mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 3f59b067c5
			
		
	
	
		3f59b067c5
		
	
	
	
	
		
			
			Replace rcu_assign_pointer(x, NULL) with RCU_INIT_POINTER(x, NULL) The rcu_assign_pointer() ensures that the initialization of a structure is carried out before storing a pointer to that structure. And in the case of the NULL pointer, there is no structure to initialize. So, rcu_assign_pointer(p, NULL) can be safely converted to RCU_INIT_POINTER(p, NULL) Signed-off-by: Monam Agarwal <monamagarwal123@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1156 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1156 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
 | |
|  *	Copyright (C) 2002 by Concurrent Computer Corporation
 | |
|  *	Distributed under the GNU GPL license version 2.
 | |
|  *
 | |
|  * Modified by George Anzinger to reuse immediately and to use
 | |
|  * find bit instructions.  Also removed _irq on spinlocks.
 | |
|  *
 | |
|  * Modified by Nadia Derbey to make it RCU safe.
 | |
|  *
 | |
|  * Small id to pointer translation service.
 | |
|  *
 | |
|  * It uses a radix tree like structure as a sparse array indexed
 | |
|  * by the id to obtain the pointer.  The bitmap makes allocating
 | |
|  * a new id quick.
 | |
|  *
 | |
|  * You call it to allocate an id (an int) an associate with that id a
 | |
|  * pointer or what ever, we treat it as a (void *).  You can pass this
 | |
|  * id to a user for him to pass back at a later time.  You then pass
 | |
|  * that id to this code and it returns your pointer.
 | |
| 
 | |
|  * You can release ids at any time. When all ids are released, most of
 | |
|  * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
 | |
|  * don't need to go to the memory "store" during an id allocate, just
 | |
|  * so you don't need to be too concerned about locking and conflicts
 | |
|  * with the slab allocator.
 | |
|  */
 | |
| 
 | |
| #ifndef TEST                        // to test in user space...
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/export.h>
 | |
| #endif
 | |
| #include <linux/err.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/hardirq.h>
 | |
| 
 | |
| #define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
 | |
| #define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
 | |
| 
 | |
| /* Leave the possibility of an incomplete final layer */
 | |
| #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
 | |
| 
 | |
| /* Number of id_layer structs to leave in free list */
 | |
| #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
 | |
| 
 | |
| static struct kmem_cache *idr_layer_cache;
 | |
| static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
 | |
| static DEFINE_PER_CPU(int, idr_preload_cnt);
 | |
| static DEFINE_SPINLOCK(simple_ida_lock);
 | |
| 
 | |
| /* the maximum ID which can be allocated given idr->layers */
 | |
| static int idr_max(int layers)
 | |
| {
 | |
| 	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
 | |
| 
 | |
| 	return (1 << bits) - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
 | |
|  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
 | |
|  * so on.
 | |
|  */
 | |
| static int idr_layer_prefix_mask(int layer)
 | |
| {
 | |
| 	return ~idr_max(layer + 1);
 | |
| }
 | |
| 
 | |
| static struct idr_layer *get_from_free_list(struct idr *idp)
 | |
| {
 | |
| 	struct idr_layer *p;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&idp->lock, flags);
 | |
| 	if ((p = idp->id_free)) {
 | |
| 		idp->id_free = p->ary[0];
 | |
| 		idp->id_free_cnt--;
 | |
| 		p->ary[0] = NULL;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&idp->lock, flags);
 | |
| 	return(p);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_layer_alloc - allocate a new idr_layer
 | |
|  * @gfp_mask: allocation mask
 | |
|  * @layer_idr: optional idr to allocate from
 | |
|  *
 | |
|  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
 | |
|  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
 | |
|  * an idr_layer from @idr->id_free.
 | |
|  *
 | |
|  * @layer_idr is to maintain backward compatibility with the old alloc
 | |
|  * interface - idr_pre_get() and idr_get_new*() - and will be removed
 | |
|  * together with per-pool preload buffer.
 | |
|  */
 | |
| static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
 | |
| {
 | |
| 	struct idr_layer *new;
 | |
| 
 | |
| 	/* this is the old path, bypass to get_from_free_list() */
 | |
| 	if (layer_idr)
 | |
| 		return get_from_free_list(layer_idr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to allocate directly from kmem_cache.  We want to try this
 | |
| 	 * before preload buffer; otherwise, non-preloading idr_alloc()
 | |
| 	 * users will end up taking advantage of preloading ones.  As the
 | |
| 	 * following is allowed to fail for preloaded cases, suppress
 | |
| 	 * warning this time.
 | |
| 	 */
 | |
| 	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
 | |
| 	if (new)
 | |
| 		return new;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to fetch one from the per-cpu preload buffer if in process
 | |
| 	 * context.  See idr_preload() for details.
 | |
| 	 */
 | |
| 	if (!in_interrupt()) {
 | |
| 		preempt_disable();
 | |
| 		new = __this_cpu_read(idr_preload_head);
 | |
| 		if (new) {
 | |
| 			__this_cpu_write(idr_preload_head, new->ary[0]);
 | |
| 			__this_cpu_dec(idr_preload_cnt);
 | |
| 			new->ary[0] = NULL;
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 		if (new)
 | |
| 			return new;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so
 | |
| 	 * that memory allocation failure warning is printed as intended.
