mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 21cf866145
			
		
	
	
		21cf866145
		
	
	
	
	
		
			
			Except for pktdvd, the only places setting congested bits are file systems that allocate their own backing_dev_info structures. And pktdvd is a deprecated driver that isn't useful in stack setup either. So remove the dead congested_fn stacking infrastructure. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Song Liu <song@kernel.org> Acked-by: David Sterba <dsterba@suse.com> [axboe: fixup unused variables in bcache/request.c] Signed-off-by: Jens Axboe <axboe@kernel.dk>
		
			
				
	
	
		
			4534 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4534 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2011-2012 Red Hat UK.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-thin-metadata.h"
 | |
| #include "dm-bio-prison-v1.h"
 | |
| #include "dm.h"
 | |
| 
 | |
| #include <linux/device-mapper.h>
 | |
| #include <linux/dm-io.h>
 | |
| #include <linux/dm-kcopyd.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/rbtree.h>
 | |
| 
 | |
| #define	DM_MSG_PREFIX	"thin"
 | |
| 
 | |
| /*
 | |
|  * Tunable constants
 | |
|  */
 | |
| #define ENDIO_HOOK_POOL_SIZE 1024
 | |
| #define MAPPING_POOL_SIZE 1024
 | |
| #define COMMIT_PERIOD HZ
 | |
| #define NO_SPACE_TIMEOUT_SECS 60
 | |
| 
 | |
| static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
 | |
| 
 | |
| DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
 | |
| 		"A percentage of time allocated for copy on write");
 | |
| 
 | |
| /*
 | |
|  * The block size of the device holding pool data must be
 | |
|  * between 64KB and 1GB.
 | |
|  */
 | |
| #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
 | |
| #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * Device id is restricted to 24 bits.
 | |
|  */
 | |
| #define MAX_DEV_ID ((1 << 24) - 1)
 | |
| 
 | |
| /*
 | |
|  * How do we handle breaking sharing of data blocks?
 | |
|  * =================================================
 | |
|  *
 | |
|  * We use a standard copy-on-write btree to store the mappings for the
 | |
|  * devices (note I'm talking about copy-on-write of the metadata here, not
 | |
|  * the data).  When you take an internal snapshot you clone the root node
 | |
|  * of the origin btree.  After this there is no concept of an origin or a
 | |
|  * snapshot.  They are just two device trees that happen to point to the
 | |
|  * same data blocks.
 | |
|  *
 | |
|  * When we get a write in we decide if it's to a shared data block using
 | |
|  * some timestamp magic.  If it is, we have to break sharing.
 | |
|  *
 | |
|  * Let's say we write to a shared block in what was the origin.  The
 | |
|  * steps are:
 | |
|  *
 | |
|  * i) plug io further to this physical block. (see bio_prison code).
 | |
|  *
 | |
|  * ii) quiesce any read io to that shared data block.  Obviously
 | |
|  * including all devices that share this block.  (see dm_deferred_set code)
 | |
|  *
 | |
|  * iii) copy the data block to a newly allocate block.  This step can be
 | |
|  * missed out if the io covers the block. (schedule_copy).
 | |
|  *
 | |
|  * iv) insert the new mapping into the origin's btree
 | |
|  * (process_prepared_mapping).  This act of inserting breaks some
 | |
|  * sharing of btree nodes between the two devices.  Breaking sharing only
 | |
|  * effects the btree of that specific device.  Btrees for the other
 | |
|  * devices that share the block never change.  The btree for the origin
 | |
|  * device as it was after the last commit is untouched, ie. we're using
 | |
|  * persistent data structures in the functional programming sense.
 | |
|  *
 | |
|  * v) unplug io to this physical block, including the io that triggered
 | |
|  * the breaking of sharing.
 | |
|  *
 | |
|  * Steps (ii) and (iii) occur in parallel.
 | |
|  *
 | |
|  * The metadata _doesn't_ need to be committed before the io continues.  We
 | |
|  * get away with this because the io is always written to a _new_ block.
 | |
|  * If there's a crash, then:
 | |
|  *
 | |
|  * - The origin mapping will point to the old origin block (the shared
 | |
|  * one).  This will contain the data as it was before the io that triggered
 | |
|  * the breaking of sharing came in.
 | |
|  *
 | |
|  * - The snap mapping still points to the old block.  As it would after
 | |
|  * the commit.
 | |
|  *
 | |
|  * The downside of this scheme is the timestamp magic isn't perfect, and
 | |
|  * will continue to think that data block in the snapshot device is shared
 | |
|  * even after the write to the origin has broken sharing.  I suspect data
 | |
|  * blocks will typically be shared by many different devices, so we're
 | |
|  * breaking sharing n + 1 times, rather than n, where n is the number of
 | |
|  * devices that reference this data block.  At the moment I think the
 | |
|  * benefits far, far outweigh the disadvantages.
 | |
|  */
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Key building.
 | |
|  */
 | |
| enum lock_space {
 | |
| 	VIRTUAL,
 | |
| 	PHYSICAL
 | |
| };
 | |
| 
 | |
| static void build_key(struct dm_thin_device *td, enum lock_space ls,
 | |
| 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 | |
| {
 | |
| 	key->virtual = (ls == VIRTUAL);
 | |
| 	key->dev = dm_thin_dev_id(td);
 | |
| 	key->block_begin = b;
 | |
| 	key->block_end = e;
 | |
| }
 | |
| 
 | |
| static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 | |
| 			   struct dm_cell_key *key)
 | |
| {
 | |
| 	build_key(td, PHYSICAL, b, b + 1llu, key);
 | |
| }
 | |
| 
 | |
| static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 | |
| 			      struct dm_cell_key *key)
 | |
| {
 | |
| 	build_key(td, VIRTUAL, b, b + 1llu, key);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| #define THROTTLE_THRESHOLD (1 * HZ)
 | |
| 
 | |
| struct throttle {
 | |
| 	struct rw_semaphore lock;
 | |
| 	unsigned long threshold;
 | |
| 	bool throttle_applied;
 | |
| };
 | |
| 
 | |
| static void throttle_init(struct throttle *t)
 | |
| {
 | |
| 	init_rwsem(&t->lock);
 | |
| 	t->throttle_applied = false;
 | |
| }
 | |
| 
 | |
| static void throttle_work_start(struct throttle *t)
 | |
| {
 | |
| 	t->threshold = jiffies + THROTTLE_THRESHOLD;
 | |
| }
 | |
| 
 | |
| static void throttle_work_update(struct throttle *t)
 | |
| {
 | |
| 	if (!t->throttle_applied && jiffies > t->threshold) {
 | |
| 		down_write(&t->lock);
 | |
| 		t->throttle_applied = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void throttle_work_complete(struct throttle *t)
 | |
| {
 | |
| 	if (t->throttle_applied) {
 | |
| 		t->throttle_applied = false;
 | |
| 		up_write(&t->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void throttle_lock(struct throttle *t)
 | |
| {
 | |
| 	down_read(&t->lock);
 | |
| }
 | |
| 
 | |
| static void throttle_unlock(struct throttle *t)
 | |
| {
 | |
| 	up_read(&t->lock);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * A pool device ties together a metadata device and a data device.  It
 | |
|  * also provides the interface for creating and destroying internal
 | |
|  * devices.
