mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 049f3e84d3
			
		
	
	
		049f3e84d3
		
	
	
	
	
		
			
			In OABI configurations, some uses of the do_div function cause gcc to run out of registers. To work around that, we can force the use of the out-of-line version for configurations that build a OABI kernel. Without this patch, building netx_defconfig results in: net/core/pktgen.c: In function 'pktgen_if_show': net/core/pktgen.c:682:2775: error: can't find a register in class 'GENERAL_REGS' while reloading 'asm' net/core/pktgen.c:682:3153: error: can't find a register in class 'GENERAL_REGS' while reloading 'asm' net/core/pktgen.c:682:2775: error: 'asm' operand has impossible constraints net/core/pktgen.c:682:3153: error: 'asm' operand has impossible constraints Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			228 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __ASM_ARM_DIV64
 | |
| #define __ASM_ARM_DIV64
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <asm/compiler.h>
 | |
| 
 | |
| /*
 | |
|  * The semantics of do_div() are:
 | |
|  *
 | |
|  * uint32_t do_div(uint64_t *n, uint32_t base)
 | |
|  * {
 | |
|  * 	uint32_t remainder = *n % base;
 | |
|  * 	*n = *n / base;
 | |
|  * 	return remainder;
 | |
|  * }
 | |
|  *
 | |
|  * In other words, a 64-bit dividend with a 32-bit divisor producing
 | |
|  * a 64-bit result and a 32-bit remainder.  To accomplish this optimally
 | |
|  * we call a special __do_div64 helper with completely non standard
 | |
|  * calling convention for arguments and results (beware).
 | |
|  */
 | |
| 
 | |
| #ifdef __ARMEB__
 | |
| #define __xh "r0"
 | |
| #define __xl "r1"
 | |
| #else
 | |
| #define __xl "r0"
 | |
| #define __xh "r1"
 | |
| #endif
 | |
| 
 | |
| #define __do_div_asm(n, base)					\
 | |
| ({								\
 | |
| 	register unsigned int __base      asm("r4") = base;	\
 | |
| 	register unsigned long long __n   asm("r0") = n;	\
 | |
| 	register unsigned long long __res asm("r2");		\
 | |
| 	register unsigned int __rem       asm(__xh);		\
 | |
| 	asm(	__asmeq("%0", __xh)				\
 | |
| 		__asmeq("%1", "r2")				\
 | |
| 		__asmeq("%2", "r0")				\
 | |
| 		__asmeq("%3", "r4")				\
 | |
| 		"bl	__do_div64"				\
 | |
| 		: "=r" (__rem), "=r" (__res)			\
 | |
| 		: "r" (__n), "r" (__base)			\
 | |
| 		: "ip", "lr", "cc");				\
 | |
| 	n = __res;						\
 | |
| 	__rem;							\
 | |
| })
 | |
| 
 | |
| #if __GNUC__ < 4 || !defined(CONFIG_AEABI)
 | |
| 
 | |
| /*
 | |
|  * gcc versions earlier than 4.0 are simply too problematic for the
 | |
|  * optimized implementation below. First there is gcc PR 15089 that
 | |
|  * tend to trig on more complex constructs, spurious .global __udivsi3
 | |
|  * are inserted even if none of those symbols are referenced in the
 | |
|  * generated code, and those gcc versions are not able to do constant
 | |
|  * propagation on long long values anyway.
 | |
|  */
 | |
| #define do_div(n, base) __do_div_asm(n, base)
 | |
| 
 | |
| #elif __GNUC__ >= 4
 | |
| 
 | |
| #include <asm/bug.h>
 | |
| 
 | |
| /*
 | |
|  * If the divisor happens to be constant, we determine the appropriate
 | |
|  * inverse at compile time to turn the division into a few inline
 | |
|  * multiplications instead which is much faster. And yet only if compiling
 | |
|  * for ARMv4 or higher (we need umull/umlal) and if the gcc version is
 | |
|  * sufficiently recent to perform proper long long constant propagation.