 | |
| 	 */
 | |
| 	return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 | |
| }
 | |
| 
 | |
| static void idr_layer_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct idr_layer *layer;
 | |
| 
 | |
| 	layer = container_of(head, struct idr_layer, rcu_head);
 | |
| 	kmem_cache_free(idr_layer_cache, layer);
 | |
| }
 | |
| 
 | |
| static inline void free_layer(struct idr *idr, struct idr_layer *p)
 | |
| {
 | |
| 	if (idr->hint && idr->hint == p)
 | |
| 		RCU_INIT_POINTER(idr->hint, NULL);
 | |
| 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
 | |
| }
 | |
| 
 | |
| /* only called when idp->lock is held */
 | |
| static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
 | |
| {
 | |
| 	p->ary[0] = idp->id_free;
 | |
| 	idp->id_free = p;
 | |
| 	idp->id_free_cnt++;
 | |
| }
 | |
| 
 | |
| static void move_to_free_list(struct idr *idp, struct idr_layer *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Depends on the return element being zeroed.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&idp->lock, flags);
 | |
| 	__move_to_free_list(idp, p);
 | |
| 	spin_unlock_irqrestore(&idp->lock, flags);
 | |
| }
 | |
| 
 | |
| static void idr_mark_full(struct idr_layer **pa, int id)
 | |
| {
 | |
| 	struct idr_layer *p = pa[0];
 | |
| 	int l = 0;
 | |
| 
 | |
| 	__set_bit(id & IDR_MASK, p->bitmap);
 | |
| 	/*
 | |
| 	 * If this layer is full mark the bit in the layer above to
 | |
| 	 * show that this part of the radix tree is full.  This may
 | |
| 	 * complete the layer above and require walking up the radix
 | |
| 	 * tree.
 | |
| 	 */
 | |
| 	while (bitmap_full(p->bitmap, IDR_SIZE)) {
 | |
| 		if (!(p = pa[++l]))
 | |
| 			break;
 | |
| 		id = id >> IDR_BITS;
 | |
| 		__set_bit((id & IDR_MASK), p->bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
 | |
| {
 | |
| 	while (idp->id_free_cnt < MAX_IDR_FREE) {
 | |
| 		struct idr_layer *new;
 | |
| 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 | |
| 		if (new == NULL)
 | |
| 			return (0);
 | |
| 		move_to_free_list(idp, new);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sub_alloc - try to allocate an id without growing the tree depth
 | |
|  * @idp: idr handle
 | |
|  * @starting_id: id to start search at
 | |
|  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
 | |
|  * @gfp_mask: allocation mask for idr_layer_alloc()
 | |
|  * @layer_idr: optional idr passed to idr_layer_alloc()
 | |
|  *
 | |
|  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
 | |
|  * growing its depth.  Returns
 | |
|  *
 | |
|  *  the allocated id >= 0 if successful,
 | |
|  *  -EAGAIN if the tree needs to grow for allocation to succeed,
 | |
|  *  -ENOSPC if the id space is exhausted,
 | |
|  *  -ENOMEM if more idr_layers need to be allocated.
 | |
|  */
 | |
| static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
 | |
| 		     gfp_t gfp_mask, struct idr *layer_idr)
 | |
| {
 | |
| 	int n, m, sh;
 | |
| 	struct idr_layer *p, *new;
 | |
| 	int l, id, oid;
 | |
| 
 | |
| 	id = *starting_id;
 | |
|  restart:
 | |
| 	p = idp->top;
 | |
| 	l = idp->layers;
 | |
| 	pa[l--] = NULL;
 | |
| 	while (1) {
 | |
| 		/*
 | |
| 		 * We run around this while until we reach the leaf node...
 | |
| 		 */
 | |
| 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
 | |
| 		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
 | |
| 		if (m == IDR_SIZE) {
 | |
| 			/* no space available go back to previous layer. */
 | |
| 			l++;
 | |
| 			oid = id;
 | |
| 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
 | |
| 
 | |
| 			/* if already at the top layer, we need to grow */
 | |
| 			if (id >= 1 << (idp->layers * IDR_BITS)) {
 | |
| 				*starting_id = id;
 | |
| 				return -EAGAIN;
 | |
| 			}
 | |
| 			p = pa[l];
 | |
| 			BUG_ON(!p);
 | |
| 
 | |
| 			/* If we need to go up one layer, continue the
 | |
| 			 * loop; otherwise, restart from the top.
 | |
| 			 */
 | |
| 			sh = IDR_BITS * (l + 1);
 | |
| 			if (oid >> sh == id >> sh)
 | |
| 				continue;
 | |
| 			else
 | |
| 				goto restart;
 | |
| 		}
 | |
| 		if (m != n) {
 | |
| 			sh = IDR_BITS*l;
 | |
| 			id = ((id >> sh) ^ n ^ m) << sh;
 | |
| 		}
 | |
| 		if ((id >= MAX_IDR_BIT) || (id < 0))
 | |
| 			return -ENOSPC;
 | |
| 		if (l == 0)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Create the layer below if it is missing.