 | |
|  */
 | |
| struct dm_thin_new_mapping;
 | |
| 
 | |
| /*
 | |
|  * The pool runs in various modes.  Ordered in degraded order for comparisons.
 | |
|  */
 | |
| enum pool_mode {
 | |
| 	PM_WRITE,		/* metadata may be changed */
 | |
| 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 | |
| 
 | |
| 	/*
 | |
| 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 | |
| 	 */
 | |
| 	PM_OUT_OF_METADATA_SPACE,
 | |
| 	PM_READ_ONLY,		/* metadata may not be changed */
 | |
| 
 | |
| 	PM_FAIL,		/* all I/O fails */
 | |
| };
 | |
| 
 | |
| struct pool_features {
 | |
| 	enum pool_mode mode;
 | |
| 
 | |
| 	bool zero_new_blocks:1;
 | |
| 	bool discard_enabled:1;
 | |
| 	bool discard_passdown:1;
 | |
| 	bool error_if_no_space:1;
 | |
| };
 | |
| 
 | |
| struct thin_c;
 | |
| typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 | |
| typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 | |
| typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 | |
| 
 | |
| #define CELL_SORT_ARRAY_SIZE 8192
 | |
| 
 | |
| struct pool {
 | |
| 	struct list_head list;
 | |
| 	struct dm_target *ti;	/* Only set if a pool target is bound */
 | |
| 
 | |
| 	struct mapped_device *pool_md;
 | |
| 	struct block_device *data_dev;
 | |
| 	struct block_device *md_dev;
 | |
| 	struct dm_pool_metadata *pmd;
 | |
| 
 | |
| 	dm_block_t low_water_blocks;
 | |
| 	uint32_t sectors_per_block;
 | |
| 	int sectors_per_block_shift;
 | |
| 
 | |
| 	struct pool_features pf;
 | |
| 	bool low_water_triggered:1;	/* A dm event has been sent */
 | |
| 	bool suspended:1;
 | |
| 	bool out_of_data_space:1;
 | |
| 
 | |
| 	struct dm_bio_prison *prison;
 | |
| 	struct dm_kcopyd_client *copier;
 | |
| 
 | |
| 	struct work_struct worker;
 | |
| 	struct workqueue_struct *wq;
 | |
| 	struct throttle throttle;
 | |
| 	struct delayed_work waker;
 | |
| 	struct delayed_work no_space_timeout;
 | |
| 
 | |
| 	unsigned long last_commit_jiffies;
 | |
| 	unsigned ref_count;
 | |
| 
 | |
| 	spinlock_t lock;
 | |
| 	struct bio_list deferred_flush_bios;
 | |
| 	struct bio_list deferred_flush_completions;
 | |
| 	struct list_head prepared_mappings;
 | |
| 	struct list_head prepared_discards;
 | |
| 	struct list_head prepared_discards_pt2;
 | |
| 	struct list_head active_thins;
 | |
| 
 | |
| 	struct dm_deferred_set *shared_read_ds;
 | |
| 	struct dm_deferred_set *all_io_ds;
 | |
| 
 | |
| 	struct dm_thin_new_mapping *next_mapping;
 | |
| 
 | |
| 	process_bio_fn process_bio;
 | |
| 	process_bio_fn process_discard;
 | |
| 
 | |
| 	process_cell_fn process_cell;
 | |
| 	process_cell_fn process_discard_cell;
 | |
| 
 | |
| 	process_mapping_fn process_prepared_mapping;
 | |
| 	process_mapping_fn process_prepared_discard;
 | |
| 	process_mapping_fn process_prepared_discard_pt2;
 | |
| 
 | |
| 	struct dm_bio_prison_cell **cell_sort_array;
 | |
| 
 | |
| 	mempool_t mapping_pool;
 | |
| 
 | |
| 	struct bio flush_bio;
 | |
| };
 | |
| 
 | |
| static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 | |
| 
 | |
| static enum pool_mode get_pool_mode(struct pool *pool)
 | |
| {
 | |
| 	return pool->pf.mode;
 | |
| }
 | |
| 
 | |
| static void notify_of_pool_mode_change(struct pool *pool)
 | |
| {
 | |
| 	const char *descs[] = {
 | |
| 		"write",
 | |
| 		"out-of-data-space",
 | |
| 		"read-only",
 | |
| 		"read-only",
 | |
| 		"fail"
 | |
| 	};
 | |
| 	const char *extra_desc = NULL;
 | |
| 	enum pool_mode mode = get_pool_mode(pool);
 | |
| 
 | |
| 	if (mode == PM_OUT_OF_DATA_SPACE) {
 | |
| 		if (!pool->pf.error_if_no_space)
 | |
| 			extra_desc = " (queue IO)";
 | |
| 		else
 | |
| 			extra_desc = " (error IO)";
 | |
| 	}
 | |
| 
 | |
| 	dm_table_event(pool->ti->table);
 | |
| 	DMINFO("%s: switching pool to %s%s mode",
 | |
| 	       dm_device_name(pool->pool_md),
 | |
| 	       descs[(int)mode], extra_desc ? : "");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Target context for a pool.
 | |
|  */
 | |
| struct pool_c {
 | |
| 	struct dm_target *ti;
 | |
| 	struct pool *pool;
 | |
| 	struct dm_dev *data_dev;
 | |
| 	struct dm_dev *metadata_dev;
 | |
| 
 | |
| 	dm_block_t low_water_blocks;
 | |
| 	struct pool_features requested_pf; /* Features requested during table load */
 | |
| 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Target context for a thin.
