mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 6787d916c2
			
		
	
	
		6787d916c2
		
	
	
	
	
		
			
			The hashtab code relies on roundup_pow_of_two() to compute the number of
hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code. So apply the same
fix to hashtab, by moving the overflow check to before the roundup.
Fixes: daaf427c6a ("bpf: fix arraymap NULL deref and missing overflow and zero size checks")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-3-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
		
	
			
		
			
				
	
	
		
			2613 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2613 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 | |
|  * Copyright (c) 2016 Facebook
 | |
|  */
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/btf.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/filter.h>
 | |
| #include <linux/rculist_nulls.h>
 | |
| #include <linux/rcupdate_wait.h>
 | |
| #include <linux/random.h>
 | |
| #include <uapi/linux/btf.h>
 | |
| #include <linux/rcupdate_trace.h>
 | |
| #include <linux/btf_ids.h>
 | |
| #include "percpu_freelist.h"
 | |
| #include "bpf_lru_list.h"
 | |
| #include "map_in_map.h"
 | |
| #include <linux/bpf_mem_alloc.h>
 | |
| 
 | |
| #define HTAB_CREATE_FLAG_MASK						\
 | |
| 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
 | |
| 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
 | |
| 
 | |
| #define BATCH_OPS(_name)			\
 | |
| 	.map_lookup_batch =			\
 | |
| 	_name##_map_lookup_batch,		\
 | |
| 	.map_lookup_and_delete_batch =		\
 | |
| 	_name##_map_lookup_and_delete_batch,	\
 | |
| 	.map_update_batch =			\
 | |
| 	generic_map_update_batch,		\
 | |
| 	.map_delete_batch =			\
 | |
| 	generic_map_delete_batch
 | |
| 
 | |
| /*
 | |
|  * The bucket lock has two protection scopes:
 | |
|  *
 | |
|  * 1) Serializing concurrent operations from BPF programs on different
 | |
|  *    CPUs
 | |
|  *
 | |
|  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
 | |
|  *
 | |
|  * BPF programs can execute in any context including perf, kprobes and
 | |
|  * tracing. As there are almost no limits where perf, kprobes and tracing
 | |
|  * can be invoked from the lock operations need to be protected against
 | |
|  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
 | |
|  * the lock held section when functions which acquire this lock are invoked
 | |
|  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
 | |
|  * variable bpf_prog_active, which prevents BPF programs attached to perf
 | |
|  * events, kprobes and tracing to be invoked before the prior invocation
 | |
|  * from one of these contexts completed. sys_bpf() uses the same mechanism
 | |
|  * by pinning the task to the current CPU and incrementing the recursion
 | |
|  * protection across the map operation.
 | |
|  *
 | |
|  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
 | |
|  * operations like memory allocations (even with GFP_ATOMIC) from atomic
 | |
|  * contexts. This is required because even with GFP_ATOMIC the memory
 | |
|  * allocator calls into code paths which acquire locks with long held lock
 | |
|  * sections. To ensure the deterministic behaviour these locks are regular
 | |
|  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
 | |
|  * true atomic contexts on an RT kernel are the low level hardware
 | |
|  * handling, scheduling, low level interrupt handling, NMIs etc. None of
 | |
|  * these contexts should ever do memory allocations.
 | |
|  *
 | |
|  * As regular device interrupt handlers and soft interrupts are forced into
 | |
|  * thread context, the existing code which does
 | |
|  *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
 | |
|  * just works.
 | |
|  *
 | |
|  * In theory the BPF locks could be converted to regular spinlocks as well,
 | |
|  * but the bucket locks and percpu_freelist locks can be taken from
 | |
|  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
 | |
|  * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
 | |
|  * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
 | |
|  * because there is no memory allocation within the lock held sections. However
 | |
|  * after hash map was fully converted to use bpf_mem_alloc, there will be
 | |
|  * non-synchronous memory allocation for non-preallocated hash map, so it is
 | |
|  * safe to always use raw spinlock for bucket lock.
 | |
|  */
 | |
| struct bucket {
 | |
| 	struct hlist_nulls_head head;
 | |
| 	raw_spinlock_t raw_lock;
 | |
| };
 | |
| 
 | |
| #define HASHTAB_MAP_LOCK_COUNT 8
 | |
| #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
 | |
| 
 | |
| struct bpf_htab {
 | |
| 	struct bpf_map map;
 | |
| 	struct bpf_mem_alloc ma;
 | |
| 	struct bpf_mem_alloc pcpu_ma;
 | |
| 	struct bucket *buckets;
 | |
| 	void *elems;
 | |
| 	union {
 | |
| 		struct pcpu_freelist freelist;
 | |
| 		struct bpf_lru lru;
 | |
| 	};
 | |
| 	struct htab_elem *__percpu *extra_elems;
 | |
| 	/* number of elements in non-preallocated hashtable are kept
 | |
| 	 * in either pcount or count
 | |
| 	 */
 | |
| 	struct percpu_counter pcount;
 | |
| 	atomic_t count;
 | |
| 	bool use_percpu_counter;
 | |
| 	u32 n_buckets;	/* number of hash buckets */
 | |
| 	u32 elem_size;	/* size of each element in bytes */
 | |
| 	u32 hashrnd;
 | |
| 	struct lock_class_key lockdep_key;
 | |
| 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
 | |
| };
 | |
| 
 | |
| /* each htab element is struct htab_elem + key + value */
 | |
| struct htab_elem {
 | |
| 	union {
 | |
| 		struct hlist_nulls_node hash_node;
 | |
| 		struct {
 | |
| 			void *padding;
 | |
| 			union {
 | |
| 				struct pcpu_freelist_node fnode;
 | |
| 				struct htab_elem *batch_flink;
 | |
| 			};
 | |
| 		};
 | |
| 	};
 | |
| 	union {
 | |
| 		/* pointer to per-cpu pointer */
 | |
| 		void *ptr_to_pptr;
 | |
| 		struct bpf_lru_node lru_node;
 | |
| 	};
 | |
| 	u32 hash;
 | |
| 	char key[] __aligned(8);
 | |
| };
 | |
| 
 | |
| static inline bool htab_is_prealloc(const struct bpf_htab *htab)
 | |
| {
 | |
| 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
 | |
| }
 | |
| 
 | |
| static void htab_init_buckets(struct bpf_htab *htab)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < htab->n_buckets; i++) {
 | |
| 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
 | |
| 		raw_spin_lock_init(&htab->buckets[i].raw_lock);
 | |
| 		lockdep_set_class(&htab->buckets[i].raw_lock,
 | |
| 					  &htab->lockdep_key);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int htab_lock_bucket(const struct bpf_htab *htab,
 | |
| 				   struct bucket *b, u32 hash,
 | |
| 				   unsigned long *pflags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	local_irq_save(flags);
 | |
| 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
 | |
| 		__this_cpu_dec(*(htab->map_locked[hash]));
 | |
| 		local_irq_restore(flags);
 | |
| 		preempt_enable();
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock(&b->raw_lock);
 | |
| 	*pflags = flags;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void htab_unlock_bucket(const struct bpf_htab *htab,
 | |
| 				      struct bucket *b, u32 hash,
 | |
| 				      unsigned long flags)
 | |
| {
 | |
| 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
 | |
| 	raw_spin_unlock(&b->raw_lock);
 | |
| 	__this_cpu_dec(*(htab->map_locked[hash]));
 | |
| 	local_irq_restore(flags);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
 | |
| 
 | |
| static bool htab_is_lru(const struct bpf_htab *htab)
 | |
| {
 | |
| 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
 | |
| 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 | |
| }
 | |
| 
 | |
| static bool htab_is_percpu(const struct bpf_htab *htab)
 | |
| {
 | |
| 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 | |
| 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 | |
| }
 | |
| 
 | |
| static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
 | |
| 				     void __percpu *pptr)
 | |
| {
 | |
| 	*(void __percpu **)(l->key + key_size) = pptr;
 | |
| }
 | |
| 
 | |
| static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
 | |
| {
 | |
| 	return *(void __percpu **)(l->key + key_size);
 | |
| }
 | |
| 
 | |
| static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
 | |
| {
 | |
| 	return *(void **)(l->key + roundup(map->key_size, 8));
 | |
| }
 | |
| 
 | |
| static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
 | |
| {
 | |
| 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
 | |
| }
 | |
| 
 | |
| static bool htab_has_extra_elems(struct bpf_htab *htab)
 | |
| {
 | |
| 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
 | |
| }
 | |
| 
 | |
| static void htab_free_prealloced_timers(struct bpf_htab *htab)
 | |
| {
 | |
| 	u32 num_entries = htab->map.max_entries;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
 | |
| 		return;
 | |
| 	if (htab_has_extra_elems(htab))
 | |
| 		num_entries += num_possible_cpus();
 | |
| 
 | |
| 	for (i = 0; i < num_entries; i++) {
 | |
| 		struct htab_elem *elem;
 | |
| 
 | |
| 		elem = get_htab_elem(htab, i);
 | |
| 		bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void htab_free_prealloced_fields(struct bpf_htab *htab)
 | |
| {
 | |
| 	u32 num_entries = htab->map.max_entries;
 | |
| 	int i;
 | |
| 
 | |
| 	if (IS_ERR_OR_NULL(htab->map.record))
 | |
| 		return;
 | |
| 	if (htab_has_extra_elems(htab))
 | |
| 		num_entries += num_possible_cpus();
 | |
| 	for (i = 0; i < num_entries; i++) {
 | |
| 		struct htab_elem *elem;
 | |
| 
 | |
| 		elem = get_htab_elem(htab, i);
 | |
| 		if (htab_is_percpu(htab)) {
 | |
| 			void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
 | |
| 			int cpu;
 | |
| 
 | |
| 			for_each_possible_cpu(cpu) {
 | |
| 				bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
 | |
| 				cond_resched();
 | |
| 			}
 | |
| 		} else {
 | |
| 			bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void htab_free_elems(struct bpf_htab *htab)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!htab_is_percpu(htab))
 | |
| 		goto free_elems;
 | |
| 
 | |
| 	for (i = 0; i < htab->map.max_entries; i++) {
 | |
| 		void __percpu *pptr;
 | |
| 
 | |
| 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
 | |
| 					 htab->map.key_size);
 | |
| 		free_percpu(pptr);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| free_elems:
 | |
| 	bpf_map_area_free(htab->elems);
 | |
| }
 | |
| 
 | |
| /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
 | |
|  * (bucket_lock). If both locks need to be acquired together, the lock
 | |
|  * order is always lru_lock -> bucket_lock and this only happens in
 | |
|  * bpf_lru_list.c logic. For example, certain code path of
 | |
|  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
 | |
|  * will acquire lru_lock first followed by acquiring bucket_lock.
