mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 0dbb9634e5
			
		
	
	
		0dbb9634e5
		
	
	
	
	
		
			
			Support for the i2c controller on rv1108 soc. Signed-off-by: Andy Yan <andy.yan@rock-chips.com> Reviewed-by: Heiko Stuebner <heiko@sntech.de> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
		
			
				
	
	
		
			1371 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1371 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Driver for I2C adapter in Rockchip RK3xxx SoC
 | |
|  *
 | |
|  * Max Schwarz <max.schwarz@online.de>
 | |
|  * based on the patches by Rockchip Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/mfd/syscon.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/math64.h>
 | |
| 
 | |
| 
 | |
| /* Register Map */
 | |
| #define REG_CON        0x00 /* control register */
 | |
| #define REG_CLKDIV     0x04 /* clock divisor register */
 | |
| #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
 | |
| #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
 | |
| #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
 | |
| #define REG_MRXCNT     0x14 /* number of bytes to be received */
 | |
| #define REG_IEN        0x18 /* interrupt enable */
 | |
| #define REG_IPD        0x1c /* interrupt pending */
 | |
| #define REG_FCNT       0x20 /* finished count */
 | |
| 
 | |
| /* Data buffer offsets */
 | |
| #define TXBUFFER_BASE 0x100
 | |
| #define RXBUFFER_BASE 0x200
 | |
| 
 | |
| /* REG_CON bits */
 | |
| #define REG_CON_EN        BIT(0)
 | |
| enum {
 | |
| 	REG_CON_MOD_TX = 0,      /* transmit data */
 | |
| 	REG_CON_MOD_REGISTER_TX, /* select register and restart */
 | |
| 	REG_CON_MOD_RX,          /* receive data */
 | |
| 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
 | |
| 				  * register addr */
 | |
| };
 | |
| #define REG_CON_MOD(mod)  ((mod) << 1)
 | |
| #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
 | |
| #define REG_CON_START     BIT(3)
 | |
| #define REG_CON_STOP      BIT(4)
 | |
| #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
 | |
| #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
 | |
| 
 | |
| #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
 | |
| 
 | |
| #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
 | |
| #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
 | |
| #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
 | |
| 
 | |
| /* REG_MRXADDR bits */
 | |
| #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
 | |
| 
 | |
| /* REG_IEN/REG_IPD bits */
 | |
| #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
 | |
| #define REG_INT_BRF       BIT(1) /* a byte was received */
 | |
| #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
 | |
| #define REG_INT_MBRF      BIT(3) /* master data receive finished */
 | |
| #define REG_INT_START     BIT(4) /* START condition generated */
 | |
| #define REG_INT_STOP      BIT(5) /* STOP condition generated */
 | |
| #define REG_INT_NAKRCV    BIT(6) /* NACK received */
 | |
| #define REG_INT_ALL       0x7f
 | |
| 
 | |
| /* Constants */
 | |
| #define WAIT_TIMEOUT      1000 /* ms */
 | |
| #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
 | |
| 
 | |
| /**
 | |
|  * struct i2c_spec_values:
 | |
|  * @min_hold_start_ns: min hold time (repeated) START condition
 | |
|  * @min_low_ns: min LOW period of the SCL clock
 | |
|  * @min_high_ns: min HIGH period of the SCL cloc
 | |
|  * @min_setup_start_ns: min set-up time for a repeated START conditio
 | |
|  * @max_data_hold_ns: max data hold time
 | |
|  * @min_data_setup_ns: min data set-up time
 | |
|  * @min_setup_stop_ns: min set-up time for STOP condition
 | |
|  * @min_hold_buffer_ns: min bus free time between a STOP and
 | |
|  * START condition
 | |
|  */
 | |
| struct i2c_spec_values {
 | |
| 	unsigned long min_hold_start_ns;
 | |
| 	unsigned long min_low_ns;
 | |
| 	unsigned long min_high_ns;
 | |
| 	unsigned long min_setup_start_ns;
 | |
| 	unsigned long max_data_hold_ns;
 | |
| 	unsigned long min_data_setup_ns;
 | |
| 	unsigned long min_setup_stop_ns;
 | |
| 	unsigned long min_hold_buffer_ns;
 | |
| };
 | |
| 
 | |
| static const struct i2c_spec_values standard_mode_spec = {
 | |
| 	.min_hold_start_ns = 4000,
 | |
| 	.min_low_ns = 4700,
 | |
| 	.min_high_ns = 4000,
 | |
| 	.min_setup_start_ns = 4700,
 | |
| 	.max_data_hold_ns = 3450,
 | |
| 	.min_data_setup_ns = 250,
 | |
| 	.min_setup_stop_ns = 4000,
 | |
| 	.min_hold_buffer_ns = 4700,
 | |
| };
 | |
| 
 | |
| static const struct i2c_spec_values fast_mode_spec = {
 | |
| 	.min_hold_start_ns = 600,
 | |
| 	.min_low_ns = 1300,
 | |
| 	.min_high_ns = 600,
 | |
| 	.min_setup_start_ns = 600,
 | |
| 	.max_data_hold_ns = 900,
 | |
| 	.min_data_setup_ns = 100,
 | |
| 	.min_setup_stop_ns = 600,
 | |
| 	.min_hold_buffer_ns = 1300,
 | |
| };
 | |
| 
 | |
| static const struct i2c_spec_values fast_mode_plus_spec = {
 | |
| 	.min_hold_start_ns = 260,
 | |
| 	.min_low_ns = 500,
 | |
| 	.min_high_ns = 260,
 | |
| 	.min_setup_start_ns = 260,
 | |
| 	.max_data_hold_ns = 400,
 | |
| 	.min_data_setup_ns = 50,
 | |
| 	.min_setup_stop_ns = 260,
 | |
| 	.min_hold_buffer_ns = 500,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct rk3x_i2c_calced_timings:
 | |
|  * @div_low: Divider output for low
 | |
|  * @div_high: Divider output for high
 | |
|  * @tuning: Used to adjust setup/hold data time,
 | |
|  * setup/hold start time and setup stop time for
 | |
|  * v1's calc_timings, the tuning should all be 0
 | |
|  * for old hardware anyone using v0's calc_timings.
