2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/tools/perf/util/annotate-data.h
Namhyung Kim eb8a55e01d perf annotate-data: Implement instruction tracking
If it failed to find a variable for the location directly, it might be
due to a missing variable in the source code.  For example, accessing
pointer variables in a chain can result in the case like below:

  struct foo *foo = ...;

  int i = foo->bar->baz;

The DWARF debug information is created for each variable so it'd have
one for 'foo'.  But there's no variable for 'foo->bar' and then it
cannot know the type of 'bar' and 'baz'.

The above source code can be compiled to the follow x86 instructions:

  mov  0x8(%rax), %rcx
  mov  0x4(%rcx), %rdx   <=== PMU sample
  mov  %rdx, -4(%rbp)

Let's say 'foo' is located in the %rax and it has a pointer to struct
foo.  But perf sample is captured in the second instruction and there
is no variable or type info for the %rcx.

It'd be great if compiler could generate debug info for %rcx, but we
should handle it on our side.  So this patch implements the logic to
iterate instructions and update the type table for each location.

As it already collected a list of scopes including the target
instruction, we can use it to construct the type table smartly.

  +----------------  scope[0] subprogram
  |
  | +--------------  scope[1] lexical_block
  | |
  | | +------------  scope[2] inlined_subroutine
  | | |
  | | | +----------  scope[3] inlined_subroutine
  | | | |
  | | | | +--------  scope[4] lexical_block
  | | | | |
  | | | | |     ***  target instruction
  ...

Image the target instruction has 5 scopes, each scope will have its own
variables and parameters.  Then it can start with the innermost scope
(4).  So it'd search the shortest path from the start of scope[4] to
the target address and build a list of basic blocks.  Then it iterates
the basic blocks with the variables in the scope and update the table.
If it finds a type at the target instruction, then returns it.

Otherwise, it moves to the upper scope[3].  Now it'd search the shortest
path from the start of scope[3] to the start of scope[4].  Then connect
it to the existing basic block list.  Then it'd iterate the blocks with
variables for both scopes.  It can repeat this until it finds a type at
the target instruction or reaches to the top scope[0].

As the basic blocks contain the shortest path, it won't worry about
branches and can update the table simply.

The final check will be done by find_matching_type() in the next patch.

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: https://lore.kernel.org/r/20240319055115.4063940-15-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-03-21 10:41:29 -03:00

180 lines
4.5 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _PERF_ANNOTATE_DATA_H
#define _PERF_ANNOTATE_DATA_H
#include <errno.h>
#include <linux/compiler.h>
#include <linux/rbtree.h>
#include <linux/types.h>
struct annotated_op_loc;
struct debuginfo;
struct evsel;
struct map_symbol;
struct thread;
/**
* struct annotated_member - Type of member field
* @node: List entry in the parent list
* @children: List head for child nodes
* @type_name: Name of the member type
* @var_name: Name of the member variable
* @offset: Offset from the outer data type
* @size: Size of the member field
*
* This represents a member type in a data type.
*/
struct annotated_member {
struct list_head node;
struct list_head children;
char *type_name;
char *var_name;
int offset;
int size;
};
/**
* struct type_hist_entry - Histogram entry per offset
* @nr_samples: Number of samples
* @period: Count of event
*/
struct type_hist_entry {
int nr_samples;
u64 period;
};
/**
* struct type_hist - Type histogram for each event
* @nr_samples: Total number of samples in this data type
* @period: Total count of the event in this data type
* @offset: Array of histogram entry
*/
struct type_hist {
u64 nr_samples;
u64 period;
struct type_hist_entry addr[];
};
/**
* struct annotated_data_type - Data type to profile
* @node: RB-tree node for dso->type_tree
* @self: Actual type information
* @nr_histogram: Number of histogram entries
* @histograms: An array of pointers to histograms
*
* This represents a data type accessed by samples in the profile data.
*/
struct annotated_data_type {
struct rb_node node;
struct annotated_member self;
int nr_histograms;
struct type_hist **histograms;
};
extern struct annotated_data_type unknown_type;
extern struct annotated_data_type stackop_type;
/**
* struct data_loc_info - Data location information
* @arch: CPU architecture info
* @thread: Thread info
* @ms: Map and Symbol info
* @ip: Instruction address
* @var_addr: Data address (for global variables)
* @cpumode: CPU execution mode
* @op: Instruction operand location (regs and offset)
* @di: Debug info
* @fbreg: Frame base register
* @fb_cfa: Whether the frame needs to check CFA
* @type_offset: Final offset in the type
*/
struct data_loc_info {
/* These are input field, should be filled by caller */
struct arch *arch;
struct thread *thread;
struct map_symbol *ms;
u64 ip;
u64 var_addr;
u8 cpumode;
struct annotated_op_loc *op;
/* These are used internally */
struct debuginfo *di;
int fbreg;
bool fb_cfa;
/* This is for the result */
int type_offset;
};
/**
* struct annotated_data_stat - Debug statistics
* @total: Total number of entry
* @no_sym: No symbol or map found
* @no_insn: Failed to get disasm line
* @no_insn_ops: The instruction has no operands
* @no_mem_ops: The instruction has no memory operands
* @no_reg: Failed to extract a register from the operand
* @no_dbginfo: The binary has no debug information
* @no_cuinfo: Failed to find a compile_unit
* @no_var: Failed to find a matching variable
* @no_typeinfo: Failed to get a type info for the variable
* @invalid_size: Failed to get a size info of the type
* @bad_offset: The access offset is out of the type
*/
struct annotated_data_stat {
int total;
int no_sym;
int no_insn;
int no_insn_ops;
int no_mem_ops;
int no_reg;
int no_dbginfo;
int no_cuinfo;
int no_var;
int no_typeinfo;
int invalid_size;
int bad_offset;
int insn_track;
};
extern struct annotated_data_stat ann_data_stat;
#ifdef HAVE_DWARF_SUPPORT
/* Returns data type at the location (ip, reg, offset) */
struct annotated_data_type *find_data_type(struct data_loc_info *dloc);
/* Update type access histogram at the given offset */
int annotated_data_type__update_samples(struct annotated_data_type *adt,
struct evsel *evsel, int offset,
int nr_samples, u64 period);
/* Release all data type information in the tree */
void annotated_data_type__tree_delete(struct rb_root *root);
#else /* HAVE_DWARF_SUPPORT */
static inline struct annotated_data_type *
find_data_type(struct data_loc_info *dloc __maybe_unused)
{
return NULL;
}
static inline int
annotated_data_type__update_samples(struct annotated_data_type *adt __maybe_unused,
struct evsel *evsel __maybe_unused,
int offset __maybe_unused,
int nr_samples __maybe_unused,
u64 period __maybe_unused)
{
return -1;
}
static inline void annotated_data_type__tree_delete(struct rb_root *root __maybe_unused)
{
}
#endif /* HAVE_DWARF_SUPPORT */
#endif /* _PERF_ANNOTATE_DATA_H */