2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/rust/kernel/lib.rs
Alice Ryhl 5bb9ed6cdf mm: rust: add abstraction for struct mm_struct
Patch series "Rust support for mm_struct, vm_area_struct, and mmap", v16.

This updates the vm_area_struct support to use the approach we discussed
at LPC where there are several different Rust wrappers for vm_area_struct
depending on the kind of access you have to the vma.  Each case allows a
different set of operations on the vma.

This includes an MM MAINTAINERS entry as proposed by Lorenzo:
https://lore.kernel.org/all/33e64b12-aa07-4e78-933a-b07c37ff1d84@lucifer.local/


This patch (of 9):

These abstractions allow you to reference a `struct mm_struct` using both
mmgrab and mmget refcounts.  This is done using two Rust types:

* Mm - represents an mm_struct where you don't know anything about the
  value of mm_users.
* MmWithUser - represents an mm_struct where you know at compile time
  that mm_users is non-zero.

This allows us to encode in the type system whether a method requires that
mm_users is non-zero or not.  For instance, you can always call
`mmget_not_zero` but you can only call `mmap_read_lock` when mm_users is
non-zero.

The struct is called Mm to keep consistency with the C side.

The ability to obtain `current->mm` is added later in this series.

The mm module is defined to only exist when CONFIG_MMU is set.  This
avoids various errors due to missing types and functions when CONFIG_MMU
is disabled.  More fine-grained cfgs can be considered in the future.  See
the thread at [1] for more info.

Link: https://lkml.kernel.org/r/20250408-vma-v16-9-d8b446e885d9@google.com
Link: https://lkml.kernel.org/r/20250408-vma-v16-1-d8b446e885d9@google.com
Link: https://lore.kernel.org/all/202503091916.QousmtcY-lkp@intel.com/
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Balbir Singh <balbirs@nvidia.com>
Reviewed-by: Andreas Hindborg <a.hindborg@kernel.org>
Reviewed-by: Gary Guo <gary@garyguo.net>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: Björn Roy Baron <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jann Horn <jannh@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Trevor Gross <tmgross@umich.edu>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:24 -07:00