 | |
|  *
 | |
|  * In hashtab.c, to avoid deadlock, lock acquisition of
 | |
|  * bucket_lock followed by lru_lock is not allowed. In such cases,
 | |
|  * bucket_lock needs to be released first before acquiring lru_lock.
 | |
|  */
 | |
| static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
 | |
| 					  u32 hash)
 | |
| {
 | |
| 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
 | |
| 	struct htab_elem *l;
 | |
| 
 | |
| 	if (node) {
 | |
| 		bpf_map_inc_elem_count(&htab->map);
 | |
| 		l = container_of(node, struct htab_elem, lru_node);
 | |
| 		memcpy(l->key, key, htab->map.key_size);
 | |
| 		return l;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int prealloc_init(struct bpf_htab *htab)
 | |
| {
 | |
| 	u32 num_entries = htab->map.max_entries;
 | |
| 	int err = -ENOMEM, i;
 | |
| 
 | |
| 	if (htab_has_extra_elems(htab))
 | |
| 		num_entries += num_possible_cpus();
 | |
| 
 | |
| 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
 | |
| 					 htab->map.numa_node);
 | |
| 	if (!htab->elems)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!htab_is_percpu(htab))
 | |
| 		goto skip_percpu_elems;
 | |
| 
 | |
| 	for (i = 0; i < num_entries; i++) {
 | |
| 		u32 size = round_up(htab->map.value_size, 8);
 | |
| 		void __percpu *pptr;
 | |
| 
 | |
| 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
 | |
| 					    GFP_USER | __GFP_NOWARN);
 | |
| 		if (!pptr)
 | |
| 			goto free_elems;
 | |
| 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
 | |
| 				  pptr);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| skip_percpu_elems:
 | |
| 	if (htab_is_lru(htab))
 | |
| 		err = bpf_lru_init(&htab->lru,
 | |
| 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
 | |
| 				   offsetof(struct htab_elem, hash) -
 | |
| 				   offsetof(struct htab_elem, lru_node),
 | |
| 				   htab_lru_map_delete_node,
 | |
| 				   htab);
 | |
| 	else
 | |
| 		err = pcpu_freelist_init(&htab->freelist);
 | |
| 
 | |
| 	if (err)
 | |
| 		goto free_elems;
 | |
| 
 | |
| 	if (htab_is_lru(htab))
 | |
| 		bpf_lru_populate(&htab->lru, htab->elems,
 | |
| 				 offsetof(struct htab_elem, lru_node),
 | |
| 				 htab->elem_size, num_entries);
 | |
| 	else
 | |
| 		pcpu_freelist_populate(&htab->freelist,
 | |
| 				       htab->elems + offsetof(struct htab_elem, fnode),
 | |
| 				       htab->elem_size, num_entries);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_elems:
 | |
| 	htab_free_elems(htab);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void prealloc_destroy(struct bpf_htab *htab)
 | |
| {
 | |
| 	htab_free_elems(htab);
 | |
| 
 | |
| 	if (htab_is_lru(htab))
 | |
| 		bpf_lru_destroy(&htab->lru);
 | |
| 	else
 | |
| 		pcpu_freelist_destroy(&htab->freelist);
 | |
| }
 | |
| 
 | |
| static int alloc_extra_elems(struct bpf_htab *htab)
 | |
| {
 | |
| 	struct htab_elem *__percpu *pptr, *l_new;
 | |
| 	struct pcpu_freelist_node *l;
 | |
| 	int cpu;
 | |
| 
 | |
| 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
 | |
| 				    GFP_USER | __GFP_NOWARN);
 | |
| 	if (!pptr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		l = pcpu_freelist_pop(&htab->freelist);
 | |
| 		/* pop will succeed, since prealloc_init()
 | |
| 		 * preallocated extra num_possible_cpus elements
 | |
| 		 */
 | |
| 		l_new = container_of(l, struct htab_elem, fnode);
 | |
| 		*per_cpu_ptr(pptr, cpu) = l_new;
 | |
| 	}
 | |
| 	htab->extra_elems = pptr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called from syscall */
 | |
| static int htab_map_alloc_check(union bpf_attr *attr)
 | |
| {
 | |
| 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 | |
| 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 | |
| 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 | |
| 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 | |
| 	/* percpu_lru means each cpu has its own LRU list.
 | |
| 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 | |
| 	 * the map's value itself is percpu.  percpu_lru has
 | |
| 	 * nothing to do with the map's value.
 | |
| 	 */
 | |
| 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 | |
| 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 | |
| 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
 | |
| 	int numa_node = bpf_map_attr_numa_node(attr);
 | |
| 
 | |
| 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
 | |
| 		     offsetof(struct htab_elem, hash_node.pprev));
 | |
| 
 | |
| 	if (zero_seed && !capable(CAP_SYS_ADMIN))
 | |
| 		/* Guard against local DoS, and discourage production use. */
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
 | |
| 	    !bpf_map_flags_access_ok(attr->map_flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!lru && percpu_lru)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (lru && !prealloc)
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* check sanity of attributes.
 | |
| 	 * value_size == 0 may be allowed in the future to use map as a set
 | |
| 	 */
 | |
| 	if (attr->max_entries == 0 || attr->key_size == 0 ||
 | |
| 	    attr->value_size == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
 | |
| 	   sizeof(struct htab_elem))
 | |
| 		/* if key_size + value_size is bigger, the user space won't be
 | |
| 		 * able to access the elements via bpf syscall. This check
 | |
| 		 * also makes sure that the elem_size doesn't overflow and it's
 | |
| 		 * kmalloc-able later in htab_map_update_elem()
 | |
| 		 */
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
 | |
| {
 | |
| 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 | |
| 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 | |
| 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 | |
| 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 | |
| 	/* percpu_lru means each cpu has its own LRU list.
 | |
| 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 | |
| 	 * the map's value itself is percpu.  percpu_lru has
 | |
| 	 * nothing to do with the map's value.
 | |
| 	 */
 | |
| 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 | |
| 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 | |
| 	struct bpf_htab *htab;
 | |
| 	int err, i;
 | |
| 
 | |
| 	htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
 | |
| 	if (!htab)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	lockdep_register_key(&htab->lockdep_key);
 | |
| 
 | |
| 	bpf_map_init_from_attr(&htab->map, attr);
 | |
| 
 | |
| 	if (percpu_lru) {
 | |
| 		/* ensure each CPU's lru list has >=1 elements.
 | |
| 		 * since we are at it, make each lru list has the same
 | |
| 		 * number of elements.
 | |
| 		 */
 | |
| 		htab->map.max_entries = roundup(attr->max_entries,
 | |
| 						num_possible_cpus());
 | |
| 		if (htab->map.max_entries < attr->max_entries)
 | |
| 			htab->map.max_entries = rounddown(attr->max_entries,
 | |
| 							  num_possible_cpus());
 | |
| 	}
 | |
| 
 | |
| 	/* hash table size must be power of 2; roundup_pow_of_two() can overflow
 | |
| 	 * into UB on 32-bit arches, so check that first
 | |
| 	 */
 | |
| 	err = -E2BIG;
 | |
| 	if (htab->map.max_entries > 1UL << 31)
 | |
| 		goto free_htab;
 | |
| 
 | |
| 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
 | |
| 
 | |
| 	htab->elem_size = sizeof(struct htab_elem) +
 | |
| 			  round_up(htab->map.key_size, 8);
 | |
| 	if (percpu)
 | |
| 		htab->elem_size += sizeof(void *);
 | |
| 	else
 | |
| 		htab->elem_size += round_up(htab->map.value_size, 8);
 | |
| 
 | |
| 	/* check for u32 overflow */
 | |
| 	if (htab->n_buckets > U32_MAX / sizeof(struct bucket))
 | |
| 		goto free_htab;
 | |
| 
 | |
| 	err = bpf_map_init_elem_count(&htab->map);
 | |
| 	if (err)
 | |
| 		goto free_htab;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
 | |
| 					   sizeof(struct bucket),
 | |
| 					   htab->map.numa_node);
 | |
| 	if (!htab->buckets)
 | |
| 		goto free_elem_count;
 | |
| 
 | |
| 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
 | |
| 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
 | |
| 							   sizeof(int),
 | |
| 							   sizeof(int),
 | |
| 							   GFP_USER);
 | |
| 		if (!htab->map_locked[i])
 | |
| 			goto free_map_locked;
 | |
| 	}
 | |
| 
 | |
| 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
 | |
| 		htab->hashrnd = 0;
 | |
| 	else
 | |
| 		htab->hashrnd = get_random_u32();
 | |
| 
 | |
| 	htab_init_buckets(htab);
 | |
| 
 | |
| /* compute_batch_value() computes batch value as num_online_cpus() * 2
 | |
|  * and __percpu_counter_compare() needs
 | |
|  * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
 | |
|  * for percpu_counter to be faster than atomic_t. In practice the average bpf
 | |
|  * hash map size is 10k, which means that a system with 64 cpus will fill
 | |
|  * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
 | |
|  * define our own batch count as 32 then 10k hash map can be filled up to 80%:
 | |
|  * 10k - 8k > 32 _batch_ * 64 _cpus_
 | |
|  * and __percpu_counter_compare() will still be fast. At that point hash map
 | |
|  * collisions will dominate its performance anyway. Assume that hash map filled
 | |
|  * to 50+% isn't going to be O(1) and use the following formula to choose
 | |
|  * between percpu_counter and atomic_t.
 | |
|  */
 | |
| #define PERCPU_COUNTER_BATCH 32
 | |
| 	if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
 | |
| 		htab->use_percpu_counter = true;
 | |
| 
 | |
| 	if (htab->use_percpu_counter) {
 | |
| 		err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
 | |
| 		if (err)
 | |
| 			goto free_map_locked;
 | |
| 	}
 | |
| 
 | |
| 	if (prealloc) {
 | |
| 		err = prealloc_init(htab);
 | |
| 		if (err)
 | |
| 			goto free_map_locked;
 | |
| 
 | |
| 		if (!percpu && !lru) {
 | |
| 			/* lru itself can remove the least used element, so
 | |
| 			 * there is no need for an extra elem during map_update.
