mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 b34d8915c4
			
		
	
	
		b34d8915c4
		
	
	
	
	
		
			
			* 'writable_limits' of git://decibel.fi.muni.cz/~xslaby/linux: unistd: add __NR_prlimit64 syscall numbers rlimits: implement prlimit64 syscall rlimits: switch more rlimit syscalls to do_prlimit rlimits: redo do_setrlimit to more generic do_prlimit rlimits: add rlimit64 structure rlimits: do security check under task_lock rlimits: allow setrlimit to non-current tasks rlimits: split sys_setrlimit rlimits: selinux, do rlimits changes under task_lock rlimits: make sure ->rlim_max never grows in sys_setrlimit rlimits: add task_struct to update_rlimit_cpu rlimits: security, add task_struct to setrlimit Fix up various system call number conflicts. We not only added fanotify system calls in the meantime, but asm-generic/unistd.h added a wait4 along with a range of reserved per-architecture system calls.
		
			
				
	
	
		
			1637 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1637 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Implement CPU time clocks for the POSIX clock interface.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/math64.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <trace/events/timer.h>
 | |
| 
 | |
| /*
 | |
|  * Called after updating RLIMIT_CPU to run cpu timer and update
 | |
|  * tsk->signal->cputime_expires expiration cache if necessary. Needs
 | |
|  * siglock protection since other code may update expiration cache as
 | |
|  * well.
 | |
|  */
 | |
| void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
 | |
| {
 | |
| 	cputime_t cputime = secs_to_cputime(rlim_new);
 | |
| 
 | |
| 	spin_lock_irq(&task->sighand->siglock);
 | |
| 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
 | |
| 	spin_unlock_irq(&task->sighand->siglock);
 | |
| }
 | |
| 
 | |
| static int check_clock(const clockid_t which_clock)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	struct task_struct *p;
 | |
| 	const pid_t pid = CPUCLOCK_PID(which_clock);
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pid == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	p = find_task_by_vpid(pid);
 | |
| 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
 | |
| 		   same_thread_group(p, current) : thread_group_leader(p))) {
 | |
| 		error = -EINVAL;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static inline union cpu_time_count
 | |
| timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
 | |
| {
 | |
| 	union cpu_time_count ret;
 | |
| 	ret.sched = 0;		/* high half always zero when .cpu used */
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
 | |
| 	} else {
 | |
| 		ret.cpu = timespec_to_cputime(tp);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sample_to_timespec(const clockid_t which_clock,
 | |
| 			       union cpu_time_count cpu,
 | |
| 			       struct timespec *tp)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
 | |
| 		*tp = ns_to_timespec(cpu.sched);
 | |
| 	else
 | |
| 		cputime_to_timespec(cpu.cpu, tp);
 | |
| }
 | |
| 
 | |
| static inline int cpu_time_before(const clockid_t which_clock,
 | |
| 				  union cpu_time_count now,
 | |
| 				  union cpu_time_count then)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		return now.sched < then.sched;
 | |
| 	}  else {
 | |
| 		return cputime_lt(now.cpu, then.cpu);
 | |
| 	}
 | |
| }
 | |
| static inline void cpu_time_add(const clockid_t which_clock,
 | |
| 				union cpu_time_count *acc,
 | |
| 			        union cpu_time_count val)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		acc->sched += val.sched;
 | |
| 	}  else {
 | |
| 		acc->cpu = cputime_add(acc->cpu, val.cpu);
 | |
| 	}
 | |
| }
 | |
| static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
 | |
| 						union cpu_time_count a,
 | |
| 						union cpu_time_count b)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		a.sched -= b.sched;
 | |
| 	}  else {
 | |
| 		a.cpu = cputime_sub(a.cpu, b.cpu);
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Divide and limit the result to res >= 1
 | |
|  *
 | |
|  * This is necessary to prevent signal delivery starvation, when the result of
 | |
|  * the division would be rounded down to 0.
 | |
|  */
 | |
| static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
 | |
| {
 | |
| 	cputime_t res = cputime_div(time, div);
 | |
| 
 | |
| 	return max_t(cputime_t, res, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update expiry time from increment, and increase overrun count,
 | |
|  * given the current clock sample.
 | |
|  */
 | |
| static void bump_cpu_timer(struct k_itimer *timer,
 | |
| 				  union cpu_time_count now)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (timer->it.cpu.incr.sched == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 | |
| 		unsigned long long delta, incr;
 | |
| 
 | |
| 		if (now.sched < timer->it.cpu.expires.sched)
 | |
| 			return;
 | |
| 		incr = timer->it.cpu.incr.sched;
 | |
| 		delta = now.sched + incr - timer->it.cpu.expires.sched;
 | |
| 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 | |
| 		for (i = 0; incr < delta - incr; i++)
 | |
| 			incr = incr << 1;
 | |
| 		for (; i >= 0; incr >>= 1, i--) {
 | |
| 			if (delta < incr)
 | |
| 				continue;
 | |
| 			timer->it.cpu.expires.sched += incr;
 | |
| 			timer->it_overrun += 1 << i;
 | |
| 			delta -= incr;
 | |
| 		}
 | |
| 	} else {
 | |
| 		cputime_t delta, incr;
 | |
| 
 | |
| 		if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
 | |
| 			return;
 | |
| 		incr = timer->it.cpu.incr.cpu;
 | |
| 		delta = cputime_sub(cputime_add(now.cpu, incr),
 | |
| 				    timer->it.cpu.expires.cpu);
 | |
| 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 | |
| 		for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
 | |
| 			     incr = cputime_add(incr, incr);
 | |
| 		for (; i >= 0; incr = cputime_halve(incr), i--) {
 | |
| 			if (cputime_lt(delta, incr))
 | |
| 				continue;
 | |
| 			timer->it.cpu.expires.cpu =
 | |
| 				cputime_add(timer->it.cpu.expires.cpu, incr);
 | |
| 			timer->it_overrun += 1 << i;
 | |
| 			delta = cputime_sub(delta, incr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline cputime_t prof_ticks(struct task_struct *p)
 | |
| {
 | |
| 	return cputime_add(p->utime, p->stime);
 | |
| }
 | |
| static inline cputime_t virt_ticks(struct task_struct *p)
 | |
| {
 | |
| 	return p->utime;
 | |
| }
 | |
| 
 | |
| int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	int error = check_clock(which_clock);
 | |
| 	if (!error) {
 | |
| 		tp->tv_sec = 0;
 | |
| 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 | |
| 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 			/*
 | |
| 			 * If sched_clock is using a cycle counter, we
 | |
| 			 * don't have any idea of its true resolution
 | |
| 			 * exported, but it is much more than 1s/HZ.
