mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 298426211c
			
		
	
	
		298426211c
		
	
	
	
	
		
			
			The new macro set has a consistent namespace and uses C99 initializers instead of the grufty C89 ones. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20200320131509.673579000@linutronix.de
		
			
				
	
	
		
			3749 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3749 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include "amd64_edac.h"
 | |
| #include <asm/amd_nb.h>
 | |
| 
 | |
| static struct edac_pci_ctl_info *pci_ctl;
 | |
| 
 | |
| static int report_gart_errors;
 | |
| module_param(report_gart_errors, int, 0644);
 | |
| 
 | |
| /*
 | |
|  * Set by command line parameter. If BIOS has enabled the ECC, this override is
 | |
|  * cleared to prevent re-enabling the hardware by this driver.
 | |
|  */
 | |
| static int ecc_enable_override;
 | |
| module_param(ecc_enable_override, int, 0644);
 | |
| 
 | |
| static struct msr __percpu *msrs;
 | |
| 
 | |
| static struct amd64_family_type *fam_type;
 | |
| 
 | |
| /* Per-node stuff */
 | |
| static struct ecc_settings **ecc_stngs;
 | |
| 
 | |
| /*
 | |
|  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 | |
|  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 | |
|  * or higher value'.
 | |
|  *
 | |
|  *FIXME: Produce a better mapping/linearisation.
 | |
|  */
 | |
| static const struct scrubrate {
 | |
|        u32 scrubval;           /* bit pattern for scrub rate */
 | |
|        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
 | |
| } scrubrates[] = {
 | |
| 	{ 0x01, 1600000000UL},
 | |
| 	{ 0x02, 800000000UL},
 | |
| 	{ 0x03, 400000000UL},
 | |
| 	{ 0x04, 200000000UL},
 | |
| 	{ 0x05, 100000000UL},
 | |
| 	{ 0x06, 50000000UL},
 | |
| 	{ 0x07, 25000000UL},
 | |
| 	{ 0x08, 12284069UL},
 | |
| 	{ 0x09, 6274509UL},
 | |
| 	{ 0x0A, 3121951UL},
 | |
| 	{ 0x0B, 1560975UL},
 | |
| 	{ 0x0C, 781440UL},
 | |
| 	{ 0x0D, 390720UL},
 | |
| 	{ 0x0E, 195300UL},
 | |
| 	{ 0x0F, 97650UL},
 | |
| 	{ 0x10, 48854UL},
 | |
| 	{ 0x11, 24427UL},
 | |
| 	{ 0x12, 12213UL},
 | |
| 	{ 0x13, 6101UL},
 | |
| 	{ 0x14, 3051UL},
 | |
| 	{ 0x15, 1523UL},
 | |
| 	{ 0x16, 761UL},
 | |
| 	{ 0x00, 0UL},        /* scrubbing off */
 | |
| };
 | |
| 
 | |
| int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
 | |
| 			       u32 *val, const char *func)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	err = pci_read_config_dword(pdev, offset, val);
 | |
| 	if (err)
 | |
| 		amd64_warn("%s: error reading F%dx%03x.\n",
 | |
| 			   func, PCI_FUNC(pdev->devfn), offset);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
 | |
| 				u32 val, const char *func)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	err = pci_write_config_dword(pdev, offset, val);
 | |
| 	if (err)
 | |
| 		amd64_warn("%s: error writing to F%dx%03x.\n",
 | |
| 			   func, PCI_FUNC(pdev->devfn), offset);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select DCT to which PCI cfg accesses are routed
 | |
|  */
 | |
| static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
 | |
| {
 | |
| 	u32 reg = 0;
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
 | |
| 	reg &= (pvt->model == 0x30) ? ~3 : ~1;
 | |
| 	reg |= dct;
 | |
| 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Depending on the family, F2 DCT reads need special handling:
 | |
|  *
 | |
|  * K8: has a single DCT only and no address offsets >= 0x100
 | |
|  *
 | |
|  * F10h: each DCT has its own set of regs
 | |
|  *	DCT0 -> F2x040..
 | |
|  *	DCT1 -> F2x140..
 | |
|  *
 | |
|  * F16h: has only 1 DCT
 | |
|  *
 | |
|  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 | |
|  */
 | |
| static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
 | |
| 					 int offset, u32 *val)
 | |
| {
 | |
| 	switch (pvt->fam) {
 | |
| 	case 0xf:
 | |
| 		if (dct || offset >= 0x100)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 
 | |
| 	case 0x10:
 | |
| 		if (dct) {
 | |
| 			/*
 | |
| 			 * Note: If ganging is enabled, barring the regs
 | |
| 			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
 | |
| 			 * return 0. (cf. Section 2.8.1 F10h BKDG)
 | |
| 			 */
 | |
| 			if (dct_ganging_enabled(pvt))
 | |
| 				return 0;
 | |
| 
 | |
| 			offset += 0x100;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 0x15:
 | |
| 		/*
 | |
| 		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
 | |
| 		 * We should select which DCT we access using F1x10C[DctCfgSel]
 | |
| 		 */
 | |
| 		dct = (dct && pvt->model == 0x30) ? 3 : dct;
 | |
| 		f15h_select_dct(pvt, dct);
 | |
| 		break;
 | |
| 
 | |
| 	case 0x16:
 | |
| 		if (dct)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return amd64_read_pci_cfg(pvt->F2, offset, val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory scrubber control interface. For K8, memory scrubbing is handled by
 | |
|  * hardware and can involve L2 cache, dcache as well as the main memory. With
 | |
|  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 | |
|  * functionality.
 | |
|  *
 | |
|  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 | |
|  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 | |
|  * bytes/sec for the setting.
 | |
|  *
 | |
|  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 | |
|  * other archs, we might not have access to the caches directly.
 | |
|  */
 | |
| 
 | |
| static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
 | |
| {
 | |
| 	/*
 | |
| 	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
 | |
| 	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
 | |
| 	 * as 0x0, scrubval 0x6 as 0x1, etc.
 | |
| 	 */
 | |
| 	if (scrubval >= 0x5 && scrubval <= 0x14) {
 | |
| 		scrubval -= 0x5;
 | |
| 		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
 | |
| 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
 | |
| 	} else {
 | |
| 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
 | |
| 	}
 | |
| }
 | |
| /*
 | |
|  * Scan the scrub rate mapping table for a close or matching bandwidth value to
 | |
|  * issue. If requested is too big, then use last maximum value found.
 | |
|  */
 | |
| static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
 | |
| {
 | |
| 	u32 scrubval;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * map the configured rate (new_bw) to a value specific to the AMD64
 | |
| 	 * memory controller and apply to register. Search for the first
 | |
| 	 * bandwidth entry that is greater or equal than the setting requested
 | |
| 	 * and program that. If at last entry, turn off DRAM scrubbing.
 | |
| 	 *
 | |
| 	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
 | |
| 	 * by falling back to the last element in scrubrates[].
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
 | |
| 		/*
 | |
| 		 * skip scrub rates which aren't recommended
 | |
| 		 * (see F10 BKDG, F3x58)
 | |
| 		 */
 | |
| 		if (scrubrates[i].scrubval < min_rate)
 | |
| 			continue;
 | |
| 
 | |
| 		if (scrubrates[i].bandwidth <= new_bw)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	scrubval = scrubrates[i].scrubval;
 | |
| 
 | |
| 	if (pvt->umc) {
 | |
| 		__f17h_set_scrubval(pvt, scrubval);
 | |
| 	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
 | |
| 		f15h_select_dct(pvt, 0);
 | |
| 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
 | |
| 		f15h_select_dct(pvt, 1);
 | |
| 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
 | |
| 	} else {
 | |
| 		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
 | |
| 	}
 | |
| 
 | |
| 	if (scrubval)
 | |
| 		return scrubrates[i].bandwidth;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 	u32 min_scrubrate = 0x5;
 | |
| 
 | |
| 	if (pvt->fam == 0xf)
 | |
| 		min_scrubrate = 0x0;
 | |
| 
 | |
| 	if (pvt->fam == 0x15) {
 | |
| 		/* Erratum #505 */
 | |
| 		if (pvt->model < 0x10)
 | |
| 			f15h_select_dct(pvt, 0);
 | |
| 
 | |
| 		if (pvt->model == 0x60)
 | |
| 			min_scrubrate = 0x6;
 | |
| 	}
 | |
| 	return __set_scrub_rate(pvt, bw, min_scrubrate);
 | |
| }
 | |
| 
 | |
| static int get_scrub_rate(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 	int i, retval = -EINVAL;
 | |
| 	u32 scrubval = 0;
 | |
| 
 | |
| 	if (pvt->umc) {
 | |
| 		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
 | |
| 		if (scrubval & BIT(0)) {
 | |
| 			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
 | |
| 			scrubval &= 0xF;
 | |
| 			scrubval += 0x5;
 | |
| 		} else {
 | |
| 			scrubval = 0;
 | |
| 		}
 | |
| 	} else if (pvt->fam == 0x15) {
 | |
| 		/* Erratum #505 */
 | |
| 		if (pvt->model < 0x10)
 | |
| 			f15h_select_dct(pvt, 0);
 | |
| 
 | |
| 		if (pvt->model == 0x60)
 | |
| 			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
 | |
| 	} else {
 | |
| 		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
 | |
| 	}
 | |
| 
 | |
| 	scrubval = scrubval & 0x001F;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
 | |
| 		if (scrubrates[i].scrubval == scrubval) {
 | |
| 			retval = scrubrates[i].bandwidth;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns true if the SysAddr given by sys_addr matches the
 | |
|  * DRAM base/limit associated with node_id
 | |
|  */
 | |
| static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
 | |
| {
 | |
| 	u64 addr;
 | |
| 
 | |
| 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
 | |
| 	 * all ones if the most significant implemented address bit is 1.
 | |
| 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
 | |
| 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
 | |
| 	 * Application Programming.
 | |
| 	 */
 | |
| 	addr = sys_addr & 0x000000ffffffffffull;
 | |
| 
 | |
| 	return ((addr >= get_dram_base(pvt, nid)) &&
 | |
| 		(addr <= get_dram_limit(pvt, nid)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to map a SysAddr to a node. On success, return a pointer to the
 | |
|  * mem_ctl_info structure for the node that the SysAddr maps to.
 | |
|  *
 | |
|  * On failure, return NULL.
 | |
|  */
 | |
| static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
 | |
| 						u64 sys_addr)
 | |
| {
 | |
| 	struct amd64_pvt *pvt;
 | |
| 	u8 node_id;
 | |
| 	u32 intlv_en, bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
 | |
| 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
 | |
| 	 */
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * The value of this field should be the same for all DRAM Base
 | |
| 	 * registers.  Therefore we arbitrarily choose to read it from the
 | |
| 	 * register for node 0.
 | |
| 	 */
 | |
| 	intlv_en = dram_intlv_en(pvt, 0);
 | |
| 
 | |
| 	if (intlv_en == 0) {
 | |
| 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
 | |
| 			if (base_limit_match(pvt, sys_addr, node_id))
 | |
| 				goto found;
 | |
| 		}
 | |
| 		goto err_no_match;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((intlv_en != 0x01) &&
 | |
| 		     (intlv_en != 0x03) &&
 | |
| 		     (intlv_en != 0x07))) {
 | |
| 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	bits = (((u32) sys_addr) >> 12) & intlv_en;
 | |
| 
 | |
| 	for (node_id = 0; ; ) {
 | |
| 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
 | |
| 			break;	/* intlv_sel field matches */
 | |
| 
 | |
| 		if (++node_id >= DRAM_RANGES)
 | |
| 			goto err_no_match;
 | |
| 	}
 | |
| 
 | |
| 	/* sanity test for sys_addr */
 | |
| 	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
 | |
| 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
 | |
| 			   "range for node %d with node interleaving enabled.\n",
 | |
| 			   __func__, sys_addr, node_id);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| found:
 | |
| 	return edac_mc_find((int)node_id);
 | |
| 
 | |
| err_no_match:
 | |
| 	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
 | |
| 		 (unsigned long)sys_addr);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compute the CS base address of the @csrow on the DRAM controller @dct.
 | |
|  * For details see F2x[5C:40] in the processor's BKDG
 | |
|  */
 | |
| static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
 | |
| 				 u64 *base, u64 *mask)
 | |
| {
 | |
| 	u64 csbase, csmask, base_bits, mask_bits;
 | |
| 	u8 addr_shift;
 | |
| 
 | |
| 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
 | |
| 		csbase		= pvt->csels[dct].csbases[csrow];
 | |
| 		csmask		= pvt->csels[dct].csmasks[csrow];
 | |
| 		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
 | |
| 		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
 | |
| 		addr_shift	= 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * F16h and F15h, models 30h and later need two addr_shift values:
 | |
| 	 * 8 for high and 6 for low (cf. F16h BKDG).
 | |
| 	 */
 | |
| 	} else if (pvt->fam == 0x16 ||
 | |
| 		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
 | |
| 		csbase          = pvt->csels[dct].csbases[csrow];
 | |
| 		csmask          = pvt->csels[dct].csmasks[csrow >> 1];
 | |
| 
 | |
| 		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
 | |
| 		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
 | |
| 
 | |
| 		*mask = ~0ULL;
 | |
| 		/* poke holes for the csmask */
 | |
| 		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
 | |
| 			   (GENMASK_ULL(30, 19) << 8));
 | |
| 
 | |
| 		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
 | |
| 		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
 | |
| 
 | |
| 		return;
 | |
| 	} else {
 | |
| 		csbase		= pvt->csels[dct].csbases[csrow];
 | |
| 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
 | |
| 		addr_shift	= 8;
 | |
| 
 | |
| 		if (pvt->fam == 0x15)
 | |
| 			base_bits = mask_bits =
 | |
| 				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
 | |
| 		else
 | |
| 			base_bits = mask_bits =
 | |
| 				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
 | |
| 	}
 | |
| 
 | |
| 	*base  = (csbase & base_bits) << addr_shift;
 | |
| 
 | |
| 	*mask  = ~0ULL;
 | |
| 	/* poke holes for the csmask */
 | |
| 	*mask &= ~(mask_bits << addr_shift);
 | |
| 	/* OR them in */
 | |
| 	*mask |= (csmask & mask_bits) << addr_shift;
 | |
| }
 | |
| 
 | |
| #define for_each_chip_select(i, dct, pvt) \
 | |
| 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
 | |
| 
 | |
| #define chip_select_base(i, dct, pvt) \
 | |
| 	pvt->csels[dct].csbases[i]
 | |
| 
 | |
| #define for_each_chip_select_mask(i, dct, pvt) \
 | |
| 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
 | |
| 
 | |
| #define for_each_umc(i) \
 | |
| 	for (i = 0; i < fam_type->max_mcs; i++)
 | |
| 
 | |
| /*
 | |
|  * @input_addr is an InputAddr associated with the node given by mci. Return the
 | |
|  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 | |
|  */
 | |
| static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
 | |
| {
 | |
| 	struct amd64_pvt *pvt;
 | |
| 	int csrow;
 | |
| 	u64 base, mask;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	for_each_chip_select(csrow, 0, pvt) {
 | |
| 		if (!csrow_enabled(csrow, 0, pvt))
 | |
| 			continue;
 | |
| 
 | |
| 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
 | |
| 
 | |
| 		mask = ~mask;
 | |
| 
 | |
| 		if ((input_addr & mask) == (base & mask)) {
 | |
| 			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
 | |
| 				 (unsigned long)input_addr, csrow,
 | |
| 				 pvt->mc_node_id);
 | |
| 
 | |
| 			return csrow;
 | |
| 		}
 | |
| 	}
 | |
| 	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
 | |
| 		 (unsigned long)input_addr, pvt->mc_node_id);
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 | |
|  * for the node represented by mci. Info is passed back in *hole_base,
 | |
|  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 | |
|  * info is invalid. Info may be invalid for either of the following reasons:
 | |
|  *
 | |
|  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 | |
|  *   Address Register does not exist.