 | |
|  */
 | |
| struct thin_c {
 | |
| 	struct list_head list;
 | |
| 	struct dm_dev *pool_dev;
 | |
| 	struct dm_dev *origin_dev;
 | |
| 	sector_t origin_size;
 | |
| 	dm_thin_id dev_id;
 | |
| 
 | |
| 	struct pool *pool;
 | |
| 	struct dm_thin_device *td;
 | |
| 	struct mapped_device *thin_md;
 | |
| 
 | |
| 	bool requeue_mode:1;
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head deferred_cells;
 | |
| 	struct bio_list deferred_bio_list;
 | |
| 	struct bio_list retry_on_resume_list;
 | |
| 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensures the thin is not destroyed until the worker has finished
 | |
| 	 * iterating the active_thins list.
 | |
| 	 */
 | |
| 	refcount_t refcount;
 | |
| 	struct completion can_destroy;
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static bool block_size_is_power_of_two(struct pool *pool)
 | |
| {
 | |
| 	return pool->sectors_per_block_shift >= 0;
 | |
| }
 | |
| 
 | |
| static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 | |
| {
 | |
| 	return block_size_is_power_of_two(pool) ?
 | |
| 		(b << pool->sectors_per_block_shift) :
 | |
| 		(b * pool->sectors_per_block);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| struct discard_op {
 | |
| 	struct thin_c *tc;
 | |
| 	struct blk_plug plug;
 | |
| 	struct bio *parent_bio;
 | |
| 	struct bio *bio;
 | |
| };
 | |
| 
 | |
| static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 | |
| {
 | |
| 	BUG_ON(!parent);
 | |
| 
 | |
| 	op->tc = tc;
 | |
| 	blk_start_plug(&op->plug);
 | |
| 	op->parent_bio = parent;
 | |
| 	op->bio = NULL;
 | |
| }
 | |
| 
 | |
| static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 | |
| {
 | |
| 	struct thin_c *tc = op->tc;
 | |
| 	sector_t s = block_to_sectors(tc->pool, data_b);
 | |
| 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 | |
| 
 | |
| 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 | |
| 				      GFP_NOWAIT, 0, &op->bio);
 | |
| }
 | |
| 
 | |
| static void end_discard(struct discard_op *op, int r)
 | |
| {
 | |
| 	if (op->bio) {
 | |
| 		/*
 | |
| 		 * Even if one of the calls to issue_discard failed, we
 | |
| 		 * need to wait for the chain to complete.
 | |
| 		 */
 | |
| 		bio_chain(op->bio, op->parent_bio);
 | |
| 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 | |
| 		submit_bio(op->bio);
 | |
| 	}
 | |
| 
 | |
| 	blk_finish_plug(&op->plug);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even if r is set, there could be sub discards in flight that we
 | |
| 	 * need to wait for.
 | |
| 	 */
 | |
| 	if (r && !op->parent_bio->bi_status)
 | |
| 		op->parent_bio->bi_status = errno_to_blk_status(r);
 | |
| 	bio_endio(op->parent_bio);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * wake_worker() is used when new work is queued and when pool_resume is
 | |
|  * ready to continue deferred IO processing.
 | |
|  */
 | |
| static void wake_worker(struct pool *pool)
 | |
| {
 | |
| 	queue_work(pool->wq, &pool->worker);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 | |
| 		      struct dm_bio_prison_cell **cell_result)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_bio_prison_cell *cell_prealloc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a cell from the prison's mempool.
 | |
| 	 * This might block but it can't fail.
 | |
| 	 */
 | |
| 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 | |
| 
 | |
| 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 | |
| 	if (r)
 | |
| 		/*
 | |
| 		 * We reused an old cell; we can get rid of
 | |
| 		 * the new one.
 | |
| 		 */
 | |
| 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void cell_release(struct pool *pool,
 | |
| 			 struct dm_bio_prison_cell *cell,
 | |
| 			 struct bio_list *bios)
 | |
| {
 | |
| 	dm_cell_release(pool->prison, cell, bios);
 | |
| 	dm_bio_prison_free_cell(pool->prison, cell);
 | |
| }
 | |
| 
 | |
| static void cell_visit_release(struct pool *pool,
 | |
| 			       void (*fn)(void *, struct dm_bio_prison_cell *),
 | |
| 			       void *context,
 | |
| 			       struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	dm_cell_visit_release(pool->prison, fn, context, cell);
 | |
| 	dm_bio_prison_free_cell(pool->prison, cell);
 | |
| }
 | |
| 
 | |
| static void cell_release_no_holder(struct pool *pool,
 | |
| 				   struct dm_bio_prison_cell *cell,
 | |
| 				   struct bio_list *bios)
 | |
| {
 | |
| 	dm_cell_release_no_holder(pool->prison, cell, bios);
 | |
| 	dm_bio_prison_free_cell(pool->prison, cell);
 | |
| }
 | |
| 
 | |
| static void cell_error_with_code(struct pool *pool,
 | |
| 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 | |
| {
 | |
| 	dm_cell_error(pool->prison, cell, error_code);
 | |
| 	dm_bio_prison_free_cell(pool->prison, cell);
 | |
| }
 | |
| 
 | |
| static blk_status_t get_pool_io_error_code(struct pool *pool)
 | |
| {
 | |
| 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 | |
| }
 | |
| 
 | |
| static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 | |
| }
 | |
| 
 | |
| static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	cell_error_with_code(pool, cell, 0);
 | |
| }
 | |
| 
 | |
| static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * A global list of pools that uses a struct mapped_device as a key.