 | |
| 			 */
 | |
| 			tp->tv_nsec = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can never reset a CPU clock, but we check for other errors
 | |
| 	 * in the call before failing with EPERM.
 | |
| 	 */
 | |
| 	int error = check_clock(which_clock);
 | |
| 	if (error == 0) {
 | |
| 		error = -EPERM;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Sample a per-thread clock for the given task.
 | |
|  */
 | |
| static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 | |
| 			    union cpu_time_count *cpu)
 | |
| {
 | |
| 	switch (CPUCLOCK_WHICH(which_clock)) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		cpu->cpu = prof_ticks(p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		cpu->cpu = virt_ticks(p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		cpu->sched = task_sched_runtime(p);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 | |
| {
 | |
| 	struct signal_struct *sig = tsk->signal;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	times->utime = sig->utime;
 | |
| 	times->stime = sig->stime;
 | |
| 	times->sum_exec_runtime = sig->sum_sched_runtime;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/* make sure we can trust tsk->thread_group list */
 | |
| 	if (!likely(pid_alive(tsk)))
 | |
| 		goto out;
 | |
| 
 | |
| 	t = tsk;
 | |
| 	do {
 | |
| 		times->utime = cputime_add(times->utime, t->utime);
 | |
| 		times->stime = cputime_add(times->stime, t->stime);
 | |
| 		times->sum_exec_runtime += t->se.sum_exec_runtime;
 | |
| 	} while_each_thread(tsk, t);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
 | |
| {
 | |
| 	if (cputime_gt(b->utime, a->utime))
 | |
| 		a->utime = b->utime;
 | |
| 
 | |
| 	if (cputime_gt(b->stime, a->stime))
 | |
| 		a->stime = b->stime;
 | |
| 
 | |
| 	if (b->sum_exec_runtime > a->sum_exec_runtime)
 | |
| 		a->sum_exec_runtime = b->sum_exec_runtime;
 | |
| }
 | |
| 
 | |
| void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 | |
| {
 | |
| 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 | |
| 	struct task_cputime sum;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&cputimer->lock, flags);
 | |
| 	if (!cputimer->running) {
 | |
| 		cputimer->running = 1;
 | |
| 		/*
 | |
| 		 * The POSIX timer interface allows for absolute time expiry
 | |
| 		 * values through the TIMER_ABSTIME flag, therefore we have
 | |
| 		 * to synchronize the timer to the clock every time we start
 | |
| 		 * it.
 | |
| 		 */
 | |
| 		thread_group_cputime(tsk, &sum);
 | |
| 		update_gt_cputime(&cputimer->cputime, &sum);
 | |
| 	}
 | |
| 	*times = cputimer->cputime;
 | |
| 	spin_unlock_irqrestore(&cputimer->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a process (thread group) clock for the given group_leader task.
 | |
|  * Must be called with tasklist_lock held for reading.
 | |
|  */
 | |
| static int cpu_clock_sample_group(const clockid_t which_clock,
 | |
| 				  struct task_struct *p,
 | |
| 				  union cpu_time_count *cpu)
 | |
| {
 | |
| 	struct task_cputime cputime;
 | |
| 
 | |
| 	switch (CPUCLOCK_WHICH(which_clock)) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		cpu->cpu = cputime.utime;
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		cpu->sched = thread_group_sched_runtime(p);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	const pid_t pid = CPUCLOCK_PID(which_clock);
 | |
| 	int error = -EINVAL;
 | |
| 	union cpu_time_count rtn;
 | |
| 
 | |
| 	if (pid == 0) {
 | |
| 		/*
 | |
| 		 * Special case constant value for our own clocks.
 | |
| 		 * We don't have to do any lookup to find ourselves.
 | |
| 		 */
 | |
| 		if (CPUCLOCK_PERTHREAD(which_clock)) {
 | |
| 			/*
 | |
| 			 * Sampling just ourselves we can do with no locking.
 | |
| 			 */
 | |
| 			error = cpu_clock_sample(which_clock,
 | |
| 						 current, &rtn);
 | |
| 		} else {
 | |
| 			read_lock(&tasklist_lock);
 | |
| 			error = cpu_clock_sample_group(which_clock,
 | |
| 						       current, &rtn);
 | |
| 			read_unlock(&tasklist_lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Find the given PID, and validate that the caller
 | |
| 		 * should be able to see it.
 | |
| 		 */
 | |
| 		struct task_struct *p;
 | |
| 		rcu_read_lock();
 | |
| 		p = find_task_by_vpid(pid);
 | |
| 		if (p) {
 | |
| 			if (CPUCLOCK_PERTHREAD(which_clock)) {
 | |
| 				if (same_thread_group(p, current)) {
 | |
| 					error = cpu_clock_sample(which_clock,
 | |
| 								 p, &rtn);
 | |
| 				}
 | |
| 			} else {
 | |
| 				read_lock(&tasklist_lock);
 | |
| 				if (thread_group_leader(p) && p->sighand) {
 | |
| 					error =
 | |
| 					    cpu_clock_sample_group(which_clock,
 | |
| 							           p, &rtn);
 | |
| 				}
 | |
| 				read_unlock(&tasklist_lock);
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	sample_to_timespec(which_clock, rtn, tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 | |
|  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 | |
|  * new timer already all-zeros initialized.
 | |
|  */
 | |
| int posix_cpu_timer_create(struct k_itimer *new_timer)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 | |
| 		if (pid == 0) {
 | |
| 			p = current;
 | |
| 		} else {
 | |
| 			p = find_task_by_vpid(pid);
 | |
| 			if (p && !same_thread_group(p, current))
 | |
| 				p = NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (pid == 0) {
 | |
| 			p = current->group_leader;
 | |
| 		} else {
 | |
| 			p = find_task_by_vpid(pid);
 | |
| 			if (p && !thread_group_leader(p))
 | |
| 				p = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	new_timer->it.cpu.task = p;
 | |
| 	if (p) {
 | |
| 		get_task_struct(p);
 | |
| 	} else {
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up a CPU-clock timer that is about to be destroyed.