 | |
|  *
 | |
|  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 | |
|  *   indicating that its contents are not valid.
 | |
|  *
 | |
|  * The values passed back in *hole_base, *hole_offset, and *hole_size are
 | |
|  * complete 32-bit values despite the fact that the bitfields in the DHAR
 | |
|  * only represent bits 31-24 of the base and offset values.
 | |
|  */
 | |
| int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
 | |
| 			     u64 *hole_offset, u64 *hole_size)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* only revE and later have the DRAM Hole Address Register */
 | |
| 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
 | |
| 		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
 | |
| 			 pvt->ext_model, pvt->mc_node_id);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* valid for Fam10h and above */
 | |
| 	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
 | |
| 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!dhar_valid(pvt)) {
 | |
| 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
 | |
| 			 pvt->mc_node_id);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* This node has Memory Hoisting */
 | |
| 
 | |
| 	/* +------------------+--------------------+--------------------+-----
 | |
| 	 * | memory           | DRAM hole          | relocated          |
 | |
| 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
 | |
| 	 * |                  |                    | DRAM hole          |
 | |
| 	 * |                  |                    | [0x100000000,      |
 | |
| 	 * |                  |                    |  (0x100000000+     |
 | |
| 	 * |                  |                    |   (0xffffffff-x))] |
 | |
| 	 * +------------------+--------------------+--------------------+-----
 | |
| 	 *
 | |
| 	 * Above is a diagram of physical memory showing the DRAM hole and the
 | |
| 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
 | |
| 	 * starts at address x (the base address) and extends through address
 | |
| 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
 | |
| 	 * addresses in the hole so that they start at 0x100000000.
 | |
| 	 */
 | |
| 
 | |
| 	*hole_base = dhar_base(pvt);
 | |
| 	*hole_size = (1ULL << 32) - *hole_base;
 | |
| 
 | |
| 	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
 | |
| 					: k8_dhar_offset(pvt);
 | |
| 
 | |
| 	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
 | |
| 		 pvt->mc_node_id, (unsigned long)*hole_base,
 | |
| 		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
 | |
| 
 | |
| /*
 | |
|  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 | |
|  * assumed that sys_addr maps to the node given by mci.
 | |
|  *
 | |
|  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 | |
|  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 | |
|  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 | |
|  * then it is also involved in translating a SysAddr to a DramAddr. Sections
 | |
|  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 | |
|  * These parts of the documentation are unclear. I interpret them as follows:
 | |
|  *
 | |
|  * When node n receives a SysAddr, it processes the SysAddr as follows:
 | |
|  *
 | |
|  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 | |
|  *    Limit registers for node n. If the SysAddr is not within the range
 | |
|  *    specified by the base and limit values, then node n ignores the Sysaddr
 | |
|  *    (since it does not map to node n). Otherwise continue to step 2 below.
 | |
|  *
 | |
|  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 | |
|  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 | |
|  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 | |
|  *    hole. If not, skip to step 3 below. Else get the value of the
 | |
|  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 | |
|  *    offset defined by this value from the SysAddr.
 | |
|  *
 | |
|  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 | |
|  *    Base register for node n. To obtain the DramAddr, subtract the base
 | |
|  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 | |
|  */
 | |
| static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
 | |
| 
 | |
| 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
 | |
| 				      &hole_size);
 | |
| 	if (!ret) {
 | |
| 		if ((sys_addr >= (1ULL << 32)) &&
 | |
| 		    (sys_addr < ((1ULL << 32) + hole_size))) {
 | |
| 			/* use DHAR to translate SysAddr to DramAddr */
 | |
| 			dram_addr = sys_addr - hole_offset;
 | |
| 
 | |
| 			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
 | |
| 				 (unsigned long)sys_addr,
 | |
| 				 (unsigned long)dram_addr);
 | |
| 
 | |
| 			return dram_addr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Translate the SysAddr to a DramAddr as shown near the start of
 | |
| 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
 | |
| 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
 | |
| 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
 | |
| 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
 | |
| 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
 | |
| 	 * Programmer's Manual Volume 1 Application Programming.
 | |
| 	 */
 | |
| 	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
 | |
| 
 | |
| 	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
 | |
| 		 (unsigned long)sys_addr, (unsigned long)dram_addr);
 | |
| 	return dram_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 | |
|  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 | |
|  * for node interleaving.
 | |
|  */
 | |
| static int num_node_interleave_bits(unsigned intlv_en)
 | |
| {
 | |
| 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
 | |
| 	int n;
 | |
| 
 | |
| 	BUG_ON(intlv_en > 7);
 | |
| 	n = intlv_shift_table[intlv_en];
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /* Translate the DramAddr given by @dram_addr to an InputAddr. */
 | |
| static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
 | |
| {
 | |
| 	struct amd64_pvt *pvt;
 | |
| 	int intlv_shift;
 | |
| 	u64 input_addr;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
 | |
| 	 * concerning translating a DramAddr to an InputAddr.
 | |
| 	 */
 | |
| 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
 | |
| 	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
 | |
| 		      (dram_addr & 0xfff);
 | |
| 
 | |
| 	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
 | |
| 		 intlv_shift, (unsigned long)dram_addr,
 | |
| 		 (unsigned long)input_addr);
 | |
| 
 | |
| 	return input_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 | |
|  * assumed that @sys_addr maps to the node given by mci.
 | |
|  */
 | |
| static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
 | |
| {
 | |
| 	u64 input_addr;
 | |
| 
 | |
| 	input_addr =
 | |
| 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
 | |
| 
 | |
| 	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
 | |
| 		 (unsigned long)sys_addr, (unsigned long)input_addr);
 | |
| 
 | |
| 	return input_addr;
 | |
| }
 | |
| 
 | |
| /* Map the Error address to a PAGE and PAGE OFFSET. */
 | |
| static inline void error_address_to_page_and_offset(u64 error_address,
 | |
| 						    struct err_info *err)
 | |
| {
 | |
| 	err->page = (u32) (error_address >> PAGE_SHIFT);
 | |
| 	err->offset = ((u32) error_address) & ~PAGE_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 | |
|  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 | |
|  * of a node that detected an ECC memory error.  mci represents the node that
 | |
|  * the error address maps to (possibly different from the node that detected
 | |
|  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 | |
|  * error.
 | |
|  */
 | |
| static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
 | |
| {
 | |
| 	int csrow;
 | |
| 
 | |
| 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
 | |
| 
 | |
| 	if (csrow == -1)
 | |
| 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
 | |
| 				  "address 0x%lx\n", (unsigned long)sys_addr);
 | |
| 	return csrow;
 | |
| }
 | |
| 
 | |
| static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
 | |
| 
 | |
| /*
 | |
|  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 | |
|  * are ECC capable.
 | |
|  */
 | |
| static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	unsigned long edac_cap = EDAC_FLAG_NONE;
 | |
| 	u8 bit;
 | |
| 
 | |
| 	if (pvt->umc) {
 | |
| 		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
 | |
| 
 | |
| 		for_each_umc(i) {
 | |
| 			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
 | |
| 				continue;
 | |
| 
 | |
| 			umc_en_mask |= BIT(i);
 | |
| 
 | |
| 			/* UMC Configuration bit 12 (DimmEccEn) */
 | |
| 			if (pvt->umc[i].umc_cfg & BIT(12))
 | |
| 				dimm_ecc_en_mask |= BIT(i);
 | |
| 		}
 | |
| 
 | |
| 		if (umc_en_mask == dimm_ecc_en_mask)
 | |
| 			edac_cap = EDAC_FLAG_SECDED;
 | |
| 	} else {
 | |
| 		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
 | |
| 			? 19
 | |
| 			: 17;
 | |
| 
 | |
| 		if (pvt->dclr0 & BIT(bit))
 | |
| 			edac_cap = EDAC_FLAG_SECDED;
 | |
| 	}
 | |
| 
 | |
| 	return edac_cap;
 | |
| }
 | |
| 
 | |
| static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
 | |
| 
 | |
| static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
 | |
| {
 | |
| 	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
 | |
| 
 | |
| 	if (pvt->dram_type == MEM_LRDDR3) {
 | |
| 		u32 dcsm = pvt->csels[chan].csmasks[0];
 | |
| 		/*
 | |
| 		 * It's assumed all LRDIMMs in a DCT are going to be of
 | |
| 		 * same 'type' until proven otherwise. So, use a cs
 | |
| 		 * value of '0' here to get dcsm value.
 | |
| 		 */
 | |
| 		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(1, "All DIMMs support ECC:%s\n",
 | |
| 		    (dclr & BIT(19)) ? "yes" : "no");
 | |
| 
 | |
| 
 | |
| 	edac_dbg(1, "  PAR/ERR parity: %s\n",
 | |
| 		 (dclr & BIT(8)) ?  "enabled" : "disabled");
 | |
| 
 | |
| 	if (pvt->fam == 0x10)
 | |
| 		edac_dbg(1, "  DCT 128bit mode width: %s\n",
 | |
| 			 (dclr & BIT(11)) ?  "128b" : "64b");
 | |
| 
 | |
| 	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
 | |
| 		 (dclr & BIT(12)) ?  "yes" : "no",
 | |
| 		 (dclr & BIT(13)) ?  "yes" : "no",
 | |
| 		 (dclr & BIT(14)) ?  "yes" : "no",
 | |
| 		 (dclr & BIT(15)) ?  "yes" : "no");
 | |
| }
 | |
| 
 | |
| #define CS_EVEN_PRIMARY		BIT(0)
 | |
| #define CS_ODD_PRIMARY		BIT(1)
 | |
| #define CS_EVEN_SECONDARY	BIT(2)
 | |
| #define CS_ODD_SECONDARY	BIT(3)
 | |
| 
 | |
| #define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
 | |
| #define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
 | |
| 
 | |
| static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
 | |
| {
 | |
| 	int cs_mode = 0;
 | |
| 
 | |
| 	if (csrow_enabled(2 * dimm, ctrl, pvt))
 | |
| 		cs_mode |= CS_EVEN_PRIMARY;
 | |
| 
 | |
| 	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
 | |
| 		cs_mode |= CS_ODD_PRIMARY;
 | |
| 
 | |
| 	/* Asymmetric dual-rank DIMM support. */
 | |
| 	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
 | |
| 		cs_mode |= CS_ODD_SECONDARY;
 | |
| 
 | |
| 	return cs_mode;
 | |
| }
 | |
| 
 | |
| static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
 | |
| {
 | |
| 	int dimm, size0, size1, cs0, cs1, cs_mode;
 | |
| 
 | |
| 	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
 | |
| 
 | |
| 	for (dimm = 0; dimm < 2; dimm++) {
 | |
| 		cs0 = dimm * 2;
 | |
| 		cs1 = dimm * 2 + 1;
 | |
| 
 | |
| 		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);
 | |
| 
 | |
| 		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
 | |
| 		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
 | |
| 
 | |
| 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
 | |
| 				cs0,	size0,
 | |
| 				cs1,	size1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __dump_misc_regs_df(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	struct amd64_umc *umc;
 | |
| 	u32 i, tmp, umc_base;
 | |
| 
 | |
| 	for_each_umc(i) {
 | |
| 		umc_base = get_umc_base(i);
 | |
| 		umc = &pvt->umc[i];
 | |
| 
 | |
| 		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
 | |
| 		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
 | |
| 		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
 | |
| 		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
 | |
| 
 | |
| 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
 | |
| 		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
 | |
| 
 | |
| 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
 | |
| 		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
 | |
| 		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
 | |
| 
 | |
| 		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
 | |
| 				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
 | |
| 				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
 | |
| 		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
 | |
| 				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
 | |
| 		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
 | |
| 				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
 | |
| 		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
 | |
| 				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
 | |
| 
 | |
| 		if (pvt->dram_type == MEM_LRDDR4) {
 | |
| 			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
 | |
| 			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
 | |
| 					i, 1 << ((tmp >> 4) & 0x3));
 | |
| 		}
 | |
| 
 | |
| 		debug_display_dimm_sizes_df(pvt, i);
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
 | |
| 		 pvt->dhar, dhar_base(pvt));
 | |
| }
 | |
| 
 | |
| /* Display and decode various NB registers for debug purposes. */
 | |
| static void __dump_misc_regs(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
 | |
| 
 | |
| 	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
 | |
| 		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
 | |
| 
 | |
| 	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
 | |
| 		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
 | |
| 		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
 | |
| 
 | |
| 	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
 | |
| 
 | |
| 	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
 | |
| 
 | |
| 	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
 | |
| 		 pvt->dhar, dhar_base(pvt),
 | |
| 		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
 | |
| 				   : f10_dhar_offset(pvt));
 | |
| 
 | |
| 	debug_display_dimm_sizes(pvt, 0);
 | |
| 
 | |
| 	/* everything below this point is Fam10h and above */
 | |
| 	if (pvt->fam == 0xf)
 | |
| 		return;
 | |
| 
 | |
| 	debug_display_dimm_sizes(pvt, 1);
 | |
| 
 | |
| 	/* Only if NOT ganged does dclr1 have valid info */
 | |
| 	if (!dct_ganging_enabled(pvt))
 | |
| 		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
 | |
| }
 | |
| 
 | |
| /* Display and decode various NB registers for debug purposes. */
 | |
| static void dump_misc_regs(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	if (pvt->umc)
 | |
| 		__dump_misc_regs_df(pvt);
 | |
| 	else
 | |
| 		__dump_misc_regs(pvt);
 | |
| 
 | |
| 	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
 | |
| 
 | |
| 	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
 | |
|  */
 | |
| static void prep_chip_selects(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
 | |
| 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
 | |
| 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
 | |
| 	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
 | |
| 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
 | |
| 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
 | |
| 	} else if (pvt->fam >= 0x17) {
 | |
| 		int umc;
 | |
| 
 | |
| 		for_each_umc(umc) {
 | |
| 			pvt->csels[umc].b_cnt = 4;
 | |
| 			pvt->csels[umc].m_cnt = 2;
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
 | |
| 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void read_umc_base_mask(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	u32 umc_base_reg, umc_base_reg_sec;
 | |
| 	u32 umc_mask_reg, umc_mask_reg_sec;
 | |
| 	u32 base_reg, base_reg_sec;
 | |
| 	u32 mask_reg, mask_reg_sec;
 | |
| 	u32 *base, *base_sec;
 | |
| 	u32 *mask, *mask_sec;
 | |
| 	int cs, umc;
 | |
| 
 | |
| 	for_each_umc(umc) {
 | |
| 		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
 | |
| 		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
 | |
| 
 | |
| 		for_each_chip_select(cs, umc, pvt) {
 | |
| 			base = &pvt->csels[umc].csbases[cs];
 | |
| 			base_sec = &pvt->csels[umc].csbases_sec[cs];
 | |
| 
 | |
| 			base_reg = umc_base_reg + (cs * 4);
 | |
| 			base_reg_sec = umc_base_reg_sec + (cs * 4);
 | |
| 
 | |
| 			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
 | |
| 				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
 | |
| 					 umc, cs, *base, base_reg);
 | |
| 
 | |
| 			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
 | |
| 				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
 | |
| 					 umc, cs, *base_sec, base_reg_sec);
 | |
| 		}
 | |
| 
 | |
| 		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
 | |
| 		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
 | |
| 
 | |
| 		for_each_chip_select_mask(cs, umc, pvt) {
 | |
| 			mask = &pvt->csels[umc].csmasks[cs];
 | |
| 			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
 | |
| 
 | |
| 			mask_reg = umc_mask_reg + (cs * 4);
 | |
| 			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
 | |
| 
 | |
| 			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
 | |
| 				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
 | |
| 					 umc, cs, *mask, mask_reg);
 | |
| 
 | |
| 			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
 | |
| 				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
 | |
| 					 umc, cs, *mask_sec, mask_reg_sec);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
 | |
|  */
 | |
| static void read_dct_base_mask(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	int cs;
 | |
| 
 | |
| 	prep_chip_selects(pvt);
 | |
| 
 | |
| 	if (pvt->umc)
 | |
| 		return read_umc_base_mask(pvt);
 | |
| 
 | |
| 	for_each_chip_select(cs, 0, pvt) {
 | |
| 		int reg0   = DCSB0 + (cs * 4);
 | |
| 		int reg1   = DCSB1 + (cs * 4);
 | |
| 		u32 *base0 = &pvt->csels[0].csbases[cs];
 | |
| 		u32 *base1 = &pvt->csels[1].csbases[cs];
 | |
| 
 | |
| 		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
 | |
| 			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
 | |
| 				 cs, *base0, reg0);
 | |
| 
 | |
| 		if (pvt->fam == 0xf)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
 | |
| 			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
 | |
| 				 cs, *base1, (pvt->fam == 0x10) ? reg1
 | |
| 							: reg0);
 | |
| 	}
 | |
| 
 | |
| 	for_each_chip_select_mask(cs, 0, pvt) {
 | |
| 		int reg0   = DCSM0 + (cs * 4);
 | |
| 		int reg1   = DCSM1 + (cs * 4);
 | |
| 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
 | |
| 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
 | |
| 
 | |
| 		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
 | |
| 			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
 | |
| 				 cs, *mask0, reg0);
 | |
| 
 | |
| 		if (pvt->fam == 0xf)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
 | |
| 			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
 | |
| 				 cs, *mask1, (pvt->fam == 0x10) ? reg1
 | |
| 							: reg0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void determine_memory_type(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	u32 dram_ctrl, dcsm;
 | |
| 
 | |
| 	if (pvt->umc) {
 | |
| 		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
 | |
| 			pvt->dram_type = MEM_LRDDR4;
 | |
| 		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
 | |
| 			pvt->dram_type = MEM_RDDR4;
 | |
| 		else
 | |
| 			pvt->dram_type = MEM_DDR4;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (pvt->fam) {
 | |
| 	case 0xf:
 | |
| 		if (pvt->ext_model >= K8_REV_F)
 | |
| 			goto ddr3;
 | |
| 
 | |
| 		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
 | |
| 		return;
 | |
| 
 | |
| 	case 0x10:
 | |
| 		if (pvt->dchr0 & DDR3_MODE)
 | |
| 			goto ddr3;
 | |
| 
 | |
| 		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
 | |
| 		return;
 | |
| 
 | |
| 	case 0x15:
 | |
| 		if (pvt->model < 0x60)
 | |
| 			goto ddr3;
 | |
| 
 | |
| 		/*
 | |
| 		 * Model 0x60h needs special handling:
 | |
| 		 *
 | |
| 		 * We use a Chip Select value of '0' to obtain dcsm.