 | |
|  */
 | |
| static struct dm_thin_pool_table {
 | |
| 	struct mutex mutex;
 | |
| 	struct list_head pools;
 | |
| } dm_thin_pool_table;
 | |
| 
 | |
| static void pool_table_init(void)
 | |
| {
 | |
| 	mutex_init(&dm_thin_pool_table.mutex);
 | |
| 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 | |
| }
 | |
| 
 | |
| static void pool_table_exit(void)
 | |
| {
 | |
| 	mutex_destroy(&dm_thin_pool_table.mutex);
 | |
| }
 | |
| 
 | |
| static void __pool_table_insert(struct pool *pool)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 | |
| 	list_add(&pool->list, &dm_thin_pool_table.pools);
 | |
| }
 | |
| 
 | |
| static void __pool_table_remove(struct pool *pool)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 | |
| 	list_del(&pool->list);
 | |
| }
 | |
| 
 | |
| static struct pool *__pool_table_lookup(struct mapped_device *md)
 | |
| {
 | |
| 	struct pool *pool = NULL, *tmp;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 | |
| 
 | |
| 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 | |
| 		if (tmp->pool_md == md) {
 | |
| 			pool = tmp;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return pool;
 | |
| }
 | |
| 
 | |
| static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 | |
| {
 | |
| 	struct pool *pool = NULL, *tmp;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 | |
| 
 | |
| 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 | |
| 		if (tmp->md_dev == md_dev) {
 | |
| 			pool = tmp;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return pool;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| struct dm_thin_endio_hook {
 | |
| 	struct thin_c *tc;
 | |
| 	struct dm_deferred_entry *shared_read_entry;
 | |
| 	struct dm_deferred_entry *all_io_entry;
 | |
| 	struct dm_thin_new_mapping *overwrite_mapping;
 | |
| 	struct rb_node rb_node;
 | |
| 	struct dm_bio_prison_cell *cell;
 | |
| };
 | |
| 
 | |
| static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 | |
| {
 | |
| 	bio_list_merge(bios, master);
 | |
| 	bio_list_init(master);
 | |
| }
 | |
| 
 | |
| static void error_bio_list(struct bio_list *bios, blk_status_t error)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	while ((bio = bio_list_pop(bios))) {
 | |
| 		bio->bi_status = error;
 | |
| 		bio_endio(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 | |
| 		blk_status_t error)
 | |
| {
 | |
| 	struct bio_list bios;
 | |
| 
 | |
| 	bio_list_init(&bios);
 | |
| 
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 	__merge_bio_list(&bios, master);
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| 
 | |
| 	error_bio_list(&bios, error);
 | |
| }
 | |
| 
 | |
| static void requeue_deferred_cells(struct thin_c *tc)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct list_head cells;
 | |
| 	struct dm_bio_prison_cell *cell, *tmp;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cells);
 | |
| 
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 	list_splice_init(&tc->deferred_cells, &cells);
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 | |
| 		cell_requeue(pool, cell);
 | |
| }
 | |
| 
 | |
| static void requeue_io(struct thin_c *tc)
 | |
| {
 | |
| 	struct bio_list bios;
 | |
| 
 | |
| 	bio_list_init(&bios);
 | |
| 
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 	__merge_bio_list(&bios, &tc->deferred_bio_list);
 | |
| 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| 
 | |
| 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 | |
| 	requeue_deferred_cells(tc);
 | |
| }
 | |
| 
 | |
| static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 | |
| {
 | |
| 	struct thin_c *tc;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 | |
| 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void error_retry_list(struct pool *pool)
 | |
| {
 | |
| 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This section of code contains the logic for processing a thin device's IO.
 | |
|  * Much of the code depends on pool object resources (lists, workqueues, etc)
 | |
|  * but most is exclusively called from the thin target rather than the thin-pool
 | |
|  * target.
 | |
|  */
 | |
| 
 | |
| static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	sector_t block_nr = bio->bi_iter.bi_sector;
 | |
| 
 | |
| 	if (block_size_is_power_of_two(pool))
 | |
| 		block_nr >>= pool->sectors_per_block_shift;
 | |
| 	else
 | |
| 		(void) sector_div(block_nr, pool->sectors_per_block);
 | |
| 
 | |
| 	return block_nr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the _complete_ blocks that this bio covers.
 | |
|  */
 | |
| static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 | |
| 				dm_block_t *begin, dm_block_t *end)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	sector_t b = bio->bi_iter.bi_sector;
 | |
| 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 | |
| 
 | |
| 	b += pool->sectors_per_block - 1ull; /* so we round up */
 | |
| 
 | |
| 	if (block_size_is_power_of_two(pool)) {
 | |
| 		b >>= pool->sectors_per_block_shift;
 | |
| 		e >>= pool->sectors_per_block_shift;
 | |
| 	} else {
 | |
| 		(void) sector_div(b, pool->sectors_per_block);
 | |
| 		(void) sector_div(e, pool->sectors_per_block);
 | |
| 	}
 | |
| 
 | |
| 	if (e < b)
 | |
| 		/* Can happen if the bio is within a single block. */
 | |
| 		e = b;
 | |
| 
 | |
| 	*begin = b;
 | |
| 	*end = e;
 | |
| }
 | |
| 
 | |
| static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	sector_t bi_sector = bio->bi_iter.bi_sector;
 | |
| 
 | |
| 	bio_set_dev(bio, tc->pool_dev->bdev);
 | |
| 	if (block_size_is_power_of_two(pool))
 | |
| 		bio->bi_iter.bi_sector =
 | |
| 			(block << pool->sectors_per_block_shift) |
 | |
| 			(bi_sector & (pool->sectors_per_block - 1));
 | |
| 	else
 | |
| 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 | |
| 				 sector_div(bi_sector, pool->sectors_per_block);
 | |
| }
 | |
| 
 | |
| static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	bio_set_dev(bio, tc->origin_dev->bdev);
 | |
| }
 | |
| 
 | |
| static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	return op_is_flush(bio->bi_opf) &&
 | |
| 		dm_thin_changed_this_transaction(tc->td);
 | |
| }
 | |
| 
 | |
| static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 | |
| {
 | |
| 	struct dm_thin_endio_hook *h;
 | |
| 
 | |
| 	if (bio_op(bio) == REQ_OP_DISCARD)
 | |
| 		return;
 | |
| 
 | |
| 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 | |
| }
 | |
| 
 | |
| static void issue(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	if (!bio_triggers_commit(tc, bio)) {
 | |
| 		submit_bio_noacct(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Complete bio with an error if earlier I/O caused changes to
 | |
| 	 * the metadata that can't be committed e.g, due to I/O errors
 | |
| 	 * on the metadata device.
 | |
| 	 */
 | |
| 	if (dm_thin_aborted_changes(tc->td)) {
 | |
| 		bio_io_error(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Batch together any bios that trigger commits and then issue a
 | |
| 	 * single commit for them in process_deferred_bios().