 | |
|  * (It is unfortunate that gcc doesn't perform all this internally.)
 | |
|  */
 | |
| #define do_div(n, base)							\
 | |
| ({									\
 | |
| 	unsigned int __r, __b = (base);					\
 | |
| 	if (!__builtin_constant_p(__b) || __b == 0 ||			\
 | |
| 	    (__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) {	\
 | |
| 		/* non-constant divisor (or zero): slow path */		\
 | |
| 		__r = __do_div_asm(n, __b);				\
 | |
| 	} else if ((__b & (__b - 1)) == 0) {				\
 | |
| 		/* Trivial: __b is constant and a power of 2 */		\
 | |
| 		/* gcc does the right thing with this code.  */		\
 | |
| 		__r = n;						\
 | |
| 		__r &= (__b - 1);					\
 | |
| 		n /= __b;						\
 | |
| 	} else {							\
 | |
| 		/* Multiply by inverse of __b: n/b = n*(p/b)/p       */	\
 | |
| 		/* We rely on the fact that most of this code gets   */	\
 | |
| 		/* optimized away at compile time due to constant    */	\
 | |
| 		/* propagation and only a couple inline assembly     */	\
 | |
| 		/* instructions should remain. Better avoid any      */	\
 | |
| 		/* code construct that might prevent that.           */	\
 | |
| 		unsigned long long __res, __x, __t, __m, __n = n;	\
 | |
| 		unsigned int __c, __p, __z = 0;				\
 | |
| 		/* preserve low part of n for reminder computation */	\
 | |
| 		__r = __n;						\
 | |
| 		/* determine number of bits to represent __b */		\
 | |
| 		__p = 1 << __div64_fls(__b);				\
 | |
| 		/* compute __m = ((__p << 64) + __b - 1) / __b */	\
 | |
| 		__m = (~0ULL / __b) * __p;				\
 | |
| 		__m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b;	\
 | |
| 		/* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */	\
 | |
| 		__x = ~0ULL / __b * __b - 1;				\
 | |
| 		__res = (__m & 0xffffffff) * (__x & 0xffffffff);	\
 | |
| 		__res >>= 32;						\
 | |
| 		__res += (__m & 0xffffffff) * (__x >> 32);		\
 | |
| 		__t = __res;						\
 | |
| 		__res += (__x & 0xffffffff) * (__m >> 32);		\
 | |
| 		__t = (__res < __t) ? (1ULL << 32) : 0;			\
 | |
| 		__res = (__res >> 32) + __t;				\
 | |
| 		__res += (__m >> 32) * (__x >> 32);			\
 | |
| 		__res /= __p;						\
 | |
| 		/* Now sanitize and optimize what we've got. */		\
 | |
| 		if (~0ULL % (__b / (__b & -__b)) == 0) {		\
 | |
| 			/* those cases can be simplified with: */	\
 | |
| 			__n /= (__b & -__b);				\
 | |
| 			__m = ~0ULL / (__b / (__b & -__b));		\
 | |
| 			__p = 1;					\
 | |
| 			__c = 1;					\
 | |
| 		} else if (__res != __x / __b) {			\
 | |
| 			/* We can't get away without a correction    */	\
 | |
| 			/* to compensate for bit truncation errors.  */	\
 | |
| 			/* To avoid it we'd need an additional bit   */	\
 | |
| 			/* to represent __m which would overflow it. */	\
 | |
| 			/* Instead we do m=p/b and n/b=(n*m+m)/p.    */	\
 | |
| 			__c = 1;					\
 | |
| 			/* Compute __m = (__p << 64) / __b */		\
 | |
| 			__m = (~0ULL / __b) * __p;			\
 | |
| 			__m += ((~0ULL % __b + 1) * __p) / __b;		\
 | |
| 		} else {						\
 | |
| 			/* Reduce __m/__p, and try to clear bit 31   */	\
 | |
| 			/* of __m when possible otherwise that'll    */	\
 | |
| 			/* need extra overflow handling later.       */	\
 | |
| 			unsigned int __bits = -(__m & -__m);		\
 | |
| 			__bits |= __m >> 32;				\
 | |
| 			__bits = (~__bits) << 1;			\
 | |
| 			/* If __bits == 0 then setting bit 31 is     */	\
 | |
| 			/* unavoidable.  Simply apply the maximum    */	\
 | |
| 			/* possible reduction in that case.          */	\