 | |
|  */
 | |
| struct rk3x_i2c_calced_timings {
 | |
| 	unsigned long div_low;
 | |
| 	unsigned long div_high;
 | |
| 	unsigned int tuning;
 | |
| };
 | |
| 
 | |
| enum rk3x_i2c_state {
 | |
| 	STATE_IDLE,
 | |
| 	STATE_START,
 | |
| 	STATE_READ,
 | |
| 	STATE_WRITE,
 | |
| 	STATE_STOP
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * @grf_offset: offset inside the grf regmap for setting the i2c type
 | |
|  * @calc_timings: Callback function for i2c timing information calculated
 | |
|  */
 | |
| struct rk3x_i2c_soc_data {
 | |
| 	int grf_offset;
 | |
| 	int (*calc_timings)(unsigned long, struct i2c_timings *,
 | |
| 			    struct rk3x_i2c_calced_timings *);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct rk3x_i2c - private data of the controller
 | |
|  * @adap: corresponding I2C adapter
 | |
|  * @dev: device for this controller
 | |
|  * @soc_data: related soc data struct
 | |
|  * @regs: virtual memory area
 | |
|  * @clk: function clk for rk3399 or function & Bus clks for others
 | |
|  * @pclk: Bus clk for rk3399
 | |
|  * @clk_rate_nb: i2c clk rate change notify
 | |
|  * @t: I2C known timing information
 | |
|  * @lock: spinlock for the i2c bus
 | |
|  * @wait: the waitqueue to wait for i2c transfer
 | |
|  * @busy: the condition for the event to wait for
 | |
|  * @msg: current i2c message
 | |
|  * @addr: addr of i2c slave device
 | |
|  * @mode: mode of i2c transfer
 | |
|  * @is_last_msg: flag determines whether it is the last msg in this transfer
 | |
|  * @state: state of i2c transfer
 | |
|  * @processed: byte length which has been send or received
 | |
|  * @error: error code for i2c transfer
 | |
|  */
 | |
| struct rk3x_i2c {
 | |
| 	struct i2c_adapter adap;
 | |
| 	struct device *dev;
 | |
| 	struct rk3x_i2c_soc_data *soc_data;
 | |
| 
 | |
| 	/* Hardware resources */
 | |
| 	void __iomem *regs;
 | |
| 	struct clk *clk;
 | |
| 	struct clk *pclk;
 | |
| 	struct notifier_block clk_rate_nb;
 | |
| 
 | |
| 	/* Settings */
 | |
| 	struct i2c_timings t;
 | |
| 
 | |
| 	/* Synchronization & notification */
 | |
| 	spinlock_t lock;
 | |
| 	wait_queue_head_t wait;
 | |
| 	bool busy;
 | |
| 
 | |
| 	/* Current message */
 | |
| 	struct i2c_msg *msg;
 | |
| 	u8 addr;
 | |
| 	unsigned int mode;
 | |
| 	bool is_last_msg;
 | |
| 
 | |
| 	/* I2C state machine */
 | |
| 	enum rk3x_i2c_state state;
 | |
| 	unsigned int processed;
 | |
| 	int error;
 | |
| };
 | |
| 
 | |
| static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
 | |
| 			      unsigned int offset)
 | |
| {
 | |
| 	writel(value, i2c->regs + offset);
 | |
| }
 | |
| 
 | |
| static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
 | |
| {
 | |
| 	return readl(i2c->regs + offset);
 | |
| }
 | |
| 
 | |
| /* Reset all interrupt pending bits */
 | |
| static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
 | |
| {
 | |
| 	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate a START condition, which triggers a REG_INT_START interrupt.
 | |
|  */
 | |
| static void rk3x_i2c_start(struct rk3x_i2c *i2c)
 | |
| {
 | |
| 	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 | |
| 
 | |
| 	i2c_writel(i2c, REG_INT_START, REG_IEN);
 | |
| 
 | |
| 	/* enable adapter with correct mode, send START condition */
 | |
| 	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
 | |
| 
 | |
| 	/* if we want to react to NACK, set ACTACK bit */
 | |
| 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 | |
| 		val |= REG_CON_ACTACK;
 | |
| 
 | |
| 	i2c_writel(i2c, val, REG_CON);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 | |
|  *
 | |
|  * @error: Error code to return in rk3x_i2c_xfer
 | |
|  */
 | |
| static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
 | |
| {
 | |
| 	unsigned int ctrl;
 | |
| 
 | |
| 	i2c->processed = 0;
 | |
| 	i2c->msg = NULL;
 | |
| 	i2c->error = error;
 | |
| 
 | |
| 	if (i2c->is_last_msg) {
 | |
| 		/* Enable stop interrupt */
 | |
| 		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
 | |
| 
 | |
| 		i2c->state = STATE_STOP;
 | |
| 
 | |
| 		ctrl = i2c_readl(i2c, REG_CON);
 | |
| 		ctrl |= REG_CON_STOP;
 | |
| 		i2c_writel(i2c, ctrl, REG_CON);
 | |
| 	} else {
 | |
| 		/* Signal rk3x_i2c_xfer to start the next message. */
 | |
| 		i2c->busy = false;
 | |
| 		i2c->state = STATE_IDLE;
 | |
| 
 | |
| 		/*
 | |
| 		 * The HW is actually not capable of REPEATED START. But we can
 | |
| 		 * get the intended effect by resetting its internal state
 | |
| 		 * and issuing an ordinary START.
 | |
| 		 */
 | |
| 		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 | |
| 		i2c_writel(i2c, ctrl, REG_CON);
 | |
| 
 | |
| 		/* signal that we are finished with the current msg */
 | |
| 		wake_up(&i2c->wait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Setup a read according to i2c->msg
 | |
|  */
 | |
| static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
 | |
| {
 | |
| 	unsigned int len = i2c->msg->len - i2c->processed;
 | |
| 	u32 con;
 | |
| 
 | |
| 	con = i2c_readl(i2c, REG_CON);
 | |
| 
 | |
| 	/*
 | |
| 	 * The hw can read up to 32 bytes at a time. If we need more than one
 | |
| 	 * chunk, send an ACK after the last byte of the current chunk.