 | |
| 	 */
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	bio_list_add(&pool->deferred_flush_bios, bio);
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| }
 | |
| 
 | |
| static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	remap_to_origin(tc, bio);
 | |
| 	issue(tc, bio);
 | |
| }
 | |
| 
 | |
| static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 | |
| 			    dm_block_t block)
 | |
| {
 | |
| 	remap(tc, bio, block);
 | |
| 	issue(tc, bio);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Bio endio functions.
 | |
|  */
 | |
| struct dm_thin_new_mapping {
 | |
| 	struct list_head list;
 | |
| 
 | |
| 	bool pass_discard:1;
 | |
| 	bool maybe_shared:1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Track quiescing, copying and zeroing preparation actions.  When this
 | |
| 	 * counter hits zero the block is prepared and can be inserted into the
 | |
| 	 * btree.
 | |
| 	 */
 | |
| 	atomic_t prepare_actions;
 | |
| 
 | |
| 	blk_status_t status;
 | |
| 	struct thin_c *tc;
 | |
| 	dm_block_t virt_begin, virt_end;
 | |
| 	dm_block_t data_block;
 | |
| 	struct dm_bio_prison_cell *cell;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the bio covers the whole area of a block then we can avoid
 | |
| 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 | |
| 	 * still be in the cell, so care has to be taken to avoid issuing
 | |
| 	 * the bio twice.
 | |
| 	 */
 | |
| 	struct bio *bio;
 | |
| 	bio_end_io_t *saved_bi_end_io;
 | |
| };
 | |
| 
 | |
| static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	struct pool *pool = m->tc->pool;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&m->prepare_actions)) {
 | |
| 		list_add_tail(&m->list, &pool->prepared_mappings);
 | |
| 		wake_worker(pool);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct pool *pool = m->tc->pool;
 | |
| 
 | |
| 	spin_lock_irqsave(&pool->lock, flags);
 | |
| 	__complete_mapping_preparation(m);
 | |
| 	spin_unlock_irqrestore(&pool->lock, flags);
 | |
| }
 | |
| 
 | |
| static void copy_complete(int read_err, unsigned long write_err, void *context)
 | |
| {
 | |
| 	struct dm_thin_new_mapping *m = context;
 | |
| 
 | |
| 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 | |
| 	complete_mapping_preparation(m);
 | |
| }
 | |
| 
 | |
| static void overwrite_endio(struct bio *bio)
 | |
| {
 | |
| 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 | |
| 
 | |
| 	bio->bi_end_io = m->saved_bi_end_io;
 | |
| 
 | |
| 	m->status = bio->bi_status;
 | |
| 	complete_mapping_preparation(m);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Workqueue.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Prepared mapping jobs.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This sends the bios in the cell, except the original holder, back
 | |
|  * to the deferred_bios list.
 | |
|  */
 | |
| static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	unsigned long flags;
 | |
| 	int has_work;
 | |
| 
 | |
| 	spin_lock_irqsave(&tc->lock, flags);
 | |
| 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 | |
| 	has_work = !bio_list_empty(&tc->deferred_bio_list);
 | |
| 	spin_unlock_irqrestore(&tc->lock, flags);
 | |
| 
 | |
| 	if (has_work)
 | |
| 		wake_worker(pool);
 | |
| }
 | |
| 
 | |
| static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 | |
| 
 | |
| struct remap_info {
 | |
| 	struct thin_c *tc;
 | |
| 	struct bio_list defer_bios;
 | |
| 	struct bio_list issue_bios;
 | |
| };
 | |
| 
 | |
| static void __inc_remap_and_issue_cell(void *context,
 | |
| 				       struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	struct remap_info *info = context;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&cell->bios))) {
 | |
| 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 | |
| 			bio_list_add(&info->defer_bios, bio);
 | |
| 		else {
 | |
| 			inc_all_io_entry(info->tc->pool, bio);
 | |
| 
 | |
| 			/*
 | |
| 			 * We can't issue the bios with the bio prison lock
 | |
| 			 * held, so we add them to a list to issue on
 | |
| 			 * return from this function.
 | |
| 			 */
 | |
| 			bio_list_add(&info->issue_bios, bio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void inc_remap_and_issue_cell(struct thin_c *tc,
 | |
| 				     struct dm_bio_prison_cell *cell,
 | |
| 				     dm_block_t block)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct remap_info info;
 | |
| 
 | |
| 	info.tc = tc;
 | |
| 	bio_list_init(&info.defer_bios);
 | |
| 	bio_list_init(&info.issue_bios);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to be careful to inc any bios we're about to issue
 | |
| 	 * before the cell is released, and avoid a race with new bios
 | |
| 	 * being added to the cell.
 | |
| 	 */
 | |
| 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 | |
| 			   &info, cell);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&info.defer_bios)))
 | |
| 		thin_defer_bio(tc, bio);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&info.issue_bios)))
 | |
| 		remap_and_issue(info.tc, bio, block);
 | |
| }
 | |
| 
 | |
| static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	cell_error(m->tc->pool, m->cell);
 | |
| 	list_del(&m->list);
 | |
| 	mempool_free(m, &m->tc->pool->mapping_pool);
 | |
| }
 | |
| 
 | |
| static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the bio has the REQ_FUA flag set we must commit the metadata
 | |
| 	 * before signaling its completion.
 | |
| 	 */
 | |
| 	if (!bio_triggers_commit(tc, bio)) {
 | |
| 		bio_endio(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Complete bio with an error if earlier I/O caused changes to the
 | |
| 	 * metadata that can't be committed, e.g, due to I/O errors on the
 | |
| 	 * metadata device.
 | |
| 	 */
 | |
| 	if (dm_thin_aborted_changes(tc->td)) {
 | |
| 		bio_io_error(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Batch together any bios that trigger commits and then issue a
 | |
| 	 * single commit for them in process_deferred_bios().
 | |
| 	 */
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	bio_list_add(&pool->deferred_flush_completions, bio);
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| }
 | |
| 
 | |
| static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	struct thin_c *tc = m->tc;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct bio *bio = m->bio;
 | |
| 	int r;
 | |
| 
 | |
| 	if (m->status) {
 | |
| 		cell_error(pool, m->cell);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Commit the prepared block into the mapping btree.
 | |
| 	 * Any I/O for this block arriving after this point will get
 | |
| 	 * remapped to it directly.