 | |
| 			/* Otherwise the MSB of __bits indicates the */	\
 | |
| 			/* best reduction we should apply.           */	\
 | |
| 			if (!__bits) {					\
 | |
| 				__p /= (__m & -__m);			\
 | |
| 				__m /= (__m & -__m);			\
 | |
| 			} else {					\
 | |
| 				__p >>= __div64_fls(__bits);		\
 | |
| 				__m >>= __div64_fls(__bits);		\
 | |
| 			}						\
 | |
| 			/* No correction needed. */			\
 | |
| 			__c = 0;					\
 | |
| 		}							\
 | |
| 		/* Now we have a combination of 2 conditions:        */	\
 | |
| 		/* 1) whether or not we need a correction (__c), and */	\
 | |
| 		/* 2) whether or not there might be an overflow in   */	\
 | |
| 		/*    the cross product (__m & ((1<<63) | (1<<31)))  */	\
 | |
| 		/* Select the best insn combination to perform the   */	\
 | |
| 		/* actual __m * __n / (__p << 64) operation.         */	\
 | |
| 		if (!__c) {						\
 | |
| 			asm (	"umull	%Q0, %R0, %1, %Q2\n\t"		\
 | |
| 				"mov	%Q0, #0"			\
 | |
| 				: "=&r" (__res)				\
 | |
| 				: "r" (__m), "r" (__n)			\
 | |
| 				: "cc" );				\
 | |
| 		} else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {	\
 | |
| 			__res = __m;					\
 | |
| 			asm (	"umlal	%Q0, %R0, %Q1, %Q2\n\t"		\
 | |
| 				"mov	%Q0, #0"			\
 | |
| 				: "+&r" (__res)				\
 | |
| 				: "r" (__m), "r" (__n)			\
 | |
| 				: "cc" );				\
 | |
| 		} else {						\
 | |
| 			asm (	"umull	%Q0, %R0, %Q1, %Q2\n\t"		\
 | |
| 				"cmn	%Q0, %Q1\n\t"			\
 | |
| 				"adcs	%R0, %R0, %R1\n\t"		\
 | |
| 				"adc	%Q0, %3, #0"			\
 | |
| 				: "=&r" (__res)				\
 | |
| 				: "r" (__m), "r" (__n), "r" (__z)	\
 | |
| 				: "cc" );				\
 | |
| 		}							\
 | |
| 		if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {		\
 | |
| 			asm (	"umlal	%R0, %Q0, %R1, %Q2\n\t"		\
 | |
| 				"umlal	%R0, %Q0, %Q1, %R2\n\t"		\
 | |
| 				"mov	%R0, #0\n\t"			\
 | |
| 				"umlal	%Q0, %R0, %R1, %R2"		\
 | |
| 				: "+&r" (__res)				\
 | |
| 				: "r" (__m), "r" (__n)			\
 | |
| 				: "cc" );				\
 | |
| 		} else {						\
 | |
| 			asm (	"umlal	%R0, %Q0, %R2, %Q3\n\t"		\
 | |
| 				"umlal	%R0, %1, %Q2, %R3\n\t"		\
 | |
| 				"mov	%R0, #0\n\t"			\
 | |
| 				"adds	%Q0, %1, %Q0\n\t"		\
 | |
| 				"adc	%R0, %R0, #0\n\t"		\
 | |
| 				"umlal	%Q0, %R0, %R2, %R3"		\
 | |
| 				: "+&r" (__res), "+&r" (__z)		\
 | |
| 				: "r" (__m), "r" (__n)			\
 | |
| 				: "cc" );				\
 | |
| 		}							\
 | |
| 		__res /= __p;						\
 | |
| 		/* The reminder can be computed with 32-bit regs     */	\
 | |
| 		/* only, and gcc is good at that.                    */	\
 | |
| 		{							\
 | |
| 			unsigned int __res0 = __res;			\
 | |
| 			unsigned int __b0 = __b;			\
 | |
| 			__r -= __res0 * __b0;				\
 | |
| 		}							\
 | |
| 		/* BUG_ON(__r >= __b || __res * __b + __r != n); */	\
 | |
| 		n = __res;						\
 | |
| 	}								\
 | |
| 	__r;								\
 | |
| })
 | |
| 
 | |
| /* our own fls implementation to make sure constant propagation is fine */
 | |
| #define __div64_fls(bits)						\
 | |
| ({									\
 | |
| 	unsigned int __left = (bits), __nr = 0;				\
 | |
| 	if (__left & 0xffff0000) __nr += 16, __left >>= 16;		\
 | |
| 	if (__left & 0x0000ff00) __nr +=  8, __left >>=  8;		\
 | |
| 	if (__left & 0x000000f0) __nr +=  4, __left >>=  4;		\
 | |
| 	if (__left & 0x0000000c) __nr +=  2, __left >>=  2;		\
 | |
| 	if (__left & 0x00000002) __nr +=  1;				\
 | |
| 	__nr;								\
 | |
| })
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 |