 | |
| 		 */
 | |
| 		if (!p->ary[m]) {
 | |
| 			new = idr_layer_alloc(gfp_mask, layer_idr);
 | |
| 			if (!new)
 | |
| 				return -ENOMEM;
 | |
| 			new->layer = l-1;
 | |
| 			new->prefix = id & idr_layer_prefix_mask(new->layer);
 | |
| 			rcu_assign_pointer(p->ary[m], new);
 | |
| 			p->count++;
 | |
| 		}
 | |
| 		pa[l--] = p;
 | |
| 		p = p->ary[m];
 | |
| 	}
 | |
| 
 | |
| 	pa[l] = p;
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| static int idr_get_empty_slot(struct idr *idp, int starting_id,
 | |
| 			      struct idr_layer **pa, gfp_t gfp_mask,
 | |
| 			      struct idr *layer_idr)
 | |
| {
 | |
| 	struct idr_layer *p, *new;
 | |
| 	int layers, v, id;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	id = starting_id;
 | |
| build_up:
 | |
| 	p = idp->top;
 | |
| 	layers = idp->layers;
 | |
| 	if (unlikely(!p)) {
 | |
| 		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
 | |
| 			return -ENOMEM;
 | |
| 		p->layer = 0;
 | |
| 		layers = 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Add a new layer to the top of the tree if the requested
 | |
| 	 * id is larger than the currently allocated space.
 | |
| 	 */
 | |
| 	while (id > idr_max(layers)) {
 | |
| 		layers++;
 | |
| 		if (!p->count) {
 | |
| 			/* special case: if the tree is currently empty,
 | |
| 			 * then we grow the tree by moving the top node
 | |
| 			 * upwards.
 | |
| 			 */
 | |
| 			p->layer++;
 | |
| 			WARN_ON_ONCE(p->prefix);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
 | |
| 			/*
 | |
| 			 * The allocation failed.  If we built part of
 | |
| 			 * the structure tear it down.
 | |
| 			 */
 | |
| 			spin_lock_irqsave(&idp->lock, flags);
 | |
| 			for (new = p; p && p != idp->top; new = p) {
 | |
| 				p = p->ary[0];
 | |
| 				new->ary[0] = NULL;
 | |
| 				new->count = 0;
 | |
| 				bitmap_clear(new->bitmap, 0, IDR_SIZE);
 | |
| 				__move_to_free_list(idp, new);
 | |
| 			}
 | |
| 			spin_unlock_irqrestore(&idp->lock, flags);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		new->ary[0] = p;
 | |
| 		new->count = 1;
 | |
| 		new->layer = layers-1;
 | |
| 		new->prefix = id & idr_layer_prefix_mask(new->layer);
 | |
| 		if (bitmap_full(p->bitmap, IDR_SIZE))
 | |
| 			__set_bit(0, new->bitmap);
 | |
| 		p = new;
 | |
| 	}
 | |
| 	rcu_assign_pointer(idp->top, p);
 | |
| 	idp->layers = layers;
 | |
| 	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
 | |
| 	if (v == -EAGAIN)
 | |
| 		goto build_up;
 | |
| 	return(v);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @id and @pa are from a successful allocation from idr_get_empty_slot().
 | |
|  * Install the user pointer @ptr and mark the slot full.
 | |
|  */
 | |
| static void idr_fill_slot(struct idr *idr, void *ptr, int id,
 | |
| 			  struct idr_layer **pa)
 | |
| {
 | |
| 	/* update hint used for lookup, cleared from free_layer() */
 | |
| 	rcu_assign_pointer(idr->hint, pa[0]);
 | |
| 
 | |
| 	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
 | |
| 	pa[0]->count++;
 | |
| 	idr_mark_full(pa, id);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * idr_preload - preload for idr_alloc()
 | |
|  * @gfp_mask: allocation mask to use for preloading
 | |
|  *
 | |
|  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
 | |
|  * process context and each idr_preload() invocation should be matched with
 | |
|  * idr_preload_end().  Note that preemption is disabled while preloaded.
 | |
|  *
 | |
|  * The first idr_alloc() in the preloaded section can be treated as if it
 | |
|  * were invoked with @gfp_mask used for preloading.  This allows using more
 | |
|  * permissive allocation masks for idrs protected by spinlocks.
 | |
|  *
 | |
|  * For example, if idr_alloc() below fails, the failure can be treated as
 | |
|  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
 | |
|  *
 | |
|  *	idr_preload(GFP_KERNEL);
 | |
|  *	spin_lock(lock);
 | |
|  *
 | |
|  *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
 | |
|  *
 | |
|  *	spin_unlock(lock);
 | |
|  *	idr_preload_end();
 | |
|  *	if (id < 0)
 | |
|  *		error;
 | |
|  */
 | |
| void idr_preload(gfp_t gfp_mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * Consuming preload buffer from non-process context breaks preload
 | |
| 	 * allocation guarantee.  Disallow usage from those contexts.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(in_interrupt());
 | |
| 	might_sleep_if(gfp_mask & __GFP_WAIT);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
 | |
| 	 * return value from idr_alloc() needs to be checked for failure
 | |
| 	 * anyway.  Silently give up if allocation fails.  The caller can
 | |
| 	 * treat failures from idr_alloc() as if idr_alloc() were called
 | |
| 	 * with @gfp_mask which should be enough.
