| 		 */
 | |
| 		retract_page_tables(mapping, start);
 | |
| 
 | |
| 		/* Everything is ready, let's unfreeze the new_page */
 | |
| 		set_page_dirty(new_page);
 | |
| 		SetPageUptodate(new_page);
 | |
| 		page_ref_unfreeze(new_page, HPAGE_PMD_NR);
 | |
| 		mem_cgroup_commit_charge(new_page, memcg, false, true);
 | |
| 		lru_cache_add_anon(new_page);
 | |
| 		unlock_page(new_page);
 | |
| 
 | |
| 		*hpage = NULL;
 | |
| 	} else {
 | |
| 		/* Something went wrong: rollback changes to the radix-tree */
 | |
| 		shmem_uncharge(mapping->host, nr_none);
 | |
| 		spin_lock_irq(&mapping->tree_lock);
 | |
| 		radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
 | |
| 				start) {
 | |
| 			if (iter.index >= end)
 | |
| 				break;
 | |
| 			page = list_first_entry_or_null(&pagelist,
 | |
| 					struct page, lru);
 | |
| 			if (!page || iter.index < page->index) {
 | |
| 				if (!nr_none)
 | |
| 					break;
 | |
| 				/* Put holes back where they were */
 | |
| 				radix_tree_replace_slot(slot, NULL);
 | |
| 				nr_none--;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			VM_BUG_ON_PAGE(page->index != iter.index, page);
 | |
| 
 | |
| 			/* Unfreeze the page. */
 | |
| 			list_del(&page->lru);
 | |
| 			page_ref_unfreeze(page, 2);
 | |
| 			radix_tree_replace_slot(slot, page);
 | |
| 			spin_unlock_irq(&mapping->tree_lock);
 | |
| 			putback_lru_page(page);
 | |
| 			unlock_page(page);
 | |
| 			spin_lock_irq(&mapping->tree_lock);
 | |
| 		}
 | |
| 		VM_BUG_ON(nr_none);
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 
 | |
| 		/* Unfreeze new_page, caller would take care about freeing it */
 | |
| 		page_ref_unfreeze(new_page, 1);
 | |
| 		mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 		unlock_page(new_page);
 | |
| 		new_page->mapping = NULL;
 | |
| 	}
 | |
| out:
 | |
| 	VM_BUG_ON(!list_empty(&pagelist));
 | |
| 	/* TODO: tracepoints */
 | |
| }
 | |
| 
 | |
| static void khugepaged_scan_shmem(struct mm_struct *mm,
 | |
| 		struct address_space *mapping,
 | |
| 		pgoff_t start, struct page **hpage)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	struct radix_tree_iter iter;
 | |
| 	void **slot;
 | |
| 	int present, swap;
 | |
| 	int node = NUMA_NO_NODE;
 | |
| 	int result = SCAN_SUCCEED;
 | |
| 
 | |
| 	present = 0;
 | |
| 	swap = 0;
 | |
| 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
 | |
| 	rcu_read_lock();
 | |
| 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 | |
| 		if (iter.index >= start + HPAGE_PMD_NR)
 | |
| 			break;
 | |
| 
 | |
| 		page = radix_tree_deref_slot(slot);
 | |
| 		if (radix_tree_deref_retry(page)) {
 | |
| 			slot = radix_tree_iter_retry(&iter);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (radix_tree_exception(page)) {
 | |
| 			if (++swap > khugepaged_max_ptes_swap) {
 | |
| 				result = SCAN_EXCEED_SWAP_PTE;
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (PageTransCompound(page)) {
 | |
| 			result = SCAN_PAGE_COMPOUND;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		node = page_to_nid(page);
 | |
| 		if (khugepaged_scan_abort(node)) {
 | |
| 			result = SCAN_SCAN_ABORT;
 | |
| 			break;
 | |
| 		}
 | |
| 		khugepaged_node_load[node]++;
 | |
| 
 | |
| 		if (!PageLRU(page)) {
 | |
| 			result = SCAN_PAGE_LRU;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (page_count(page) != 1 + page_mapcount(page)) {
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We probably should check if the page is referenced here, but
 | |
| 		 * nobody would transfer pte_young() to PageReferenced() for us.
 | |
| 		 * And rmap walk here is just too costly...