 | |
| 	 */
 | |
| 	if (len > 32) {
 | |
| 		len = 32;
 | |
| 		con &= ~REG_CON_LASTACK;
 | |
| 	} else {
 | |
| 		con |= REG_CON_LASTACK;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure we are in plain RX mode if we read a second chunk */
 | |
| 	if (i2c->processed != 0) {
 | |
| 		con &= ~REG_CON_MOD_MASK;
 | |
| 		con |= REG_CON_MOD(REG_CON_MOD_RX);
 | |
| 	}
 | |
| 
 | |
| 	i2c_writel(i2c, con, REG_CON);
 | |
| 	i2c_writel(i2c, len, REG_MRXCNT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Fill the transmit buffer with data from i2c->msg
 | |
|  */
 | |
| static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
 | |
| {
 | |
| 	unsigned int i, j;
 | |
| 	u32 cnt = 0;
 | |
| 	u32 val;
 | |
| 	u8 byte;
 | |
| 
 | |
| 	for (i = 0; i < 8; ++i) {
 | |
| 		val = 0;
 | |
| 		for (j = 0; j < 4; ++j) {
 | |
| 			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
 | |
| 				break;
 | |
| 
 | |
| 			if (i2c->processed == 0 && cnt == 0)
 | |
| 				byte = (i2c->addr & 0x7f) << 1;
 | |
| 			else
 | |
| 				byte = i2c->msg->buf[i2c->processed++];
 | |
| 
 | |
| 			val |= byte << (j * 8);
 | |
| 			cnt++;
 | |
| 		}
 | |
| 
 | |
| 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
 | |
| 
 | |
| 		if (i2c->processed == i2c->msg->len)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	i2c_writel(i2c, cnt, REG_MTXCNT);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* IRQ handlers for individual states */
 | |
| 
 | |
| static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
 | |
| {
 | |
| 	if (!(ipd & REG_INT_START)) {
 | |
| 		rk3x_i2c_stop(i2c, -EIO);
 | |
| 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
 | |
| 		rk3x_i2c_clean_ipd(i2c);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* ack interrupt */
 | |
| 	i2c_writel(i2c, REG_INT_START, REG_IPD);
 | |
| 
 | |
| 	/* disable start bit */
 | |
| 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
 | |
| 
 | |
| 	/* enable appropriate interrupts and transition */
 | |
| 	if (i2c->mode == REG_CON_MOD_TX) {
 | |
| 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
 | |
| 		i2c->state = STATE_WRITE;
 | |
| 		rk3x_i2c_fill_transmit_buf(i2c);
 | |
| 	} else {
 | |
| 		/* in any other case, we are going to be reading. */
 | |
| 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
 | |
| 		i2c->state = STATE_READ;
 | |
| 		rk3x_i2c_prepare_read(i2c);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
 | |
| {
 | |
| 	if (!(ipd & REG_INT_MBTF)) {
 | |
| 		rk3x_i2c_stop(i2c, -EIO);
 | |
| 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
 | |
| 		rk3x_i2c_clean_ipd(i2c);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* ack interrupt */
 | |
| 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
 | |
| 
 | |
| 	/* are we finished? */
 | |
| 	if (i2c->processed == i2c->msg->len)
 | |
| 		rk3x_i2c_stop(i2c, i2c->error);
 | |
| 	else
 | |
| 		rk3x_i2c_fill_transmit_buf(i2c);
 | |
| }
 | |
| 
 | |
| static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int len = i2c->msg->len - i2c->processed;
 | |
| 	u32 uninitialized_var(val);
 | |
| 	u8 byte;
 | |
| 
 | |
| 	/* we only care for MBRF here. */
 | |
| 	if (!(ipd & REG_INT_MBRF))
 | |
| 		return;
 | |
| 
 | |
| 	/* ack interrupt */
 | |
| 	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
 | |
| 
 | |
| 	/* Can only handle a maximum of 32 bytes at a time */
 | |
| 	if (len > 32)
 | |
| 		len = 32;
 | |
| 
 | |
| 	/* read the data from receive buffer */
 | |
| 	for (i = 0; i < len; ++i) {
 | |
| 		if (i % 4 == 0)
 | |
| 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
 | |
| 
 | |
| 		byte = (val >> ((i % 4) * 8)) & 0xff;
 | |
| 		i2c->msg->buf[i2c->processed++] = byte;
 | |
| 	}
 | |
| 
 | |
| 	/* are we finished? */
 | |
| 	if (i2c->processed == i2c->msg->len)
 | |
| 		rk3x_i2c_stop(i2c, i2c->error);
 | |
| 	else
 | |
| 		rk3x_i2c_prepare_read(i2c);
 | |
| }
 | |
| 
 | |
| static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
 | |
| {
 | |
| 	unsigned int con;
 | |
| 
 | |
| 	if (!(ipd & REG_INT_STOP)) {
 | |
| 		rk3x_i2c_stop(i2c, -EIO);
 | |
| 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
 | |
| 		rk3x_i2c_clean_ipd(i2c);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* ack interrupt */
 | |
| 	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
 | |
| 
 | |
| 	/* disable STOP bit */
 | |
| 	con = i2c_readl(i2c, REG_CON);
 | |
| 	con &= ~REG_CON_STOP;
 | |
| 	i2c_writel(i2c, con, REG_CON);
 | |
| 
 | |
| 	i2c->busy = false;
 | |
| 	i2c->state = STATE_IDLE;
 | |
| 
 | |
| 	/* signal rk3x_i2c_xfer that we are finished */
 | |
| 	wake_up(&i2c->wait);
 | |
| }
 | |
| 
 | |
| static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
 | |
| {
 | |
| 	struct rk3x_i2c *i2c = dev_id;
 | |
| 	unsigned int ipd;
 | |
| 
 | |
| 	spin_lock(&i2c->lock);
 | |
| 
 | |
| 	ipd = i2c_readl(i2c, REG_IPD);
 | |
| 	if (i2c->state == STATE_IDLE) {
 | |
| 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
 | |
| 		rk3x_i2c_clean_ipd(i2c);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
 | |
| 
 | |
| 	/* Clean interrupt bits we don't care about */
 | |
| 	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
 | |
| 
 | |
| 	if (ipd & REG_INT_NAKRCV) {
 | |
| 		/*
 | |
| 		 * We got a NACK in the last operation. Depending on whether
 | |
| 		 * IGNORE_NAK is set, we have to stop the operation and report
 | |
| 		 * an error.