 | |
| 			 */
 | |
| 			err = alloc_extra_elems(htab);
 | |
| 			if (err)
 | |
| 				goto free_prealloc;
 | |
| 		}
 | |
| 	} else {
 | |
| 		err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
 | |
| 		if (err)
 | |
| 			goto free_map_locked;
 | |
| 		if (percpu) {
 | |
| 			err = bpf_mem_alloc_init(&htab->pcpu_ma,
 | |
| 						 round_up(htab->map.value_size, 8), true);
 | |
| 			if (err)
 | |
| 				goto free_map_locked;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return &htab->map;
 | |
| 
 | |
| free_prealloc:
 | |
| 	prealloc_destroy(htab);
 | |
| free_map_locked:
 | |
| 	if (htab->use_percpu_counter)
 | |
| 		percpu_counter_destroy(&htab->pcount);
 | |
| 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
 | |
| 		free_percpu(htab->map_locked[i]);
 | |
| 	bpf_map_area_free(htab->buckets);
 | |
| 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
 | |
| 	bpf_mem_alloc_destroy(&htab->ma);
 | |
| free_elem_count:
 | |
| 	bpf_map_free_elem_count(&htab->map);
 | |
| free_htab:
 | |
| 	lockdep_unregister_key(&htab->lockdep_key);
 | |
| 	bpf_map_area_free(htab);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
 | |
| {
 | |
| 	if (likely(key_len % 4 == 0))
 | |
| 		return jhash2(key, key_len / 4, hashrnd);
 | |
| 	return jhash(key, key_len, hashrnd);
 | |
| }
 | |
| 
 | |
| static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
 | |
| {
 | |
| 	return &htab->buckets[hash & (htab->n_buckets - 1)];
 | |
| }
 | |
| 
 | |
| static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
 | |
| {
 | |
| 	return &__select_bucket(htab, hash)->head;
 | |
| }
 | |
| 
 | |
| /* this lookup function can only be called with bucket lock taken */
 | |
| static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
 | |
| 					 void *key, u32 key_size)
 | |
| {
 | |
| 	struct hlist_nulls_node *n;
 | |
| 	struct htab_elem *l;
 | |
| 
 | |
| 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 | |
| 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
 | |
| 			return l;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* can be called without bucket lock. it will repeat the loop in
 | |
|  * the unlikely event when elements moved from one bucket into another
 | |
|  * while link list is being walked
 | |
|  */
 | |
| static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
 | |
| 					       u32 hash, void *key,
 | |
| 					       u32 key_size, u32 n_buckets)
 | |
| {
 | |
| 	struct hlist_nulls_node *n;
 | |
| 	struct htab_elem *l;
 | |
| 
 | |
| again:
 | |
| 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 | |
| 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
 | |
| 			return l;
 | |
| 
 | |
| 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
 | |
| 		goto again;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Called from syscall or from eBPF program directly, so
 | |
|  * arguments have to match bpf_map_lookup_elem() exactly.
 | |
|  * The return value is adjusted by BPF instructions
 | |
|  * in htab_map_gen_lookup().
 | |
|  */
 | |
| static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct htab_elem *l;
 | |
| 	u32 hash, key_size;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 | |
| 		     !rcu_read_lock_bh_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 
 | |
| 	head = select_bucket(htab, hash);
 | |
| 
 | |
| 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 | |
| 
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 | |
| 
 | |
| 	if (l)
 | |
| 		return l->key + round_up(map->key_size, 8);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* inline bpf_map_lookup_elem() call.
 | |
|  * Instead of:
 | |
|  * bpf_prog
 | |
|  *   bpf_map_lookup_elem
 | |
|  *     map->ops->map_lookup_elem
 | |
|  *       htab_map_lookup_elem
 | |
|  *         __htab_map_lookup_elem
 | |
|  * do:
 | |
|  * bpf_prog
 | |
|  *   __htab_map_lookup_elem
 | |
|  */
 | |
| static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
 | |
| {
 | |
| 	struct bpf_insn *insn = insn_buf;
 | |
| 	const int ret = BPF_REG_0;
 | |
| 
 | |
| 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 | |
| 		     (void *(*)(struct bpf_map *map, void *key))NULL));
 | |
| 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
 | |
| 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
 | |
| 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 | |
| 				offsetof(struct htab_elem, key) +
 | |
| 				round_up(map->key_size, 8));
 | |
| 	return insn - insn_buf;
 | |
| }
 | |
| 
 | |
| static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
 | |
| 							void *key, const bool mark)
 | |
| {
 | |
| 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 | |
| 
 | |
| 	if (l) {
 | |
| 		if (mark)
 | |
| 			bpf_lru_node_set_ref(&l->lru_node);
 | |
| 		return l->key + round_up(map->key_size, 8);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	return __htab_lru_map_lookup_elem(map, key, true);
 | |
| }
 | |
| 
 | |
| static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	return __htab_lru_map_lookup_elem(map, key, false);
 | |
| }
 | |
| 
 | |
| static int htab_lru_map_gen_lookup(struct bpf_map *map,
 | |
| 				   struct bpf_insn *insn_buf)
 | |
| {
 | |
| 	struct bpf_insn *insn = insn_buf;
 | |
| 	const int ret = BPF_REG_0;
 | |
| 	const int ref_reg = BPF_REG_1;
 | |
| 
 | |
| 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 | |
| 		     (void *(*)(struct bpf_map *map, void *key))NULL));
 | |
| 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
 | |
| 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
 | |
| 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
 | |
| 			      offsetof(struct htab_elem, lru_node) +
 | |
| 			      offsetof(struct bpf_lru_node, ref));
 | |
| 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
 | |
| 	*insn++ = BPF_ST_MEM(BPF_B, ret,
 | |
| 			     offsetof(struct htab_elem, lru_node) +
 | |
| 			     offsetof(struct bpf_lru_node, ref),
 | |
| 			     1);
 | |
| 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 | |
| 				offsetof(struct htab_elem, key) +
 | |
| 				round_up(map->key_size, 8));
 | |
| 	return insn - insn_buf;
 | |
| }
 | |
| 
 | |
| static void check_and_free_fields(struct bpf_htab *htab,
 | |
| 				  struct htab_elem *elem)
 | |
| {
 | |
| 	if (htab_is_percpu(htab)) {
 | |
| 		void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
 | |
| 	} else {
 | |
| 		void *map_value = elem->key + round_up(htab->map.key_size, 8);
 | |
| 
 | |
| 		bpf_obj_free_fields(htab->map.record, map_value);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* It is called from the bpf_lru_list when the LRU needs to delete
 | |
|  * older elements from the htab.
 | |
|  */
 | |
| static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
 | |
| {
 | |
| 	struct bpf_htab *htab = arg;
 | |
| 	struct htab_elem *l = NULL, *tgt_l;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct hlist_nulls_node *n;
 | |
| 	unsigned long flags;
 | |
| 	struct bucket *b;
 | |
| 	int ret;
 | |
| 
 | |
| 	tgt_l = container_of(node, struct htab_elem, lru_node);
 | |
| 	b = __select_bucket(htab, tgt_l->hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
 | |
| 	if (ret)
 | |
| 		return false;
 | |
| 
 | |
| 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 | |
| 		if (l == tgt_l) {
 | |
| 			hlist_nulls_del_rcu(&l->hash_node);
 | |
| 			check_and_free_fields(htab, l);
 | |
| 			bpf_map_dec_elem_count(&htab->map);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
 | |
| 
 | |
| 	return l == tgt_l;
 | |
| }
 | |
| 
 | |
| /* Called from syscall */
 | |
| static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct htab_elem *l, *next_l;
 | |
| 	u32 hash, key_size;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	if (!key)
 | |
| 		goto find_first_elem;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 
 | |
| 	head = select_bucket(htab, hash);
 | |
| 
 | |
| 	/* lookup the key */
 | |
| 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 | |
| 
 | |
| 	if (!l)
 | |
| 		goto find_first_elem;
 | |
| 
 | |
| 	/* key was found, get next key in the same bucket */
 | |
| 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
 | |
| 				  struct htab_elem, hash_node);
 | |
| 
 | |
| 	if (next_l) {
 | |
| 		/* if next elem in this hash list is non-zero, just return it */
 | |
| 		memcpy(next_key, next_l->key, key_size);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* no more elements in this hash list, go to the next bucket */
 | |
| 	i = hash & (htab->n_buckets - 1);
 | |
| 	i++;
 | |
| 
 | |
| find_first_elem:
 | |
| 	/* iterate over buckets */
 | |
| 	for (; i < htab->n_buckets; i++) {
 | |
| 		head = select_bucket(htab, i);
 | |
| 
 | |
| 		/* pick first element in the bucket */
 | |
| 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
 | |
| 					  struct htab_elem, hash_node);
 | |
| 		if (next_l) {
 | |
| 			/* if it's not empty, just return it */
 | |
| 			memcpy(next_key, next_l->key, key_size);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* iterated over all buckets and all elements */
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
 | |
| {
 | |
| 	check_and_free_fields(htab, l);
 | |
| 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
 | |
| 		bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
 | |
| 	bpf_mem_cache_free(&htab->ma, l);
 | |
| }
 | |
| 
 | |
| static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
 | |
| {
 | |
| 	struct bpf_map *map = &htab->map;
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (map->ops->map_fd_put_ptr) {
 | |
| 		ptr = fd_htab_map_get_ptr(map, l);
 | |
| 		map->ops->map_fd_put_ptr(map, ptr, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool is_map_full(struct bpf_htab *htab)
 | |
| {
 | |
| 	if (htab->use_percpu_counter)
 | |
| 		return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
 | |
| 						PERCPU_COUNTER_BATCH) >= 0;
 | |
| 	return atomic_read(&htab->count) >= htab->map.max_entries;
 | |
| }
 | |
| 
 | |
| static void inc_elem_count(struct bpf_htab *htab)
 | |
| {
 | |
| 	bpf_map_inc_elem_count(&htab->map);
 | |
| 
 | |
| 	if (htab->use_percpu_counter)
 | |
| 		percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
 | |
| 	else
 | |
| 		atomic_inc(&htab->count);
 | |
| }
 | |
| 
 | |
| static void dec_elem_count(struct bpf_htab *htab)
 | |
| {
 | |
| 	bpf_map_dec_elem_count(&htab->map);
 | |
| 
 | |
| 	if (htab->use_percpu_counter)
 | |
| 		percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
 | |
| 	else
 | |
| 		atomic_dec(&htab->count);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
 | |
| {
 | |
| 	htab_put_fd_value(htab, l);
 | |
| 
 | |
| 	if (htab_is_prealloc(htab)) {
 | |
| 		bpf_map_dec_elem_count(&htab->map);
 | |
| 		check_and_free_fields(htab, l);
 | |
| 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
 | |
| 	} else {
 | |
| 		dec_elem_count(htab);
 | |
| 		htab_elem_free(htab, l);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
 | |
| 			    void *value, bool onallcpus)
 | |
| {
 | |
| 	if (!onallcpus) {
 | |
| 		/* copy true value_size bytes */
 | |
| 		copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
 | |
| 	} else {
 | |
| 		u32 size = round_up(htab->map.value_size, 8);
 | |
| 		int off = 0, cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
 | |
| 			off += size;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
 | |
| 			    void *value, bool onallcpus)
 | |
| {
 | |
| 	/* When not setting the initial value on all cpus, zero-fill element
 | |
| 	 * values for other cpus. Otherwise, bpf program has no way to ensure
 | |
| 	 * known initial values for cpus other than current one
 | |
| 	 * (onallcpus=false always when coming from bpf prog).