 | |
| 	 */
 | |
| 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 | |
| 	if (r) {
 | |
| 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 | |
| 		cell_error(pool, m->cell);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Release any bios held while the block was being provisioned.
 | |
| 	 * If we are processing a write bio that completely covers the block,
 | |
| 	 * we already processed it so can ignore it now when processing
 | |
| 	 * the bios in the cell.
 | |
| 	 */
 | |
| 	if (bio) {
 | |
| 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 | |
| 		complete_overwrite_bio(tc, bio);
 | |
| 	} else {
 | |
| 		inc_all_io_entry(tc->pool, m->cell->holder);
 | |
| 		remap_and_issue(tc, m->cell->holder, m->data_block);
 | |
| 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	list_del(&m->list);
 | |
| 	mempool_free(m, &pool->mapping_pool);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static void free_discard_mapping(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	struct thin_c *tc = m->tc;
 | |
| 	if (m->cell)
 | |
| 		cell_defer_no_holder(tc, m->cell);
 | |
| 	mempool_free(m, &tc->pool->mapping_pool);
 | |
| }
 | |
| 
 | |
| static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	bio_io_error(m->bio);
 | |
| 	free_discard_mapping(m);
 | |
| }
 | |
| 
 | |
| static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	bio_endio(m->bio);
 | |
| 	free_discard_mapping(m);
 | |
| }
 | |
| 
 | |
| static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	int r;
 | |
| 	struct thin_c *tc = m->tc;
 | |
| 
 | |
| 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 | |
| 	if (r) {
 | |
| 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 | |
| 		bio_io_error(m->bio);
 | |
| 	} else
 | |
| 		bio_endio(m->bio);
 | |
| 
 | |
| 	cell_defer_no_holder(tc, m->cell);
 | |
| 	mempool_free(m, &tc->pool->mapping_pool);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
 | |
| 						   struct bio *discard_parent)
 | |
| {
 | |
| 	/*
 | |
| 	 * We've already unmapped this range of blocks, but before we
 | |
| 	 * passdown we have to check that these blocks are now unused.
 | |
| 	 */
 | |
| 	int r = 0;
 | |
| 	bool shared = true;
 | |
| 	struct thin_c *tc = m->tc;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
 | |
| 	struct discard_op op;
 | |
| 
 | |
| 	begin_discard(&op, tc, discard_parent);
 | |
| 	while (b != end) {
 | |
| 		/* find start of unmapped run */
 | |
| 		for (; b < end; b++) {
 | |
| 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (!shared)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (b == end)
 | |
| 			break;
 | |
| 
 | |
| 		/* find end of run */
 | |
| 		for (e = b + 1; e != end; e++) {
 | |
| 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
 | |
| 			if (r)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (shared)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		r = issue_discard(&op, b, e);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		b = e;
 | |
| 	}
 | |
| out:
 | |
| 	end_discard(&op, r);
 | |
| }
 | |
| 
 | |
| static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct pool *pool = m->tc->pool;
 | |
| 
 | |
| 	spin_lock_irqsave(&pool->lock, flags);
 | |
| 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
 | |
| 	spin_unlock_irqrestore(&pool->lock, flags);
 | |
| 	wake_worker(pool);
 | |
| }
 | |
| 
 | |
| static void passdown_endio(struct bio *bio)
 | |
| {
 | |
| 	/*
 | |
| 	 * It doesn't matter if the passdown discard failed, we still want
 | |
| 	 * to unmap (we ignore err).
 | |
| 	 */
 | |
| 	queue_passdown_pt2(bio->bi_private);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	int r;
 | |
| 	struct thin_c *tc = m->tc;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct bio *discard_parent;
 | |
| 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only this thread allocates blocks, so we can be sure that the
 | |
| 	 * newly unmapped blocks will not be allocated before the end of
 | |
| 	 * the function.
 | |
| 	 */
 | |
| 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
 | |
| 	if (r) {
 | |
| 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
 | |
| 		bio_io_error(m->bio);
 | |
| 		cell_defer_no_holder(tc, m->cell);
 | |
| 		mempool_free(m, &pool->mapping_pool);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Increment the unmapped blocks.  This prevents a race between the
 | |
| 	 * passdown io and reallocation of freed blocks.
 | |
| 	 */
 | |
| 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
 | |
| 	if (r) {
 | |
| 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
 | |
| 		bio_io_error(m->bio);
 | |
| 		cell_defer_no_holder(tc, m->cell);
 | |
| 		mempool_free(m, &pool->mapping_pool);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	discard_parent = bio_alloc(GFP_NOIO, 1);
 | |
| 	if (!discard_parent) {
 | |
| 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
 | |
| 		       dm_device_name(tc->pool->pool_md));
 | |
| 		queue_passdown_pt2(m);
 | |
| 
 | |
| 	} else {
 | |
| 		discard_parent->bi_end_io = passdown_endio;
 | |
| 		discard_parent->bi_private = m;
 | |
| 
 | |
| 		if (m->maybe_shared)
 | |
| 			passdown_double_checking_shared_status(m, discard_parent);
 | |
| 		else {
 | |
| 			struct discard_op op;
 | |
| 
 | |
| 			begin_discard(&op, tc, discard_parent);
 | |
| 			r = issue_discard(&op, m->data_block, data_end);
 | |
| 			end_discard(&op, r);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	int r;
 | |
| 	struct thin_c *tc = m->tc;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	/*
 | |
| 	 * The passdown has completed, so now we can decrement all those
 | |
| 	 * unmapped blocks.
 | |
| 	 */
 | |
| 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
 | |
| 				   m->data_block + (m->virt_end - m->virt_begin));
 | |
| 	if (r) {
 | |
| 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
 | |
| 		bio_io_error(m->bio);
 | |
| 	} else
 | |
| 		bio_endio(m->bio);
 | |
| 
 | |
| 	cell_defer_no_holder(tc, m->cell);
 | |
| 	mempool_free(m, &pool->mapping_pool);
 | |
| }
 | |
| 
 | |
| static void process_prepared(struct pool *pool, struct list_head *head,
 | |
| 			     process_mapping_fn *fn)
 | |
| {
 | |
| 	struct list_head maps;
 | |
| 	struct dm_thin_new_mapping *m, *tmp;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&maps);
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	list_splice_init(head, &maps);
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(m, tmp, &maps, list)
 | |
| 		(*fn)(m);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deferred bio jobs.