 | |
| 		 */
 | |
| 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
 | |
| 
 | |
| 		ipd &= ~REG_INT_NAKRCV;
 | |
| 
 | |
| 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 | |
| 			rk3x_i2c_stop(i2c, -ENXIO);
 | |
| 	}
 | |
| 
 | |
| 	/* is there anything left to handle? */
 | |
| 	if ((ipd & REG_INT_ALL) == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (i2c->state) {
 | |
| 	case STATE_START:
 | |
| 		rk3x_i2c_handle_start(i2c, ipd);
 | |
| 		break;
 | |
| 	case STATE_WRITE:
 | |
| 		rk3x_i2c_handle_write(i2c, ipd);
 | |
| 		break;
 | |
| 	case STATE_READ:
 | |
| 		rk3x_i2c_handle_read(i2c, ipd);
 | |
| 		break;
 | |
| 	case STATE_STOP:
 | |
| 		rk3x_i2c_handle_stop(i2c, ipd);
 | |
| 		break;
 | |
| 	case STATE_IDLE:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&i2c->lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get timing values of I2C specification
 | |
|  *
 | |
|  * @speed: Desired SCL frequency
 | |
|  *
 | |
|  * Returns: Matched i2c spec values.
 | |
|  */
 | |
| static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
 | |
| {
 | |
| 	if (speed <= 100000)
 | |
| 		return &standard_mode_spec;
 | |
| 	else if (speed <= 400000)
 | |
| 		return &fast_mode_spec;
 | |
| 	else
 | |
| 		return &fast_mode_plus_spec;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate divider values for desired SCL frequency
 | |
|  *
 | |
|  * @clk_rate: I2C input clock rate
 | |
|  * @t: Known I2C timing information
 | |
|  * @t_calc: Caculated rk3x private timings that would be written into regs
 | |
|  *
 | |
|  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 | |
|  * a best-effort divider value is returned in divs. If the target rate is
 | |
|  * too high, we silently use the highest possible rate.
 | |
|  */
 | |
| static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
 | |
| 				    struct i2c_timings *t,
 | |
| 				    struct rk3x_i2c_calced_timings *t_calc)
 | |
| {
 | |
| 	unsigned long min_low_ns, min_high_ns;
 | |
| 	unsigned long max_low_ns, min_total_ns;
 | |
| 
 | |
| 	unsigned long clk_rate_khz, scl_rate_khz;
 | |
| 
 | |
| 	unsigned long min_low_div, min_high_div;
 | |
| 	unsigned long max_low_div;
 | |
| 
 | |
| 	unsigned long min_div_for_hold, min_total_div;
 | |
| 	unsigned long extra_div, extra_low_div, ideal_low_div;
 | |
| 
 | |
| 	unsigned long data_hold_buffer_ns = 50;
 | |
| 	const struct i2c_spec_values *spec;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Only support standard-mode and fast-mode */
 | |
| 	if (WARN_ON(t->bus_freq_hz > 400000))
 | |
| 		t->bus_freq_hz = 400000;
 | |
| 
 | |
| 	/* prevent scl_rate_khz from becoming 0 */
 | |
| 	if (WARN_ON(t->bus_freq_hz < 1000))
 | |
| 		t->bus_freq_hz = 1000;
 | |
| 
 | |
| 	/*
 | |
| 	 * min_low_ns:  The minimum number of ns we need to hold low to
 | |
| 	 *		meet I2C specification, should include fall time.
 | |
| 	 * min_high_ns: The minimum number of ns we need to hold high to
 | |
| 	 *		meet I2C specification, should include rise time.
 | |
| 	 * max_low_ns:  The maximum number of ns we can hold low to meet
 | |
| 	 *		I2C specification.
 | |
| 	 *
 | |
| 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
 | |
| 	 *	 This is because the i2c host on Rockchip holds the data line
 | |
| 	 *	 for half the low time.
 | |
| 	 */
 | |
| 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 | |
| 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 | |
| 
 | |
| 	/*
 | |
| 	 * Timings for repeated start:
 | |
| 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
 | |
| 	 * - controller appears to keep SCL high for 2x programmed clk high.
 | |
| 	 *
 | |
| 	 * We need to account for those rules in picking our "high" time so
 | |
| 	 * we meet tSU;STA and tHD;STA times.
 | |
| 	 */
 | |
| 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 | |
| 		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
 | |
| 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 | |
| 		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
 | |
| 		spec->min_high_ns), 2));
 | |
| 
 | |
| 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 | |
| 	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
 | |
| 	min_total_ns = min_low_ns + min_high_ns;
 | |
| 
 | |
| 	/* Adjust to avoid overflow */
 | |
| 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 | |
| 	scl_rate_khz = t->bus_freq_hz / 1000;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need the total div to be >= this number
 | |
| 	 * so we don't clock too fast.
 | |
| 	 */
 | |
| 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 | |
| 
 | |
| 	/* These are the min dividers needed for min hold times. */
 | |
| 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 | |
| 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 | |
| 	min_div_for_hold = (min_low_div + min_high_div);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is the maximum divider so we don't go over the maximum.
 | |
| 	 * We don't round up here (we round down) since this is a maximum.
 | |
| 	 */
 | |
| 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
 | |
| 
 | |
| 	if (min_low_div > max_low_div) {
 | |
| 		WARN_ONCE(true,
 | |
| 			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
 | |
| 			  min_low_div, max_low_div);
 | |
| 		max_low_div = min_low_div;
 | |
| 	}
 | |
| 
 | |
| 	if (min_div_for_hold > min_total_div) {
 | |
| 		/*
 | |
| 		 * Time needed to meet hold requirements is important.