 | |
| 	 */
 | |
| 	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
 | |
| 		struct idr_layer *new;
 | |
| 
 | |
| 		preempt_enable();
 | |
| 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 | |
| 		preempt_disable();
 | |
| 		if (!new)
 | |
| 			break;
 | |
| 
 | |
| 		/* link the new one to per-cpu preload list */
 | |
| 		new->ary[0] = __this_cpu_read(idr_preload_head);
 | |
| 		__this_cpu_write(idr_preload_head, new);
 | |
| 		__this_cpu_inc(idr_preload_cnt);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(idr_preload);
 | |
| 
 | |
| /**
 | |
|  * idr_alloc - allocate new idr entry
 | |
|  * @idr: the (initialized) idr
 | |
|  * @ptr: pointer to be associated with the new id
 | |
|  * @start: the minimum id (inclusive)
 | |
|  * @end: the maximum id (exclusive, <= 0 for max)
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  *
 | |
|  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
 | |
|  * available in the specified range, returns -ENOSPC.  On memory allocation
 | |
|  * failure, returns -ENOMEM.
 | |
|  *
 | |
|  * Note that @end is treated as max when <= 0.  This is to always allow
 | |
|  * using @start + N as @end as long as N is inside integer range.
 | |
|  *
 | |
|  * The user is responsible for exclusively synchronizing all operations
 | |
|  * which may modify @idr.  However, read-only accesses such as idr_find()
 | |
|  * or iteration can be performed under RCU read lock provided the user
 | |
|  * destroys @ptr in RCU-safe way after removal from idr.
 | |
|  */
 | |
| int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
 | |
| {
 | |
| 	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
 | |
| 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 | |
| 	int id;
 | |
| 
 | |
| 	might_sleep_if(gfp_mask & __GFP_WAIT);
 | |
| 
 | |
| 	/* sanity checks */
 | |
| 	if (WARN_ON_ONCE(start < 0))
 | |
| 		return -EINVAL;
 | |
| 	if (unlikely(max < start))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/* allocate id */
 | |
| 	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
 | |
| 	if (unlikely(id < 0))
 | |
| 		return id;
 | |
| 	if (unlikely(id > max))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	idr_fill_slot(idr, ptr, id, pa);
 | |
| 	return id;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(idr_alloc);
 | |
| 
 | |
| /**
 | |
|  * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
 | |
|  * @idr: the (initialized) idr
 | |
|  * @ptr: pointer to be associated with the new id
 | |
|  * @start: the minimum id (inclusive)
 | |
|  * @end: the maximum id (exclusive, <= 0 for max)
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  *
 | |
|  * Essentially the same as idr_alloc, but prefers to allocate progressively
 | |
|  * higher ids if it can. If the "cur" counter wraps, then it will start again
 | |
|  * at the "start" end of the range and allocate one that has already been used.
 | |
|  */
 | |
| int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
 | |
| 			gfp_t gfp_mask)
 | |
| {
 | |
| 	int id;
 | |
| 
 | |
| 	id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
 | |
| 	if (id == -ENOSPC)
 | |
| 		id = idr_alloc(idr, ptr, start, end, gfp_mask);
 | |
| 
 | |
| 	if (likely(id >= 0))
 | |
| 		idr->cur = id + 1;
 | |
| 	return id;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_alloc_cyclic);
 | |
| 
 | |
| static void idr_remove_warning(int id)
 | |
| {
 | |
| 	WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
 | |
| }
 | |
| 
 | |
| static void sub_remove(struct idr *idp, int shift, int id)
 | |
| {
 | |
| 	struct idr_layer *p = idp->top;
 | |
| 	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
 | |
| 	struct idr_layer ***paa = &pa[0];
 | |
| 	struct idr_layer *to_free;
 | |
| 	int n;
 | |
| 
 | |
| 	*paa = NULL;
 | |
| 	*++paa = &idp->top;
 | |
| 
 | |
| 	while ((shift > 0) && p) {
 | |
| 		n = (id >> shift) & IDR_MASK;
 | |
| 		__clear_bit(n, p->bitmap);
 | |
| 		*++paa = &p->ary[n];
 | |
| 		p = p->ary[n];
 | |
| 		shift -= IDR_BITS;
 | |
| 	}
 | |
| 	n = id & IDR_MASK;
 | |
| 	if (likely(p != NULL && test_bit(n, p->bitmap))) {
 | |
| 		__clear_bit(n, p->bitmap);
 | |
| 		RCU_INIT_POINTER(p->ary[n], NULL);
 | |
| 		to_free = NULL;
 | |
| 		while(*paa && ! --((**paa)->count)){
 | |
| 			if (to_free)
 | |
| 				free_layer(idp, to_free);
 | |
| 			to_free = **paa;
 | |
| 			**paa-- = NULL;
 | |
| 		}
 | |
| 		if (!*paa)
 | |
| 			idp->layers = 0;
 | |
| 		if (to_free)
 | |
| 			free_layer(idp, to_free);
 | |
| 	} else
 | |
| 		idr_remove_warning(id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_remove - remove the given id and free its slot
 | |
|  * @idp: idr handle
 | |
|  * @id: unique key
 | |
|  */
 | |
| void idr_remove(struct idr *idp, int id)
 | |
| {
 | |
| 	struct idr_layer *p;
 | |
| 	struct idr_layer *to_free;
 | |
| 
 | |
| 	if (id < 0)
 | |
| 		return;
 | |
| 
 | |
| 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
 | |
| 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
 | |
| 	    idp->top->ary[0]) {
 | |
| 		/*
 | |
| 		 * Single child at leftmost slot: we can shrink the tree.