 | |
| 	 */
 | |
| 	if (!onallcpus) {
 | |
| 		int current_cpu = raw_smp_processor_id();
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			if (cpu == current_cpu)
 | |
| 				copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
 | |
| 			else /* Since elem is preallocated, we cannot touch special fields */
 | |
| 				zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
 | |
| 		}
 | |
| 	} else {
 | |
| 		pcpu_copy_value(htab, pptr, value, onallcpus);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
 | |
| {
 | |
| 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
 | |
| 	       BITS_PER_LONG == 64;
 | |
| }
 | |
| 
 | |
| static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
 | |
| 					 void *value, u32 key_size, u32 hash,
 | |
| 					 bool percpu, bool onallcpus,
 | |
| 					 struct htab_elem *old_elem)
 | |
| {
 | |
| 	u32 size = htab->map.value_size;
 | |
| 	bool prealloc = htab_is_prealloc(htab);
 | |
| 	struct htab_elem *l_new, **pl_new;
 | |
| 	void __percpu *pptr;
 | |
| 
 | |
| 	if (prealloc) {
 | |
| 		if (old_elem) {
 | |
| 			/* if we're updating the existing element,
 | |
| 			 * use per-cpu extra elems to avoid freelist_pop/push
 | |
| 			 */
 | |
| 			pl_new = this_cpu_ptr(htab->extra_elems);
 | |
| 			l_new = *pl_new;
 | |
| 			htab_put_fd_value(htab, old_elem);
 | |
| 			*pl_new = old_elem;
 | |
| 		} else {
 | |
| 			struct pcpu_freelist_node *l;
 | |
| 
 | |
| 			l = __pcpu_freelist_pop(&htab->freelist);
 | |
| 			if (!l)
 | |
| 				return ERR_PTR(-E2BIG);
 | |
| 			l_new = container_of(l, struct htab_elem, fnode);
 | |
| 			bpf_map_inc_elem_count(&htab->map);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (is_map_full(htab))
 | |
| 			if (!old_elem)
 | |
| 				/* when map is full and update() is replacing
 | |
| 				 * old element, it's ok to allocate, since
 | |
| 				 * old element will be freed immediately.
 | |
| 				 * Otherwise return an error
 | |
| 				 */
 | |
| 				return ERR_PTR(-E2BIG);
 | |
| 		inc_elem_count(htab);
 | |
| 		l_new = bpf_mem_cache_alloc(&htab->ma);
 | |
| 		if (!l_new) {
 | |
| 			l_new = ERR_PTR(-ENOMEM);
 | |
| 			goto dec_count;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memcpy(l_new->key, key, key_size);
 | |
| 	if (percpu) {
 | |
| 		if (prealloc) {
 | |
| 			pptr = htab_elem_get_ptr(l_new, key_size);
 | |
| 		} else {
 | |
| 			/* alloc_percpu zero-fills */
 | |
| 			pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
 | |
| 			if (!pptr) {
 | |
| 				bpf_mem_cache_free(&htab->ma, l_new);
 | |
| 				l_new = ERR_PTR(-ENOMEM);
 | |
| 				goto dec_count;
 | |
| 			}
 | |
| 			l_new->ptr_to_pptr = pptr;
 | |
| 			pptr = *(void **)pptr;
 | |
| 		}
 | |
| 
 | |
| 		pcpu_init_value(htab, pptr, value, onallcpus);
 | |
| 
 | |
| 		if (!prealloc)
 | |
| 			htab_elem_set_ptr(l_new, key_size, pptr);
 | |
| 	} else if (fd_htab_map_needs_adjust(htab)) {
 | |
| 		size = round_up(size, 8);
 | |
| 		memcpy(l_new->key + round_up(key_size, 8), value, size);
 | |
| 	} else {
 | |
| 		copy_map_value(&htab->map,
 | |
| 			       l_new->key + round_up(key_size, 8),
 | |
| 			       value);
 | |
| 	}
 | |
| 
 | |
| 	l_new->hash = hash;
 | |
| 	return l_new;
 | |
| dec_count:
 | |
| 	dec_elem_count(htab);
 | |
| 	return l_new;
 | |
| }
 | |
| 
 | |
| static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
 | |
| 		       u64 map_flags)
 | |
| {
 | |
| 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
 | |
| 		/* elem already exists */
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
 | |
| 		/* elem doesn't exist, cannot update it */
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called from syscall or from eBPF program */
 | |
| static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
 | |
| 				 u64 map_flags)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct htab_elem *l_new = NULL, *l_old;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	unsigned long flags;
 | |
| 	struct bucket *b;
 | |
| 	u32 key_size, hash;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
 | |
| 		/* unknown flags */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 | |
| 		     !rcu_read_lock_bh_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 
 | |
| 	b = __select_bucket(htab, hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	if (unlikely(map_flags & BPF_F_LOCK)) {
 | |
| 		if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
 | |
| 			return -EINVAL;
 | |
| 		/* find an element without taking the bucket lock */
 | |
| 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
 | |
| 					      htab->n_buckets);
 | |
| 		ret = check_flags(htab, l_old, map_flags);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		if (l_old) {
 | |
| 			/* grab the element lock and update value in place */
 | |
| 			copy_map_value_locked(map,
 | |
| 					      l_old->key + round_up(key_size, 8),
 | |
| 					      value, false);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		/* fall through, grab the bucket lock and lookup again.
 | |
| 		 * 99.9% chance that the element won't be found,
 | |
| 		 * but second lookup under lock has to be done.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, hash, &flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	l_old = lookup_elem_raw(head, hash, key, key_size);
 | |
| 
 | |
| 	ret = check_flags(htab, l_old, map_flags);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
 | |
| 		/* first lookup without the bucket lock didn't find the element,
 | |
| 		 * but second lookup with the bucket lock found it.
 | |
| 		 * This case is highly unlikely, but has to be dealt with:
 | |
| 		 * grab the element lock in addition to the bucket lock
 | |
| 		 * and update element in place
 | |
| 		 */
 | |
| 		copy_map_value_locked(map,
 | |
| 				      l_old->key + round_up(key_size, 8),
 | |
| 				      value, false);
 | |
| 		ret = 0;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
 | |
| 				l_old);
 | |
| 	if (IS_ERR(l_new)) {
 | |
| 		/* all pre-allocated elements are in use or memory exhausted */
 | |
| 		ret = PTR_ERR(l_new);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* add new element to the head of the list, so that
 | |
| 	 * concurrent search will find it before old elem
 | |
| 	 */
 | |
| 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
 | |
| 	if (l_old) {
 | |
| 		hlist_nulls_del_rcu(&l_old->hash_node);
 | |
| 		if (!htab_is_prealloc(htab))
 | |
| 			free_htab_elem(htab, l_old);
 | |
| 		else
 | |
| 			check_and_free_fields(htab, l_old);
 | |
| 	}
 | |
| 	ret = 0;
 | |
| err:
 | |
| 	htab_unlock_bucket(htab, b, hash, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
 | |
| {
 | |
| 	check_and_free_fields(htab, elem);
 | |
| 	bpf_map_dec_elem_count(&htab->map);
 | |
| 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
 | |
| }
 | |
| 
 | |
| static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
 | |
| 				     u64 map_flags)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct htab_elem *l_new, *l_old = NULL;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	unsigned long flags;
 | |
| 	struct bucket *b;
 | |
| 	u32 key_size, hash;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(map_flags > BPF_EXIST))
 | |
| 		/* unknown flags */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 | |
| 		     !rcu_read_lock_bh_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 
 | |
| 	b = __select_bucket(htab, hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	/* For LRU, we need to alloc before taking bucket's
 | |
| 	 * spinlock because getting free nodes from LRU may need
 | |
| 	 * to remove older elements from htab and this removal
 | |
| 	 * operation will need a bucket lock.
 | |
| 	 */
 | |
| 	l_new = prealloc_lru_pop(htab, key, hash);
 | |
| 	if (!l_new)
 | |
| 		return -ENOMEM;
 | |
| 	copy_map_value(&htab->map,
 | |
| 		       l_new->key + round_up(map->key_size, 8), value);
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, hash, &flags);
 | |
| 	if (ret)
 | |
| 		goto err_lock_bucket;
 | |
| 
 | |
| 	l_old = lookup_elem_raw(head, hash, key, key_size);
 | |
| 
 | |
| 	ret = check_flags(htab, l_old, map_flags);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* add new element to the head of the list, so that
 | |
| 	 * concurrent search will find it before old elem
 | |
| 	 */
 | |
| 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
 | |
| 	if (l_old) {
 | |
| 		bpf_lru_node_set_ref(&l_new->lru_node);
 | |
| 		hlist_nulls_del_rcu(&l_old->hash_node);
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 
 | |
| err:
 | |
| 	htab_unlock_bucket(htab, b, hash, flags);
 | |
| 
 | |
| err_lock_bucket:
 | |
| 	if (ret)
 | |
| 		htab_lru_push_free(htab, l_new);
 | |
| 	else if (l_old)
 | |
| 		htab_lru_push_free(htab, l_old);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
 | |
| 					  void *value, u64 map_flags,
 | |
| 					  bool onallcpus)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct htab_elem *l_new = NULL, *l_old;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	unsigned long flags;
 | |
| 	struct bucket *b;
 | |
| 	u32 key_size, hash;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(map_flags > BPF_EXIST))
 | |
| 		/* unknown flags */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 | |
| 		     !rcu_read_lock_bh_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 
 | |
| 	b = __select_bucket(htab, hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, hash, &flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	l_old = lookup_elem_raw(head, hash, key, key_size);
 | |
| 
 | |
| 	ret = check_flags(htab, l_old, map_flags);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (l_old) {
 | |
| 		/* per-cpu hash map can update value in-place */
 | |
| 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
 | |
| 				value, onallcpus);
 | |
| 	} else {
 | |
| 		l_new = alloc_htab_elem(htab, key, value, key_size,
 | |
| 					hash, true, onallcpus, NULL);
 | |
| 		if (IS_ERR(l_new)) {
 | |
| 			ret = PTR_ERR(l_new);
 | |
| 			goto err;
 | |
| 		}
 | |
| 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
 | |
| 	}
 | |
| 	ret = 0;
 | |
| err:
 | |
| 	htab_unlock_bucket(htab, b, hash, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
 | |
| 					      void *value, u64 map_flags,
 | |
| 					      bool onallcpus)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct htab_elem *l_new = NULL, *l_old;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	unsigned long flags;
 | |
| 	struct bucket *b;
 | |
| 	u32 key_size, hash;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(map_flags > BPF_EXIST))
 | |
| 		/* unknown flags */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 | |
| 		     !rcu_read_lock_bh_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 
 | |
| 	b = __select_bucket(htab, hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	/* For LRU, we need to alloc before taking bucket's
 | |
| 	 * spinlock because LRU's elem alloc may need
 | |
| 	 * to remove older elem from htab and this removal
 | |
| 	 * operation will need a bucket lock.