 | |
| 		 * Theoretically, it is possible to populate LRDIMMs of different
 | |
| 		 * 'Rank' value on a DCT. But this is not the common case. So,
 | |
| 		 * it's reasonable to assume all DIMMs are going to be of same
 | |
| 		 * 'type' until proven otherwise.
 | |
| 		 */
 | |
| 		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
 | |
| 		dcsm = pvt->csels[0].csmasks[0];
 | |
| 
 | |
| 		if (((dram_ctrl >> 8) & 0x7) == 0x2)
 | |
| 			pvt->dram_type = MEM_DDR4;
 | |
| 		else if (pvt->dclr0 & BIT(16))
 | |
| 			pvt->dram_type = MEM_DDR3;
 | |
| 		else if (dcsm & 0x3)
 | |
| 			pvt->dram_type = MEM_LRDDR3;
 | |
| 		else
 | |
| 			pvt->dram_type = MEM_RDDR3;
 | |
| 
 | |
| 		return;
 | |
| 
 | |
| 	case 0x16:
 | |
| 		goto ddr3;
 | |
| 
 | |
| 	default:
 | |
| 		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
 | |
| 		pvt->dram_type = MEM_EMPTY;
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| ddr3:
 | |
| 	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
 | |
| }
 | |
| 
 | |
| /* Get the number of DCT channels the memory controller is using. */
 | |
| static int k8_early_channel_count(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	int flag;
 | |
| 
 | |
| 	if (pvt->ext_model >= K8_REV_F)
 | |
| 		/* RevF (NPT) and later */
 | |
| 		flag = pvt->dclr0 & WIDTH_128;
 | |
| 	else
 | |
| 		/* RevE and earlier */
 | |
| 		flag = pvt->dclr0 & REVE_WIDTH_128;
 | |
| 
 | |
| 	/* not used */
 | |
| 	pvt->dclr1 = 0;
 | |
| 
 | |
| 	return (flag) ? 2 : 1;
 | |
| }
 | |
| 
 | |
| /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
 | |
| static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
 | |
| {
 | |
| 	u16 mce_nid = amd_get_nb_id(m->extcpu);
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	u8 start_bit = 1;
 | |
| 	u8 end_bit   = 47;
 | |
| 	u64 addr;
 | |
| 
 | |
| 	mci = edac_mc_find(mce_nid);
 | |
| 	if (!mci)
 | |
| 		return 0;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	if (pvt->fam == 0xf) {
 | |
| 		start_bit = 3;
 | |
| 		end_bit   = 39;
 | |
| 	}
 | |
| 
 | |
| 	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
 | |
| 
 | |
| 	/*
 | |
| 	 * Erratum 637 workaround
 | |
| 	 */
 | |
| 	if (pvt->fam == 0x15) {
 | |
| 		u64 cc6_base, tmp_addr;
 | |
| 		u32 tmp;
 | |
| 		u8 intlv_en;
 | |
| 
 | |
| 		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
 | |
| 			return addr;
 | |
| 
 | |
| 
 | |
| 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
 | |
| 		intlv_en = tmp >> 21 & 0x7;
 | |
| 
 | |
| 		/* add [47:27] + 3 trailing bits */
 | |
| 		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
 | |
| 
 | |
| 		/* reverse and add DramIntlvEn */
 | |
| 		cc6_base |= intlv_en ^ 0x7;
 | |
| 
 | |
| 		/* pin at [47:24] */
 | |
| 		cc6_base <<= 24;
 | |
| 
 | |
| 		if (!intlv_en)
 | |
| 			return cc6_base | (addr & GENMASK_ULL(23, 0));
 | |
| 
 | |
| 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
 | |
| 
 | |
| 							/* faster log2 */
 | |
| 		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
 | |
| 
 | |
| 		/* OR DramIntlvSel into bits [14:12] */
 | |
| 		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
 | |
| 
 | |
| 		/* add remaining [11:0] bits from original MC4_ADDR */
 | |
| 		tmp_addr |= addr & GENMASK_ULL(11, 0);
 | |
| 
 | |
| 		return cc6_base | tmp_addr;
 | |
| 	}
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static struct pci_dev *pci_get_related_function(unsigned int vendor,
 | |
| 						unsigned int device,
 | |
| 						struct pci_dev *related)
 | |
| {
 | |
| 	struct pci_dev *dev = NULL;
 | |
| 
 | |
| 	while ((dev = pci_get_device(vendor, device, dev))) {
 | |
| 		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
 | |
| 		    (dev->bus->number == related->bus->number) &&
 | |
| 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return dev;
 | |
| }
 | |
| 
 | |
| static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
 | |
| {
 | |
| 	struct amd_northbridge *nb;
 | |
| 	struct pci_dev *f1 = NULL;
 | |
| 	unsigned int pci_func;
 | |
| 	int off = range << 3;
 | |
| 	u32 llim;
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
 | |
| 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
 | |
| 
 | |
| 	if (pvt->fam == 0xf)
 | |
| 		return;
 | |
| 
 | |
| 	if (!dram_rw(pvt, range))
 | |
| 		return;
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
 | |
| 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
 | |
| 
 | |
| 	/* F15h: factor in CC6 save area by reading dst node's limit reg */
 | |
| 	if (pvt->fam != 0x15)
 | |
| 		return;
 | |
| 
 | |
| 	nb = node_to_amd_nb(dram_dst_node(pvt, range));
 | |
| 	if (WARN_ON(!nb))
 | |
| 		return;
 | |
| 
 | |
| 	if (pvt->model == 0x60)
 | |
| 		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
 | |
| 	else if (pvt->model == 0x30)
 | |
| 		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
 | |
| 	else
 | |
| 		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
 | |
| 
 | |
| 	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
 | |
| 	if (WARN_ON(!f1))
 | |
| 		return;
 | |
| 
 | |
| 	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
 | |
| 
 | |
| 	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
 | |
| 
 | |
| 				    /* {[39:27],111b} */
 | |
| 	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
 | |
| 
 | |
| 	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
 | |
| 
 | |
| 				    /* [47:40] */
 | |
| 	pvt->ranges[range].lim.hi |= llim >> 13;
 | |
| 
 | |
| 	pci_dev_put(f1);
 | |
| }
 | |
| 
 | |
| static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
 | |
| 				    struct err_info *err)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 
 | |
| 	error_address_to_page_and_offset(sys_addr, err);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find out which node the error address belongs to. This may be
 | |
| 	 * different from the node that detected the error.
 | |
| 	 */
 | |
| 	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
 | |
| 	if (!err->src_mci) {
 | |
| 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
 | |
| 			     (unsigned long)sys_addr);
 | |
| 		err->err_code = ERR_NODE;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Now map the sys_addr to a CSROW */
 | |
| 	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
 | |
| 	if (err->csrow < 0) {
 | |
| 		err->err_code = ERR_CSROW;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* CHIPKILL enabled */
 | |
| 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
 | |
| 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
 | |
| 		if (err->channel < 0) {
 | |
| 			/*
 | |
| 			 * Syndrome didn't map, so we don't know which of the
 | |
| 			 * 2 DIMMs is in error. So we need to ID 'both' of them
 | |
| 			 * as suspect.
 | |
| 			 */
 | |
| 			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
 | |
| 				      "possible error reporting race\n",
 | |
| 				      err->syndrome);
 | |
| 			err->err_code = ERR_CHANNEL;
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * non-chipkill ecc mode
 | |
| 		 *
 | |
| 		 * The k8 documentation is unclear about how to determine the
 | |
| 		 * channel number when using non-chipkill memory.  This method
 | |
| 		 * was obtained from email communication with someone at AMD.
 | |
| 		 * (Wish the email was placed in this comment - norsk)
 | |
| 		 */
 | |
| 		err->channel = ((sys_addr & BIT(3)) != 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ddr2_cs_size(unsigned i, bool dct_width)
 | |
| {
 | |
| 	unsigned shift = 0;
 | |
| 
 | |
| 	if (i <= 2)
 | |
| 		shift = i;
 | |
| 	else if (!(i & 0x1))
 | |
| 		shift = i >> 1;
 | |
| 	else
 | |
| 		shift = (i + 1) >> 1;
 | |
| 
 | |
| 	return 128 << (shift + !!dct_width);
 | |
| }
 | |
| 
 | |
| static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | |
| 				  unsigned cs_mode, int cs_mask_nr)
 | |
| {
 | |
| 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
 | |
| 
 | |
| 	if (pvt->ext_model >= K8_REV_F) {
 | |
| 		WARN_ON(cs_mode > 11);
 | |
| 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
 | |
| 	}
 | |
| 	else if (pvt->ext_model >= K8_REV_D) {
 | |
| 		unsigned diff;
 | |
| 		WARN_ON(cs_mode > 10);
 | |
| 
 | |
| 		/*
 | |
| 		 * the below calculation, besides trying to win an obfuscated C
 | |
| 		 * contest, maps cs_mode values to DIMM chip select sizes. The
 | |
| 		 * mappings are:
 | |
| 		 *
 | |
| 		 * cs_mode	CS size (mb)
 | |
| 		 * =======	============
 | |
| 		 * 0		32
 | |
| 		 * 1		64
 | |
| 		 * 2		128
 | |
| 		 * 3		128
 | |
| 		 * 4		256
 | |
| 		 * 5		512
 | |
| 		 * 6		256
 | |
| 		 * 7		512
 | |
| 		 * 8		1024
 | |
| 		 * 9		1024
 | |
| 		 * 10		2048
 | |
| 		 *
 | |
| 		 * Basically, it calculates a value with which to shift the
 | |
| 		 * smallest CS size of 32MB.
 | |
| 		 *
 | |
| 		 * ddr[23]_cs_size have a similar purpose.
 | |
| 		 */
 | |
| 		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
 | |
| 
 | |
| 		return 32 << (cs_mode - diff);
 | |
| 	}
 | |
| 	else {
 | |
| 		WARN_ON(cs_mode > 6);
 | |
| 		return 32 << cs_mode;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the number of DCT channels in use.
 | |
|  *
 | |
|  * Return:
 | |
|  *	number of Memory Channels in operation
 | |
|  * Pass back:
 | |
|  *	contents of the DCL0_LOW register
 | |
|  */
 | |
| static int f1x_early_channel_count(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	int i, j, channels = 0;
 | |
| 
 | |
| 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
 | |
| 	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
 | |
| 		return 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to check if in unganged mode: In such, there are 2 channels,
 | |
| 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
 | |
| 	 * bit will be OFF.
 | |
| 	 *
 | |
| 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
 | |
| 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
 | |
| 	 */
 | |
| 	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
 | |
| 	 * is more than just one DIMM present in unganged mode. Need to check
 | |
| 	 * both controllers since DIMMs can be placed in either one.