 | |
| 		 * This level is not needed anymore since when layers are
 | |
| 		 * inserted, they are inserted at the top of the existing
 | |
| 		 * tree.
 | |
| 		 */
 | |
| 		to_free = idp->top;
 | |
| 		p = idp->top->ary[0];
 | |
| 		rcu_assign_pointer(idp->top, p);
 | |
| 		--idp->layers;
 | |
| 		to_free->count = 0;
 | |
| 		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
 | |
| 		free_layer(idp, to_free);
 | |
| 	}
 | |
| 	while (idp->id_free_cnt >= MAX_IDR_FREE) {
 | |
| 		p = get_from_free_list(idp);
 | |
| 		/*
 | |
| 		 * Note: we don't call the rcu callback here, since the only
 | |
| 		 * layers that fall into the freelist are those that have been
 | |
| 		 * preallocated.
 | |
| 		 */
 | |
| 		kmem_cache_free(idr_layer_cache, p);
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_remove);
 | |
| 
 | |
| static void __idr_remove_all(struct idr *idp)
 | |
| {
 | |
| 	int n, id, max;
 | |
| 	int bt_mask;
 | |
| 	struct idr_layer *p;
 | |
| 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 | |
| 	struct idr_layer **paa = &pa[0];
 | |
| 
 | |
| 	n = idp->layers * IDR_BITS;
 | |
| 	p = idp->top;
 | |
| 	RCU_INIT_POINTER(idp->top, NULL);
 | |
| 	max = idr_max(idp->layers);
 | |
| 
 | |
| 	id = 0;
 | |
| 	while (id >= 0 && id <= max) {
 | |
| 		while (n > IDR_BITS && p) {
 | |
| 			n -= IDR_BITS;
 | |
| 			*paa++ = p;
 | |
| 			p = p->ary[(id >> n) & IDR_MASK];
 | |
| 		}
 | |
| 
 | |
| 		bt_mask = id;
 | |
| 		id += 1 << n;
 | |
| 		/* Get the highest bit that the above add changed from 0->1. */
 | |
| 		while (n < fls(id ^ bt_mask)) {
 | |
| 			if (p)
 | |
| 				free_layer(idp, p);
 | |
| 			n += IDR_BITS;
 | |
| 			p = *--paa;
 | |
| 		}
 | |
| 	}
 | |
| 	idp->layers = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_destroy - release all cached layers within an idr tree
 | |
|  * @idp: idr handle
 | |
|  *
 | |
|  * Free all id mappings and all idp_layers.  After this function, @idp is
 | |
|  * completely unused and can be freed / recycled.  The caller is
 | |
|  * responsible for ensuring that no one else accesses @idp during or after
 | |
|  * idr_destroy().
 | |
|  *
 | |
|  * A typical clean-up sequence for objects stored in an idr tree will use
 | |
|  * idr_for_each() to free all objects, if necessay, then idr_destroy() to
 | |
|  * free up the id mappings and cached idr_layers.
 | |
|  */
 | |
| void idr_destroy(struct idr *idp)
 | |
| {
 | |
| 	__idr_remove_all(idp);
 | |
| 
 | |
| 	while (idp->id_free_cnt) {
 | |
| 		struct idr_layer *p = get_from_free_list(idp);
 | |
| 		kmem_cache_free(idr_layer_cache, p);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(idr_destroy);
 | |
| 
 | |
| void *idr_find_slowpath(struct idr *idp, int id)
 | |
| {
 | |
| 	int n;
 | |
| 	struct idr_layer *p;
 | |
| 
 | |
| 	if (id < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	p = rcu_dereference_raw(idp->top);
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 	n = (p->layer+1) * IDR_BITS;
 | |
| 
 | |
| 	if (id > idr_max(p->layer + 1))
 | |
| 		return NULL;
 | |
| 	BUG_ON(n == 0);
 | |
| 
 | |
| 	while (n > 0 && p) {
 | |
| 		n -= IDR_BITS;
 | |
| 		BUG_ON(n != p->layer*IDR_BITS);
 | |
| 		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 | |
| 	}
 | |
| 	return((void *)p);
 | |
| }
 | |
| EXPORT_SYMBOL(idr_find_slowpath);
 | |
| 
 | |
| /**
 | |
|  * idr_for_each - iterate through all stored pointers
 | |
|  * @idp: idr handle
 | |
|  * @fn: function to be called for each pointer
 | |
|  * @data: data passed back to callback function
 | |
|  *
 | |
|  * Iterate over the pointers registered with the given idr.  The
 | |
|  * callback function will be called for each pointer currently
 | |
|  * registered, passing the id, the pointer and the data pointer passed
 | |
|  * to this function.  It is not safe to modify the idr tree while in
 | |
|  * the callback, so functions such as idr_get_new and idr_remove are
 | |
|  * not allowed.