 | |
| 		 */
 | |
| 
 | |
| 		present++;
 | |
| 
 | |
| 		if (need_resched()) {
 | |
| 			cond_resched_rcu();
 | |
| 			slot = radix_tree_iter_next(&iter);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (result == SCAN_SUCCEED) {
 | |
| 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
 | |
| 			result = SCAN_EXCEED_NONE_PTE;
 | |
| 		} else {
 | |
| 			node = khugepaged_find_target_node();
 | |
| 			collapse_shmem(mm, mapping, start, hpage, node);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: tracepoints */
 | |
| }
 | |
| #else
 | |
| static void khugepaged_scan_shmem(struct mm_struct *mm,
 | |
| 		struct address_space *mapping,
 | |
| 		pgoff_t start, struct page **hpage)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
 | |
| 					    struct page **hpage)
 | |
| 	__releases(&khugepaged_mm_lock)
 | |
| 	__acquires(&khugepaged_mm_lock)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int progress = 0;
 | |
| 
 | |
| 	VM_BUG_ON(!pages);
 | |
| 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
 | |
| 
 | |
| 	if (khugepaged_scan.mm_slot)
 | |
| 		mm_slot = khugepaged_scan.mm_slot;
 | |
| 	else {
 | |
| 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
 | |
| 				     struct mm_slot, mm_node);
 | |
| 		khugepaged_scan.address = 0;
 | |
| 		khugepaged_scan.mm_slot = mm_slot;
 | |
| 	}
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	mm = mm_slot->mm;
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	if (unlikely(khugepaged_test_exit(mm)))
 | |
| 		vma = NULL;
 | |
| 	else
 | |
| 		vma = find_vma(mm, khugepaged_scan.address);
 | |
| 
 | |
| 	progress++;
 | |
| 	for (; vma; vma = vma->vm_next) {
 | |
| 		unsigned long hstart, hend;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (unlikely(khugepaged_test_exit(mm))) {
 | |
| 			progress++;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!hugepage_vma_check(vma)) {
 | |
| skip:
 | |
| 			progress++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 | |
| 		hend = vma->vm_end & HPAGE_PMD_MASK;
 | |
| 		if (hstart >= hend)
 | |
| 			goto skip;
 | |
| 		if (khugepaged_scan.address > hend)
 | |
| 			goto skip;
 | |
| 		if (khugepaged_scan.address < hstart)
 | |
| 			khugepaged_scan.address = hstart;
 | |
| 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 		while (khugepaged_scan.address < hend) {
 | |
| 			int ret;
 | |
| 			cond_resched();
 | |
| 			if (unlikely(khugepaged_test_exit(mm)))
 | |
| 				goto breakouterloop;
 | |
| 
 | |
| 			VM_BUG_ON(khugepaged_scan.address < hstart ||
 | |
| 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
 | |
| 				  hend);
 | |
| 			if (shmem_file(vma->vm_file)) {
 | |
| 				struct file *file;
 | |
| 				pgoff_t pgoff = linear_page_index(vma,
 | |
| 						khugepaged_scan.address);
 | |
| 				if (!shmem_huge_enabled(vma))
 | |
| 					goto skip;
 | |
| 				file = get_file(vma->vm_file);
 | |
| 				up_read(&mm->mmap_sem);
 | |
| 				ret = 1;
 | |
| 				khugepaged_scan_shmem(mm, file->f_mapping,
 | |
| 						pgoff, hpage);
 | |
| 				fput(file);
 | |
| 			} else {
 | |
| 				ret = khugepaged_scan_pmd(mm, vma,
 | |
| 						khugepaged_scan.address,
 | |
| 						hpage);
 | |
| 			}
 | |
| 			/* move to next address */
 | |
| 			khugepaged_scan.address += HPAGE_PMD_SIZE;
 | |
| 			progress += HPAGE_PMD_NR;
 | |
| 			if (ret)
 | |
| 				/* we released mmap_sem so break loop */
 | |
| 				goto breakouterloop_mmap_sem;
 | |
| 			if (progress >= pages)
 | |
| 				goto breakouterloop;
 | |
| 		}
 | |
| 	}
 | |
| breakouterloop:
 | |
| 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
 | |
| breakouterloop_mmap_sem:
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
 | |
| 	/*
 | |
| 	 * Release the current mm_slot if this mm is about to die, or
 | |
| 	 * if we scanned all vmas of this mm.
 | |
| 	 */
 | |
| 	if (khugepaged_test_exit(mm) || !vma) {
 | |
| 		/*
 | |
| 		 * Make sure that if mm_users is reaching zero while
 | |
| 		 * khugepaged runs here, khugepaged_exit will find
 | |
| 		 * mm_slot not pointing to the exiting mm.