 | |
| 	 */
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
 | |
| 
 | |
| 		for (j = 0; j < 4; j++) {
 | |
| 			if (DBAM_DIMM(j, dbam) > 0) {
 | |
| 				channels++;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (channels > 2)
 | |
| 		channels = 2;
 | |
| 
 | |
| 	amd64_info("MCT channel count: %d\n", channels);
 | |
| 
 | |
| 	return channels;
 | |
| }
 | |
| 
 | |
| static int f17_early_channel_count(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	int i, channels = 0;
 | |
| 
 | |
| 	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
 | |
| 	for_each_umc(i)
 | |
| 		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
 | |
| 
 | |
| 	amd64_info("MCT channel count: %d\n", channels);
 | |
| 
 | |
| 	return channels;
 | |
| }
 | |
| 
 | |
| static int ddr3_cs_size(unsigned i, bool dct_width)
 | |
| {
 | |
| 	unsigned shift = 0;
 | |
| 	int cs_size = 0;
 | |
| 
 | |
| 	if (i == 0 || i == 3 || i == 4)
 | |
| 		cs_size = -1;
 | |
| 	else if (i <= 2)
 | |
| 		shift = i;
 | |
| 	else if (i == 12)
 | |
| 		shift = 7;
 | |
| 	else if (!(i & 0x1))
 | |
| 		shift = i >> 1;
 | |
| 	else
 | |
| 		shift = (i + 1) >> 1;
 | |
| 
 | |
| 	if (cs_size != -1)
 | |
| 		cs_size = (128 * (1 << !!dct_width)) << shift;
 | |
| 
 | |
| 	return cs_size;
 | |
| }
 | |
| 
 | |
| static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
 | |
| {
 | |
| 	unsigned shift = 0;
 | |
| 	int cs_size = 0;
 | |
| 
 | |
| 	if (i < 4 || i == 6)
 | |
| 		cs_size = -1;
 | |
| 	else if (i == 12)
 | |
| 		shift = 7;
 | |
| 	else if (!(i & 0x1))
 | |
| 		shift = i >> 1;
 | |
| 	else
 | |
| 		shift = (i + 1) >> 1;
 | |
| 
 | |
| 	if (cs_size != -1)
 | |
| 		cs_size = rank_multiply * (128 << shift);
 | |
| 
 | |
| 	return cs_size;
 | |
| }
 | |
| 
 | |
| static int ddr4_cs_size(unsigned i)
 | |
| {
 | |
| 	int cs_size = 0;
 | |
| 
 | |
| 	if (i == 0)
 | |
| 		cs_size = -1;
 | |
| 	else if (i == 1)
 | |
| 		cs_size = 1024;
 | |
| 	else
 | |
| 		/* Min cs_size = 1G */
 | |
| 		cs_size = 1024 * (1 << (i >> 1));
 | |
| 
 | |
| 	return cs_size;
 | |
| }
 | |
| 
 | |
| static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | |
| 				   unsigned cs_mode, int cs_mask_nr)
 | |
| {
 | |
| 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
 | |
| 
 | |
| 	WARN_ON(cs_mode > 11);
 | |
| 
 | |
| 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
 | |
| 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
 | |
| 	else
 | |
| 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * F15h supports only 64bit DCT interfaces
 | |
|  */
 | |
| static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | |
| 				   unsigned cs_mode, int cs_mask_nr)
 | |
| {
 | |
| 	WARN_ON(cs_mode > 12);
 | |
| 
 | |
| 	return ddr3_cs_size(cs_mode, false);
 | |
| }
 | |
| 
 | |
| /* F15h M60h supports DDR4 mapping as well.. */
 | |
| static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | |
| 					unsigned cs_mode, int cs_mask_nr)
 | |
| {
 | |
| 	int cs_size;
 | |
| 	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
 | |
| 
 | |
| 	WARN_ON(cs_mode > 12);
 | |
| 
 | |
| 	if (pvt->dram_type == MEM_DDR4) {
 | |
| 		if (cs_mode > 9)
 | |
| 			return -1;
 | |
| 
 | |
| 		cs_size = ddr4_cs_size(cs_mode);
 | |
| 	} else if (pvt->dram_type == MEM_LRDDR3) {
 | |
| 		unsigned rank_multiply = dcsm & 0xf;
 | |
| 
 | |
| 		if (rank_multiply == 3)
 | |
| 			rank_multiply = 4;
 | |
| 		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
 | |
| 	} else {
 | |
| 		/* Minimum cs size is 512mb for F15hM60h*/
 | |
| 		if (cs_mode == 0x1)
 | |
| 			return -1;
 | |
| 
 | |
| 		cs_size = ddr3_cs_size(cs_mode, false);
 | |
| 	}
 | |
| 
 | |
| 	return cs_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * F16h and F15h model 30h have only limited cs_modes.
 | |
|  */
 | |
| static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | |
| 				unsigned cs_mode, int cs_mask_nr)
 | |
| {
 | |
| 	WARN_ON(cs_mode > 12);
 | |
| 
 | |
| 	if (cs_mode == 6 || cs_mode == 8 ||
 | |
| 	    cs_mode == 9 || cs_mode == 12)
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return ddr3_cs_size(cs_mode, false);
 | |
| }
 | |
| 
 | |
| static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
 | |
| 				    unsigned int cs_mode, int csrow_nr)
 | |
| {
 | |
| 	u32 addr_mask_orig, addr_mask_deinterleaved;
 | |
| 	u32 msb, weight, num_zero_bits;
 | |
| 	int dimm, size = 0;
 | |
| 
 | |
| 	/* No Chip Selects are enabled. */
 | |
| 	if (!cs_mode)
 | |
| 		return size;
 | |
| 
 | |
| 	/* Requested size of an even CS but none are enabled. */
 | |
| 	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
 | |
| 		return size;
 | |
| 
 | |
| 	/* Requested size of an odd CS but none are enabled. */
 | |
| 	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
 | |
| 		return size;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is one mask per DIMM, and two Chip Selects per DIMM.
 | |
| 	 *	CS0 and CS1 -> DIMM0
 | |
| 	 *	CS2 and CS3 -> DIMM1
 | |
| 	 */
 | |
| 	dimm = csrow_nr >> 1;
 | |
| 
 | |
| 	/* Asymmetric dual-rank DIMM support. */
 | |
| 	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
 | |
| 		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
 | |
| 	else
 | |
| 		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of zero bits in the mask is equal to the number of bits
 | |
| 	 * in a full mask minus the number of bits in the current mask.
 | |
| 	 *
 | |
| 	 * The MSB is the number of bits in the full mask because BIT[0] is
 | |
| 	 * always 0.
 | |
| 	 */
 | |
| 	msb = fls(addr_mask_orig) - 1;
 | |
| 	weight = hweight_long(addr_mask_orig);
 | |
| 	num_zero_bits = msb - weight;
 | |
| 
 | |
| 	/* Take the number of zero bits off from the top of the mask. */
 | |
| 	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);
 | |
| 
 | |
| 	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
 | |
| 	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
 | |
| 	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);
 | |
| 
 | |
| 	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
 | |
| 	size = (addr_mask_deinterleaved >> 2) + 1;
 | |
| 
 | |
| 	/* Return size in MBs. */
 | |
| 	return size >> 10;
 | |
| }
 | |
| 
 | |
| static void read_dram_ctl_register(struct amd64_pvt *pvt)
 | |
| {
 | |
| 
 | |
| 	if (pvt->fam == 0xf)
 | |
| 		return;
 | |
| 
 | |
| 	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
 | |
| 		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
 | |
| 			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
 | |
| 
 | |
| 		edac_dbg(0, "  DCTs operate in %s mode\n",
 | |
| 			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
 | |
| 
 | |
| 		if (!dct_ganging_enabled(pvt))
 | |
| 			edac_dbg(0, "  Address range split per DCT: %s\n",
 | |
| 				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
 | |
| 
 | |
| 		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
 | |
| 			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
 | |
| 			 (dct_memory_cleared(pvt) ? "yes" : "no"));
 | |
| 
 | |
| 		edac_dbg(0, "  channel interleave: %s, "
 | |
| 			 "interleave bits selector: 0x%x\n",
 | |
| 			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
 | |
| 			 dct_sel_interleave_addr(pvt));
 | |
| 	}
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 | |
|  * 2.10.12 Memory Interleaving Modes).
 | |
|  */
 | |
| static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
 | |
| 				     u8 intlv_en, int num_dcts_intlv,
 | |
| 				     u32 dct_sel)
 | |
| {
 | |
| 	u8 channel = 0;
 | |
| 	u8 select;
 | |
| 
 | |
| 	if (!(intlv_en))
 | |
| 		return (u8)(dct_sel);
 | |
| 
 | |
| 	if (num_dcts_intlv == 2) {
 | |
| 		select = (sys_addr >> 8) & 0x3;
 | |
| 		channel = select ? 0x3 : 0;
 | |
| 	} else if (num_dcts_intlv == 4) {
 | |
| 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
 | |
| 		switch (intlv_addr) {
 | |
| 		case 0x4:
 | |
| 			channel = (sys_addr >> 8) & 0x3;
 | |
| 			break;
 | |
| 		case 0x5:
 | |
| 			channel = (sys_addr >> 9) & 0x3;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return channel;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
 | |
|  * Interleaving Modes.
 | |
|  */
 | |
| static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
 | |
| 				bool hi_range_sel, u8 intlv_en)
 | |
| {
 | |
| 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
 | |
| 
 | |
| 	if (dct_ganging_enabled(pvt))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (hi_range_sel)
 | |
| 		return dct_sel_high;
 | |
| 
 | |
| 	/*
 | |
| 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
 | |
| 	 */
 | |
| 	if (dct_interleave_enabled(pvt)) {
 | |
| 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
 | |
| 
 | |
| 		/* return DCT select function: 0=DCT0, 1=DCT1 */
 | |
| 		if (!intlv_addr)
 | |
| 			return sys_addr >> 6 & 1;
 | |
| 
 | |
| 		if (intlv_addr & 0x2) {
 | |
| 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
 | |
| 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
 | |
| 
 | |
| 			return ((sys_addr >> shift) & 1) ^ temp;
 | |
| 		}
 | |
| 
 | |
| 		if (intlv_addr & 0x4) {
 | |
| 			u8 shift = intlv_addr & 0x1 ? 9 : 8;
 | |
| 
 | |
| 			return (sys_addr >> shift) & 1;
 | |
| 		}
 | |
| 
 | |
| 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
 | |
| 	}
 | |
| 
 | |
| 	if (dct_high_range_enabled(pvt))
 | |
| 		return ~dct_sel_high & 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Convert the sys_addr to the normalized DCT address */
 | |
| static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
 | |
| 				 u64 sys_addr, bool hi_rng,
 | |
| 				 u32 dct_sel_base_addr)
 | |
| {
 | |
| 	u64 chan_off;
 | |
| 	u64 dram_base		= get_dram_base(pvt, range);
 | |
| 	u64 hole_off		= f10_dhar_offset(pvt);
 | |
| 	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
 | |
| 
 | |
| 	if (hi_rng) {
 | |
| 		/*
 | |
| 		 * if
 | |
| 		 * base address of high range is below 4Gb
 | |
| 		 * (bits [47:27] at [31:11])
 | |
| 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
 | |
| 		 * sys_addr > 4Gb
 | |
| 		 *
 | |
| 		 *	remove hole offset from sys_addr
 | |
| 		 * else
 | |
| 		 *	remove high range offset from sys_addr
 | |
| 		 */
 | |
| 		if ((!(dct_sel_base_addr >> 16) ||
 | |
| 		     dct_sel_base_addr < dhar_base(pvt)) &&
 | |
| 		    dhar_valid(pvt) &&
 | |
| 		    (sys_addr >= BIT_64(32)))
 | |
| 			chan_off = hole_off;
 | |
| 		else
 | |
| 			chan_off = dct_sel_base_off;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * if
 | |
| 		 * we have a valid hole		&&
 | |
| 		 * sys_addr > 4Gb
 | |
| 		 *
 | |
| 		 *	remove hole
 | |
| 		 * else
 | |
| 		 *	remove dram base to normalize to DCT address
 | |
| 		 */
 | |
| 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
 | |
| 			chan_off = hole_off;
 | |
| 		else
 | |
| 			chan_off = dram_base;
 | |
| 	}
 | |
| 
 | |
| 	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * checks if the csrow passed in is marked as SPARED, if so returns the new
 | |
|  * spare row
 | |
|  */
 | |
| static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
 | |
| {
 | |
| 	int tmp_cs;
 | |
| 
 | |
| 	if (online_spare_swap_done(pvt, dct) &&
 | |
| 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
 | |
| 
 | |
| 		for_each_chip_select(tmp_cs, dct, pvt) {
 | |
| 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
 | |
| 				csrow = tmp_cs;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return csrow;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 | |
|  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 | |
|  *
 | |
|  * Return:
 | |
|  *	-EINVAL:  NOT FOUND
 | |
|  *	0..csrow = Chip-Select Row
 | |
|  */
 | |
| static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct amd64_pvt *pvt;
 | |
| 	u64 cs_base, cs_mask;
 | |
| 	int cs_found = -EINVAL;
 | |
| 	int csrow;
 | |
| 
 | |
| 	mci = edac_mc_find(nid);
 | |
| 	if (!mci)
 | |
| 		return cs_found;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
 | |
| 
 | |
| 	for_each_chip_select(csrow, dct, pvt) {
 | |
| 		if (!csrow_enabled(csrow, dct, pvt))
 | |
| 			continue;
 | |
| 
 | |
| 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
 | |
| 
 | |
| 		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
 | |
| 			 csrow, cs_base, cs_mask);
 | |
| 
 | |
| 		cs_mask = ~cs_mask;
 | |
| 
 | |
| 		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
 | |
| 			 (in_addr & cs_mask), (cs_base & cs_mask));
 | |
| 
 | |
| 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
 | |
| 			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
 | |
| 				cs_found =  csrow;
 | |
| 				break;
 | |
| 			}
 | |
| 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
 | |
| 
 | |
| 			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return cs_found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 | |
|  * swapped with a region located at the bottom of memory so that the GPU can use
 | |
|  * the interleaved region and thus two channels.