 | |
|  */
 | |
| static int io_overlaps_block(struct pool *pool, struct bio *bio)
 | |
| {
 | |
| 	return bio->bi_iter.bi_size ==
 | |
| 		(pool->sectors_per_block << SECTOR_SHIFT);
 | |
| }
 | |
| 
 | |
| static int io_overwrites_block(struct pool *pool, struct bio *bio)
 | |
| {
 | |
| 	return (bio_data_dir(bio) == WRITE) &&
 | |
| 		io_overlaps_block(pool, bio);
 | |
| }
 | |
| 
 | |
| static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 | |
| 			       bio_end_io_t *fn)
 | |
| {
 | |
| 	*save = bio->bi_end_io;
 | |
| 	bio->bi_end_io = fn;
 | |
| }
 | |
| 
 | |
| static int ensure_next_mapping(struct pool *pool)
 | |
| {
 | |
| 	if (pool->next_mapping)
 | |
| 		return 0;
 | |
| 
 | |
| 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
 | |
| 
 | |
| 	return pool->next_mapping ? 0 : -ENOMEM;
 | |
| }
 | |
| 
 | |
| static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 | |
| {
 | |
| 	struct dm_thin_new_mapping *m = pool->next_mapping;
 | |
| 
 | |
| 	BUG_ON(!pool->next_mapping);
 | |
| 
 | |
| 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
 | |
| 	INIT_LIST_HEAD(&m->list);
 | |
| 	m->bio = NULL;
 | |
| 
 | |
| 	pool->next_mapping = NULL;
 | |
| 
 | |
| 	return m;
 | |
| }
 | |
| 
 | |
| static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
 | |
| 		    sector_t begin, sector_t end)
 | |
| {
 | |
| 	struct dm_io_region to;
 | |
| 
 | |
| 	to.bdev = tc->pool_dev->bdev;
 | |
| 	to.sector = begin;
 | |
| 	to.count = end - begin;
 | |
| 
 | |
| 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
 | |
| }
 | |
| 
 | |
| static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
 | |
| 				      dm_block_t data_begin,
 | |
| 				      struct dm_thin_new_mapping *m)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 
 | |
| 	h->overwrite_mapping = m;
 | |
| 	m->bio = bio;
 | |
| 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 | |
| 	inc_all_io_entry(pool, bio);
 | |
| 	remap_and_issue(tc, bio, data_begin);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A partial copy also needs to zero the uncopied region.
 | |
|  */
 | |
| static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 | |
| 			  struct dm_dev *origin, dm_block_t data_origin,
 | |
| 			  dm_block_t data_dest,
 | |
| 			  struct dm_bio_prison_cell *cell, struct bio *bio,
 | |
| 			  sector_t len)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 | |
| 
 | |
| 	m->tc = tc;
 | |
| 	m->virt_begin = virt_block;
 | |
| 	m->virt_end = virt_block + 1u;
 | |
| 	m->data_block = data_dest;
 | |
| 	m->cell = cell;
 | |
| 
 | |
| 	/*
 | |
| 	 * quiesce action + copy action + an extra reference held for the
 | |
| 	 * duration of this function (we may need to inc later for a
 | |
| 	 * partial zero).
 | |
| 	 */
 | |
| 	atomic_set(&m->prepare_actions, 3);
 | |
| 
 | |
| 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
 | |
| 		complete_mapping_preparation(m); /* already quiesced */
 | |
| 
 | |
| 	/*
 | |
| 	 * IO to pool_dev remaps to the pool target's data_dev.
 | |
| 	 *
 | |
| 	 * If the whole block of data is being overwritten, we can issue the
 | |
| 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
 | |
| 	 */
 | |
| 	if (io_overwrites_block(pool, bio))
 | |
| 		remap_and_issue_overwrite(tc, bio, data_dest, m);
 | |
| 	else {
 | |
| 		struct dm_io_region from, to;
 | |
| 
 | |
| 		from.bdev = origin->bdev;
 | |
| 		from.sector = data_origin * pool->sectors_per_block;
 | |
| 		from.count = len;
 | |
| 
 | |
| 		to.bdev = tc->pool_dev->bdev;
 | |
| 		to.sector = data_dest * pool->sectors_per_block;
 | |
| 		to.count = len;
 | |
| 
 | |
| 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
 | |
| 			       0, copy_complete, m);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do we need to zero a tail region?
 | |
| 		 */
 | |
| 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
 | |
| 			atomic_inc(&m->prepare_actions);
 | |
| 			ll_zero(tc, m,
 | |
| 				data_dest * pool->sectors_per_block + len,
 | |
| 				(data_dest + 1) * pool->sectors_per_block);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	complete_mapping_preparation(m); /* drop our ref */
 | |
| }
 | |
| 
 | |
| static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
 | |
| 				   dm_block_t data_origin, dm_block_t data_dest,
 | |
| 				   struct dm_bio_prison_cell *cell, struct bio *bio)
 | |
| {
 | |
| 	schedule_copy(tc, virt_block, tc->pool_dev,
 | |
| 		      data_origin, data_dest, cell, bio,
 | |
| 		      tc->pool->sectors_per_block);
 | |
| }
 | |
| 
 | |
| static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
 | |
| 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
 | |
| 			  struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 | |
| 
 | |
| 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
 | |
| 	m->tc = tc;
 | |
| 	m->virt_begin = virt_block;
 | |
| 	m->virt_end = virt_block + 1u;
 | |
| 	m->data_block = data_block;
 | |
| 	m->cell = cell;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the whole block of data is being overwritten or we are not
 | |
| 	 * zeroing pre-existing data, we can issue the bio immediately.
 | |
| 	 * Otherwise we use kcopyd to zero the data first.