 | |
|  *
 | |
|  * We check the return of @fn each time. If it returns anything other
 | |
|  * than %0, we break out and return that value.
 | |
|  *
 | |
|  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
 | |
|  */
 | |
| int idr_for_each(struct idr *idp,
 | |
| 		 int (*fn)(int id, void *p, void *data), void *data)
 | |
| {
 | |
| 	int n, id, max, error = 0;
 | |
| 	struct idr_layer *p;
 | |
| 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 | |
| 	struct idr_layer **paa = &pa[0];
 | |
| 
 | |
| 	n = idp->layers * IDR_BITS;
 | |
| 	p = rcu_dereference_raw(idp->top);
 | |
| 	max = idr_max(idp->layers);
 | |
| 
 | |
| 	id = 0;
 | |
| 	while (id >= 0 && id <= max) {
 | |
| 		while (n > 0 && p) {
 | |
| 			n -= IDR_BITS;
 | |
| 			*paa++ = p;
 | |
| 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 | |
| 		}
 | |
| 
 | |
| 		if (p) {
 | |
| 			error = fn(id, (void *)p, data);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		id += 1 << n;
 | |
| 		while (n < fls(id)) {
 | |
| 			n += IDR_BITS;
 | |
| 			p = *--paa;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_for_each);
 | |
| 
 | |
| /**
 | |
|  * idr_get_next - lookup next object of id to given id.
 | |
|  * @idp: idr handle
 | |
|  * @nextidp:  pointer to lookup key
 | |
|  *
 | |
|  * Returns pointer to registered object with id, which is next number to
 | |
|  * given id. After being looked up, *@nextidp will be updated for the next
 | |
|  * iteration.
 | |
|  *
 | |
|  * This function can be called under rcu_read_lock(), given that the leaf
 | |
|  * pointers lifetimes are correctly managed.
 | |
|  */
 | |
| void *idr_get_next(struct idr *idp, int *nextidp)
 | |
| {
 | |
| 	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
 | |
| 	struct idr_layer **paa = &pa[0];
 | |
| 	int id = *nextidp;
 | |
| 	int n, max;
 | |
| 
 | |
| 	/* find first ent */
 | |
| 	p = rcu_dereference_raw(idp->top);
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 	n = (p->layer + 1) * IDR_BITS;
 | |
| 	max = idr_max(p->layer + 1);
 | |
| 
 | |
| 	while (id >= 0 && id <= max) {
 | |
| 		while (n > 0 && p) {
 | |
| 			n -= IDR_BITS;
 | |
| 			*paa++ = p;
 | |
| 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 | |
| 		}
 | |
| 
 | |
| 		if (p) {
 | |
| 			*nextidp = id;
 | |
| 			return p;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Proceed to the next layer at the current level.  Unlike
 | |
| 		 * idr_for_each(), @id isn't guaranteed to be aligned to
 | |
| 		 * layer boundary at this point and adding 1 << n may
 | |
| 		 * incorrectly skip IDs.  Make sure we jump to the
 | |
| 		 * beginning of the next layer using round_up().
 | |
| 		 */
 | |
| 		id = round_up(id + 1, 1 << n);
 | |
| 		while (n < fls(id)) {
 | |
| 			n += IDR_BITS;
 | |
| 			p = *--paa;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_get_next);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * idr_replace - replace pointer for given id
 | |
|  * @idp: idr handle
 | |
|  * @ptr: pointer you want associated with the id
 | |
|  * @id: lookup key
 | |
|  *
 | |
|  * Replace the pointer registered with an id and return the old value.
 | |
|  * A %-ENOENT return indicates that @id was not found.
 | |
|  * A %-EINVAL return indicates that @id was not within valid constraints.
 | |
|  *
 | |
|  * The caller must serialize with writers.
 | |
|  */
 | |
| void *idr_replace(struct idr *idp, void *ptr, int id)
 | |
| {
 | |
| 	int n;
 | |
| 	struct idr_layer *p, *old_p;
 | |
| 
 | |
| 	if (id < 0)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	p = idp->top;
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	n = (p->layer+1) * IDR_BITS;
 | |
| 
 | |
| 	if (id >= (1 << n))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	n -= IDR_BITS;
 | |
| 	while ((n > 0) && p) {
 | |
| 		p = p->ary[(id >> n) & IDR_MASK];
 | |
| 		n -= IDR_BITS;
 | |
| 	}
 | |
| 
 | |
| 	n = id & IDR_MASK;
 | |
| 	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	old_p = p->ary[n];
 | |
| 	rcu_assign_pointer(p->ary[n], ptr);
 | |
| 
 | |
| 	return old_p;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_replace);
 | |
| 
 | |
| void __init idr_init_cache(void)
 | |
| {
 | |
| 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
 | |
| 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_init - initialize idr handle
 | |
|  * @idp:	idr handle
 | |
|  *
 | |
|  * This function is use to set up the handle (@idp) that you will pass
 | |
|  * to the rest of the functions.