 | |
| 	 */
 | |
| 	if (map_flags != BPF_EXIST) {
 | |
| 		l_new = prealloc_lru_pop(htab, key, hash);
 | |
| 		if (!l_new)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, hash, &flags);
 | |
| 	if (ret)
 | |
| 		goto err_lock_bucket;
 | |
| 
 | |
| 	l_old = lookup_elem_raw(head, hash, key, key_size);
 | |
| 
 | |
| 	ret = check_flags(htab, l_old, map_flags);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (l_old) {
 | |
| 		bpf_lru_node_set_ref(&l_old->lru_node);
 | |
| 
 | |
| 		/* per-cpu hash map can update value in-place */
 | |
| 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
 | |
| 				value, onallcpus);
 | |
| 	} else {
 | |
| 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
 | |
| 				value, onallcpus);
 | |
| 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
 | |
| 		l_new = NULL;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| err:
 | |
| 	htab_unlock_bucket(htab, b, hash, flags);
 | |
| err_lock_bucket:
 | |
| 	if (l_new) {
 | |
| 		bpf_map_dec_elem_count(&htab->map);
 | |
| 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
 | |
| 					void *value, u64 map_flags)
 | |
| {
 | |
| 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
 | |
| }
 | |
| 
 | |
| static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
 | |
| 					    void *value, u64 map_flags)
 | |
| {
 | |
| 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
 | |
| 						 false);
 | |
| }
 | |
| 
 | |
| /* Called from syscall or from eBPF program */
 | |
| static long htab_map_delete_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct bucket *b;
 | |
| 	struct htab_elem *l;
 | |
| 	unsigned long flags;
 | |
| 	u32 hash, key_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 | |
| 		     !rcu_read_lock_bh_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 	b = __select_bucket(htab, hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, hash, &flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	l = lookup_elem_raw(head, hash, key, key_size);
 | |
| 
 | |
| 	if (l) {
 | |
| 		hlist_nulls_del_rcu(&l->hash_node);
 | |
| 		free_htab_elem(htab, l);
 | |
| 	} else {
 | |
| 		ret = -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	htab_unlock_bucket(htab, b, hash, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct bucket *b;
 | |
| 	struct htab_elem *l;
 | |
| 	unsigned long flags;
 | |
| 	u32 hash, key_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 | |
| 		     !rcu_read_lock_bh_held());
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 	b = __select_bucket(htab, hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, hash, &flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	l = lookup_elem_raw(head, hash, key, key_size);
 | |
| 
 | |
| 	if (l)
 | |
| 		hlist_nulls_del_rcu(&l->hash_node);
 | |
| 	else
 | |
| 		ret = -ENOENT;
 | |
| 
 | |
| 	htab_unlock_bucket(htab, b, hash, flags);
 | |
| 	if (l)
 | |
| 		htab_lru_push_free(htab, l);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void delete_all_elements(struct bpf_htab *htab)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* It's called from a worker thread, so disable migration here,
 | |
| 	 * since bpf_mem_cache_free() relies on that.
 | |
| 	 */
 | |
| 	migrate_disable();
 | |
| 	for (i = 0; i < htab->n_buckets; i++) {
 | |
| 		struct hlist_nulls_head *head = select_bucket(htab, i);
 | |
| 		struct hlist_nulls_node *n;
 | |
| 		struct htab_elem *l;
 | |
| 
 | |
| 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
 | |
| 			hlist_nulls_del_rcu(&l->hash_node);
 | |
| 			htab_elem_free(htab, l);
 | |
| 		}
 | |
| 	}
 | |
| 	migrate_enable();
 | |
| }
 | |
| 
 | |
| static void htab_free_malloced_timers(struct bpf_htab *htab)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0; i < htab->n_buckets; i++) {
 | |
| 		struct hlist_nulls_head *head = select_bucket(htab, i);
 | |
| 		struct hlist_nulls_node *n;
 | |
| 		struct htab_elem *l;
 | |
| 
 | |
| 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
 | |
| 			/* We only free timer on uref dropping to zero */
 | |
| 			bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
 | |
| 		}
 | |
| 		cond_resched_rcu();
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void htab_map_free_timers(struct bpf_map *map)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 
 | |
| 	/* We only free timer on uref dropping to zero */
 | |
| 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
 | |
| 		return;
 | |
| 	if (!htab_is_prealloc(htab))
 | |
| 		htab_free_malloced_timers(htab);
 | |
| 	else
 | |
| 		htab_free_prealloced_timers(htab);
 | |
| }
 | |
| 
 | |
| /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
 | |
| static void htab_map_free(struct bpf_map *map)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	int i;
 | |
| 
 | |
| 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
 | |
| 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
 | |
| 	 * There is no need to synchronize_rcu() here to protect map elements.
 | |
| 	 */
 | |
| 
 | |
| 	/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
 | |
| 	 * underneath and is reponsible for waiting for callbacks to finish
 | |
| 	 * during bpf_mem_alloc_destroy().
 | |
| 	 */
 | |
| 	if (!htab_is_prealloc(htab)) {
 | |
| 		delete_all_elements(htab);
 | |
| 	} else {
 | |
| 		htab_free_prealloced_fields(htab);
 | |
| 		prealloc_destroy(htab);
 | |
| 	}
 | |
| 
 | |
| 	bpf_map_free_elem_count(map);
 | |
| 	free_percpu(htab->extra_elems);
 | |
| 	bpf_map_area_free(htab->buckets);
 | |
| 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
 | |
| 	bpf_mem_alloc_destroy(&htab->ma);
 | |
| 	if (htab->use_percpu_counter)
 | |
| 		percpu_counter_destroy(&htab->pcount);
 | |
| 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
 | |
| 		free_percpu(htab->map_locked[i]);
 | |
| 	lockdep_unregister_key(&htab->lockdep_key);
 | |
| 	bpf_map_area_free(htab);
 | |
| }
 | |
| 
 | |
| static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
 | |
| 				   struct seq_file *m)
 | |
| {
 | |
| 	void *value;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	value = htab_map_lookup_elem(map, key);
 | |
| 	if (!value) {
 | |
| 		rcu_read_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
 | |
| 	seq_puts(m, ": ");
 | |
| 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
 | |
| 	seq_puts(m, "\n");
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
 | |
| 					     void *value, bool is_lru_map,
 | |
| 					     bool is_percpu, u64 flags)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	unsigned long bflags;
 | |
| 	struct htab_elem *l;
 | |
| 	u32 hash, key_size;
 | |
| 	struct bucket *b;
 | |
| 	int ret;
 | |
| 
 | |
| 	key_size = map->key_size;
 | |
| 
 | |
| 	hash = htab_map_hash(key, key_size, htab->hashrnd);
 | |
| 	b = __select_bucket(htab, hash);
 | |
| 	head = &b->head;
 | |
| 
 | |
| 	ret = htab_lock_bucket(htab, b, hash, &bflags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	l = lookup_elem_raw(head, hash, key, key_size);
 | |
| 	if (!l) {
 | |
| 		ret = -ENOENT;
 | |
| 	} else {
 | |
| 		if (is_percpu) {
 | |
| 			u32 roundup_value_size = round_up(map->value_size, 8);
 | |
| 			void __percpu *pptr;
 | |
| 			int off = 0, cpu;
 | |
| 
 | |
| 			pptr = htab_elem_get_ptr(l, key_size);
 | |
| 			for_each_possible_cpu(cpu) {
 | |
| 				copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
 | |
| 				check_and_init_map_value(&htab->map, value + off);
 | |
| 				off += roundup_value_size;
 | |
| 			}
 | |
| 		} else {
 | |
| 			u32 roundup_key_size = round_up(map->key_size, 8);
 | |
| 
 | |
| 			if (flags & BPF_F_LOCK)
 | |
| 				copy_map_value_locked(map, value, l->key +
 | |
| 						      roundup_key_size,
 | |
| 						      true);
 | |
| 			else
 | |
| 				copy_map_value(map, value, l->key +
 | |
| 					       roundup_key_size);
 | |
| 			/* Zeroing special fields in the temp buffer */
 | |
| 			check_and_init_map_value(map, value);
 | |
| 		}
 | |
| 
 | |
| 		hlist_nulls_del_rcu(&l->hash_node);
 | |
| 		if (!is_lru_map)
 | |
| 			free_htab_elem(htab, l);
 | |
| 	}
 | |
| 
 | |
| 	htab_unlock_bucket(htab, b, hash, bflags);
 | |
| 
 | |
| 	if (is_lru_map && l)
 | |
| 		htab_lru_push_free(htab, l);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
 | |
| 					   void *value, u64 flags)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
 | |
| 						 flags);
 | |
| }
 | |
| 
 | |
| static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
 | |
| 						  void *key, void *value,
 | |
| 						  u64 flags)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
 | |
| 						 flags);
 | |
| }
 | |
| 
 | |
| static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
 | |
| 					       void *value, u64 flags)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
 | |
| 						 flags);
 | |
| }
 | |
| 
 | |
| static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
 | |
| 						      void *key, void *value,
 | |
| 						      u64 flags)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
 | |
| 						 flags);
 | |
| }
 | |
| 
 | |
| static int
 | |
| __htab_map_lookup_and_delete_batch(struct bpf_map *map,
 | |
| 				   const union bpf_attr *attr,
 | |
| 				   union bpf_attr __user *uattr,
 | |
| 				   bool do_delete, bool is_lru_map,
 | |
| 				   bool is_percpu)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
 | |
| 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
 | |
| 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
 | |
| 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
 | |
| 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
 | |
| 	u32 batch, max_count, size, bucket_size, map_id;
 | |
| 	struct htab_elem *node_to_free = NULL;
 | |
| 	u64 elem_map_flags, map_flags;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct hlist_nulls_node *n;
 | |
| 	unsigned long flags = 0;
 | |
| 	bool locked = false;
 | |
| 	struct htab_elem *l;
 | |
| 	struct bucket *b;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	elem_map_flags = attr->batch.elem_flags;
 | |
| 	if ((elem_map_flags & ~BPF_F_LOCK) ||
 | |
| 	    ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	map_flags = attr->batch.flags;
 | |
| 	if (map_flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	max_count = attr->batch.count;
 | |
| 	if (!max_count)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (put_user(0, &uattr->batch.count))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	batch = 0;
 | |
| 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (batch >= htab->n_buckets)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	key_size = htab->map.key_size;
 | |
| 	roundup_key_size = round_up(htab->map.key_size, 8);
 | |
| 	value_size = htab->map.value_size;
 | |
| 	size = round_up(value_size, 8);
 | |
| 	if (is_percpu)
 | |
| 		value_size = size * num_possible_cpus();
 | |
| 	total = 0;
 | |
| 	/* while experimenting with hash tables with sizes ranging from 10 to
 | |
| 	 * 1000, it was observed that a bucket can have up to 5 entries.