 | |
|  */
 | |
| static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
 | |
| {
 | |
| 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
 | |
| 
 | |
| 	if (pvt->fam == 0x10) {
 | |
| 		/* only revC3 and revE have that feature */
 | |
| 		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
 | |
| 			return sys_addr;
 | |
| 	}
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
 | |
| 
 | |
| 	if (!(swap_reg & 0x1))
 | |
| 		return sys_addr;
 | |
| 
 | |
| 	swap_base	= (swap_reg >> 3) & 0x7f;
 | |
| 	swap_limit	= (swap_reg >> 11) & 0x7f;
 | |
| 	rgn_size	= (swap_reg >> 20) & 0x7f;
 | |
| 	tmp_addr	= sys_addr >> 27;
 | |
| 
 | |
| 	if (!(sys_addr >> 34) &&
 | |
| 	    (((tmp_addr >= swap_base) &&
 | |
| 	     (tmp_addr <= swap_limit)) ||
 | |
| 	     (tmp_addr < rgn_size)))
 | |
| 		return sys_addr ^ (u64)swap_base << 27;
 | |
| 
 | |
| 	return sys_addr;
 | |
| }
 | |
| 
 | |
| /* For a given @dram_range, check if @sys_addr falls within it. */
 | |
| static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
 | |
| 				  u64 sys_addr, int *chan_sel)
 | |
| {
 | |
| 	int cs_found = -EINVAL;
 | |
| 	u64 chan_addr;
 | |
| 	u32 dct_sel_base;
 | |
| 	u8 channel;
 | |
| 	bool high_range = false;
 | |
| 
 | |
| 	u8 node_id    = dram_dst_node(pvt, range);
 | |
| 	u8 intlv_en   = dram_intlv_en(pvt, range);
 | |
| 	u32 intlv_sel = dram_intlv_sel(pvt, range);
 | |
| 
 | |
| 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
 | |
| 		 range, sys_addr, get_dram_limit(pvt, range));
 | |
| 
 | |
| 	if (dhar_valid(pvt) &&
 | |
| 	    dhar_base(pvt) <= sys_addr &&
 | |
| 	    sys_addr < BIT_64(32)) {
 | |
| 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
 | |
| 			    sys_addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
 | |
| 
 | |
| 	dct_sel_base = dct_sel_baseaddr(pvt);
 | |
| 
 | |
| 	/*
 | |
| 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
 | |
| 	 * select between DCT0 and DCT1.
 | |
| 	 */
 | |
| 	if (dct_high_range_enabled(pvt) &&
 | |
| 	   !dct_ganging_enabled(pvt) &&
 | |
| 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
 | |
| 		high_range = true;
 | |
| 
 | |
| 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
 | |
| 
 | |
| 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
 | |
| 					  high_range, dct_sel_base);
 | |
| 
 | |
| 	/* Remove node interleaving, see F1x120 */
 | |
| 	if (intlv_en)
 | |
| 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
 | |
| 			    (chan_addr & 0xfff);
 | |
| 
 | |
| 	/* remove channel interleave */
 | |
| 	if (dct_interleave_enabled(pvt) &&
 | |
| 	   !dct_high_range_enabled(pvt) &&
 | |
| 	   !dct_ganging_enabled(pvt)) {
 | |
| 
 | |
| 		if (dct_sel_interleave_addr(pvt) != 1) {
 | |
| 			if (dct_sel_interleave_addr(pvt) == 0x3)
 | |
| 				/* hash 9 */
 | |
| 				chan_addr = ((chan_addr >> 10) << 9) |
 | |
| 					     (chan_addr & 0x1ff);
 | |
| 			else
 | |
| 				/* A[6] or hash 6 */
 | |
| 				chan_addr = ((chan_addr >> 7) << 6) |
 | |
| 					     (chan_addr & 0x3f);
 | |
| 		} else
 | |
| 			/* A[12] */
 | |
| 			chan_addr = ((chan_addr >> 13) << 12) |
 | |
| 				     (chan_addr & 0xfff);
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
 | |
| 
 | |
| 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
 | |
| 
 | |
| 	if (cs_found >= 0)
 | |
| 		*chan_sel = channel;
 | |
| 
 | |
| 	return cs_found;
 | |
| }
 | |
| 
 | |
| static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
 | |
| 					u64 sys_addr, int *chan_sel)
 | |
| {
 | |
| 	int cs_found = -EINVAL;
 | |
| 	int num_dcts_intlv = 0;
 | |
| 	u64 chan_addr, chan_offset;
 | |
| 	u64 dct_base, dct_limit;
 | |
| 	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
 | |
| 	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
 | |
| 
 | |
| 	u64 dhar_offset		= f10_dhar_offset(pvt);
 | |
| 	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
 | |
| 	u8 node_id		= dram_dst_node(pvt, range);
 | |
| 	u8 intlv_en		= dram_intlv_en(pvt, range);
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
 | |
| 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
 | |
| 
 | |
| 	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
 | |
| 	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);
 | |
| 
 | |
| 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
 | |
| 		 range, sys_addr, get_dram_limit(pvt, range));
 | |
| 
 | |
| 	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
 | |
| 	    !(get_dram_limit(pvt, range) >= sys_addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (dhar_valid(pvt) &&
 | |
| 	    dhar_base(pvt) <= sys_addr &&
 | |
| 	    sys_addr < BIT_64(32)) {
 | |
| 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
 | |
| 			    sys_addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Verify sys_addr is within DCT Range. */
 | |
| 	dct_base = (u64) dct_sel_baseaddr(pvt);
 | |
| 	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
 | |
| 
 | |
| 	if (!(dct_cont_base_reg & BIT(0)) &&
 | |
| 	    !(dct_base <= (sys_addr >> 27) &&
 | |
| 	      dct_limit >= (sys_addr >> 27)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Verify number of dct's that participate in channel interleaving. */
 | |
| 	num_dcts_intlv = (int) hweight8(intlv_en);
 | |
| 
 | |
| 	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pvt->model >= 0x60)
 | |
| 		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
 | |
| 	else
 | |
| 		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
 | |
| 						     num_dcts_intlv, dct_sel);
 | |
| 
 | |
| 	/* Verify we stay within the MAX number of channels allowed */
 | |
| 	if (channel > 3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
 | |
| 
 | |
| 	/* Get normalized DCT addr */
 | |
| 	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
 | |
| 		chan_offset = dhar_offset;
 | |
| 	else
 | |
| 		chan_offset = dct_base << 27;
 | |
| 
 | |
| 	chan_addr = sys_addr - chan_offset;
 | |
| 
 | |
| 	/* remove channel interleave */
 | |
| 	if (num_dcts_intlv == 2) {
 | |
| 		if (intlv_addr == 0x4)
 | |
| 			chan_addr = ((chan_addr >> 9) << 8) |
 | |
| 						(chan_addr & 0xff);
 | |
| 		else if (intlv_addr == 0x5)
 | |
| 			chan_addr = ((chan_addr >> 10) << 9) |
 | |
| 						(chan_addr & 0x1ff);
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	} else if (num_dcts_intlv == 4) {
 | |
| 		if (intlv_addr == 0x4)
 | |
| 			chan_addr = ((chan_addr >> 10) << 8) |
 | |
| 							(chan_addr & 0xff);
 | |
| 		else if (intlv_addr == 0x5)
 | |
| 			chan_addr = ((chan_addr >> 11) << 9) |
 | |
| 							(chan_addr & 0x1ff);
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (dct_offset_en) {
 | |
| 		amd64_read_pci_cfg(pvt->F1,
 | |
| 				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
 | |
| 				   &tmp);
 | |
| 		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
 | |
| 	}
 | |
| 
 | |
| 	f15h_select_dct(pvt, channel);
 | |
| 
 | |
| 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find Chip select:
 | |
| 	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
 | |
| 	 * there is support for 4 DCT's, but only 2 are currently functional.
 | |
| 	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
 | |
| 	 * pvt->csels[1]. So we need to use '1' here to get correct info.
 | |
| 	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
 | |
| 	 */
 | |
| 	alias_channel =  (channel == 3) ? 1 : channel;
 | |
| 
 | |
| 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
 | |
| 
 | |
| 	if (cs_found >= 0)
 | |
| 		*chan_sel = alias_channel;
 | |
| 
 | |
| 	return cs_found;
 | |
| }
 | |
| 
 | |
| static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
 | |
| 					u64 sys_addr,
 | |
| 					int *chan_sel)
 | |
| {
 | |
| 	int cs_found = -EINVAL;
 | |
| 	unsigned range;
 | |
| 
 | |
| 	for (range = 0; range < DRAM_RANGES; range++) {
 | |
| 		if (!dram_rw(pvt, range))
 | |
| 			continue;
 | |
| 
 | |
| 		if (pvt->fam == 0x15 && pvt->model >= 0x30)
 | |
| 			cs_found = f15_m30h_match_to_this_node(pvt, range,
 | |
| 							       sys_addr,
 | |
| 							       chan_sel);
 | |
| 
 | |
| 		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
 | |
| 			 (get_dram_limit(pvt, range) >= sys_addr)) {
 | |
| 			cs_found = f1x_match_to_this_node(pvt, range,
 | |
| 							  sys_addr, chan_sel);
 | |
| 			if (cs_found >= 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	return cs_found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 | |
|  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
 | |
|  *
 | |
|  * The @sys_addr is usually an error address received from the hardware
 | |
|  * (MCX_ADDR).
 | |
|  */
 | |
| static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
 | |
| 				     struct err_info *err)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 
 | |
| 	error_address_to_page_and_offset(sys_addr, err);
 | |
| 
 | |
| 	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
 | |
| 	if (err->csrow < 0) {
 | |
| 		err->err_code = ERR_CSROW;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need the syndromes for channel detection only when we're
 | |
| 	 * ganged. Otherwise @chan should already contain the channel at
 | |
| 	 * this point.
 | |
| 	 */
 | |
| 	if (dct_ganging_enabled(pvt))
 | |
| 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * debug routine to display the memory sizes of all logical DIMMs and its
 | |
|  * CSROWs
 | |
|  */
 | |
| static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
 | |
| {
 | |
| 	int dimm, size0, size1;
 | |
| 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
 | |
| 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
 | |
| 
 | |
| 	if (pvt->fam == 0xf) {
 | |
| 		/* K8 families < revF not supported yet */
 | |
| 	       if (pvt->ext_model < K8_REV_F)
 | |
| 			return;
 | |
| 	       else
 | |
| 		       WARN_ON(ctrl != 0);
 | |
| 	}
 | |
| 
 | |
| 	if (pvt->fam == 0x10) {
 | |
| 		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
 | |
| 							   : pvt->dbam0;
 | |
| 		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
 | |
| 				 pvt->csels[1].csbases :
 | |
| 				 pvt->csels[0].csbases;
 | |
| 	} else if (ctrl) {
 | |
| 		dbam = pvt->dbam0;
 | |
| 		dcsb = pvt->csels[1].csbases;
 | |
| 	}
 | |
| 	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
 | |
| 		 ctrl, dbam);
 | |
| 
 | |
| 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
 | |
| 
 | |
| 	/* Dump memory sizes for DIMM and its CSROWs */
 | |
| 	for (dimm = 0; dimm < 4; dimm++) {
 | |
| 
 | |
| 		size0 = 0;
 | |
| 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
 | |
| 			/*
 | |
| 			 * For F15m60h, we need multiplier for LRDIMM cs_size
 | |
| 			 * calculation. We pass dimm value to the dbam_to_cs
 | |
| 			 * mapper so we can find the multiplier from the
 | |
| 			 * corresponding DCSM.
 | |
| 			 */
 | |
| 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
 | |
| 						     DBAM_DIMM(dimm, dbam),
 | |
| 						     dimm);
 | |
| 
 | |
| 		size1 = 0;
 | |
| 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
 | |
| 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
 | |
| 						     DBAM_DIMM(dimm, dbam),
 | |
| 						     dimm);
 | |
| 
 | |
| 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
 | |
| 				dimm * 2,     size0,
 | |
| 				dimm * 2 + 1, size1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct amd64_family_type family_types[] = {
 | |
| 	[K8_CPUS] = {
 | |
| 		.ctl_name = "K8",
 | |
| 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
 | |
| 		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= k8_early_channel_count,
 | |
| 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
 | |
| 			.dbam_to_cs		= k8_dbam_to_chip_select,
 | |
| 		}
 | |
| 	},
 | |
| 	[F10_CPUS] = {
 | |
| 		.ctl_name = "F10h",
 | |
| 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
 | |
| 		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f1x_early_channel_count,
 | |
| 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | |
| 			.dbam_to_cs		= f10_dbam_to_chip_select,
 | |
| 		}
 | |
| 	},
 | |
| 	[F15_CPUS] = {
 | |
| 		.ctl_name = "F15h",
 | |
| 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
 | |
| 		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f1x_early_channel_count,
 | |
| 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | |
| 			.dbam_to_cs		= f15_dbam_to_chip_select,
 | |
| 		}
 | |
| 	},
 | |
| 	[F15_M30H_CPUS] = {
 | |
| 		.ctl_name = "F15h_M30h",
 | |
| 		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
 | |
| 		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f1x_early_channel_count,
 | |
| 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | |
| 			.dbam_to_cs		= f16_dbam_to_chip_select,
 | |
| 		}
 | |
| 	},
 | |
| 	[F15_M60H_CPUS] = {
 | |
| 		.ctl_name = "F15h_M60h",
 | |
| 		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
 | |
| 		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f1x_early_channel_count,
 | |
| 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | |
| 			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
 | |
| 		}
 | |
| 	},
 | |
| 	[F16_CPUS] = {
 | |
| 		.ctl_name = "F16h",
 | |
| 		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
 | |
| 		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f1x_early_channel_count,
 | |
| 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | |
| 			.dbam_to_cs		= f16_dbam_to_chip_select,
 | |
| 		}
 | |
| 	},
 | |
| 	[F16_M30H_CPUS] = {
 | |
| 		.ctl_name = "F16h_M30h",
 | |
| 		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
 | |
| 		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f1x_early_channel_count,
 | |
| 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | |
| 			.dbam_to_cs		= f16_dbam_to_chip_select,
 | |
| 		}
 | |
| 	},
 | |
| 	[F17_CPUS] = {
 | |
| 		.ctl_name = "F17h",
 | |
| 		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
 | |
| 		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f17_early_channel_count,
 | |
| 			.dbam_to_cs		= f17_addr_mask_to_cs_size,
 | |
| 		}
 | |
| 	},
 | |
| 	[F17_M10H_CPUS] = {
 | |
| 		.ctl_name = "F17h_M10h",
 | |
| 		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
 | |
| 		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f17_early_channel_count,
 | |
| 			.dbam_to_cs		= f17_addr_mask_to_cs_size,
 | |
| 		}
 | |
| 	},
 | |
| 	[F17_M30H_CPUS] = {
 | |
| 		.ctl_name = "F17h_M30h",
 | |
| 		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
 | |
| 		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
 | |
| 		.max_mcs = 8,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f17_early_channel_count,
 | |
| 			.dbam_to_cs		= f17_addr_mask_to_cs_size,
 | |
| 		}
 | |
| 	},
 | |
| 	[F17_M70H_CPUS] = {
 | |
| 		.ctl_name = "F17h_M70h",
 | |
| 		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
 | |
| 		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
 | |
| 		.max_mcs = 2,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f17_early_channel_count,
 | |
| 			.dbam_to_cs		= f17_addr_mask_to_cs_size,
 | |
| 		}
 | |
| 	},
 | |
| 	[F19_CPUS] = {
 | |
| 		.ctl_name = "F19h",
 | |
| 		.f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
 | |
| 		.f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
 | |
| 		.max_mcs = 8,
 | |
| 		.ops = {
 | |
| 			.early_channel_count	= f17_early_channel_count,
 | |
| 			.dbam_to_cs		= f17_addr_mask_to_cs_size,
 | |
| 		}
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These are tables of eigenvectors (one per line) which can be used for the
 | |
|  * construction of the syndrome tables. The modified syndrome search algorithm
 | |
|  * uses those to find the symbol in error and thus the DIMM.