 | |
| 		 * Just use that.
 | |
| 		 */
 | |
| 		t_calc->div_low = min_low_div;
 | |
| 		t_calc->div_high = min_high_div;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We've got to distribute some time among the low and high
 | |
| 		 * so we don't run too fast.
 | |
| 		 */
 | |
| 		extra_div = min_total_div - min_div_for_hold;
 | |
| 
 | |
| 		/*
 | |
| 		 * We'll try to split things up perfectly evenly,
 | |
| 		 * biasing slightly towards having a higher div
 | |
| 		 * for low (spend more time low).
 | |
| 		 */
 | |
| 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
 | |
| 					     scl_rate_khz * 8 * min_total_ns);
 | |
| 
 | |
| 		/* Don't allow it to go over the maximum */
 | |
| 		if (ideal_low_div > max_low_div)
 | |
| 			ideal_low_div = max_low_div;
 | |
| 
 | |
| 		/*
 | |
| 		 * Handle when the ideal low div is going to take up
 | |
| 		 * more than we have.
 | |
| 		 */
 | |
| 		if (ideal_low_div > min_low_div + extra_div)
 | |
| 			ideal_low_div = min_low_div + extra_div;
 | |
| 
 | |
| 		/* Give low the "ideal" and give high whatever extra is left */
 | |
| 		extra_low_div = ideal_low_div - min_low_div;
 | |
| 		t_calc->div_low = ideal_low_div;
 | |
| 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust to the fact that the hardware has an implicit "+1".
 | |
| 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
 | |
| 	 */
 | |
| 	t_calc->div_low--;
 | |
| 	t_calc->div_high--;
 | |
| 
 | |
| 	/* Give the tuning value 0, that would not update con register */
 | |
| 	t_calc->tuning = 0;
 | |
| 	/* Maximum divider supported by hw is 0xffff */
 | |
| 	if (t_calc->div_low > 0xffff) {
 | |
| 		t_calc->div_low = 0xffff;
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t_calc->div_high > 0xffff) {
 | |
| 		t_calc->div_high = 0xffff;
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate timing values for desired SCL frequency
 | |
|  *
 | |
|  * @clk_rate: I2C input clock rate
 | |
|  * @t: Known I2C timing information
 | |
|  * @t_calc: Caculated rk3x private timings that would be written into regs
 | |
|  *
 | |
|  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 | |
|  * a best-effort divider value is returned in divs. If the target rate is
 | |
|  * too high, we silently use the highest possible rate.
 | |
|  * The following formulas are v1's method to calculate timings.
 | |
|  *
 | |
|  * l = divl + 1;
 | |
|  * h = divh + 1;
 | |
|  * s = sda_update_config + 1;
 | |
|  * u = start_setup_config + 1;
 | |
|  * p = stop_setup_config + 1;
 | |
|  * T = Tclk_i2c;
 | |
|  *
 | |
|  * tHigh = 8 * h * T;
 | |
|  * tLow = 8 * l * T;
 | |
|  *
 | |
|  * tHD;sda = (l * s + 1) * T;
 | |
|  * tSU;sda = [(8 - s) * l + 1] * T;
 | |
|  * tI2C = 8 * (l + h) * T;
 | |
|  *
 | |
|  * tSU;sta = (8h * u + 1) * T;
 | |
|  * tHD;sta = [8h * (u + 1) - 1] * T;
 | |
|  * tSU;sto = (8h * p + 1) * T;
 | |
|  */
 | |
| static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
 | |
| 				    struct i2c_timings *t,
 | |
| 				    struct rk3x_i2c_calced_timings *t_calc)
 | |
| {
 | |
| 	unsigned long min_low_ns, min_high_ns;
 | |
| 	unsigned long min_setup_start_ns, min_setup_data_ns;
 | |
| 	unsigned long min_setup_stop_ns, max_hold_data_ns;
 | |
| 
 | |
| 	unsigned long clk_rate_khz, scl_rate_khz;
 | |
| 
 | |
| 	unsigned long min_low_div, min_high_div;
 | |
| 
 | |
| 	unsigned long min_div_for_hold, min_total_div;
 | |
| 	unsigned long extra_div, extra_low_div;
 | |
| 	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
 | |
| 
 | |
| 	const struct i2c_spec_values *spec;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Support standard-mode, fast-mode and fast-mode plus */
 | |
| 	if (WARN_ON(t->bus_freq_hz > 1000000))
 | |
| 		t->bus_freq_hz = 1000000;
 | |
| 
 | |
| 	/* prevent scl_rate_khz from becoming 0 */
 | |
| 	if (WARN_ON(t->bus_freq_hz < 1000))
 | |
| 		t->bus_freq_hz = 1000;
 | |
| 
 | |
| 	/*
 | |
| 	 * min_low_ns: The minimum number of ns we need to hold low to
 | |
| 	 *	       meet I2C specification, should include fall time.
 | |
| 	 * min_high_ns: The minimum number of ns we need to hold high to
 | |
| 	 *	        meet I2C specification, should include rise time.
 | |
| 	 */
 | |
| 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 | |
| 
 | |
| 	/* calculate min-divh and min-divl */
 | |
| 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 | |
| 	scl_rate_khz = t->bus_freq_hz / 1000;
 | |
| 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 | |
| 
 | |
| 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 | |
| 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 | |
| 
 | |
| 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 | |
| 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Final divh and divl must be greater than 0, otherwise the
 | |
| 	 * hardware would not output the i2c clk.
 | |
| 	 */
 | |
| 	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
 | |
| 	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
 | |
| 
 | |
| 	/* These are the min dividers needed for min hold times. */
 | |
| 	min_div_for_hold = (min_low_div + min_high_div);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is the maximum divider so we don't go over the maximum.
 | |
| 	 * We don't round up here (we round down) since this is a maximum.
 | |
| 	 */
 | |
| 	if (min_div_for_hold >= min_total_div) {
 | |
| 		/*
 | |
| 		 * Time needed to meet hold requirements is important.