 | |
| 	 */
 | |
| 	bucket_size = 5;
 | |
| 
 | |
| alloc:
 | |
| 	/* We cannot do copy_from_user or copy_to_user inside
 | |
| 	 * the rcu_read_lock. Allocate enough space here.
 | |
| 	 */
 | |
| 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
 | |
| 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
 | |
| 	if (!keys || !values) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto after_loop;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	bpf_disable_instrumentation();
 | |
| 	rcu_read_lock();
 | |
| again_nocopy:
 | |
| 	dst_key = keys;
 | |
| 	dst_val = values;
 | |
| 	b = &htab->buckets[batch];
 | |
| 	head = &b->head;
 | |
| 	/* do not grab the lock unless need it (bucket_cnt > 0). */
 | |
| 	if (locked) {
 | |
| 		ret = htab_lock_bucket(htab, b, batch, &flags);
 | |
| 		if (ret) {
 | |
| 			rcu_read_unlock();
 | |
| 			bpf_enable_instrumentation();
 | |
| 			goto after_loop;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bucket_cnt = 0;
 | |
| 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 | |
| 		bucket_cnt++;
 | |
| 
 | |
| 	if (bucket_cnt && !locked) {
 | |
| 		locked = true;
 | |
| 		goto again_nocopy;
 | |
| 	}
 | |
| 
 | |
| 	if (bucket_cnt > (max_count - total)) {
 | |
| 		if (total == 0)
 | |
| 			ret = -ENOSPC;
 | |
| 		/* Note that since bucket_cnt > 0 here, it is implicit
 | |
| 		 * that the locked was grabbed, so release it.
 | |
| 		 */
 | |
| 		htab_unlock_bucket(htab, b, batch, flags);
 | |
| 		rcu_read_unlock();
 | |
| 		bpf_enable_instrumentation();
 | |
| 		goto after_loop;
 | |
| 	}
 | |
| 
 | |
| 	if (bucket_cnt > bucket_size) {
 | |
| 		bucket_size = bucket_cnt;
 | |
| 		/* Note that since bucket_cnt > 0 here, it is implicit
 | |
| 		 * that the locked was grabbed, so release it.
 | |
| 		 */
 | |
| 		htab_unlock_bucket(htab, b, batch, flags);
 | |
| 		rcu_read_unlock();
 | |
| 		bpf_enable_instrumentation();
 | |
| 		kvfree(keys);
 | |
| 		kvfree(values);
 | |
| 		goto alloc;
 | |
| 	}
 | |
| 
 | |
| 	/* Next block is only safe to run if you have grabbed the lock */
 | |
| 	if (!locked)
 | |
| 		goto next_batch;
 | |
| 
 | |
| 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
 | |
| 		memcpy(dst_key, l->key, key_size);
 | |
| 
 | |
| 		if (is_percpu) {
 | |
| 			int off = 0, cpu;
 | |
| 			void __percpu *pptr;
 | |
| 
 | |
| 			pptr = htab_elem_get_ptr(l, map->key_size);
 | |
| 			for_each_possible_cpu(cpu) {
 | |
| 				copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
 | |
| 				check_and_init_map_value(&htab->map, dst_val + off);
 | |
| 				off += size;
 | |
| 			}
 | |
| 		} else {
 | |
| 			value = l->key + roundup_key_size;
 | |
| 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
 | |
| 				struct bpf_map **inner_map = value;
 | |
| 
 | |
| 				 /* Actual value is the id of the inner map */
 | |
| 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
 | |
| 				value = &map_id;
 | |
| 			}
 | |
| 
 | |
| 			if (elem_map_flags & BPF_F_LOCK)
 | |
| 				copy_map_value_locked(map, dst_val, value,
 | |
| 						      true);
 | |
| 			else
 | |
| 				copy_map_value(map, dst_val, value);
 | |
| 			/* Zeroing special fields in the temp buffer */
 | |
| 			check_and_init_map_value(map, dst_val);
 | |
| 		}
 | |
| 		if (do_delete) {
 | |
| 			hlist_nulls_del_rcu(&l->hash_node);
 | |
| 
 | |
| 			/* bpf_lru_push_free() will acquire lru_lock, which
 | |
| 			 * may cause deadlock. See comments in function
 | |
| 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
 | |
| 			 * after releasing the bucket lock.
 | |
| 			 */
 | |
| 			if (is_lru_map) {
 | |
| 				l->batch_flink = node_to_free;
 | |
| 				node_to_free = l;
 | |
| 			} else {
 | |
| 				free_htab_elem(htab, l);
 | |
| 			}
 | |
| 		}
 | |
| 		dst_key += key_size;
 | |
| 		dst_val += value_size;
 | |
| 	}
 | |
| 
 | |
| 	htab_unlock_bucket(htab, b, batch, flags);
 | |
| 	locked = false;
 | |
| 
 | |
| 	while (node_to_free) {
 | |
| 		l = node_to_free;
 | |
| 		node_to_free = node_to_free->batch_flink;
 | |
| 		htab_lru_push_free(htab, l);
 | |
| 	}
 | |
| 
 | |
| next_batch:
 | |
| 	/* If we are not copying data, we can go to next bucket and avoid
 | |
| 	 * unlocking the rcu.
 | |
| 	 */
 | |
| 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
 | |
| 		batch++;
 | |
| 		goto again_nocopy;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 	bpf_enable_instrumentation();
 | |
| 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
 | |
| 	    key_size * bucket_cnt) ||
 | |
| 	    copy_to_user(uvalues + total * value_size, values,
 | |
| 	    value_size * bucket_cnt))) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto after_loop;
 | |
| 	}
 | |
| 
 | |
| 	total += bucket_cnt;
 | |
| 	batch++;
 | |
| 	if (batch >= htab->n_buckets) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto after_loop;
 | |
| 	}
 | |
| 	goto again;
 | |
| 
 | |
| after_loop:
 | |
| 	if (ret == -EFAULT)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* copy # of entries and next batch */
 | |
| 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
 | |
| 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
 | |
| 	    put_user(total, &uattr->batch.count))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| out:
 | |
| 	kvfree(keys);
 | |
| 	kvfree(values);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
 | |
| 			     union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
 | |
| 						  false, true);
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
 | |
| 					const union bpf_attr *attr,
 | |
| 					union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
 | |
| 						  false, true);
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
 | |
| 		      union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
 | |
| 						  false, false);
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_map_lookup_and_delete_batch(struct bpf_map *map,
 | |
| 				 const union bpf_attr *attr,
 | |
| 				 union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
 | |
| 						  false, false);
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
 | |
| 				 const union bpf_attr *attr,
 | |
| 				 union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
 | |
| 						  true, true);
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
 | |
| 					    const union bpf_attr *attr,
 | |
| 					    union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
 | |
| 						  true, true);
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
 | |
| 			  union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
 | |
| 						  true, false);
 | |
| }
 | |
| 
 | |
| static int
 | |
| htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
 | |
| 				     const union bpf_attr *attr,
 | |
| 				     union bpf_attr __user *uattr)
 | |
| {
 | |
| 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
 | |
| 						  true, false);
 | |
| }
 | |
| 
 | |
| struct bpf_iter_seq_hash_map_info {
 | |
| 	struct bpf_map *map;
 | |
| 	struct bpf_htab *htab;
 | |
| 	void *percpu_value_buf; // non-zero means percpu hash
 | |
| 	u32 bucket_id;
 | |
| 	u32 skip_elems;
 | |
| };
 | |
| 
 | |
| static struct htab_elem *
 | |
| bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
 | |
| 			   struct htab_elem *prev_elem)
 | |
| {
 | |
| 	const struct bpf_htab *htab = info->htab;
 | |
| 	u32 skip_elems = info->skip_elems;
 | |
| 	u32 bucket_id = info->bucket_id;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct hlist_nulls_node *n;
 | |
| 	struct htab_elem *elem;
 | |
| 	struct bucket *b;
 | |
| 	u32 i, count;
 | |
| 
 | |
| 	if (bucket_id >= htab->n_buckets)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* try to find next elem in the same bucket */
 | |
| 	if (prev_elem) {
 | |
| 		/* no update/deletion on this bucket, prev_elem should be still valid
 | |
| 		 * and we won't skip elements.