 | |
|  *
 | |
|  * Algorithm courtesy of Ross LaFetra from AMD.
 | |
|  */
 | |
| static const u16 x4_vectors[] = {
 | |
| 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
 | |
| 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
 | |
| 	0x0001, 0x0002, 0x0004, 0x0008,
 | |
| 	0x1013, 0x3032, 0x4044, 0x8088,
 | |
| 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
 | |
| 	0x4857, 0xc4fe, 0x13cc, 0x3288,
 | |
| 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
 | |
| 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
 | |
| 	0x15c1, 0x2a42, 0x89ac, 0x4758,
 | |
| 	0x2b03, 0x1602, 0x4f0c, 0xca08,
 | |
| 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
 | |
| 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
 | |
| 	0x2b87, 0x164e, 0x642c, 0xdc18,
 | |
| 	0x40b9, 0x80de, 0x1094, 0x20e8,
 | |
| 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
 | |
| 	0x11c1, 0x2242, 0x84ac, 0x4c58,
 | |
| 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
 | |
| 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
 | |
| 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
 | |
| 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
 | |
| 	0x16b3, 0x3d62, 0x4f34, 0x8518,
 | |
| 	0x1e2f, 0x391a, 0x5cac, 0xf858,
 | |
| 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
 | |
| 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
 | |
| 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
 | |
| 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
 | |
| 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
 | |
| 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
 | |
| 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
 | |
| 	0x185d, 0x2ca6, 0x7914, 0x9e28,
 | |
| 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
 | |
| 	0x4199, 0x82ee, 0x19f4, 0x2e58,
 | |
| 	0x4807, 0xc40e, 0x130c, 0x3208,
 | |
| 	0x1905, 0x2e0a, 0x5804, 0xac08,
 | |
| 	0x213f, 0x132a, 0xadfc, 0x5ba8,
 | |
| 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
 | |
| };
 | |
| 
 | |
| static const u16 x8_vectors[] = {
 | |
| 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
 | |
| 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
 | |
| 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
 | |
| 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
 | |
| 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
 | |
| 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
 | |
| 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
 | |
| 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
 | |
| 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
 | |
| 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
 | |
| 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
 | |
| 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
 | |
| 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
 | |
| 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
 | |
| 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
 | |
| 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
 | |
| 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
 | |
| 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
 | |
| 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
 | |
| };
 | |
| 
 | |
| static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
 | |
| 			   unsigned v_dim)
 | |
| {
 | |
| 	unsigned int i, err_sym;
 | |
| 
 | |
| 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
 | |
| 		u16 s = syndrome;
 | |
| 		unsigned v_idx =  err_sym * v_dim;
 | |
| 		unsigned v_end = (err_sym + 1) * v_dim;
 | |
| 
 | |
| 		/* walk over all 16 bits of the syndrome */
 | |
| 		for (i = 1; i < (1U << 16); i <<= 1) {
 | |
| 
 | |
| 			/* if bit is set in that eigenvector... */
 | |
| 			if (v_idx < v_end && vectors[v_idx] & i) {
 | |
| 				u16 ev_comp = vectors[v_idx++];
 | |
| 
 | |
| 				/* ... and bit set in the modified syndrome, */
 | |
| 				if (s & i) {
 | |
| 					/* remove it. */
 | |
| 					s ^= ev_comp;
 | |
| 
 | |
| 					if (!s)
 | |
| 						return err_sym;
 | |
| 				}
 | |
| 
 | |
| 			} else if (s & i)
 | |
| 				/* can't get to zero, move to next symbol */
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int map_err_sym_to_channel(int err_sym, int sym_size)
 | |
| {
 | |
| 	if (sym_size == 4)
 | |
| 		switch (err_sym) {
 | |
| 		case 0x20:
 | |
| 		case 0x21:
 | |
| 			return 0;
 | |
| 			break;
 | |
| 		case 0x22:
 | |
| 		case 0x23:
 | |
| 			return 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return err_sym >> 4;
 | |
| 			break;
 | |
| 		}
 | |
| 	/* x8 symbols */
 | |
| 	else
 | |
| 		switch (err_sym) {
 | |
| 		/* imaginary bits not in a DIMM */
 | |
| 		case 0x10:
 | |
| 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
 | |
| 					  err_sym);
 | |
| 			return -1;
 | |
| 			break;
 | |
| 
 | |
| 		case 0x11:
 | |
| 			return 0;
 | |
| 			break;
 | |
| 		case 0x12:
 | |
| 			return 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return err_sym >> 3;
 | |
| 			break;
 | |
| 		}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 	int err_sym = -1;
 | |
| 
 | |
| 	if (pvt->ecc_sym_sz == 8)
 | |
| 		err_sym = decode_syndrome(syndrome, x8_vectors,
 | |
| 					  ARRAY_SIZE(x8_vectors),
 | |
| 					  pvt->ecc_sym_sz);
 | |
| 	else if (pvt->ecc_sym_sz == 4)
 | |
| 		err_sym = decode_syndrome(syndrome, x4_vectors,
 | |
| 					  ARRAY_SIZE(x4_vectors),
 | |
| 					  pvt->ecc_sym_sz);
 | |
| 	else {
 | |
| 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
 | |
| 		return err_sym;
 | |
| 	}
 | |
| 
 | |
| 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
 | |
| }
 | |
| 
 | |
| static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
 | |
| 			    u8 ecc_type)
 | |
| {
 | |
| 	enum hw_event_mc_err_type err_type;
 | |
| 	const char *string;
 | |
| 
 | |
| 	if (ecc_type == 2)
 | |
| 		err_type = HW_EVENT_ERR_CORRECTED;
 | |
| 	else if (ecc_type == 1)
 | |
| 		err_type = HW_EVENT_ERR_UNCORRECTED;
 | |
| 	else if (ecc_type == 3)
 | |
| 		err_type = HW_EVENT_ERR_DEFERRED;
 | |
| 	else {
 | |
| 		WARN(1, "Something is rotten in the state of Denmark.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (err->err_code) {
 | |
| 	case DECODE_OK:
 | |
| 		string = "";
 | |
| 		break;
 | |
| 	case ERR_NODE:
 | |
| 		string = "Failed to map error addr to a node";
 | |
| 		break;
 | |
| 	case ERR_CSROW:
 | |
| 		string = "Failed to map error addr to a csrow";
 | |
| 		break;
 | |
| 	case ERR_CHANNEL:
 | |
| 		string = "Unknown syndrome - possible error reporting race";
 | |
| 		break;
 | |
| 	case ERR_SYND:
 | |
| 		string = "MCA_SYND not valid - unknown syndrome and csrow";
 | |
| 		break;
 | |
| 	case ERR_NORM_ADDR:
 | |
| 		string = "Cannot decode normalized address";
 | |
| 		break;
 | |
| 	default:
 | |
| 		string = "WTF error";
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	edac_mc_handle_error(err_type, mci, 1,
 | |
| 			     err->page, err->offset, err->syndrome,
 | |
| 			     err->csrow, err->channel, -1,
 | |
| 			     string, "");
 | |
| }
 | |
| 
 | |
| static inline void decode_bus_error(int node_id, struct mce *m)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct amd64_pvt *pvt;
 | |
| 	u8 ecc_type = (m->status >> 45) & 0x3;
 | |
| 	u8 xec = XEC(m->status, 0x1f);
 | |
| 	u16 ec = EC(m->status);
 | |
| 	u64 sys_addr;
 | |
| 	struct err_info err;
 | |
| 
 | |
| 	mci = edac_mc_find(node_id);
 | |
| 	if (!mci)
 | |
| 		return;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/* Bail out early if this was an 'observed' error */
 | |
| 	if (PP(ec) == NBSL_PP_OBS)
 | |
| 		return;
 | |
| 
 | |
| 	/* Do only ECC errors */
 | |
| 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
 | |
| 		return;
 | |
| 
 | |
| 	memset(&err, 0, sizeof(err));
 | |
| 
 | |
| 	sys_addr = get_error_address(pvt, m);
 | |
| 
 | |
| 	if (ecc_type == 2)
 | |
| 		err.syndrome = extract_syndrome(m->status);
 | |
| 
 | |
| 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
 | |
| 
 | |
| 	__log_ecc_error(mci, &err, ecc_type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To find the UMC channel represented by this bank we need to match on its
 | |
|  * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 | |
|  * IPID.
 | |
|  *
 | |
|  * Currently, we can derive the channel number by looking at the 6th nibble in
 | |
|  * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 | |
|  * number.
 | |
|  */
 | |
| static int find_umc_channel(struct mce *m)
 | |
| {
 | |
| 	return (m->ipid & GENMASK(31, 0)) >> 20;
 | |
| }
 | |
| 
 | |
| static void decode_umc_error(int node_id, struct mce *m)
 | |
| {
 | |
| 	u8 ecc_type = (m->status >> 45) & 0x3;
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct amd64_pvt *pvt;
 | |
| 	struct err_info err;
 | |
| 	u64 sys_addr;
 | |
| 
 | |
| 	mci = edac_mc_find(node_id);
 | |
| 	if (!mci)
 | |
| 		return;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	memset(&err, 0, sizeof(err));
 | |
| 
 | |
| 	if (m->status & MCI_STATUS_DEFERRED)
 | |
| 		ecc_type = 3;
 | |
| 
 | |
| 	err.channel = find_umc_channel(m);
 | |
| 
 | |
| 	if (!(m->status & MCI_STATUS_SYNDV)) {
 | |
| 		err.err_code = ERR_SYND;
 | |
| 		goto log_error;
 | |
| 	}
 | |
| 
 | |
| 	if (ecc_type == 2) {
 | |
| 		u8 length = (m->synd >> 18) & 0x3f;
 | |
| 
 | |
| 		if (length)
 | |
| 			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
 | |
| 		else
 | |
| 			err.err_code = ERR_CHANNEL;
 | |
| 	}
 | |
| 
 | |
| 	err.csrow = m->synd & 0x7;
 | |
| 
 | |
| 	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
 | |
| 		err.err_code = ERR_NORM_ADDR;
 | |
| 		goto log_error;
 | |
| 	}
 | |
| 
 | |
| 	error_address_to_page_and_offset(sys_addr, &err);
 | |
| 
 | |
| log_error:
 | |
| 	__log_ecc_error(mci, &err, ecc_type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 | |
|  * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
 | |
|  * Reserve F0 and F6 on systems with a UMC.
 | |
|  */
 | |
| static int
 | |
| reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
 | |
| {
 | |
| 	if (pvt->umc) {
 | |
| 		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
 | |
| 		if (!pvt->F0) {
 | |
| 			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
 | |
| 		if (!pvt->F6) {
 | |
| 			pci_dev_put(pvt->F0);
 | |
| 			pvt->F0 = NULL;
 | |
| 
 | |
| 			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
 | |
| 		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
 | |
| 		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Reserve the ADDRESS MAP Device */
 | |
| 	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
 | |
| 	if (!pvt->F1) {
 | |
| 		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Reserve the DCT Device */
 | |
| 	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
 | |
| 	if (!pvt->F2) {
 | |
| 		pci_dev_put(pvt->F1);
 | |
| 		pvt->F1 = NULL;
 | |
| 
 | |
| 		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
 | |
| 	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
 | |
| 	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_mc_sibling_devs(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	if (pvt->umc) {
 | |
| 		pci_dev_put(pvt->F0);
 | |
| 		pci_dev_put(pvt->F6);
 | |
| 	} else {
 | |
| 		pci_dev_put(pvt->F1);
 | |
| 		pci_dev_put(pvt->F2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	pvt->ecc_sym_sz = 4;
 | |
| 
 | |
| 	if (pvt->umc) {
 | |
| 		u8 i;
 | |
| 
 | |
| 		for_each_umc(i) {
 | |
| 			/* Check enabled channels only: */
 | |
| 			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
 | |
| 				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
 | |
| 					pvt->ecc_sym_sz = 16;
 | |
| 					return;
 | |
| 				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
 | |
| 					pvt->ecc_sym_sz = 8;
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (pvt->fam >= 0x10) {
 | |
| 		u32 tmp;
 | |
| 
 | |
| 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
 | |
| 		/* F16h has only DCT0, so no need to read dbam1. */
 | |
| 		if (pvt->fam != 0x16)
 | |
| 			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
 | |
| 
 | |
| 		/* F10h, revD and later can do x8 ECC too. */
 | |
| 		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
 | |
| 			pvt->ecc_sym_sz = 8;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve the hardware registers of the memory controller.
 | |
|  */
 | |
| static void __read_mc_regs_df(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	u8 nid = pvt->mc_node_id;
 | |
| 	struct amd64_umc *umc;
 | |
| 	u32 i, umc_base;
 | |
| 
 | |
| 	/* Read registers from each UMC */
 | |
| 	for_each_umc(i) {
 | |
| 
 | |
| 		umc_base = get_umc_base(i);
 | |
| 		umc = &pvt->umc[i];
 | |
| 
 | |
| 		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
 | |
| 		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
 | |
| 		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
 | |
| 		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
 | |
| 		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve the hardware registers of the memory controller (this includes the
 | |
|  * 'Address Map' and 'Misc' device regs)
 | |
|  */
 | |
| static void read_mc_regs(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	unsigned int range;
 | |
| 	u64 msr_val;
 | |
| 
 | |
| 	/*
 | |
| 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
 | |
| 	 * those are Read-As-Zero.