 | |
| 		 * Just use that.
 | |
| 		 */
 | |
| 		t_calc->div_low = min_low_div;
 | |
| 		t_calc->div_high = min_high_div;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We've got to distribute some time among the low and high
 | |
| 		 * so we don't run too fast.
 | |
| 		 * We'll try to split things up by the scale of min_low_div and
 | |
| 		 * min_high_div, biasing slightly towards having a higher div
 | |
| 		 * for low (spend more time low).
 | |
| 		 */
 | |
| 		extra_div = min_total_div - min_div_for_hold;
 | |
| 		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
 | |
| 					     min_div_for_hold);
 | |
| 
 | |
| 		t_calc->div_low = min_low_div + extra_low_div;
 | |
| 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * calculate sda data hold count by the rules, data_upd_st:3
 | |
| 	 * is a appropriate value to reduce calculated times.
 | |
| 	 */
 | |
| 	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
 | |
| 		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
 | |
| 						 * (t_calc->div_low) + 1)
 | |
| 						 * 1000000, clk_rate_khz);
 | |
| 		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
 | |
| 						 * (t_calc->div_low) + 1)
 | |
| 						 * 1000000, clk_rate_khz);
 | |
| 		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
 | |
| 		    (min_setup_data_ns > spec->min_data_setup_ns))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate setup start config */
 | |
| 	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
 | |
| 	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
 | |
| 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
 | |
| 
 | |
| 	/* calculate setup stop config */
 | |
| 	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
 | |
| 	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
 | |
| 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
 | |
| 
 | |
| 	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
 | |
| 			 REG_CON_STA_CFG(--stp_sta_cfg) |
 | |
| 			 REG_CON_STO_CFG(--stp_sto_cfg);
 | |
| 
 | |
| 	t_calc->div_low--;
 | |
| 	t_calc->div_high--;
 | |
| 
 | |
| 	/* Maximum divider supported by hw is 0xffff */
 | |
| 	if (t_calc->div_low > 0xffff) {
 | |
| 		t_calc->div_low = 0xffff;
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t_calc->div_high > 0xffff) {
 | |
| 		t_calc->div_high = 0xffff;
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
 | |
| {
 | |
| 	struct i2c_timings *t = &i2c->t;
 | |
| 	struct rk3x_i2c_calced_timings calc;
 | |
| 	u64 t_low_ns, t_high_ns;
 | |
| 	unsigned long flags;
 | |
| 	u32 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
 | |
| 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
 | |
| 
 | |
| 	clk_enable(i2c->pclk);
 | |
| 
 | |
| 	spin_lock_irqsave(&i2c->lock, flags);
 | |
| 	val = i2c_readl(i2c, REG_CON);
 | |
| 	val &= ~REG_CON_TUNING_MASK;
 | |
| 	val |= calc.tuning;
 | |
| 	i2c_writel(i2c, val, REG_CON);
 | |
| 	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
 | |
| 		   REG_CLKDIV);
 | |
| 	spin_unlock_irqrestore(&i2c->lock, flags);
 | |
| 
 | |
| 	clk_disable(i2c->pclk);
 | |
| 
 | |
| 	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
 | |
| 	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
 | |
| 			    clk_rate);
 | |
| 	dev_dbg(i2c->dev,
 | |
| 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
 | |
| 		clk_rate / 1000,
 | |
| 		1000000000 / t->bus_freq_hz,
 | |
| 		t_low_ns, t_high_ns);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 | |
|  * @nb:		Pointer to notifier block
 | |
|  * @event:	Notification reason
 | |
|  * @data:	Pointer to notification data object
 | |
|  *
 | |
|  * The callback checks whether a valid bus frequency can be generated after the
 | |
|  * change. If so, the change is acknowledged, otherwise the change is aborted.
 | |
|  * New dividers are written to the HW in the pre- or post change notification
 | |
|  * depending on the scaling direction.
 | |
|  *
 | |
|  * Code adapted from i2c-cadence.c.
 | |
|  *
 | |
|  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 | |
|  *		to acknowledge the change, NOTIFY_DONE if the notification is
 | |
|  *		considered irrelevant.
 | |
|  */
 | |
| static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
 | |
| 				    event, void *data)
 | |
| {
 | |
| 	struct clk_notifier_data *ndata = data;
 | |
| 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
 | |
| 	struct rk3x_i2c_calced_timings calc;
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case PRE_RATE_CHANGE:
 | |
| 		/*
 | |
| 		 * Try the calculation (but don't store the result) ahead of
 | |
| 		 * time to see if we need to block the clock change.  Timings
 | |
| 		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
 | |
| 		 */
 | |
| 		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
 | |
| 						&calc) != 0)
 | |
| 			return NOTIFY_STOP;
 | |
| 
 | |
| 		/* scale up */
 | |
| 		if (ndata->new_rate > ndata->old_rate)
 | |
| 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 | |
| 
 | |
| 		return NOTIFY_OK;
 | |
| 	case POST_RATE_CHANGE:
 | |
| 		/* scale down */
 | |
| 		if (ndata->new_rate < ndata->old_rate)
 | |
| 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 | |
| 		return NOTIFY_OK;
 | |
| 	case ABORT_RATE_CHANGE:
 | |
| 		/* scale up */
 | |
| 		if (ndata->new_rate > ndata->old_rate)
 | |
| 			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
 | |
| 		return NOTIFY_OK;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Setup I2C registers for an I2C operation specified by msgs, num.
 | |
|  *
 | |
|  * Must be called with i2c->lock held.
 | |
|  *
 | |
|  * @msgs: I2C msgs to process
 | |
|  * @num: Number of msgs
 | |
|  *
 | |
|  * returns: Number of I2C msgs processed or negative in case of error
 | |
|  */
 | |
| static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
 | |
| {
 | |
| 	u32 addr = (msgs[0].addr & 0x7f) << 1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The I2C adapter can issue a small (len < 4) write packet before
 | |
| 	 * reading. This speeds up SMBus-style register reads.
 | |
| 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
 | |
| 	 * address in this case.