 | |
| 		 */
 | |
| 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
 | |
| 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
 | |
| 		if (elem)
 | |
| 			return elem;
 | |
| 
 | |
| 		/* not found, unlock and go to the next bucket */
 | |
| 		b = &htab->buckets[bucket_id++];
 | |
| 		rcu_read_unlock();
 | |
| 		skip_elems = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = bucket_id; i < htab->n_buckets; i++) {
 | |
| 		b = &htab->buckets[i];
 | |
| 		rcu_read_lock();
 | |
| 
 | |
| 		count = 0;
 | |
| 		head = &b->head;
 | |
| 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
 | |
| 			if (count >= skip_elems) {
 | |
| 				info->bucket_id = i;
 | |
| 				info->skip_elems = count;
 | |
| 				return elem;
 | |
| 			}
 | |
| 			count++;
 | |
| 		}
 | |
| 
 | |
| 		rcu_read_unlock();
 | |
| 		skip_elems = 0;
 | |
| 	}
 | |
| 
 | |
| 	info->bucket_id = i;
 | |
| 	info->skip_elems = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct bpf_iter_seq_hash_map_info *info = seq->private;
 | |
| 	struct htab_elem *elem;
 | |
| 
 | |
| 	elem = bpf_hash_map_seq_find_next(info, NULL);
 | |
| 	if (!elem)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (*pos == 0)
 | |
| 		++*pos;
 | |
| 	return elem;
 | |
| }
 | |
| 
 | |
| static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct bpf_iter_seq_hash_map_info *info = seq->private;
 | |
| 
 | |
| 	++*pos;
 | |
| 	++info->skip_elems;
 | |
| 	return bpf_hash_map_seq_find_next(info, v);
 | |
| }
 | |
| 
 | |
| static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
 | |
| {
 | |
| 	struct bpf_iter_seq_hash_map_info *info = seq->private;
 | |
| 	u32 roundup_key_size, roundup_value_size;
 | |
| 	struct bpf_iter__bpf_map_elem ctx = {};
 | |
| 	struct bpf_map *map = info->map;
 | |
| 	struct bpf_iter_meta meta;
 | |
| 	int ret = 0, off = 0, cpu;
 | |
| 	struct bpf_prog *prog;
 | |
| 	void __percpu *pptr;
 | |
| 
 | |
| 	meta.seq = seq;
 | |
| 	prog = bpf_iter_get_info(&meta, elem == NULL);
 | |
| 	if (prog) {
 | |
| 		ctx.meta = &meta;
 | |
| 		ctx.map = info->map;
 | |
| 		if (elem) {
 | |
| 			roundup_key_size = round_up(map->key_size, 8);
 | |
| 			ctx.key = elem->key;
 | |
| 			if (!info->percpu_value_buf) {
 | |
| 				ctx.value = elem->key + roundup_key_size;
 | |
| 			} else {
 | |
| 				roundup_value_size = round_up(map->value_size, 8);
 | |
| 				pptr = htab_elem_get_ptr(elem, map->key_size);
 | |
| 				for_each_possible_cpu(cpu) {
 | |
| 					copy_map_value_long(map, info->percpu_value_buf + off,
 | |
| 							    per_cpu_ptr(pptr, cpu));
 | |
| 					check_and_init_map_value(map, info->percpu_value_buf + off);
 | |
| 					off += roundup_value_size;
 | |
| 				}
 | |
| 				ctx.value = info->percpu_value_buf;
 | |
| 			}
 | |
| 		}
 | |
| 		ret = bpf_iter_run_prog(prog, &ctx);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	return __bpf_hash_map_seq_show(seq, v);
 | |
| }
 | |
| 
 | |
| static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	if (!v)
 | |
| 		(void)__bpf_hash_map_seq_show(seq, NULL);
 | |
| 	else
 | |
| 		rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int bpf_iter_init_hash_map(void *priv_data,
 | |
| 				  struct bpf_iter_aux_info *aux)
 | |
| {
 | |
| 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
 | |
| 	struct bpf_map *map = aux->map;
 | |
| 	void *value_buf;
 | |
| 	u32 buf_size;
 | |
| 
 | |
| 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 | |
| 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
 | |
| 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
 | |
| 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
 | |
| 		if (!value_buf)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		seq_info->percpu_value_buf = value_buf;
 | |
| 	}
 | |
| 
 | |
| 	bpf_map_inc_with_uref(map);
 | |
| 	seq_info->map = map;
 | |
| 	seq_info->htab = container_of(map, struct bpf_htab, map);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bpf_iter_fini_hash_map(void *priv_data)
 | |
| {
 | |
| 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
 | |
| 
 | |
| 	bpf_map_put_with_uref(seq_info->map);
 | |
| 	kfree(seq_info->percpu_value_buf);
 | |
| }
 | |
| 
 | |
| static const struct seq_operations bpf_hash_map_seq_ops = {
 | |
| 	.start	= bpf_hash_map_seq_start,
 | |
| 	.next	= bpf_hash_map_seq_next,
 | |
| 	.stop	= bpf_hash_map_seq_stop,
 | |
| 	.show	= bpf_hash_map_seq_show,
 | |
| };
 | |
| 
 | |
| static const struct bpf_iter_seq_info iter_seq_info = {
 | |
| 	.seq_ops		= &bpf_hash_map_seq_ops,
 | |
| 	.init_seq_private	= bpf_iter_init_hash_map,
 | |
| 	.fini_seq_private	= bpf_iter_fini_hash_map,
 | |
| 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
 | |
| };
 | |
| 
 | |
| static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
 | |
| 				   void *callback_ctx, u64 flags)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct hlist_nulls_node *n;
 | |
| 	struct htab_elem *elem;
 | |
| 	u32 roundup_key_size;
 | |
| 	int i, num_elems = 0;
 | |
| 	void __percpu *pptr;
 | |
| 	struct bucket *b;
 | |
| 	void *key, *val;
 | |
| 	bool is_percpu;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	if (flags != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	is_percpu = htab_is_percpu(htab);
 | |
| 
 | |
| 	roundup_key_size = round_up(map->key_size, 8);
 | |
| 	/* disable migration so percpu value prepared here will be the
 | |
| 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
 | |
| 	 */
 | |
| 	if (is_percpu)
 | |
| 		migrate_disable();
 | |
| 	for (i = 0; i < htab->n_buckets; i++) {
 | |
| 		b = &htab->buckets[i];
 | |
| 		rcu_read_lock();
 | |
| 		head = &b->head;
 | |
| 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
 | |
| 			key = elem->key;
 | |
| 			if (is_percpu) {
 | |
| 				/* current cpu value for percpu map */
 | |
| 				pptr = htab_elem_get_ptr(elem, map->key_size);
 | |
| 				val = this_cpu_ptr(pptr);
 | |
| 			} else {
 | |
| 				val = elem->key + roundup_key_size;
 | |
| 			}
 | |
| 			num_elems++;
 | |
| 			ret = callback_fn((u64)(long)map, (u64)(long)key,
 | |
| 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
 | |
| 			/* return value: 0 - continue, 1 - stop and return */
 | |
| 			if (ret) {
 | |
| 				rcu_read_unlock();
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| out:
 | |
| 	if (is_percpu)
 | |
| 		migrate_enable();
 | |
| 	return num_elems;
 | |
| }
 | |
| 
 | |
| static u64 htab_map_mem_usage(const struct bpf_map *map)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	u32 value_size = round_up(htab->map.value_size, 8);
 | |
| 	bool prealloc = htab_is_prealloc(htab);
 | |
| 	bool percpu = htab_is_percpu(htab);
 | |
| 	bool lru = htab_is_lru(htab);
 | |
| 	u64 num_entries;
 | |
| 	u64 usage = sizeof(struct bpf_htab);
 | |
| 
 | |
| 	usage += sizeof(struct bucket) * htab->n_buckets;
 | |
| 	usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
 | |
| 	if (prealloc) {
 | |
| 		num_entries = map->max_entries;
 | |
| 		if (htab_has_extra_elems(htab))
 | |
| 			num_entries += num_possible_cpus();
 | |
| 
 | |
| 		usage += htab->elem_size * num_entries;
 | |
| 
 | |
| 		if (percpu)
 | |
| 			usage += value_size * num_possible_cpus() * num_entries;
 | |
| 		else if (!lru)
 | |
| 			usage += sizeof(struct htab_elem *) * num_possible_cpus();
 | |
| 	} else {
 | |
| #define LLIST_NODE_SZ sizeof(struct llist_node)
 | |
| 
 | |
| 		num_entries = htab->use_percpu_counter ?