 | |
| 	 */
 | |
| 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
 | |
| 	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
 | |
| 
 | |
| 	/* Check first whether TOP_MEM2 is enabled: */
 | |
| 	rdmsrl(MSR_K8_SYSCFG, msr_val);
 | |
| 	if (msr_val & BIT(21)) {
 | |
| 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
 | |
| 		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
 | |
| 	} else {
 | |
| 		edac_dbg(0, "  TOP_MEM2 disabled\n");
 | |
| 	}
 | |
| 
 | |
| 	if (pvt->umc) {
 | |
| 		__read_mc_regs_df(pvt);
 | |
| 		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
 | |
| 
 | |
| 		goto skip;
 | |
| 	}
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
 | |
| 
 | |
| 	read_dram_ctl_register(pvt);
 | |
| 
 | |
| 	for (range = 0; range < DRAM_RANGES; range++) {
 | |
| 		u8 rw;
 | |
| 
 | |
| 		/* read settings for this DRAM range */
 | |
| 		read_dram_base_limit_regs(pvt, range);
 | |
| 
 | |
| 		rw = dram_rw(pvt, range);
 | |
| 		if (!rw)
 | |
| 			continue;
 | |
| 
 | |
| 		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
 | |
| 			 range,
 | |
| 			 get_dram_base(pvt, range),
 | |
| 			 get_dram_limit(pvt, range));
 | |
| 
 | |
| 		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
 | |
| 			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
 | |
| 			 (rw & 0x1) ? "R" : "-",
 | |
| 			 (rw & 0x2) ? "W" : "-",
 | |
| 			 dram_intlv_sel(pvt, range),
 | |
| 			 dram_dst_node(pvt, range));
 | |
| 	}
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
 | |
| 	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
 | |
| 
 | |
| 	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
 | |
| 	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
 | |
| 
 | |
| 	if (!dct_ganging_enabled(pvt)) {
 | |
| 		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
 | |
| 		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
 | |
| 	}
 | |
| 
 | |
| skip:
 | |
| 	read_dct_base_mask(pvt);
 | |
| 
 | |
| 	determine_memory_type(pvt);
 | |
| 	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
 | |
| 
 | |
| 	determine_ecc_sym_sz(pvt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOTE: CPU Revision Dependent code
 | |
|  *
 | |
|  * Input:
 | |
|  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
 | |
|  *	k8 private pointer to -->
 | |
|  *			DRAM Bank Address mapping register
 | |
|  *			node_id
 | |
|  *			DCL register where dual_channel_active is
 | |
|  *
 | |
|  * The DBAM register consists of 4 sets of 4 bits each definitions:
 | |
|  *
 | |
|  * Bits:	CSROWs
 | |
|  * 0-3		CSROWs 0 and 1
 | |
|  * 4-7		CSROWs 2 and 3
 | |
|  * 8-11		CSROWs 4 and 5
 | |
|  * 12-15	CSROWs 6 and 7
 | |
|  *
 | |
|  * Values range from: 0 to 15
 | |
|  * The meaning of the values depends on CPU revision and dual-channel state,
 | |
|  * see relevant BKDG more info.
 | |
|  *
 | |
|  * The memory controller provides for total of only 8 CSROWs in its current
 | |
|  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 | |
|  * single channel or two (2) DIMMs in dual channel mode.
 | |
|  *
 | |
|  * The following code logic collapses the various tables for CSROW based on CPU
 | |
|  * revision.
 | |
|  *
 | |
|  * Returns:
 | |
|  *	The number of PAGE_SIZE pages on the specified CSROW number it
 | |
|  *	encompasses
 | |
|  *
 | |
|  */
 | |
| static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
 | |
| {
 | |
| 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
 | |
| 	int csrow_nr = csrow_nr_orig;
 | |
| 	u32 cs_mode, nr_pages;
 | |
| 
 | |
| 	if (!pvt->umc) {
 | |
| 		csrow_nr >>= 1;
 | |
| 		cs_mode = DBAM_DIMM(csrow_nr, dbam);
 | |
| 	} else {
 | |
| 		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
 | |
| 	}
 | |
| 
 | |
| 	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
 | |
| 	nr_pages <<= 20 - PAGE_SHIFT;
 | |
| 
 | |
| 	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
 | |
| 		    csrow_nr_orig, dct,  cs_mode);
 | |
| 	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
 | |
| 
 | |
| 	return nr_pages;
 | |
| }
 | |
| 
 | |
| static int init_csrows_df(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 	enum edac_type edac_mode = EDAC_NONE;
 | |
| 	enum dev_type dev_type = DEV_UNKNOWN;
 | |
| 	struct dimm_info *dimm;
 | |
| 	int empty = 1;
 | |
| 	u8 umc, cs;
 | |
| 
 | |
| 	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
 | |
| 		edac_mode = EDAC_S16ECD16ED;
 | |
| 		dev_type = DEV_X16;
 | |
| 	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
 | |
| 		edac_mode = EDAC_S8ECD8ED;
 | |
| 		dev_type = DEV_X8;
 | |
| 	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
 | |
| 		edac_mode = EDAC_S4ECD4ED;
 | |
| 		dev_type = DEV_X4;
 | |
| 	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
 | |
| 		edac_mode = EDAC_SECDED;
 | |
| 	}
 | |
| 
 | |
| 	for_each_umc(umc) {
 | |
| 		for_each_chip_select(cs, umc, pvt) {
 | |
| 			if (!csrow_enabled(cs, umc, pvt))
 | |
| 				continue;
 | |
| 
 | |
| 			empty = 0;
 | |
| 			dimm = mci->csrows[cs]->channels[umc]->dimm;
 | |
| 
 | |
| 			edac_dbg(1, "MC node: %d, csrow: %d\n",
 | |
| 					pvt->mc_node_id, cs);
 | |
| 
 | |
| 			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
 | |
| 			dimm->mtype = pvt->dram_type;
 | |
| 			dimm->edac_mode = edac_mode;
 | |
| 			dimm->dtype = dev_type;
 | |
| 			dimm->grain = 64;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return empty;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the array of csrow attribute instances, based on the values
 | |
|  * from pci config hardware registers.
 | |
|  */
 | |
| static int init_csrows(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 	enum edac_type edac_mode = EDAC_NONE;
 | |
| 	struct csrow_info *csrow;
 | |
| 	struct dimm_info *dimm;
 | |
| 	int i, j, empty = 1;
 | |
| 	int nr_pages = 0;
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (pvt->umc)
 | |
| 		return init_csrows_df(mci);
 | |
| 
 | |
| 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
 | |
| 
 | |
| 	pvt->nbcfg = val;
 | |
| 
 | |
| 	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
 | |
| 		 pvt->mc_node_id, val,
 | |
| 		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
 | |
| 
 | |
| 	/*
 | |
| 	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
 | |
| 	 */
 | |
| 	for_each_chip_select(i, 0, pvt) {
 | |
| 		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
 | |
| 		bool row_dct1 = false;
 | |
| 
 | |
| 		if (pvt->fam != 0xf)
 | |
| 			row_dct1 = !!csrow_enabled(i, 1, pvt);
 | |
| 
 | |
| 		if (!row_dct0 && !row_dct1)
 | |
| 			continue;
 | |
| 
 | |
| 		csrow = mci->csrows[i];
 | |
| 		empty = 0;
 | |
| 
 | |
| 		edac_dbg(1, "MC node: %d, csrow: %d\n",
 | |
| 			    pvt->mc_node_id, i);
 | |
| 
 | |
| 		if (row_dct0) {
 | |
| 			nr_pages = get_csrow_nr_pages(pvt, 0, i);
 | |
| 			csrow->channels[0]->dimm->nr_pages = nr_pages;
 | |
| 		}
 | |
| 
 | |
| 		/* K8 has only one DCT */
 | |
| 		if (pvt->fam != 0xf && row_dct1) {
 | |
| 			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
 | |
| 
 | |
| 			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
 | |
| 			nr_pages += row_dct1_pages;
 | |
| 		}
 | |
| 
 | |
| 		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
 | |
| 
 | |
| 		/* Determine DIMM ECC mode: */
 | |
| 		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
 | |
| 			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
 | |
| 					? EDAC_S4ECD4ED
 | |
| 					: EDAC_SECDED;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < pvt->channel_count; j++) {
 | |
| 			dimm = csrow->channels[j]->dimm;
 | |
| 			dimm->mtype = pvt->dram_type;
 | |
| 			dimm->edac_mode = edac_mode;
 | |
| 			dimm->grain = 64;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return empty;
 | |
| }
 | |
| 
 | |
| /* get all cores on this DCT */
 | |
| static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		if (amd_get_nb_id(cpu) == nid)
 | |
| 			cpumask_set_cpu(cpu, mask);
 | |
| }
 | |
| 
 | |
| /* check MCG_CTL on all the cpus on this node */
 | |
| static bool nb_mce_bank_enabled_on_node(u16 nid)
 | |
| {
 | |
| 	cpumask_var_t mask;
 | |
| 	int cpu, nbe;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
 | |
| 		amd64_warn("%s: Error allocating mask\n", __func__);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	get_cpus_on_this_dct_cpumask(mask, nid);
 | |
| 
 | |
| 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
 | |
| 
 | |
| 	for_each_cpu(cpu, mask) {
 | |
| 		struct msr *reg = per_cpu_ptr(msrs, cpu);
 | |
| 		nbe = reg->l & MSR_MCGCTL_NBE;
 | |
| 
 | |
| 		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
 | |
| 			 cpu, reg->q,
 | |
| 			 (nbe ? "enabled" : "disabled"));
 | |
| 
 | |
| 		if (!nbe)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	ret = true;
 | |
| 
 | |
| out:
 | |
| 	free_cpumask_var(mask);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
 | |
| {
 | |
| 	cpumask_var_t cmask;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
 | |
| 		amd64_warn("%s: error allocating mask\n", __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	get_cpus_on_this_dct_cpumask(cmask, nid);
 | |
| 
 | |
| 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
 | |
| 
 | |
| 	for_each_cpu(cpu, cmask) {
 | |
| 
 | |
| 		struct msr *reg = per_cpu_ptr(msrs, cpu);
 | |
| 
 | |
| 		if (on) {
 | |
| 			if (reg->l & MSR_MCGCTL_NBE)
 | |
| 				s->flags.nb_mce_enable = 1;
 | |
| 
 | |
| 			reg->l |= MSR_MCGCTL_NBE;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Turn off NB MCE reporting only when it was off before
 | |
| 			 */
 | |
| 			if (!s->flags.nb_mce_enable)
 | |
| 				reg->l &= ~MSR_MCGCTL_NBE;
 | |
| 		}
 | |
| 	}
 | |
| 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
 | |
| 
 | |
| 	free_cpumask_var(cmask);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
 | |
| 				       struct pci_dev *F3)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 	u32 value, mask = 0x3;		/* UECC/CECC enable */
 | |
| 
 | |
| 	if (toggle_ecc_err_reporting(s, nid, ON)) {
 | |
| 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	amd64_read_pci_cfg(F3, NBCTL, &value);
 | |
| 
 | |
| 	s->old_nbctl   = value & mask;
 | |
| 	s->nbctl_valid = true;
 | |
| 
 | |
| 	value |= mask;
 | |
| 	amd64_write_pci_cfg(F3, NBCTL, value);
 | |
| 
 | |
| 	amd64_read_pci_cfg(F3, NBCFG, &value);
 | |
| 
 | |
| 	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
 | |
| 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
 | |
| 
 | |
| 	if (!(value & NBCFG_ECC_ENABLE)) {
 | |
| 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
 | |
| 
 | |
| 		s->flags.nb_ecc_prev = 0;
 | |
| 
 | |
| 		/* Attempt to turn on DRAM ECC Enable */
 | |
| 		value |= NBCFG_ECC_ENABLE;
 | |
| 		amd64_write_pci_cfg(F3, NBCFG, value);
 | |
| 
 | |
| 		amd64_read_pci_cfg(F3, NBCFG, &value);
 | |
| 
 | |
| 		if (!(value & NBCFG_ECC_ENABLE)) {
 | |
| 			amd64_warn("Hardware rejected DRAM ECC enable,"
 | |
| 				   "check memory DIMM configuration.\n");
 | |
| 			ret = false;
 | |
| 		} else {
 | |
| 			amd64_info("Hardware accepted DRAM ECC Enable\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		s->flags.nb_ecc_prev = 1;
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
 | |
| 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
 | |
| 					struct pci_dev *F3)
 | |
| {
 | |
| 	u32 value, mask = 0x3;		/* UECC/CECC enable */
 | |
| 
 | |
| 	if (!s->nbctl_valid)
 | |
| 		return;
 | |
| 
 | |
| 	amd64_read_pci_cfg(F3, NBCTL, &value);
 | |
| 	value &= ~mask;
 | |
| 	value |= s->old_nbctl;
 | |
| 
 | |
| 	amd64_write_pci_cfg(F3, NBCTL, value);
 | |
| 
 | |
| 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
 | |
| 	if (!s->flags.nb_ecc_prev) {
 | |
| 		amd64_read_pci_cfg(F3, NBCFG, &value);
 | |
| 		value &= ~NBCFG_ECC_ENABLE;
 | |
| 		amd64_write_pci_cfg(F3, NBCFG, value);
 | |
| 	}
 | |
| 
 | |
| 	/* restore the NB Enable MCGCTL bit */
 | |
| 	if (toggle_ecc_err_reporting(s, nid, OFF))
 | |
| 		amd64_warn("Error restoring NB MCGCTL settings!\n");
 | |
| }
 | |
| 
 | |
| static bool ecc_enabled(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	u16 nid = pvt->mc_node_id;
 | |
| 	bool nb_mce_en = false;
 | |
| 	u8 ecc_en = 0, i;
 | |
| 	u32 value;
 | |
| 
 | |
| 	if (boot_cpu_data.x86 >= 0x17) {
 | |
| 		u8 umc_en_mask = 0, ecc_en_mask = 0;
 | |
| 		struct amd64_umc *umc;
 | |
| 
 | |
| 		for_each_umc(i) {
 | |
| 			umc = &pvt->umc[i];
 | |
| 
 | |
| 			/* Only check enabled UMCs. */
 | |
| 			if (!(umc->sdp_ctrl & UMC_SDP_INIT))
 | |
| 				continue;
 | |
| 
 | |
| 			umc_en_mask |= BIT(i);
 | |
| 
 | |
| 			if (umc->umc_cap_hi & UMC_ECC_ENABLED)
 | |
| 				ecc_en_mask |= BIT(i);
 | |
| 		}
 | |
| 
 | |
| 		/* Check whether at least one UMC is enabled: */
 | |
| 		if (umc_en_mask)
 | |
| 			ecc_en = umc_en_mask == ecc_en_mask;
 | |
| 		else
 | |
| 			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
 | |
| 
 | |
| 		/* Assume UMC MCA banks are enabled. */
 | |
| 		nb_mce_en = true;
 | |
| 	} else {
 | |
| 		amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
 | |
| 
 | |
| 		ecc_en = !!(value & NBCFG_ECC_ENABLE);
 | |
| 
 | |
| 		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
 | |
| 		if (!nb_mce_en)
 | |
| 			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
 | |
| 				     MSR_IA32_MCG_CTL, nid);
 | |
| 	}
 | |
| 
 | |
| 	amd64_info("Node %d: DRAM ECC %s.\n",
 | |
| 		   nid, (ecc_en ? "enabled" : "disabled"));
 | |
| 
 | |
| 	if (!ecc_en || !nb_mce_en)
 | |
| 		return false;
 | |
| 	else
 | |
| 		return true;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
 | |
| {
 | |
| 	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
 | |
| 
 | |
| 	for_each_umc(i) {
 | |
| 		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
 | |
| 			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
 | |
| 			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
 | |
| 
 | |
| 			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
 | |
| 			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set chipkill only if ECC is enabled: */
 | |
| 	if (ecc_en) {
 | |
| 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
 | |
| 
 | |
| 		if (!cpk_en)
 | |
| 			return;
 | |
| 
 | |
| 		if (dev_x4)
 | |
| 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
 | |
| 		else if (dev_x16)
 | |
| 			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
 | |
| 		else
 | |
| 			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct amd64_pvt *pvt = mci->pvt_info;
 | |
| 
 | |
| 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
 | |
| 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
 | |
| 
 | |
| 	if (pvt->umc) {
 | |
| 		f17h_determine_edac_ctl_cap(mci, pvt);
 | |
| 	} else {
 | |
| 		if (pvt->nbcap & NBCAP_SECDED)
 | |
| 			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
 | |
| 
 | |
| 		if (pvt->nbcap & NBCAP_CHIPKILL)
 | |
| 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
 | |
| 	}
 | |
| 
 | |
| 	mci->edac_cap		= determine_edac_cap(pvt);
 | |
| 	mci->mod_name		= EDAC_MOD_STR;
 | |
| 	mci->ctl_name		= fam_type->ctl_name;
 | |
| 	mci->dev_name		= pci_name(pvt->F3);
 | |
| 	mci->ctl_page_to_phys	= NULL;
 | |
| 
 | |
| 	/* memory scrubber interface */
 | |
| 	mci->set_sdram_scrub_rate = set_scrub_rate;
 | |
| 	mci->get_sdram_scrub_rate = get_scrub_rate;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns a pointer to the family descriptor on success, NULL otherwise.