243 lines
6.8 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! The `kernel` crate.
//!
//! This crate contains the kernel APIs that have been ported or wrapped for
//! usage by Rust code in the kernel and is shared by all of them.
//!
//! In other words, all the rest of the Rust code in the kernel (e.g. kernel
//! modules written in Rust) depends on [`core`] and this crate.
//!
//! If you need a kernel C API that is not ported or wrapped yet here, then
//! do so first instead of bypassing this crate.
#![no_std]
#![feature(arbitrary_self_types)]
#![cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, feature(derive_coerce_pointee))]
#![cfg_attr(not(CONFIG_RUSTC_HAS_COERCE_POINTEE), feature(coerce_unsized))]
#![cfg_attr(not(CONFIG_RUSTC_HAS_COERCE_POINTEE), feature(dispatch_from_dyn))]
#![cfg_attr(not(CONFIG_RUSTC_HAS_COERCE_POINTEE), feature(unsize))]
#![feature(inline_const)]
#![feature(lint_reasons)]
// Stable in Rust 1.82
#![feature(raw_ref_op)]
// Stable in Rust 1.83
#![feature(const_maybe_uninit_as_mut_ptr)]
#![feature(const_mut_refs)]
#![feature(const_ptr_write)]
#![feature(const_refs_to_cell)]
// Ensure conditional compilation based on the kernel configuration works;
// otherwise we may silently break things like initcall handling.
#[cfg(not(CONFIG_RUST))]
compile_error!("Missing kernel configuration for conditional compilation");
// Allow proc-macros to refer to `::kernel` inside the `kernel` crate (this crate).
extern crate self as kernel;
pub use ffi;
pub mod alloc;
#[cfg(CONFIG_BLOCK)]
pub mod block;
#[doc(hidden)]
pub mod build_assert;
pub mod cred;
pub mod device;
pub mod device_id;
pub mod devres;
pub mod dma;
pub mod driver;
pub mod error;
pub mod faux;
#[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
pub mod firmware;
pub mod fs;
pub mod init;
pub mod io;
pub mod ioctl;
pub mod jump_label;
#[cfg(CONFIG_KUNIT)]
pub mod kunit;
pub mod list;
pub mod miscdevice;
pub mod mm;
#[cfg(CONFIG_NET)]
pub mod net;
pub mod of;
pub mod page;
#[cfg(CONFIG_PCI)]
pub mod pci;
pub mod pid_namespace;
pub mod platform;
pub mod prelude;
pub mod print;
pub mod rbtree;
pub mod revocable;
pub mod security;
pub mod seq_file;
pub mod sizes;
mod static_assert;
#[doc(hidden)]
pub mod std_vendor;
pub mod str;
pub mod sync;
pub mod task;
pub mod time;
pub mod tracepoint;
pub mod transmute;
pub mod types;
pub mod uaccess;
pub mod workqueue;
#[doc(hidden)]
pub use bindings;
pub use macros;
pub use uapi;
/// Prefix to appear before log messages printed from within the `kernel` crate.
const __LOG_PREFIX: &[u8] = b"rust_kernel\0";
/// The top level entrypoint to implementing a kernel module.
///
/// For any teardown or cleanup operations, your type may implement [`Drop`].
pub trait Module: Sized + Sync + Send {
/// Called at module initialization time.
///
/// Use this method to perform whatever setup or registration your module
/// should do.
///
/// Equivalent to the `module_init` macro in the C API.
fn init(module: &'static ThisModule) -> error::Result<Self>;
}
/// A module that is pinned and initialised in-place.
pub trait InPlaceModule: Sync + Send {
/// Creates an initialiser for the module.
///
/// It is called when the module is loaded.
fn init(module: &'static ThisModule) -> impl pin_init::PinInit<Self, error::Error>;
}
impl<T: Module> InPlaceModule for T {
fn init(module: &'static ThisModule) -> impl pin_init::PinInit<Self, error::Error> {
let initer = move |slot: *mut Self| {
let m = <Self as Module>::init(module)?;
// SAFETY: `slot` is valid for write per the contract with `pin_init_from_closure`.
unsafe { slot.write(m) };
Ok(())
};
// SAFETY: On success, `initer` always fully initialises an instance of `Self`.
unsafe { pin_init::pin_init_from_closure(initer) }
}
}
/// Metadata attached to a [`Module`] or [`InPlaceModule`].
pub trait ModuleMetadata {
/// The name of the module as specified in the `module!` macro.
const NAME: &'static crate::str::CStr;
}
/// Equivalent to `THIS_MODULE` in the C API.
///
/// C header: [`include/linux/init.h`](srctree/include/linux/init.h)
pub struct ThisModule(*mut bindings::module);
// SAFETY: `THIS_MODULE` may be used from all threads within a module.
unsafe impl Sync for ThisModule {}
impl ThisModule {
/// Creates a [`ThisModule`] given the `THIS_MODULE` pointer.
///
/// # Safety
///
/// The pointer must be equal to the right `THIS_MODULE`.
pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule {
ThisModule(ptr)
}
/// Access the raw pointer for this module.
///
/// It is up to the user to use it correctly.
pub const fn as_ptr(&self) -> *mut bindings::module {
self.0
}
}
#[cfg(not(any(testlib, test)))]
#[panic_handler]
fn panic(info: &core::panic::PanicInfo<'_>) -> ! {
pr_emerg!("{}\n", info);
// SAFETY: FFI call.
unsafe { bindings::BUG() };
}
/// Produces a pointer to an object from a pointer to one of its fields.
///
/// # Safety
///
/// The pointer passed to this macro, and the pointer returned by this macro, must both be in
/// bounds of the same allocation.
///
/// # Examples
///
/// ```
/// # use kernel::container_of;
/// struct Test {
/// a: u64,
/// b: u32,
/// }
///
/// let test = Test { a: 10, b: 20 };
/// let b_ptr = &test.b;
/// // SAFETY: The pointer points at the `b` field of a `Test`, so the resulting pointer will be
/// // in-bounds of the same allocation as `b_ptr`.
/// let test_alias = unsafe { container_of!(b_ptr, Test, b) };
/// assert!(core::ptr::eq(&test, test_alias));
/// ```
#[macro_export]
macro_rules! container_of {
($ptr:expr, $type:ty, $($f:tt)*) => {{
let ptr = $ptr as *const _ as *const u8;
let offset: usize = ::core::mem::offset_of!($type, $($f)*);
ptr.sub(offset) as *const $type
}}
}
/// Helper for `.rs.S` files.
#[doc(hidden)]
#[macro_export]
macro_rules! concat_literals {
($( $asm:literal )* ) => {
::core::concat!($($asm),*)
};
}
/// Wrapper around `asm!` configured for use in the kernel.
///
/// Uses a semicolon to avoid parsing ambiguities, even though this does not match native `asm!`
/// syntax.
// For x86, `asm!` uses intel syntax by default, but we want to use at&t syntax in the kernel.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[macro_export]
macro_rules! asm {
($($asm:expr),* ; $($rest:tt)*) => {
::core::arch::asm!( $($asm)*, options(att_syntax), $($rest)* )
};
}
/// Wrapper around `asm!` configured for use in the kernel.
///
/// Uses a semicolon to avoid parsing ambiguities, even though this does not match native `asm!`
/// syntax.
// For non-x86 arches we just pass through to `asm!`.
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
#[macro_export]
macro_rules! asm {
($($asm:expr),* ; $($rest:tt)*) => {
::core::arch::asm!( $($asm)*, $($rest)* )
};
}