 | |
|  * This is called from timer deletion with the timer already locked.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| int posix_cpu_timer_del(struct k_itimer *timer)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (likely(p != NULL)) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if (unlikely(p->sighand == NULL)) {
 | |
| 			/*
 | |
| 			 * We raced with the reaping of the task.
 | |
| 			 * The deletion should have cleared us off the list.
 | |
| 			 */
 | |
| 			BUG_ON(!list_empty(&timer->it.cpu.entry));
 | |
| 		} else {
 | |
| 			spin_lock(&p->sighand->siglock);
 | |
| 			if (timer->it.cpu.firing)
 | |
| 				ret = TIMER_RETRY;
 | |
| 			else
 | |
| 				list_del(&timer->it.cpu.entry);
 | |
| 			spin_unlock(&p->sighand->siglock);
 | |
| 		}
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			put_task_struct(p);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean out CPU timers still ticking when a thread exited.  The task
 | |
|  * pointer is cleared, and the expiry time is replaced with the residual
 | |
|  * time for later timer_gettime calls to return.
 | |
|  * This must be called with the siglock held.
 | |
|  */
 | |
| static void cleanup_timers(struct list_head *head,
 | |
| 			   cputime_t utime, cputime_t stime,
 | |
| 			   unsigned long long sum_exec_runtime)
 | |
| {
 | |
| 	struct cpu_timer_list *timer, *next;
 | |
| 	cputime_t ptime = cputime_add(utime, stime);
 | |
| 
 | |
| 	list_for_each_entry_safe(timer, next, head, entry) {
 | |
| 		list_del_init(&timer->entry);
 | |
| 		if (cputime_lt(timer->expires.cpu, ptime)) {
 | |
| 			timer->expires.cpu = cputime_zero;
 | |
| 		} else {
 | |
| 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
 | |
| 							 ptime);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	++head;
 | |
| 	list_for_each_entry_safe(timer, next, head, entry) {
 | |
| 		list_del_init(&timer->entry);
 | |
| 		if (cputime_lt(timer->expires.cpu, utime)) {
 | |
| 			timer->expires.cpu = cputime_zero;
 | |
| 		} else {
 | |
| 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
 | |
| 							 utime);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	++head;
 | |
| 	list_for_each_entry_safe(timer, next, head, entry) {
 | |
| 		list_del_init(&timer->entry);
 | |
| 		if (timer->expires.sched < sum_exec_runtime) {
 | |
| 			timer->expires.sched = 0;
 | |
| 		} else {
 | |
| 			timer->expires.sched -= sum_exec_runtime;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are both called with the siglock held, when the current thread
 | |
|  * is being reaped.  When the final (leader) thread in the group is reaped,
 | |
|  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 | |
|  */
 | |
| void posix_cpu_timers_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	cleanup_timers(tsk->cpu_timers,
 | |
| 		       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
 | |
| 
 | |
| }
 | |
| void posix_cpu_timers_exit_group(struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *const sig = tsk->signal;
 | |
| 
 | |
| 	cleanup_timers(tsk->signal->cpu_timers,
 | |
| 		       cputime_add(tsk->utime, sig->utime),
 | |
| 		       cputime_add(tsk->stime, sig->stime),
 | |
| 		       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
 | |
| }
 | |
| 
 | |
| static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
 | |
| {
 | |
| 	/*
 | |
| 	 * That's all for this thread or process.
 | |
| 	 * We leave our residual in expires to be reported.
 | |
| 	 */
 | |
| 	put_task_struct(timer->it.cpu.task);
 | |
| 	timer->it.cpu.task = NULL;
 | |
| 	timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
 | |
| 					     timer->it.cpu.expires,
 | |
| 					     now);
 | |
| }
 | |
| 
 | |
| static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 | |
| {
 | |
| 	return cputime_eq(expires, cputime_zero) ||
 | |
| 	       cputime_gt(expires, new_exp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert the timer on the appropriate list before any timers that
 | |
|  * expire later.  This must be called with the tasklist_lock held
 | |
|  * for reading, interrupts disabled and p->sighand->siglock taken.
 | |
|  */
 | |
| static void arm_timer(struct k_itimer *timer)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	struct list_head *head, *listpos;
 | |
| 	struct task_cputime *cputime_expires;
 | |
| 	struct cpu_timer_list *const nt = &timer->it.cpu;
 | |
| 	struct cpu_timer_list *next;
 | |
| 
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		head = p->cpu_timers;
 | |
| 		cputime_expires = &p->cputime_expires;
 | |
| 	} else {
 | |
| 		head = p->signal->cpu_timers;
 | |
| 		cputime_expires = &p->signal->cputime_expires;
 | |
| 	}
 | |
| 	head += CPUCLOCK_WHICH(timer->it_clock);
 | |
| 
 | |
| 	listpos = head;
 | |
| 	list_for_each_entry(next, head, entry) {
 | |
| 		if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
 | |
| 			break;
 | |
| 		listpos = &next->entry;
 | |
| 	}
 | |
| 	list_add(&nt->entry, listpos);
 | |
| 
 | |
| 	if (listpos == head) {
 | |
| 		union cpu_time_count *exp = &nt->expires;
 | |
| 
 | |
| 		/*
 | |
| 		 * We are the new earliest-expiring POSIX 1.b timer, hence
 | |
| 		 * need to update expiration cache. Take into account that
 | |
| 		 * for process timers we share expiration cache with itimers
 | |
| 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 | |
| 		 */
 | |
| 
 | |
| 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 | |
| 		case CPUCLOCK_PROF:
 | |
| 			if (expires_gt(cputime_expires->prof_exp, exp->cpu))
 | |
| 				cputime_expires->prof_exp = exp->cpu;
 | |
| 			break;
 | |
| 		case CPUCLOCK_VIRT:
 | |
| 			if (expires_gt(cputime_expires->virt_exp, exp->cpu))
 | |
| 				cputime_expires->virt_exp = exp->cpu;
 | |
| 			break;
 | |
| 		case CPUCLOCK_SCHED:
 | |
| 			if (cputime_expires->sched_exp == 0 ||
 | |
| 			    cputime_expires->sched_exp > exp->sched)
 | |
| 				cputime_expires->sched_exp = exp->sched;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The timer is locked, fire it and arrange for its reload.