 | |
| 					  percpu_counter_sum(&htab->pcount) :
 | |
| 					  atomic_read(&htab->count);
 | |
| 		usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
 | |
| 		if (percpu) {
 | |
| 			usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
 | |
| 			usage += value_size * num_possible_cpus() * num_entries;
 | |
| 		}
 | |
| 	}
 | |
| 	return usage;
 | |
| }
 | |
| 
 | |
| BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
 | |
| const struct bpf_map_ops htab_map_ops = {
 | |
| 	.map_meta_equal = bpf_map_meta_equal,
 | |
| 	.map_alloc_check = htab_map_alloc_check,
 | |
| 	.map_alloc = htab_map_alloc,
 | |
| 	.map_free = htab_map_free,
 | |
| 	.map_get_next_key = htab_map_get_next_key,
 | |
| 	.map_release_uref = htab_map_free_timers,
 | |
| 	.map_lookup_elem = htab_map_lookup_elem,
 | |
| 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
 | |
| 	.map_update_elem = htab_map_update_elem,
 | |
| 	.map_delete_elem = htab_map_delete_elem,
 | |
| 	.map_gen_lookup = htab_map_gen_lookup,
 | |
| 	.map_seq_show_elem = htab_map_seq_show_elem,
 | |
| 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
 | |
| 	.map_for_each_callback = bpf_for_each_hash_elem,
 | |
| 	.map_mem_usage = htab_map_mem_usage,
 | |
| 	BATCH_OPS(htab),
 | |
| 	.map_btf_id = &htab_map_btf_ids[0],
 | |
| 	.iter_seq_info = &iter_seq_info,
 | |
| };
 | |
| 
 | |
| const struct bpf_map_ops htab_lru_map_ops = {
 | |
| 	.map_meta_equal = bpf_map_meta_equal,
 | |
| 	.map_alloc_check = htab_map_alloc_check,
 | |
| 	.map_alloc = htab_map_alloc,
 | |
| 	.map_free = htab_map_free,
 | |
| 	.map_get_next_key = htab_map_get_next_key,
 | |
| 	.map_release_uref = htab_map_free_timers,
 | |
| 	.map_lookup_elem = htab_lru_map_lookup_elem,
 | |
| 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
 | |
| 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
 | |
| 	.map_update_elem = htab_lru_map_update_elem,
 | |
| 	.map_delete_elem = htab_lru_map_delete_elem,
 | |
| 	.map_gen_lookup = htab_lru_map_gen_lookup,
 | |
| 	.map_seq_show_elem = htab_map_seq_show_elem,
 | |
| 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
 | |
| 	.map_for_each_callback = bpf_for_each_hash_elem,
 | |
| 	.map_mem_usage = htab_map_mem_usage,
 | |
| 	BATCH_OPS(htab_lru),
 | |
| 	.map_btf_id = &htab_map_btf_ids[0],
 | |
| 	.iter_seq_info = &iter_seq_info,
 | |
| };
 | |
| 
 | |
| /* Called from eBPF program */
 | |
| static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 | |
| 
 | |
| 	if (l)
 | |
| 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
 | |
| 	else
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
 | |
| {
 | |
| 	struct htab_elem *l;
 | |
| 
 | |
| 	if (cpu >= nr_cpu_ids)
 | |
| 		return NULL;
 | |
| 
 | |
| 	l = __htab_map_lookup_elem(map, key);
 | |
| 	if (l)
 | |
| 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
 | |
| 	else
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 | |
| 
 | |
| 	if (l) {
 | |
| 		bpf_lru_node_set_ref(&l->lru_node);
 | |
| 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
 | |
| {
 | |
| 	struct htab_elem *l;
 | |
| 
 | |
| 	if (cpu >= nr_cpu_ids)
 | |
| 		return NULL;
 | |
| 
 | |
| 	l = __htab_map_lookup_elem(map, key);
 | |
| 	if (l) {
 | |
| 		bpf_lru_node_set_ref(&l->lru_node);
 | |
| 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
 | |
| {
 | |
| 	struct htab_elem *l;
 | |
| 	void __percpu *pptr;
 | |
| 	int ret = -ENOENT;
 | |
| 	int cpu, off = 0;
 | |
| 	u32 size;
 | |
| 
 | |
| 	/* per_cpu areas are zero-filled and bpf programs can only
 | |
| 	 * access 'value_size' of them, so copying rounded areas
 | |
| 	 * will not leak any kernel data
 | |
| 	 */
 | |
| 	size = round_up(map->value_size, 8);
 | |
| 	rcu_read_lock();
 | |
| 	l = __htab_map_lookup_elem(map, key);
 | |
| 	if (!l)
 | |
| 		goto out;
 | |
| 	/* We do not mark LRU map element here in order to not mess up
 | |
| 	 * eviction heuristics when user space does a map walk.
 | |
| 	 */
 | |
| 	pptr = htab_elem_get_ptr(l, map->key_size);
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
 | |
| 		check_and_init_map_value(map, value + off);
 | |
| 		off += size;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
 | |
| 			   u64 map_flags)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (htab_is_lru(htab))
 | |
| 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
 | |
| 							map_flags, true);
 | |
| 	else
 | |
| 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
 | |
| 						    true);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
 | |
| 					  struct seq_file *m)
 | |
| {
 | |
| 	struct htab_elem *l;
 | |
| 	void __percpu *pptr;
 | |
| 	int cpu;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	l = __htab_map_lookup_elem(map, key);
 | |
| 	if (!l) {
 | |
| 		rcu_read_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
 | |
| 	seq_puts(m, ": {\n");
 | |
| 	pptr = htab_elem_get_ptr(l, map->key_size);
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		seq_printf(m, "\tcpu%d: ", cpu);
 | |
| 		btf_type_seq_show(map->btf, map->btf_value_type_id,
 | |
| 				  per_cpu_ptr(pptr, cpu), m);
 | |
| 		seq_puts(m, "\n");
 | |
| 	}
 | |
| 	seq_puts(m, "}\n");
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| const struct bpf_map_ops htab_percpu_map_ops = {
 | |
| 	.map_meta_equal = bpf_map_meta_equal,
 | |
| 	.map_alloc_check = htab_map_alloc_check,
 | |
| 	.map_alloc = htab_map_alloc,
 | |
| 	.map_free = htab_map_free,
 | |
| 	.map_get_next_key = htab_map_get_next_key,
 | |
| 	.map_lookup_elem = htab_percpu_map_lookup_elem,
 | |
| 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
 | |
| 	.map_update_elem = htab_percpu_map_update_elem,
 | |
| 	.map_delete_elem = htab_map_delete_elem,
 | |
| 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
 | |
| 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
 | |
| 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
 | |
| 	.map_for_each_callback = bpf_for_each_hash_elem,
 | |
| 	.map_mem_usage = htab_map_mem_usage,
 | |
| 	BATCH_OPS(htab_percpu),
 | |
| 	.map_btf_id = &htab_map_btf_ids[0],
 | |
| 	.iter_seq_info = &iter_seq_info,
 | |
| };
 | |
| 
 | |
| const struct bpf_map_ops htab_lru_percpu_map_ops = {
 | |
| 	.map_meta_equal = bpf_map_meta_equal,
 | |
| 	.map_alloc_check = htab_map_alloc_check,
 | |
| 	.map_alloc = htab_map_alloc,
 | |
| 	.map_free = htab_map_free,
 | |
| 	.map_get_next_key = htab_map_get_next_key,
 | |
| 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
 | |
| 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
 | |
| 	.map_update_elem = htab_lru_percpu_map_update_elem,
 | |
| 	.map_delete_elem = htab_lru_map_delete_elem,
 | |
| 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
 | |
| 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
 | |
| 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
 | |
| 	.map_for_each_callback = bpf_for_each_hash_elem,
 | |
| 	.map_mem_usage = htab_map_mem_usage,
 | |
| 	BATCH_OPS(htab_lru_percpu),
 | |
| 	.map_btf_id = &htab_map_btf_ids[0],
 | |
| 	.iter_seq_info = &iter_seq_info,
 | |
| };
 | |
| 
 | |
| static int fd_htab_map_alloc_check(union bpf_attr *attr)
 | |
| {
 | |
| 	if (attr->value_size != sizeof(u32))
 | |
| 		return -EINVAL;
 | |
| 	return htab_map_alloc_check(attr);
 | |
| }
 | |
| 
 | |
| static void fd_htab_map_free(struct bpf_map *map)
 | |
| {
 | |
| 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 | |
| 	struct hlist_nulls_node *n;
 | |
| 	struct hlist_nulls_head *head;
 | |
| 	struct htab_elem *l;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < htab->n_buckets; i++) {
 | |
| 		head = select_bucket(htab, i);
 | |
| 
 | |
| 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
 | |
| 			void *ptr = fd_htab_map_get_ptr(map, l);
 | |
| 
 | |
| 			map->ops->map_fd_put_ptr(map, ptr, false);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	htab_map_free(map);
 | |
| }
 | |
| 
 | |
| /* only called from syscall */
 | |
| int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
 | |
| {
 | |
| 	void **ptr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!map->ops->map_fd_sys_lookup_elem)
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ptr = htab_map_lookup_elem(map, key);
 | |
| 	if (ptr)
 | |
| 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
 | |
| 	else
 | |
| 		ret = -ENOENT;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* only called from syscall */
 | |
| int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
 | |
| 				void *key, void *value, u64 map_flags)
 | |
| {
 | |
| 	void *ptr;
 | |
| 	int ret;
 | |
| 	u32 ufd = *(u32 *)value;
 | |
| 
 | |
| 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
 | |
| 	if (IS_ERR(ptr))
 | |
| 		return PTR_ERR(ptr);
 | |
| 
 | |
| 	/* The htab bucket lock is always held during update operations in fd
 | |
| 	 * htab map, and the following rcu_read_lock() is only used to avoid
 | |
| 	 * the WARN_ON_ONCE in htab_map_update_elem().
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
 | |
| 	rcu_read_unlock();
 | |
| 	if (ret)
 | |
| 		map->ops->map_fd_put_ptr(map, ptr, false);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
 | |
| {
 | |
| 	struct bpf_map *map, *inner_map_meta;
 | |
| 
 | |
| 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
 | |
| 	if (IS_ERR(inner_map_meta))
 | |
| 		return inner_map_meta;
 | |
| 
 | |
| 	map = htab_map_alloc(attr);
 | |
| 	if (IS_ERR(map)) {
 | |
| 		bpf_map_meta_free(inner_map_meta);
 | |
| 		return map;
 | |
| 	}
 | |
| 
 | |
| 	map->inner_map_meta = inner_map_meta;
 | |
| 
 | |
| 	return map;
 | |
| }
 | |
| 
 | |
| static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
 | |
| 
 | |
| 	if (!inner_map)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return READ_ONCE(*inner_map);
 | |
| }
 | |
| 
 | |
| static int htab_of_map_gen_lookup(struct bpf_map *map,
 | |
| 				  struct bpf_insn *insn_buf)
 | |
| {
 | |
| 	struct bpf_insn *insn = insn_buf;
 | |
| 	const int ret = BPF_REG_0;
 | |
| 
 | |
| 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 | |
| 		     (void *(*)(struct bpf_map *map, void *key))NULL));
 | |
| 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
 | |
| 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
 | |
| 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 | |
| 				offsetof(struct htab_elem, key) +
 | |
| 				round_up(map->key_size, 8));
 | |
| 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
 | |
| 
 | |
| 	return insn - insn_buf;
 | |
| }
 | |
| 
 | |
| static void htab_of_map_free(struct bpf_map *map)
 | |
| {
 | |
| 	bpf_map_meta_free(map->inner_map_meta);
 | |
| 	fd_htab_map_free(map);
 | |
| }
 | |
| 
 | |
| const struct bpf_map_ops htab_of_maps_map_ops = {
 | |
| 	.map_alloc_check = fd_htab_map_alloc_check,
 | |
| 	.map_alloc = htab_of_map_alloc,
 | |
| 	.map_free = htab_of_map_free,
 | |
| 	.map_get_next_key = htab_map_get_next_key,
 | |
| 	.map_lookup_elem = htab_of_map_lookup_elem,
 | |
| 	.map_delete_elem = htab_map_delete_elem,
 | |
| 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
 | |
| 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
 | |
| 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
 | |
| 	.map_gen_lookup = htab_of_map_gen_lookup,
 | |
| 	.map_check_btf = map_check_no_btf,
 | |
| 	.map_mem_usage = htab_map_mem_usage,
 | |
| 	BATCH_OPS(htab),
 | |
| 	.map_btf_id = &htab_map_btf_ids[0],
 | |
| };
 |