 | |
|  */
 | |
| void idr_init(struct idr *idp)
 | |
| {
 | |
| 	memset(idp, 0, sizeof(struct idr));
 | |
| 	spin_lock_init(&idp->lock);
 | |
| }
 | |
| EXPORT_SYMBOL(idr_init);
 | |
| 
 | |
| static int idr_has_entry(int id, void *p, void *data)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| bool idr_is_empty(struct idr *idp)
 | |
| {
 | |
| 	return !idr_for_each(idp, idr_has_entry, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(idr_is_empty);
 | |
| 
 | |
| /**
 | |
|  * DOC: IDA description
 | |
|  * IDA - IDR based ID allocator
 | |
|  *
 | |
|  * This is id allocator without id -> pointer translation.  Memory
 | |
|  * usage is much lower than full blown idr because each id only
 | |
|  * occupies a bit.  ida uses a custom leaf node which contains
 | |
|  * IDA_BITMAP_BITS slots.
 | |
|  *
 | |
|  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
 | |
|  */
 | |
| 
 | |
| static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!ida->free_bitmap) {
 | |
| 		spin_lock_irqsave(&ida->idr.lock, flags);
 | |
| 		if (!ida->free_bitmap) {
 | |
| 			ida->free_bitmap = bitmap;
 | |
| 			bitmap = NULL;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&ida->idr.lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	kfree(bitmap);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ida_pre_get - reserve resources for ida allocation
 | |
|  * @ida:	ida handle
 | |
|  * @gfp_mask:	memory allocation flag
 | |
|  *
 | |
|  * This function should be called prior to locking and calling the
 | |
|  * following function.  It preallocates enough memory to satisfy the
 | |
|  * worst possible allocation.
 | |
|  *
 | |
|  * If the system is REALLY out of memory this function returns %0,
 | |
|  * otherwise %1.
 | |
|  */
 | |
| int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
 | |
| {
 | |
| 	/* allocate idr_layers */
 | |
| 	if (!__idr_pre_get(&ida->idr, gfp_mask))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* allocate free_bitmap */
 | |
| 	if (!ida->free_bitmap) {
 | |
| 		struct ida_bitmap *bitmap;
 | |
| 
 | |
| 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
 | |
| 		if (!bitmap)
 | |
| 			return 0;
 | |
| 
 | |
| 		free_bitmap(ida, bitmap);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(ida_pre_get);
 | |
| 
 | |
| /**
 | |
|  * ida_get_new_above - allocate new ID above or equal to a start id
 | |
|  * @ida:	ida handle
 | |
|  * @starting_id: id to start search at
 | |
|  * @p_id:	pointer to the allocated handle
 | |
|  *
 | |
|  * Allocate new ID above or equal to @starting_id.  It should be called
 | |
|  * with any required locks.
 | |
|  *
 | |
|  * If memory is required, it will return %-EAGAIN, you should unlock
 | |
|  * and go back to the ida_pre_get() call.  If the ida is full, it will
 | |
|  * return %-ENOSPC.
 | |
|  *
 | |
|  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
 | |
|  */
 | |
| int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
 | |
| {
 | |
| 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
 | |
| 	struct ida_bitmap *bitmap;
 | |
| 	unsigned long flags;
 | |
| 	int idr_id = starting_id / IDA_BITMAP_BITS;
 | |
| 	int offset = starting_id % IDA_BITMAP_BITS;
 | |
| 	int t, id;
 | |
| 
 | |
|  restart:
 | |
| 	/* get vacant slot */
 | |
| 	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
 | |
| 	if (t < 0)
 | |
| 		return t == -ENOMEM ? -EAGAIN : t;
 | |
| 
 | |
| 	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	if (t != idr_id)
 | |
| 		offset = 0;
 | |
| 	idr_id = t;
 | |
| 
 | |
| 	/* if bitmap isn't there, create a new one */
 | |
| 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
 | |
| 	if (!bitmap) {
 | |
| 		spin_lock_irqsave(&ida->idr.lock, flags);
 | |
| 		bitmap = ida->free_bitmap;
 | |
| 		ida->free_bitmap = NULL;
 | |
| 		spin_unlock_irqrestore(&ida->idr.lock, flags);
 | |
| 
 | |
| 		if (!bitmap)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		memset(bitmap, 0, sizeof(struct ida_bitmap));
 | |
| 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
 | |
| 				(void *)bitmap);
 | |
| 		pa[0]->count++;
 | |
| 	}
 | |
| 
 | |
| 	/* lookup for empty slot */
 | |
| 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
 | |
| 	if (t == IDA_BITMAP_BITS) {
 | |
| 		/* no empty slot after offset, continue to the next chunk */
 | |
| 		idr_id++;
 | |
| 		offset = 0;
 | |
| 		goto restart;
 | |
| 	}
 | |
| 
 | |
| 	id = idr_id * IDA_BITMAP_BITS + t;
 | |
| 	if (id >= MAX_IDR_BIT)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	__set_bit(t, bitmap->bitmap);
 | |
| 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
 | |
| 		idr_mark_full(pa, idr_id);
 | |
| 
 | |
| 	*p_id = id;
 | |
| 
 | |
| 	/* Each leaf node can handle nearly a thousand slots and the
 | |
| 	 * whole idea of ida is to have small memory foot print.
 | |
| 	 * Throw away extra resources one by one after each successful
 | |
| 	 * allocation.