 | |
|  */
 | |
| static void cpu_timer_fire(struct k_itimer *timer)
 | |
| {
 | |
| 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 | |
| 		/*
 | |
| 		 * User don't want any signal.
 | |
| 		 */
 | |
| 		timer->it.cpu.expires.sched = 0;
 | |
| 	} else if (unlikely(timer->sigq == NULL)) {
 | |
| 		/*
 | |
| 		 * This a special case for clock_nanosleep,
 | |
| 		 * not a normal timer from sys_timer_create.
 | |
| 		 */
 | |
| 		wake_up_process(timer->it_process);
 | |
| 		timer->it.cpu.expires.sched = 0;
 | |
| 	} else if (timer->it.cpu.incr.sched == 0) {
 | |
| 		/*
 | |
| 		 * One-shot timer.  Clear it as soon as it's fired.
 | |
| 		 */
 | |
| 		posix_timer_event(timer, 0);
 | |
| 		timer->it.cpu.expires.sched = 0;
 | |
| 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 | |
| 		/*
 | |
| 		 * The signal did not get queued because the signal
 | |
| 		 * was ignored, so we won't get any callback to
 | |
| 		 * reload the timer.  But we need to keep it
 | |
| 		 * ticking in case the signal is deliverable next time.
 | |
| 		 */
 | |
| 		posix_cpu_timer_schedule(timer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a process (thread group) timer for the given group_leader task.
 | |
|  * Must be called with tasklist_lock held for reading.
 | |
|  */
 | |
| static int cpu_timer_sample_group(const clockid_t which_clock,
 | |
| 				  struct task_struct *p,
 | |
| 				  union cpu_time_count *cpu)
 | |
| {
 | |
| 	struct task_cputime cputime;
 | |
| 
 | |
| 	thread_group_cputimer(p, &cputime);
 | |
| 	switch (CPUCLOCK_WHICH(which_clock)) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		cpu->cpu = cputime.utime;
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Guts of sys_timer_settime for CPU timers.
 | |
|  * This is called with the timer locked and interrupts disabled.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 | |
| 			struct itimerspec *new, struct itimerspec *old)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	union cpu_time_count old_expires, new_expires, old_incr, val;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(p == NULL)) {
 | |
| 		/*
 | |
| 		 * Timer refers to a dead task's clock.
 | |
| 		 */
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * We need the tasklist_lock to protect against reaping that
 | |
| 	 * clears p->sighand.  If p has just been reaped, we can no
 | |
| 	 * longer get any information about it at all.
 | |
| 	 */
 | |
| 	if (unlikely(p->sighand == NULL)) {
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		put_task_struct(p);
 | |
| 		timer->it.cpu.task = NULL;
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disarm any old timer after extracting its expiry time.
 | |
| 	 */
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 
 | |
| 	ret = 0;
 | |
| 	old_incr = timer->it.cpu.incr;
 | |
| 	spin_lock(&p->sighand->siglock);
 | |
| 	old_expires = timer->it.cpu.expires;
 | |
| 	if (unlikely(timer->it.cpu.firing)) {
 | |
| 		timer->it.cpu.firing = -1;
 | |
| 		ret = TIMER_RETRY;
 | |
| 	} else
 | |
| 		list_del_init(&timer->it.cpu.entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to sample the current value to convert the new
 | |
| 	 * value from to relative and absolute, and to convert the
 | |
| 	 * old value from absolute to relative.  To set a process
 | |
| 	 * timer, we need a sample to balance the thread expiry
 | |
| 	 * times (in arm_timer).  With an absolute time, we must
 | |
| 	 * check if it's already passed.  In short, we need a sample.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &val);
 | |
| 	} else {
 | |
| 		cpu_timer_sample_group(timer->it_clock, p, &val);
 | |
| 	}
 | |
| 
 | |
| 	if (old) {
 | |
| 		if (old_expires.sched == 0) {
 | |
| 			old->it_value.tv_sec = 0;
 | |
| 			old->it_value.tv_nsec = 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Update the timer in case it has
 | |
| 			 * overrun already.  If it has,
 | |
| 			 * we'll report it as having overrun
 | |
| 			 * and with the next reloaded timer
 | |
| 			 * already ticking, though we are
 | |
| 			 * swallowing that pending
 | |
| 			 * notification here to install the
 | |
| 			 * new setting.
 | |
| 			 */
 | |
| 			bump_cpu_timer(timer, val);
 | |
| 			if (cpu_time_before(timer->it_clock, val,
 | |
| 					    timer->it.cpu.expires)) {
 | |
| 				old_expires = cpu_time_sub(
 | |
| 					timer->it_clock,
 | |
| 					timer->it.cpu.expires, val);
 | |
| 				sample_to_timespec(timer->it_clock,
 | |
| 						   old_expires,
 | |
| 						   &old->it_value);
 | |
| 			} else {
 | |
| 				old->it_value.tv_nsec = 1;
 | |
| 				old->it_value.tv_sec = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ret)) {
 | |
| 		/*
 | |
| 		 * We are colliding with the timer actually firing.
 | |
| 		 * Punt after filling in the timer's old value, and
 | |
| 		 * disable this firing since we are already reporting
 | |
| 		 * it as an overrun (thanks to bump_cpu_timer above).
 | |
| 		 */
 | |
| 		spin_unlock(&p->sighand->siglock);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
 | |
| 		cpu_time_add(timer->it_clock, &new_expires, val);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new expiry time (or zero).
 | |
| 	 * For a timer with no notification action, we don't actually
 | |
| 	 * arm the timer (we'll just fake it for timer_gettime).
 | |
| 	 */
 | |
| 	timer->it.cpu.expires = new_expires;
 | |
| 	if (new_expires.sched != 0 &&
 | |
| 	    cpu_time_before(timer->it_clock, val, new_expires)) {
 | |
| 		arm_timer(timer);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&p->sighand->siglock);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new reload setting, and
 | |
| 	 * set up the signal and overrun bookkeeping.
 | |
| 	 */
 | |
| 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 | |
| 						&new->it_interval);
 | |
| 
 | |
| 	/*
 | |
| 	 * This acts as a modification timestamp for the timer,
 | |
| 	 * so any automatic reload attempt will punt on seeing
 | |
| 	 * that we have reset the timer manually.