 | |
| 	 */
 | |
| 
 | |
| 	if (num >= 2 && msgs[0].len < 4 &&
 | |
| 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
 | |
| 		u32 reg_addr = 0;
 | |
| 		int i;
 | |
| 
 | |
| 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
 | |
| 			addr >> 1);
 | |
| 
 | |
| 		/* Fill MRXRADDR with the register address(es) */
 | |
| 		for (i = 0; i < msgs[0].len; ++i) {
 | |
| 			reg_addr |= msgs[0].buf[i] << (i * 8);
 | |
| 			reg_addr |= REG_MRXADDR_VALID(i);
 | |
| 		}
 | |
| 
 | |
| 		/* msgs[0] is handled by hw. */
 | |
| 		i2c->msg = &msgs[1];
 | |
| 
 | |
| 		i2c->mode = REG_CON_MOD_REGISTER_TX;
 | |
| 
 | |
| 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
 | |
| 		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
 | |
| 
 | |
| 		ret = 2;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We'll have to do it the boring way and process the msgs
 | |
| 		 * one-by-one.
 | |
| 		 */
 | |
| 
 | |
| 		if (msgs[0].flags & I2C_M_RD) {
 | |
| 			addr |= 1; /* set read bit */
 | |
| 
 | |
| 			/*
 | |
| 			 * We have to transmit the slave addr first. Use
 | |
| 			 * MOD_REGISTER_TX for that purpose.
 | |
| 			 */
 | |
| 			i2c->mode = REG_CON_MOD_REGISTER_TX;
 | |
| 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
 | |
| 				   REG_MRXADDR);
 | |
| 			i2c_writel(i2c, 0, REG_MRXRADDR);
 | |
| 		} else {
 | |
| 			i2c->mode = REG_CON_MOD_TX;
 | |
| 		}
 | |
| 
 | |
| 		i2c->msg = &msgs[0];
 | |
| 
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	i2c->addr = msgs[0].addr;
 | |
| 	i2c->busy = true;
 | |
| 	i2c->state = STATE_START;
 | |
| 	i2c->processed = 0;
 | |
| 	i2c->error = 0;
 | |
| 
 | |
| 	rk3x_i2c_clean_ipd(i2c);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rk3x_i2c_xfer(struct i2c_adapter *adap,
 | |
| 			 struct i2c_msg *msgs, int num)
 | |
| {
 | |
| 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
 | |
| 	unsigned long timeout, flags;
 | |
| 	u32 val;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irqsave(&i2c->lock, flags);
 | |
| 
 | |
| 	clk_enable(i2c->clk);
 | |
| 	clk_enable(i2c->pclk);
 | |
| 
 | |
| 	i2c->is_last_msg = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Process msgs. We can handle more than one message at once (see
 | |
| 	 * rk3x_i2c_setup()).
 | |
| 	 */
 | |
| 	for (i = 0; i < num; i += ret) {
 | |
| 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (i + ret >= num)
 | |
| 			i2c->is_last_msg = true;
 | |
| 
 | |
| 		spin_unlock_irqrestore(&i2c->lock, flags);
 | |
| 
 | |
| 		rk3x_i2c_start(i2c);
 | |
| 
 | |
| 		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
 | |
| 					     msecs_to_jiffies(WAIT_TIMEOUT));
 | |
| 
 | |
| 		spin_lock_irqsave(&i2c->lock, flags);
 | |
| 
 | |
| 		if (timeout == 0) {
 | |
| 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
 | |
| 				i2c_readl(i2c, REG_IPD), i2c->state);
 | |
| 
 | |
| 			/* Force a STOP condition without interrupt */
 | |
| 			i2c_writel(i2c, 0, REG_IEN);
 | |
| 			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 | |
| 			val |= REG_CON_EN | REG_CON_STOP;
 | |
| 			i2c_writel(i2c, val, REG_CON);
 | |
| 
 | |
| 			i2c->state = STATE_IDLE;
 | |
| 
 | |
| 			ret = -ETIMEDOUT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (i2c->error) {
 | |
| 			ret = i2c->error;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	clk_disable(i2c->pclk);
 | |
| 	clk_disable(i2c->clk);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&i2c->lock, flags);
 | |
| 
 | |
| 	return ret < 0 ? ret : num;
 | |
| }
 | |
| 
 | |
| static __maybe_unused int rk3x_i2c_resume(struct device *dev)
 | |
| {
 | |
| 	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
 | |
| 
 | |
| 	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 rk3x_i2c_func(struct i2c_adapter *adap)
 | |
| {
 | |
| 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
 | |
| }
 | |
| 
 | |
| static const struct i2c_algorithm rk3x_i2c_algorithm = {
 | |
| 	.master_xfer		= rk3x_i2c_xfer,
 | |
| 	.functionality		= rk3x_i2c_func,
 | |
| };
 | |
| 
 | |
| static const struct rk3x_i2c_soc_data rv1108_soc_data = {
 | |
| 	.grf_offset = -1,
 | |
| 	.calc_timings = rk3x_i2c_v1_calc_timings,
 | |
| };
 | |
| 
 | |
| static const struct rk3x_i2c_soc_data rk3066_soc_data = {
 | |
| 	.grf_offset = 0x154,
 | |
| 	.calc_timings = rk3x_i2c_v0_calc_timings,
 | |
| };
 | |
| 
 | |
| static const struct rk3x_i2c_soc_data rk3188_soc_data = {
 | |
| 	.grf_offset = 0x0a4,
 | |
| 	.calc_timings = rk3x_i2c_v0_calc_timings,
 | |
| };
 | |
| 
 | |
| static const struct rk3x_i2c_soc_data rk3228_soc_data = {
 | |
| 	.grf_offset = -1,
 | |
| 	.calc_timings = rk3x_i2c_v0_calc_timings,
 | |
| };
 | |
| 
 | |
| static const struct rk3x_i2c_soc_data rk3288_soc_data = {
 | |
| 	.grf_offset = -1,
 | |
| 	.calc_timings = rk3x_i2c_v0_calc_timings,
 | |
| };
 | |
| 
 | |
| static const struct rk3x_i2c_soc_data rk3399_soc_data = {
 | |
| 	.grf_offset = -1,
 | |
| 	.calc_timings = rk3x_i2c_v1_calc_timings,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id rk3x_i2c_match[] = {
 | |
| 	{
 | |
| 		.compatible = "rockchip,rv1108-i2c",
 | |
| 		.data = (void *)&rv1108_soc_data
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "rockchip,rk3066-i2c",
 | |
| 		.data = (void *)&rk3066_soc_data
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "rockchip,rk3188-i2c",
 | |
| 		.data = (void *)&rk3188_soc_data