 | |
| 	 */
 | |
| 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
 | |
| 		struct idr_layer *p = get_from_free_list(&ida->idr);
 | |
| 		if (p)
 | |
| 			kmem_cache_free(idr_layer_cache, p);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(ida_get_new_above);
 | |
| 
 | |
| /**
 | |
|  * ida_remove - remove the given ID
 | |
|  * @ida:	ida handle
 | |
|  * @id:		ID to free
 | |
|  */
 | |
| void ida_remove(struct ida *ida, int id)
 | |
| {
 | |
| 	struct idr_layer *p = ida->idr.top;
 | |
| 	int shift = (ida->idr.layers - 1) * IDR_BITS;
 | |
| 	int idr_id = id / IDA_BITMAP_BITS;
 | |
| 	int offset = id % IDA_BITMAP_BITS;
 | |
| 	int n;
 | |
| 	struct ida_bitmap *bitmap;
 | |
| 
 | |
| 	/* clear full bits while looking up the leaf idr_layer */
 | |
| 	while ((shift > 0) && p) {
 | |
| 		n = (idr_id >> shift) & IDR_MASK;
 | |
| 		__clear_bit(n, p->bitmap);
 | |
| 		p = p->ary[n];
 | |
| 		shift -= IDR_BITS;
 | |
| 	}
 | |
| 
 | |
| 	if (p == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	n = idr_id & IDR_MASK;
 | |
| 	__clear_bit(n, p->bitmap);
 | |
| 
 | |
| 	bitmap = (void *)p->ary[n];
 | |
| 	if (!test_bit(offset, bitmap->bitmap))
 | |
| 		goto err;
 | |
| 
 | |
| 	/* update bitmap and remove it if empty */
 | |
| 	__clear_bit(offset, bitmap->bitmap);
 | |
| 	if (--bitmap->nr_busy == 0) {
 | |
| 		__set_bit(n, p->bitmap);	/* to please idr_remove() */
 | |
| 		idr_remove(&ida->idr, idr_id);
 | |
| 		free_bitmap(ida, bitmap);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
|  err:
 | |
| 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
 | |
| }
 | |
| EXPORT_SYMBOL(ida_remove);
 | |
| 
 | |
| /**
 | |
|  * ida_destroy - release all cached layers within an ida tree
 | |
|  * @ida:		ida handle
 | |
|  */
 | |
| void ida_destroy(struct ida *ida)
 | |
| {
 | |
| 	idr_destroy(&ida->idr);
 | |
| 	kfree(ida->free_bitmap);
 | |
| }
 | |
| EXPORT_SYMBOL(ida_destroy);
 | |
| 
 | |
| /**
 | |
|  * ida_simple_get - get a new id.
 | |
|  * @ida: the (initialized) ida.
 | |
|  * @start: the minimum id (inclusive, < 0x8000000)
 | |
|  * @end: the maximum id (exclusive, < 0x8000000 or 0)
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  *
 | |
|  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 | |
|  * On memory allocation failure, returns -ENOMEM.
 | |
|  *
 | |
|  * Use ida_simple_remove() to get rid of an id.
 | |
|  */
 | |
| int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
 | |
| 		   gfp_t gfp_mask)
 | |
| {
 | |
| 	int ret, id;
 | |
| 	unsigned int max;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	BUG_ON((int)start < 0);
 | |
| 	BUG_ON((int)end < 0);
 | |
| 
 | |
| 	if (end == 0)
 | |
| 		max = 0x80000000;
 | |
| 	else {
 | |
| 		BUG_ON(end < start);
 | |
| 		max = end - 1;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	if (!ida_pre_get(ida, gfp_mask))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_irqsave(&simple_ida_lock, flags);
 | |
| 	ret = ida_get_new_above(ida, start, &id);
 | |
| 	if (!ret) {
 | |
| 		if (id > max) {
 | |
| 			ida_remove(ida, id);
 | |
| 			ret = -ENOSPC;
 | |
| 		} else {
 | |
| 			ret = id;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&simple_ida_lock, flags);
 | |
| 
 | |
| 	if (unlikely(ret == -EAGAIN))
 | |
| 		goto again;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(ida_simple_get);
 | |
| 
 | |
| /**
 | |
|  * ida_simple_remove - remove an allocated id.
 | |
|  * @ida: the (initialized) ida.
 | |
|  * @id: the id returned by ida_simple_get.
 | |
|  */
 | |
| void ida_simple_remove(struct ida *ida, unsigned int id)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	BUG_ON((int)id < 0);
 | |
| 	spin_lock_irqsave(&simple_ida_lock, flags);
 | |
| 	ida_remove(ida, id);
 | |
| 	spin_unlock_irqrestore(&simple_ida_lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(ida_simple_remove);
 | |
| 
 | |
| /**
 | |
|  * ida_init - initialize ida handle
 | |
|  * @ida:	ida handle
 | |
|  *
 | |
|  * This function is use to set up the handle (@ida) that you will pass
 | |
|  * to the rest of the functions.
 | |
|  */
 | |
| void ida_init(struct ida *ida)
 | |
| {
 | |
| 	memset(ida, 0, sizeof(struct ida));
 | |
| 	idr_init(&ida->idr);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(ida_init);
 |