 | |
| 	 */
 | |
| 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 | |
| 		~REQUEUE_PENDING;
 | |
| 	timer->it_overrun_last = 0;
 | |
| 	timer->it_overrun = -1;
 | |
| 
 | |
| 	if (new_expires.sched != 0 &&
 | |
| 	    !cpu_time_before(timer->it_clock, val, new_expires)) {
 | |
| 		/*
 | |
| 		 * The designated time already passed, so we notify
 | |
| 		 * immediately, even if the thread never runs to
 | |
| 		 * accumulate more time on this clock.
 | |
| 		 */
 | |
| 		cpu_timer_fire(timer);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
|  out:
 | |
| 	if (old) {
 | |
| 		sample_to_timespec(timer->it_clock,
 | |
| 				   old_incr, &old->it_interval);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 | |
| {
 | |
| 	union cpu_time_count now;
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	int clear_dead;
 | |
| 
 | |
| 	/*
 | |
| 	 * Easy part: convert the reload time.
 | |
| 	 */
 | |
| 	sample_to_timespec(timer->it_clock,
 | |
| 			   timer->it.cpu.incr, &itp->it_interval);
 | |
| 
 | |
| 	if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */
 | |
| 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(p == NULL)) {
 | |
| 		/*
 | |
| 		 * This task already died and the timer will never fire.
 | |
| 		 * In this case, expires is actually the dead value.
 | |
| 		 */
 | |
| 	dead:
 | |
| 		sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 | |
| 				   &itp->it_value);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sample the clock to take the difference with the expiry time.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &now);
 | |
| 		clear_dead = p->exit_state;
 | |
| 	} else {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if (unlikely(p->sighand == NULL)) {
 | |
| 			/*
 | |
| 			 * The process has been reaped.
 | |
| 			 * We can't even collect a sample any more.
 | |
| 			 * Call the timer disarmed, nothing else to do.
 | |
| 			 */
 | |
| 			put_task_struct(p);
 | |
| 			timer->it.cpu.task = NULL;
 | |
| 			timer->it.cpu.expires.sched = 0;
 | |
| 			read_unlock(&tasklist_lock);
 | |
| 			goto dead;
 | |
| 		} else {
 | |
| 			cpu_timer_sample_group(timer->it_clock, p, &now);
 | |
| 			clear_dead = (unlikely(p->exit_state) &&
 | |
| 				      thread_group_empty(p));
 | |
| 		}
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(clear_dead)) {
 | |
| 		/*
 | |
| 		 * We've noticed that the thread is dead, but
 | |
| 		 * not yet reaped.  Take this opportunity to
 | |
| 		 * drop our task ref.
 | |
| 		 */
 | |
| 		clear_dead_task(timer, now);
 | |
| 		goto dead;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
 | |
| 		sample_to_timespec(timer->it_clock,
 | |
| 				   cpu_time_sub(timer->it_clock,
 | |
| 						timer->it.cpu.expires, now),
 | |
| 				   &itp->it_value);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The timer should have expired already, but the firing
 | |
| 		 * hasn't taken place yet.  Say it's just about to expire.
 | |
| 		 */
 | |
| 		itp->it_value.tv_nsec = 1;
 | |
| 		itp->it_value.tv_sec = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them off
 | |
|  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 | |
|  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 | |
|  */
 | |
| static void check_thread_timers(struct task_struct *tsk,
 | |
| 				struct list_head *firing)
 | |
| {
 | |
| 	int maxfire;
 | |
| 	struct list_head *timers = tsk->cpu_timers;
 | |
| 	struct signal_struct *const sig = tsk->signal;
 | |
| 	unsigned long soft;
 | |
| 
 | |
| 	maxfire = 20;
 | |
| 	tsk->cputime_expires.prof_exp = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_first_entry(timers,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
 | |
| 			tsk->cputime_expires.prof_exp = t->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	tsk->cputime_expires.virt_exp = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_first_entry(timers,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
 | |
| 			tsk->cputime_expires.virt_exp = t->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	tsk->cputime_expires.sched_exp = 0;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_first_entry(timers,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
 | |
| 			tsk->cputime_expires.sched_exp = t->expires.sched;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the special case thread timers.
 | |
| 	 */
 | |
| 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		unsigned long hard =
 | |
| 			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 | |
| 
 | |
| 		if (hard != RLIM_INFINITY &&
 | |
| 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 | |
| 			/*
 | |
| 			 * At the hard limit, we just die.
 | |
| 			 * No need to calculate anything else now.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 | |
| 			/*
 | |
| 			 * At the soft limit, send a SIGXCPU every second.
 | |
| 			 */
 | |
| 			if (soft < hard) {
 | |
| 				soft += USEC_PER_SEC;
 | |
| 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 | |
| 			}
 | |
| 			printk(KERN_INFO
 | |
| 				"RT Watchdog Timeout: %s[%d]\n",
 | |
| 				tsk->comm, task_pid_nr(tsk));
 | |
| 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void stop_process_timers(struct signal_struct *sig)
 | |
| {
 | |
| 	struct thread_group_cputimer *cputimer = &sig->cputimer;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&cputimer->lock, flags);
 | |
| 	cputimer->running = 0;
 | |
| 	spin_unlock_irqrestore(&cputimer->lock, flags);
 | |
| }
 | |
| 
 | |
| static u32 onecputick;
 | |
| 
 | |
| static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 | |
| 			     cputime_t *expires, cputime_t cur_time, int signo)
 | |
| {
 | |
| 	if (cputime_eq(it->expires, cputime_zero))
 | |
| 		return;
 | |
| 
 | |
| 	if (cputime_ge(cur_time, it->expires)) {
 | |
| 		if (!cputime_eq(it->incr, cputime_zero)) {
 | |
| 			it->expires = cputime_add(it->expires, it->incr);
 | |
| 			it->error += it->incr_error;
 | |
| 			if (it->error >= onecputick) {
 | |
| 				it->expires = cputime_sub(it->expires,
 | |
| 							  cputime_one_jiffy);
 | |
| 				it->error -= onecputick;
 | |
| 			}
 | |
| 		} else {
 | |
| 			it->expires = cputime_zero;
 | |
| 		}
 | |
| 
 | |
| 		trace_itimer_expire(signo == SIGPROF ?