 | |
|  */
 | |
| static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
 | |
| 	pvt->stepping	= boot_cpu_data.x86_stepping;
 | |
| 	pvt->model	= boot_cpu_data.x86_model;
 | |
| 	pvt->fam	= boot_cpu_data.x86;
 | |
| 
 | |
| 	switch (pvt->fam) {
 | |
| 	case 0xf:
 | |
| 		fam_type	= &family_types[K8_CPUS];
 | |
| 		pvt->ops	= &family_types[K8_CPUS].ops;
 | |
| 		break;
 | |
| 
 | |
| 	case 0x10:
 | |
| 		fam_type	= &family_types[F10_CPUS];
 | |
| 		pvt->ops	= &family_types[F10_CPUS].ops;
 | |
| 		break;
 | |
| 
 | |
| 	case 0x15:
 | |
| 		if (pvt->model == 0x30) {
 | |
| 			fam_type = &family_types[F15_M30H_CPUS];
 | |
| 			pvt->ops = &family_types[F15_M30H_CPUS].ops;
 | |
| 			break;
 | |
| 		} else if (pvt->model == 0x60) {
 | |
| 			fam_type = &family_types[F15_M60H_CPUS];
 | |
| 			pvt->ops = &family_types[F15_M60H_CPUS].ops;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		fam_type	= &family_types[F15_CPUS];
 | |
| 		pvt->ops	= &family_types[F15_CPUS].ops;
 | |
| 		break;
 | |
| 
 | |
| 	case 0x16:
 | |
| 		if (pvt->model == 0x30) {
 | |
| 			fam_type = &family_types[F16_M30H_CPUS];
 | |
| 			pvt->ops = &family_types[F16_M30H_CPUS].ops;
 | |
| 			break;
 | |
| 		}
 | |
| 		fam_type	= &family_types[F16_CPUS];
 | |
| 		pvt->ops	= &family_types[F16_CPUS].ops;
 | |
| 		break;
 | |
| 
 | |
| 	case 0x17:
 | |
| 		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
 | |
| 			fam_type = &family_types[F17_M10H_CPUS];
 | |
| 			pvt->ops = &family_types[F17_M10H_CPUS].ops;
 | |
| 			break;
 | |
| 		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
 | |
| 			fam_type = &family_types[F17_M30H_CPUS];
 | |
| 			pvt->ops = &family_types[F17_M30H_CPUS].ops;
 | |
| 			break;
 | |
| 		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
 | |
| 			fam_type = &family_types[F17_M70H_CPUS];
 | |
| 			pvt->ops = &family_types[F17_M70H_CPUS].ops;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* fall through */
 | |
| 	case 0x18:
 | |
| 		fam_type	= &family_types[F17_CPUS];
 | |
| 		pvt->ops	= &family_types[F17_CPUS].ops;
 | |
| 
 | |
| 		if (pvt->fam == 0x18)
 | |
| 			family_types[F17_CPUS].ctl_name = "F18h";
 | |
| 		break;
 | |
| 
 | |
| 	case 0x19:
 | |
| 		fam_type	= &family_types[F19_CPUS];
 | |
| 		pvt->ops	= &family_types[F19_CPUS].ops;
 | |
| 		family_types[F19_CPUS].ctl_name = "F19h";
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		amd64_err("Unsupported family!\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
 | |
| 		     (pvt->fam == 0xf ?
 | |
| 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
 | |
| 							     : "revE or earlier ")
 | |
| 				 : ""), pvt->mc_node_id);
 | |
| 	return fam_type;
 | |
| }
 | |
| 
 | |
| static const struct attribute_group *amd64_edac_attr_groups[] = {
 | |
| #ifdef CONFIG_EDAC_DEBUG
 | |
| 	&amd64_edac_dbg_group,
 | |
| #endif
 | |
| #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
 | |
| 	&amd64_edac_inj_group,
 | |
| #endif
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static int hw_info_get(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	u16 pci_id1, pci_id2;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (pvt->fam >= 0x17) {
 | |
| 		pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
 | |
| 		if (!pvt->umc)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pci_id1 = fam_type->f0_id;
 | |
| 		pci_id2 = fam_type->f6_id;
 | |
| 	} else {
 | |
| 		pci_id1 = fam_type->f1_id;
 | |
| 		pci_id2 = fam_type->f2_id;
 | |
| 	}
 | |
| 
 | |
| 	ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	read_mc_regs(pvt);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hw_info_put(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	if (pvt->F0 || pvt->F1)
 | |
| 		free_mc_sibling_devs(pvt);
 | |
| 
 | |
| 	kfree(pvt->umc);
 | |
| }
 | |
| 
 | |
| static int init_one_instance(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	struct mem_ctl_info *mci = NULL;
 | |
| 	struct edac_mc_layer layers[2];
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to determine how many memory channels there are. Then use
 | |
| 	 * that information for calculating the size of the dynamic instance
 | |
| 	 * tables in the 'mci' structure.
 | |
| 	 */
 | |
| 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
 | |
| 	if (pvt->channel_count < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
 | |
| 	layers[0].size = pvt->csels[0].b_cnt;
 | |
| 	layers[0].is_virt_csrow = true;
 | |
| 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always allocate two channels since we can have setups with DIMMs on
 | |
| 	 * only one channel. Also, this simplifies handling later for the price
 | |
| 	 * of a couple of KBs tops.
 | |
| 	 */
 | |
| 	layers[1].size = fam_type->max_mcs;
 | |
| 	layers[1].is_virt_csrow = false;
 | |
| 
 | |
| 	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
 | |
| 	if (!mci)
 | |
| 		return ret;
 | |
| 
 | |
| 	mci->pvt_info = pvt;
 | |
| 	mci->pdev = &pvt->F3->dev;
 | |
| 
 | |
| 	setup_mci_misc_attrs(mci);
 | |
| 
 | |
| 	if (init_csrows(mci))
 | |
| 		mci->edac_cap = EDAC_FLAG_NONE;
 | |
| 
 | |
| 	ret = -ENODEV;
 | |
| 	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
 | |
| 		edac_dbg(1, "failed edac_mc_add_mc()\n");
 | |
| 		edac_mc_free(mci);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool instance_has_memory(struct amd64_pvt *pvt)
 | |
| {
 | |
| 	bool cs_enabled = false;
 | |
| 	int cs = 0, dct = 0;
 | |
| 
 | |
| 	for (dct = 0; dct < fam_type->max_mcs; dct++) {
 | |
| 		for_each_chip_select(cs, dct, pvt)
 | |
| 			cs_enabled |= csrow_enabled(cs, dct, pvt);
 | |
| 	}
 | |
| 
 | |
| 	return cs_enabled;
 | |
| }
 | |
| 
 | |
| static int probe_one_instance(unsigned int nid)
 | |
| {
 | |
| 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
 | |
| 	struct amd64_pvt *pvt = NULL;
 | |
| 	struct ecc_settings *s;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
 | |
| 	if (!s)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	ecc_stngs[nid] = s;
 | |
| 
 | |
| 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
 | |
| 	if (!pvt)
 | |
| 		goto err_settings;
 | |
| 
 | |
| 	pvt->mc_node_id	= nid;
 | |
| 	pvt->F3 = F3;
 | |
| 
 | |
| 	fam_type = per_family_init(pvt);
 | |
| 	if (!fam_type)
 | |
| 		goto err_enable;
 | |
| 
 | |
| 	ret = hw_info_get(pvt);
 | |
| 	if (ret < 0)
 | |
| 		goto err_enable;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (!instance_has_memory(pvt)) {
 | |
| 		amd64_info("Node %d: No DIMMs detected.\n", nid);
 | |
| 		goto err_enable;
 | |
| 	}
 | |
| 
 | |
| 	if (!ecc_enabled(pvt)) {
 | |
| 		ret = -ENODEV;
 | |
| 
 | |
| 		if (!ecc_enable_override)
 | |
| 			goto err_enable;
 | |
| 
 | |
| 		if (boot_cpu_data.x86 >= 0x17) {
 | |
| 			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
 | |
| 			goto err_enable;
 | |
| 		} else
 | |
| 			amd64_warn("Forcing ECC on!\n");
 | |
| 
 | |
| 		if (!enable_ecc_error_reporting(s, nid, F3))
 | |
| 			goto err_enable;
 | |
| 	}
 | |
| 
 | |
| 	ret = init_one_instance(pvt);
 | |
| 	if (ret < 0) {
 | |
| 		amd64_err("Error probing instance: %d\n", nid);
 | |
| 
 | |
| 		if (boot_cpu_data.x86 < 0x17)
 | |
| 			restore_ecc_error_reporting(s, nid, F3);
 | |
| 
 | |
| 		goto err_enable;
 | |
| 	}
 | |
| 
 | |
| 	dump_misc_regs(pvt);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| err_enable:
 | |
| 	hw_info_put(pvt);
 | |
| 	kfree(pvt);
 | |
| 
 | |
| err_settings:
 | |
| 	kfree(s);
 | |
| 	ecc_stngs[nid] = NULL;
 | |
| 
 | |
| err_out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void remove_one_instance(unsigned int nid)
 | |
| {
 | |
| 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
 | |
| 	struct ecc_settings *s = ecc_stngs[nid];
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct amd64_pvt *pvt;
 | |
| 
 | |
| 	/* Remove from EDAC CORE tracking list */
 | |
| 	mci = edac_mc_del_mc(&F3->dev);
 | |
| 	if (!mci)
 | |
| 		return;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	restore_ecc_error_reporting(s, nid, F3);
 | |
| 
 | |
| 	kfree(ecc_stngs[nid]);
 | |
| 	ecc_stngs[nid] = NULL;
 | |
| 
 | |
| 	/* Free the EDAC CORE resources */
 | |
| 	mci->pvt_info = NULL;
 | |
| 
 | |
| 	hw_info_put(pvt);
 | |
| 	kfree(pvt);
 | |
| 	edac_mc_free(mci);
 | |
| }
 | |
| 
 | |
| static void setup_pci_device(void)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct amd64_pvt *pvt;
 | |
| 
 | |
| 	if (pci_ctl)
 | |
| 		return;
 | |
| 
 | |
| 	mci = edac_mc_find(0);
 | |
| 	if (!mci)
 | |
| 		return;
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 	if (pvt->umc)
 | |
| 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
 | |
| 	else
 | |
| 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
 | |
| 	if (!pci_ctl) {
 | |
| 		pr_warn("%s(): Unable to create PCI control\n", __func__);
 | |
| 		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct x86_cpu_id amd64_cpuids[] = {
 | |
| 	X86_MATCH_VENDOR_FAM(AMD,	0x0F, NULL),
 | |
| 	X86_MATCH_VENDOR_FAM(AMD,	0x10, NULL),
 | |
| 	X86_MATCH_VENDOR_FAM(AMD,	0x15, NULL),
 | |
| 	X86_MATCH_VENDOR_FAM(AMD,	0x16, NULL),
 | |
| 	X86_MATCH_VENDOR_FAM(AMD,	0x17, NULL),
 | |
| 	X86_MATCH_VENDOR_FAM(HYGON,	0x18, NULL),
 | |
| 	X86_MATCH_VENDOR_FAM(AMD,	0x19, NULL),
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
 | |
| 
 | |
| static int __init amd64_edac_init(void)
 | |
| {
 | |
| 	const char *owner;
 | |
| 	int err = -ENODEV;
 | |
| 	int i;
 | |
| 
 | |
| 	owner = edac_get_owner();
 | |
| 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (!x86_match_cpu(amd64_cpuids))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (amd_cache_northbridges() < 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	opstate_init();
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
 | |
| 	if (!ecc_stngs)
 | |
| 		goto err_free;
 | |
| 
 | |
| 	msrs = msrs_alloc();
 | |
| 	if (!msrs)
 | |
| 		goto err_free;
 | |
| 
 | |
| 	for (i = 0; i < amd_nb_num(); i++) {
 | |
| 		err = probe_one_instance(i);
 | |
| 		if (err) {
 | |
| 			/* unwind properly */
 | |
| 			while (--i >= 0)
 | |
| 				remove_one_instance(i);
 | |
| 
 | |
| 			goto err_pci;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!edac_has_mcs()) {
 | |
| 		err = -ENODEV;
 | |
| 		goto err_pci;
 | |
| 	}
 | |
| 
 | |
| 	/* register stuff with EDAC MCE */
 | |
| 	if (report_gart_errors)
 | |
| 		amd_report_gart_errors(true);
 | |
| 
 | |
| 	if (boot_cpu_data.x86 >= 0x17)
 | |
| 		amd_register_ecc_decoder(decode_umc_error);
 | |
| 	else
 | |
| 		amd_register_ecc_decoder(decode_bus_error);
 | |
| 
 | |
| 	setup_pci_device();
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
 | |
| #endif
 | |
| 
 | |
| 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_pci:
 | |
| 	msrs_free(msrs);
 | |
| 	msrs = NULL;
 | |
| 
 | |
| err_free:
 | |
| 	kfree(ecc_stngs);
 | |
| 	ecc_stngs = NULL;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __exit amd64_edac_exit(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (pci_ctl)
 | |
| 		edac_pci_release_generic_ctl(pci_ctl);
 | |
| 
 | |
| 	/* unregister from EDAC MCE */
 | |
| 	amd_report_gart_errors(false);
 | |
| 
 | |
| 	if (boot_cpu_data.x86 >= 0x17)
 | |
| 		amd_unregister_ecc_decoder(decode_umc_error);
 | |
| 	else
 | |
| 		amd_unregister_ecc_decoder(decode_bus_error);
 | |
| 
 | |
| 	for (i = 0; i < amd_nb_num(); i++)
 | |
| 		remove_one_instance(i);
 | |
| 
 | |
| 	kfree(ecc_stngs);
 | |
| 	ecc_stngs = NULL;
 | |
| 
 | |
| 	msrs_free(msrs);
 | |
| 	msrs = NULL;
 | |
| }
 | |
| 
 | |
| module_init(amd64_edac_init);
 | |
| module_exit(amd64_edac_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
 | |
| 		"Dave Peterson, Thayne Harbaugh");
 | |
| MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
 | |
| 		EDAC_AMD64_VERSION);
 | |
| 
 | |
| module_param(edac_op_state, int, 0444);
 | |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 |