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "rockchip,rk3228-i2c",
 | |
| 		.data = (void *)&rk3228_soc_data
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "rockchip,rk3288-i2c",
 | |
| 		.data = (void *)&rk3288_soc_data
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "rockchip,rk3399-i2c",
 | |
| 		.data = (void *)&rk3399_soc_data
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
 | |
| 
 | |
| static int rk3x_i2c_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device_node *np = pdev->dev.of_node;
 | |
| 	const struct of_device_id *match;
 | |
| 	struct rk3x_i2c *i2c;
 | |
| 	struct resource *mem;
 | |
| 	int ret = 0;
 | |
| 	int bus_nr;
 | |
| 	u32 value;
 | |
| 	int irq;
 | |
| 	unsigned long clk_rate;
 | |
| 
 | |
| 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
 | |
| 	if (!i2c)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	match = of_match_node(rk3x_i2c_match, np);
 | |
| 	i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
 | |
| 
 | |
| 	/* use common interface to get I2C timing properties */
 | |
| 	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
 | |
| 
 | |
| 	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
 | |
| 	i2c->adap.owner = THIS_MODULE;
 | |
| 	i2c->adap.algo = &rk3x_i2c_algorithm;
 | |
| 	i2c->adap.retries = 3;
 | |
| 	i2c->adap.dev.of_node = np;
 | |
| 	i2c->adap.algo_data = i2c;
 | |
| 	i2c->adap.dev.parent = &pdev->dev;
 | |
| 
 | |
| 	i2c->dev = &pdev->dev;
 | |
| 
 | |
| 	spin_lock_init(&i2c->lock);
 | |
| 	init_waitqueue_head(&i2c->wait);
 | |
| 
 | |
| 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
 | |
| 	if (IS_ERR(i2c->regs))
 | |
| 		return PTR_ERR(i2c->regs);
 | |
| 
 | |
| 	/* Try to set the I2C adapter number from dt */
 | |
| 	bus_nr = of_alias_get_id(np, "i2c");
 | |
| 
 | |
| 	/*
 | |
| 	 * Switch to new interface if the SoC also offers the old one.
 | |
| 	 * The control bit is located in the GRF register space.
 | |
| 	 */
 | |
| 	if (i2c->soc_data->grf_offset >= 0) {
 | |
| 		struct regmap *grf;
 | |
| 
 | |
| 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
 | |
| 		if (IS_ERR(grf)) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"rk3x-i2c needs 'rockchip,grf' property\n");
 | |
| 			return PTR_ERR(grf);
 | |
| 		}
 | |
| 
 | |
| 		if (bus_nr < 0) {
 | |
| 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* 27+i: write mask, 11+i: value */
 | |
| 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
 | |
| 
 | |
| 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
 | |
| 		if (ret != 0) {
 | |
| 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* IRQ setup */
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0) {
 | |
| 		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
 | |
| 		return irq;
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
 | |
| 			       0, dev_name(&pdev->dev), i2c);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&pdev->dev, "cannot request IRQ\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, i2c);
 | |
| 
 | |
| 	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
 | |
| 		/* Only one clock to use for bus clock and peripheral clock */
 | |
| 		i2c->clk = devm_clk_get(&pdev->dev, NULL);
 | |
| 		i2c->pclk = i2c->clk;
 | |
| 	} else {
 | |
| 		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
 | |
| 		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ERR(i2c->clk)) {
 | |
| 		ret = PTR_ERR(i2c->clk);
 | |
| 		if (ret != -EPROBE_DEFER)
 | |
| 			dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (IS_ERR(i2c->pclk)) {
 | |
| 		ret = PTR_ERR(i2c->pclk);
 | |
| 		if (ret != -EPROBE_DEFER)
 | |
| 			dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_prepare(i2c->clk);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	ret = clk_prepare(i2c->pclk);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
 | |
| 		goto err_clk;
 | |
| 	}
 | |
| 
 | |
| 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
 | |
| 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
 | |
| 	if (ret != 0) {
 | |
| 		dev_err(&pdev->dev, "Unable to register clock notifier\n");
 | |
| 		goto err_pclk;
 | |
| 	}
 | |
| 
 | |
| 	clk_rate = clk_get_rate(i2c->clk);
 | |
| 	rk3x_i2c_adapt_div(i2c, clk_rate);
 | |
| 
 | |
| 	ret = i2c_add_adapter(&i2c->adap);
 | |
| 	if (ret < 0)
 | |
| 		goto err_clk_notifier;
 | |
| 
 | |
| 	dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_clk_notifier:
 | |
| 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
 | |
| err_pclk:
 | |
| 	clk_unprepare(i2c->pclk);
 | |
| err_clk:
 | |
| 	clk_unprepare(i2c->clk);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rk3x_i2c_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	i2c_del_adapter(&i2c->adap);
 | |
| 
 | |
| 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
 | |
| 	clk_unprepare(i2c->pclk);
 | |
| 	clk_unprepare(i2c->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
 | |
| 
 | |
| static struct platform_driver rk3x_i2c_driver = {
 | |
| 	.probe   = rk3x_i2c_probe,
 | |
| 	.remove  = rk3x_i2c_remove,
 | |
| 	.driver  = {
 | |
| 		.name  = "rk3x-i2c",
 | |
| 		.of_match_table = rk3x_i2c_match,
 | |
| 		.pm = &rk3x_i2c_pm_ops,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| module_platform_driver(rk3x_i2c_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
 | |
| MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
 | |
| MODULE_LICENSE("GPL v2");
 |