 | |
| 				    ITIMER_PROF : ITIMER_VIRTUAL,
 | |
| 				    tsk->signal->leader_pid, cur_time);
 | |
| 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 | |
| 	}
 | |
| 
 | |
| 	if (!cputime_eq(it->expires, cputime_zero) &&
 | |
| 	    (cputime_eq(*expires, cputime_zero) ||
 | |
| 	     cputime_lt(it->expires, *expires))) {
 | |
| 		*expires = it->expires;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_cputime_zero - Check a task_cputime struct for all zero fields.
 | |
|  *
 | |
|  * @cputime:	The struct to compare.
 | |
|  *
 | |
|  * Checks @cputime to see if all fields are zero.  Returns true if all fields
 | |
|  * are zero, false if any field is nonzero.
 | |
|  */
 | |
| static inline int task_cputime_zero(const struct task_cputime *cputime)
 | |
| {
 | |
| 	if (cputime_eq(cputime->utime, cputime_zero) &&
 | |
| 	    cputime_eq(cputime->stime, cputime_zero) &&
 | |
| 	    cputime->sum_exec_runtime == 0)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them
 | |
|  * off the tsk->*_timers list onto the firing list.  Per-thread timers
 | |
|  * have already been taken off.
 | |
|  */
 | |
| static void check_process_timers(struct task_struct *tsk,
 | |
| 				 struct list_head *firing)
 | |
| {
 | |
| 	int maxfire;
 | |
| 	struct signal_struct *const sig = tsk->signal;
 | |
| 	cputime_t utime, ptime, virt_expires, prof_expires;
 | |
| 	unsigned long long sum_sched_runtime, sched_expires;
 | |
| 	struct list_head *timers = sig->cpu_timers;
 | |
| 	struct task_cputime cputime;
 | |
| 	unsigned long soft;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the current process totals.
 | |
| 	 */
 | |
| 	thread_group_cputimer(tsk, &cputime);
 | |
| 	utime = cputime.utime;
 | |
| 	ptime = cputime_add(utime, cputime.stime);
 | |
| 	sum_sched_runtime = cputime.sum_exec_runtime;
 | |
| 	maxfire = 20;
 | |
| 	prof_expires = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *tl = list_first_entry(timers,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
 | |
| 			prof_expires = tl->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		tl->firing = 1;
 | |
| 		list_move_tail(&tl->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	virt_expires = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *tl = list_first_entry(timers,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
 | |
| 			virt_expires = tl->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		tl->firing = 1;
 | |
| 		list_move_tail(&tl->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	sched_expires = 0;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *tl = list_first_entry(timers,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
 | |
| 			sched_expires = tl->expires.sched;
 | |
| 			break;
 | |
| 		}
 | |
| 		tl->firing = 1;
 | |
| 		list_move_tail(&tl->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the special case process timers.
 | |
| 	 */
 | |
| 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 | |
| 			 SIGPROF);
 | |
| 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 | |
| 			 SIGVTALRM);
 | |
| 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		unsigned long psecs = cputime_to_secs(ptime);
 | |
| 		unsigned long hard =
 | |
| 			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 | |
| 		cputime_t x;
 | |
| 		if (psecs >= hard) {
 | |
| 			/*
 | |
| 			 * At the hard limit, we just die.
 | |
| 			 * No need to calculate anything else now.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (psecs >= soft) {
 | |
| 			/*
 | |
| 			 * At the soft limit, send a SIGXCPU every second.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 | |
| 			if (soft < hard) {
 | |
| 				soft++;
 | |
| 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 | |
| 			}
 | |
| 		}
 | |
| 		x = secs_to_cputime(soft);
 | |
| 		if (cputime_eq(prof_expires, cputime_zero) ||
 | |
| 		    cputime_lt(x, prof_expires)) {
 | |
| 			prof_expires = x;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sig->cputime_expires.prof_exp = prof_expires;
 | |
| 	sig->cputime_expires.virt_exp = virt_expires;
 | |
| 	sig->cputime_expires.sched_exp = sched_expires;
 | |
| 	if (task_cputime_zero(&sig->cputime_expires))
 | |
| 		stop_process_timers(sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the signal code (via do_schedule_next_timer)
 | |
|  * when the last timer signal was delivered and we have to reload the timer.
 | |
|  */
 | |
| void posix_cpu_timer_schedule(struct k_itimer *timer)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	union cpu_time_count now;
 | |
| 
 | |
| 	if (unlikely(p == NULL))
 | |
| 		/*
 | |
| 		 * The task was cleaned up already, no future firings.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fetch the current sample and update the timer's expiry time.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &now);
 | |
| 		bump_cpu_timer(timer, now);
 | |
| 		if (unlikely(p->exit_state)) {
 | |
| 			clear_dead_task(timer, now);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		read_lock(&tasklist_lock); /* arm_timer needs it.  */
 | |
| 		spin_lock(&p->sighand->siglock);
 | |
| 	} else {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if (unlikely(p->sighand == NULL)) {
 | |
| 			/*
 | |
| 			 * The process has been reaped.
 | |
| 			 * We can't even collect a sample any more.
 | |
| 			 */
 | |
| 			put_task_struct(p);
 | |
| 			timer->it.cpu.task = p = NULL;
 | |
| 			timer->it.cpu.expires.sched = 0;
 | |
| 			goto out_unlock;
 | |
| 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
 | |
| 			/*
 | |
| 			 * We've noticed that the thread is dead, but
 | |
| 			 * not yet reaped.  Take this opportunity to
 | |
| 			 * drop our task ref.
 | |
| 			 */
 | |
| 			clear_dead_task(timer, now);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		spin_lock(&p->sighand->siglock);
 | |
| 		cpu_timer_sample_group(timer->it_clock, p, &now);
 | |
| 		bump_cpu_timer(timer, now);
 | |
| 		/* Leave the tasklist_lock locked for the call below.  */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now re-arm for the new expiry time.
 | |
| 	 */
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	arm_timer(timer);
 | |
| 	spin_unlock(&p->sighand->siglock);
 | |
| 
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| out:
 | |
| 	timer->it_overrun_last = timer->it_overrun;
 | |
| 	timer->it_overrun = -1;
 | |
| 	++timer->it_requeue_pending;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_cputime_expired - Compare two task_cputime entities.