 | |
| 		 */
 | |
| 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
 | |
| 			khugepaged_scan.mm_slot = list_entry(
 | |
| 				mm_slot->mm_node.next,
 | |
| 				struct mm_slot, mm_node);
 | |
| 			khugepaged_scan.address = 0;
 | |
| 		} else {
 | |
| 			khugepaged_scan.mm_slot = NULL;
 | |
| 			khugepaged_full_scans++;
 | |
| 		}
 | |
| 
 | |
| 		collect_mm_slot(mm_slot);
 | |
| 	}
 | |
| 
 | |
| 	return progress;
 | |
| }
 | |
| 
 | |
| static int khugepaged_has_work(void)
 | |
| {
 | |
| 	return !list_empty(&khugepaged_scan.mm_head) &&
 | |
| 		khugepaged_enabled();
 | |
| }
 | |
| 
 | |
| static int khugepaged_wait_event(void)
 | |
| {
 | |
| 	return !list_empty(&khugepaged_scan.mm_head) ||
 | |
| 		kthread_should_stop();
 | |
| }
 | |
| 
 | |
| static void khugepaged_do_scan(void)
 | |
| {
 | |
| 	struct page *hpage = NULL;
 | |
| 	unsigned int progress = 0, pass_through_head = 0;
 | |
| 	unsigned int pages = khugepaged_pages_to_scan;
 | |
| 	bool wait = true;
 | |
| 
 | |
| 	barrier(); /* write khugepaged_pages_to_scan to local stack */
 | |
| 
 | |
| 	while (progress < pages) {
 | |
| 		if (!khugepaged_prealloc_page(&hpage, &wait))
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (unlikely(kthread_should_stop() || try_to_freeze()))
 | |
| 			break;
 | |
| 
 | |
| 		spin_lock(&khugepaged_mm_lock);
 | |
| 		if (!khugepaged_scan.mm_slot)
 | |
| 			pass_through_head++;
 | |
| 		if (khugepaged_has_work() &&
 | |
| 		    pass_through_head < 2)
 | |
| 			progress += khugepaged_scan_mm_slot(pages - progress,
 | |
| 							    &hpage);
 | |
| 		else
 | |
| 			progress = pages;
 | |
| 		spin_unlock(&khugepaged_mm_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ERR_OR_NULL(hpage))
 | |
| 		put_page(hpage);
 | |
| }
 | |
| 
 | |
| static bool khugepaged_should_wakeup(void)
 | |
| {
 | |
| 	return kthread_should_stop() ||
 | |
| 	       time_after_eq(jiffies, khugepaged_sleep_expire);
 | |
| }
 | |
| 
 | |
| static void khugepaged_wait_work(void)
 | |
| {
 | |
| 	if (khugepaged_has_work()) {
 | |
| 		const unsigned long scan_sleep_jiffies =
 | |
| 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
 | |
| 
 | |
| 		if (!scan_sleep_jiffies)
 | |
| 			return;
 | |
| 
 | |
| 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
 | |
| 		wait_event_freezable_timeout(khugepaged_wait,
 | |
| 					     khugepaged_should_wakeup(),
 | |
| 					     scan_sleep_jiffies);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (khugepaged_enabled())
 | |
| 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
 | |
| }
 | |
| 
 | |
| static int khugepaged(void *none)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 
 | |
| 	set_freezable();
 | |
| 	set_user_nice(current, MAX_NICE);
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		khugepaged_do_scan();
 | |
| 		khugepaged_wait_work();
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	mm_slot = khugepaged_scan.mm_slot;
 | |
| 	khugepaged_scan.mm_slot = NULL;
 | |
| 	if (mm_slot)
 | |
| 		collect_mm_slot(mm_slot);
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void set_recommended_min_free_kbytes(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int nr_zones = 0;
 | |
| 	unsigned long recommended_min;
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		nr_zones++;
 | |
| 
 | |
| 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 | |
| 	recommended_min = pageblock_nr_pages * nr_zones * 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that on average at least two pageblocks are almost free
 | |
| 	 * of another type, one for a migratetype to fall back to and a
 | |
| 	 * second to avoid subsequent fallbacks of other types There are 3
 | |
| 	 * MIGRATE_TYPES we care about.
 | |
| 	 */
 | |
| 	recommended_min += pageblock_nr_pages * nr_zones *
 | |
| 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 | |
| 
 | |
| 	/* don't ever allow to reserve more than 5% of the lowmem */
 | |
| 	recommended_min = min(recommended_min,
 | |
| 			      (unsigned long) nr_free_buffer_pages() / 20);
 | |
| 	recommended_min <<= (PAGE_SHIFT-10);
 | |
| 
 | |
| 	if (recommended_min > min_free_kbytes) {
 | |
| 		if (user_min_free_kbytes >= 0)
 | |
| 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
 | |
| 				min_free_kbytes, recommended_min);
 | |
| 
 | |
| 		min_free_kbytes = recommended_min;
 | |
| 	}
 | |
| 	setup_per_zone_wmarks();
 | |
| }
 | |
| 
 | |
| int start_stop_khugepaged(void)
 | |
| {
 | |
| 	static struct task_struct *khugepaged_thread __read_mostly;
 | |
| 	static DEFINE_MUTEX(khugepaged_mutex);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&khugepaged_mutex);
 | |
| 	if (khugepaged_enabled()) {
 | |
| 		if (!khugepaged_thread)
 | |
| 			khugepaged_thread = kthread_run(khugepaged, NULL,
 | |
| 							"khugepaged");
 | |
| 		if (IS_ERR(khugepaged_thread)) {
 | |
| 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 | |
| 			err = PTR_ERR(khugepaged_thread);
 | |
| 			khugepaged_thread = NULL;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		if (!list_empty(&khugepaged_scan.mm_head))
 | |
| 			wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 		set_recommended_min_free_kbytes();
 | |
| 	} else if (khugepaged_thread) {
 | |
| 		kthread_stop(khugepaged_thread);
 | |
| 		khugepaged_thread = NULL;
 | |
| 	}
 | |
| fail:
 | |
| 	mutex_unlock(&khugepaged_mutex);
 | |
| 	return err;
 | |
| }
 |