 | |
|  *
 | |
|  * @sample:	The task_cputime structure to be checked for expiration.
 | |
|  * @expires:	Expiration times, against which @sample will be checked.
 | |
|  *
 | |
|  * Checks @sample against @expires to see if any field of @sample has expired.
 | |
|  * Returns true if any field of the former is greater than the corresponding
 | |
|  * field of the latter if the latter field is set.  Otherwise returns false.
 | |
|  */
 | |
| static inline int task_cputime_expired(const struct task_cputime *sample,
 | |
| 					const struct task_cputime *expires)
 | |
| {
 | |
| 	if (!cputime_eq(expires->utime, cputime_zero) &&
 | |
| 	    cputime_ge(sample->utime, expires->utime))
 | |
| 		return 1;
 | |
| 	if (!cputime_eq(expires->stime, cputime_zero) &&
 | |
| 	    cputime_ge(cputime_add(sample->utime, sample->stime),
 | |
| 		       expires->stime))
 | |
| 		return 1;
 | |
| 	if (expires->sum_exec_runtime != 0 &&
 | |
| 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fastpath_timer_check - POSIX CPU timers fast path.
 | |
|  *
 | |
|  * @tsk:	The task (thread) being checked.
 | |
|  *
 | |
|  * Check the task and thread group timers.  If both are zero (there are no
 | |
|  * timers set) return false.  Otherwise snapshot the task and thread group
 | |
|  * timers and compare them with the corresponding expiration times.  Return
 | |
|  * true if a timer has expired, else return false.
 | |
|  */
 | |
| static inline int fastpath_timer_check(struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig;
 | |
| 
 | |
| 	if (!task_cputime_zero(&tsk->cputime_expires)) {
 | |
| 		struct task_cputime task_sample = {
 | |
| 			.utime = tsk->utime,
 | |
| 			.stime = tsk->stime,
 | |
| 			.sum_exec_runtime = tsk->se.sum_exec_runtime
 | |
| 		};
 | |
| 
 | |
| 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	sig = tsk->signal;
 | |
| 	if (sig->cputimer.running) {
 | |
| 		struct task_cputime group_sample;
 | |
| 
 | |
| 		spin_lock(&sig->cputimer.lock);
 | |
| 		group_sample = sig->cputimer.cputime;
 | |
| 		spin_unlock(&sig->cputimer.lock);
 | |
| 
 | |
| 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the timer interrupt handler.  The irq handler has
 | |
|  * already updated our counts.  We need to check if any timers fire now.
 | |
|  * Interrupts are disabled.
 | |
|  */
 | |
| void run_posix_cpu_timers(struct task_struct *tsk)
 | |
| {
 | |
| 	LIST_HEAD(firing);
 | |
| 	struct k_itimer *timer, *next;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 
 | |
| 	/*
 | |
| 	 * The fast path checks that there are no expired thread or thread
 | |
| 	 * group timers.  If that's so, just return.
 | |
| 	 */
 | |
| 	if (!fastpath_timer_check(tsk))
 | |
| 		return;
 | |
| 
 | |
| 	if (!lock_task_sighand(tsk, &flags))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Here we take off tsk->signal->cpu_timers[N] and
 | |
| 	 * tsk->cpu_timers[N] all the timers that are firing, and
 | |
| 	 * put them on the firing list.
 | |
| 	 */
 | |
| 	check_thread_timers(tsk, &firing);
 | |
| 	/*
 | |
| 	 * If there are any active process wide timers (POSIX 1.b, itimers,
 | |
| 	 * RLIMIT_CPU) cputimer must be running.
 | |
| 	 */
 | |
| 	if (tsk->signal->cputimer.running)
 | |
| 		check_process_timers(tsk, &firing);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must release these locks before taking any timer's lock.
 | |
| 	 * There is a potential race with timer deletion here, as the
 | |
| 	 * siglock now protects our private firing list.  We have set
 | |
| 	 * the firing flag in each timer, so that a deletion attempt
 | |
| 	 * that gets the timer lock before we do will give it up and
 | |
| 	 * spin until we've taken care of that timer below.
 | |
| 	 */
 | |
| 	unlock_task_sighand(tsk, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that all the timers on our list have the firing flag,
 | |
| 	 * noone will touch their list entries but us.  We'll take
 | |
| 	 * each timer's lock before clearing its firing flag, so no
 | |
| 	 * timer call will interfere.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
 | |
| 		int cpu_firing;
 | |
| 
 | |
| 		spin_lock(&timer->it_lock);
 | |
| 		list_del_init(&timer->it.cpu.entry);
 | |
| 		cpu_firing = timer->it.cpu.firing;
 | |
| 		timer->it.cpu.firing = 0;
 | |
| 		/*
 | |
| 		 * The firing flag is -1 if we collided with a reset
 | |
| 		 * of the timer, which already reported this
 | |
| 		 * almost-firing as an overrun.  So don't generate an event.
 | |
| 		 */
 | |
| 		if (likely(cpu_firing >= 0))
 | |
| 			cpu_timer_fire(timer);
 | |
| 		spin_unlock(&timer->it_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
 | |
|  * The tsk->sighand->siglock must be held by the caller.
 | |
|  */
 | |
| void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
 | |
| 			   cputime_t *newval, cputime_t *oldval)
 | |
| {
 | |
| 	union cpu_time_count now;
 | |
| 
 | |
| 	BUG_ON(clock_idx == CPUCLOCK_SCHED);
 | |
| 	cpu_timer_sample_group(clock_idx, tsk, &now);
 | |
| 
 | |
| 	if (oldval) {
 | |
| 		/*
 | |
| 		 * We are setting itimer. The *oldval is absolute and we update
 | |
| 		 * it to be relative, *newval argument is relative and we update
 | |
| 		 * it to be absolute.
 | |
| 		 */
 | |
| 		if (!cputime_eq(*oldval, cputime_zero)) {
 | |
| 			if (cputime_le(*oldval, now.cpu)) {
 | |
| 				/* Just about to fire. */
 | |
| 				*oldval = cputime_one_jiffy;
 | |
| 			} else {
 | |
| 				*oldval = cputime_sub(*oldval, now.cpu);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (cputime_eq(*newval, cputime_zero))
 | |
| 			return;
 | |
| 		*newval = cputime_add(*newval, now.cpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update expiration cache if we are the earliest timer, or eventually
 | |
| 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
 | |
| 	 */
 | |
| 	switch (clock_idx) {
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
 | |
| 			tsk->signal->cputime_expires.prof_exp = *newval;
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
 | |
| 			tsk->signal->cputime_expires.virt_exp = *newval;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
 | |
| 			    struct timespec *rqtp, struct itimerspec *it)
 | |
| {
 | |
| 	struct k_itimer timer;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up a temporary timer and then wait for it to go off.
 | |
| 	 */
 | |
| 	memset(&timer, 0, sizeof timer);
 | |
| 	spin_lock_init(&timer.it_lock);
 | |
| 	timer.it_clock = which_clock;
 | |
| 	timer.it_overrun = -1;
 | |
| 	error = posix_cpu_timer_create(&timer);
 | |
| 	timer.it_process = current;
 | |
| 	if (!error) {
 | |
| 		static struct itimerspec zero_it;
 | |
| 
 | |
| 		memset(it, 0, sizeof *it);
 | |
| 		it->it_value = *rqtp;
 | |
| 
 | |
| 		spin_lock_irq(&timer.it_lock);
 | |
| 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
 | |
| 		if (error) {
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		while (!signal_pending(current)) {
 | |
| 			if (timer.it.cpu.expires.sched == 0) {
 | |
| 				/*
 | |
| 				 * Our timer fired and was reset.
 | |
| 				 */
 | |
| 				spin_unlock_irq(&timer.it_lock);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Block until cpu_timer_fire (or a signal) wakes us.
 | |
| 			 */
 | |
| 			__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			schedule();
 | |
| 			spin_lock_irq(&timer.it_lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We were interrupted by a signal.
 | |
| 		 */
 | |
| 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
 | |
| 		posix_cpu_timer_set(&timer, 0, &zero_it, it);
 | |
| 		spin_unlock_irq(&timer.it_lock);
 | |
| 
 | |
| 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
 | |
| 			/*
 | |
| 			 * It actually did fire already.
 | |
| 			 */
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		error = -ERESTART_RESTARTBLOCK;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int posix_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 		     struct timespec *rqtp, struct timespec __user *rmtp)
 | |
| {
 | |
| 	struct restart_block *restart_block =
 | |
| 	    ¤t_thread_info()->restart_block;
 | |
| 	struct itimerspec it;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Diagnose required errors first.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(which_clock) &&
 | |
| 	    (CPUCLOCK_PID(which_clock) == 0 ||
 | |
| 	     CPUCLOCK_PID(which_clock) == current->pid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
 | |
| 
 | |
| 	if (error == -ERESTART_RESTARTBLOCK) {
 | |
| 
 | |
| 	       	if (flags & TIMER_ABSTIME)
 | |
| 			return -ERESTARTNOHAND;
 | |
| 		/*
 | |
| 	 	 * Report back to the user the time still remaining.
 | |
| 	 	 */
 | |
| 		if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		restart_block->fn = posix_cpu_nsleep_restart;
 | |
| 		restart_block->arg0 = which_clock;
 | |
| 		restart_block->arg1 = (unsigned long) rmtp;
 | |
| 		restart_block->arg2 = rqtp->tv_sec;
 | |
| 		restart_block->arg3 = rqtp->tv_nsec;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| long posix_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	clockid_t which_clock = restart_block->arg0;
 | |
| 	struct timespec __user *rmtp;
 | |
| 	struct timespec t;
 | |
| 	struct itimerspec it;
 | |
| 	int error;
 | |
| 
 | |
| 	rmtp = (struct timespec __user *) restart_block->arg1;
 | |
| 	t.tv_sec = restart_block->arg2;
 | |
| 	t.tv_nsec = restart_block->arg3;
 | |
| 
 | |
| 	restart_block->fn = do_no_restart_syscall;
 | |
| 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
 | |
| 
 | |
| 	if (error == -ERESTART_RESTARTBLOCK) {
 | |
| 		/*
 | |
| 	 	 * Report back to the user the time still remaining.
 | |
| 	 	 */
 | |
| 		if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		restart_block->fn = posix_cpu_nsleep_restart;
 | |
| 		restart_block->arg0 = which_clock;
 | |
| 		restart_block->arg1 = (unsigned long) rmtp;
 | |
| 		restart_block->arg2 = t.tv_sec;
 | |
| 		restart_block->arg3 = t.tv_nsec;
 | |
| 	}
 | |
| 	return error;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
 | |
| #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
 | |
| 
 | |
| static int process_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				    struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_clock_get(const clockid_t which_clock,
 | |
| 				 struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = PROCESS_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| static int process_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			      struct timespec *rqtp,
 | |
| 			      struct timespec __user *rmtp)
 | |
| {
 | |
| 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
 | |
| }
 | |
| static long process_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| static int thread_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				   struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_clock_get(const clockid_t which_clock,
 | |
| 				struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = THREAD_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			      struct timespec *rqtp, struct timespec __user *rmtp)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static __init int init_posix_cpu_timers(void)
 | |
| {
 | |
| 	struct k_clock process = {
 | |
| 		.clock_getres = process_cpu_clock_getres,
 | |
| 		.clock_get = process_cpu_clock_get,
 | |
| 		.clock_set = do_posix_clock_nosettime,
 | |
| 		.timer_create = process_cpu_timer_create,
 | |
| 		.nsleep = process_cpu_nsleep,
 | |
| 		.nsleep_restart = process_cpu_nsleep_restart,
 | |
| 	};
 | |
| 	struct k_clock thread = {
 | |
| 		.clock_getres = thread_cpu_clock_getres,
 | |
| 		.clock_get = thread_cpu_clock_get,
 | |
| 		.clock_set = do_posix_clock_nosettime,
 | |
| 		.timer_create = thread_cpu_timer_create,
 | |
| 		.nsleep = thread_cpu_nsleep,
 | |
| 		.nsleep_restart = thread_cpu_nsleep_restart,
 | |
| 	};
 | |
| 	struct timespec ts;
 | |
| 
 | |
| 	register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
 | |
| 	register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
 | |
| 
 | |
| 	cputime_to_timespec(cputime_one_jiffy, &ts);
 | |
| 	onecputick = ts.tv_nsec;
 | |
| 	WARN_ON(ts.tv_sec != 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(init_posix_cpu_timers);
 |