 | |
| 	 */
 | |
| 	if (pool->pf.zero_new_blocks) {
 | |
| 		if (io_overwrites_block(pool, bio))
 | |
| 			remap_and_issue_overwrite(tc, bio, data_block, m);
 | |
| 		else
 | |
| 			ll_zero(tc, m, data_block * pool->sectors_per_block,
 | |
| 				(data_block + 1) * pool->sectors_per_block);
 | |
| 	} else
 | |
| 		process_prepared_mapping(m);
 | |
| }
 | |
| 
 | |
| static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
 | |
| 				   dm_block_t data_dest,
 | |
| 				   struct dm_bio_prison_cell *cell, struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
 | |
| 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
 | |
| 
 | |
| 	if (virt_block_end <= tc->origin_size)
 | |
| 		schedule_copy(tc, virt_block, tc->origin_dev,
 | |
| 			      virt_block, data_dest, cell, bio,
 | |
| 			      pool->sectors_per_block);
 | |
| 
 | |
| 	else if (virt_block_begin < tc->origin_size)
 | |
| 		schedule_copy(tc, virt_block, tc->origin_dev,
 | |
| 			      virt_block, data_dest, cell, bio,
 | |
| 			      tc->origin_size - virt_block_begin);
 | |
| 
 | |
| 	else
 | |
| 		schedule_zero(tc, virt_block, data_dest, cell, bio);
 | |
| }
 | |
| 
 | |
| static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
 | |
| 
 | |
| static void requeue_bios(struct pool *pool);
 | |
| 
 | |
| static bool is_read_only_pool_mode(enum pool_mode mode)
 | |
| {
 | |
| 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
 | |
| }
 | |
| 
 | |
| static bool is_read_only(struct pool *pool)
 | |
| {
 | |
| 	return is_read_only_pool_mode(get_pool_mode(pool));
 | |
| }
 | |
| 
 | |
| static void check_for_metadata_space(struct pool *pool)
 | |
| {
 | |
| 	int r;
 | |
| 	const char *ooms_reason = NULL;
 | |
| 	dm_block_t nr_free;
 | |
| 
 | |
| 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
 | |
| 	if (r)
 | |
| 		ooms_reason = "Could not get free metadata blocks";
 | |
| 	else if (!nr_free)
 | |
| 		ooms_reason = "No free metadata blocks";
 | |
| 
 | |
| 	if (ooms_reason && !is_read_only(pool)) {
 | |
| 		DMERR("%s", ooms_reason);
 | |
| 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void check_for_data_space(struct pool *pool)
 | |
| {
 | |
| 	int r;
 | |
| 	dm_block_t nr_free;
 | |
| 
 | |
| 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
 | |
| 		return;
 | |
| 
 | |
| 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
 | |
| 	if (r)
 | |
| 		return;
 | |
| 
 | |
| 	if (nr_free) {
 | |
| 		set_pool_mode(pool, PM_WRITE);
 | |
| 		requeue_bios(pool);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A non-zero return indicates read_only or fail_io mode.
 | |
|  * Many callers don't care about the return value.
 | |
|  */
 | |
| static int commit(struct pool *pool)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	r = dm_pool_commit_metadata(pool->pmd);
 | |
| 	if (r)
 | |
| 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
 | |
| 	else {
 | |
| 		check_for_metadata_space(pool);
 | |
| 		check_for_data_space(pool);
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
 | |
| {
 | |
| 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
 | |
| 		DMWARN("%s: reached low water mark for data device: sending event.",
 | |
| 		       dm_device_name(pool->pool_md));
 | |
| 		spin_lock_irq(&pool->lock);
 | |
| 		pool->low_water_triggered = true;
 | |
| 		spin_unlock_irq(&pool->lock);
 | |
| 		dm_table_event(pool->ti->table);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
 | |
| {
 | |
| 	int r;
 | |
| 	dm_block_t free_blocks;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 | |
| 	if (r) {
 | |
| 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	check_low_water_mark(pool, free_blocks);
 | |
| 
 | |
| 	if (!free_blocks) {
 | |
| 		/*
 | |
| 		 * Try to commit to see if that will free up some
 | |
| 		 * more space.
 | |
| 		 */
 | |
| 		r = commit(pool);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 
 | |
| 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 | |
| 		if (r) {
 | |
| 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		if (!free_blocks) {
 | |
| 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r = dm_pool_alloc_data_block(pool->pmd, result);
 | |
| 	if (r) {
 | |
| 		if (r == -ENOSPC)
 | |
| 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
 | |
| 		else
 | |
| 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
 | |
| 	if (r) {
 | |
| 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	if (!free_blocks) {
 | |
| 		/* Let's commit before we use up the metadata reserve. */
 | |
| 		r = commit(pool);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we have run out of space, queue bios until the device is
 | |
|  * resumed, presumably after having been reloaded with more space.
 | |
|  */
 | |
| static void retry_on_resume(struct bio *bio)
 | |
| {
 | |
| 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 	struct thin_c *tc = h->tc;
 | |
| 
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 	bio_list_add(&tc->retry_on_resume_list, bio);
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| }
 | |
| 
 | |
| static blk_status_t should_error_unserviceable_bio(struct pool *pool)
 | |
| {
 | |
| 	enum pool_mode m = get_pool_mode(pool);
 | |
| 
 | |
| 	switch (m) {
 | |
| 	case PM_WRITE:
 | |
| 		/* Shouldn't get here */
 | |
| 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
 | |
| 		return BLK_STS_IOERR;
 | |
| 
 | |
| 	case PM_OUT_OF_DATA_SPACE:
 | |
| 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
 | |
| 
 | |
| 	case PM_OUT_OF_METADATA_SPACE:
 | |
| 	case PM_READ_ONLY:
 | |
| 	case PM_FAIL:
 | |
| 		return BLK_STS_IOERR;
 | |
| 	default:
 | |
| 		/* Shouldn't get here */
 | |
| 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
 | |
| 		return BLK_STS_IOERR;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
 | |
| {
 | |
| 	blk_status_t error = should_error_unserviceable_bio(pool);
 | |
| 
 | |
| 	if (error) {
 | |
| 		bio->bi_status = error;
 | |
| 		bio_endio(bio);
 | |
| 	} else
 | |
| 		retry_on_resume(bio);
 | |
| }
 | |
| 
 | |
| static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct bio_list bios;
 | |
| 	blk_status_t error;
 | |
| 
 | |
| 	error = should_error_unserviceable_bio(pool);
 | |
| 	if (error) {
 | |
| 		cell_error_with_code(pool, cell, error);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bio_list_init(&bios);
 | |
| 	cell_release(pool, cell, &bios);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bios)))
 | |
| 		retry_on_resume(bio);
 | |
| }
 | |
| 
 | |
| static void process_discard_cell_no_passdown(struct thin_c *tc,
 | |
| 					     struct dm_bio_prison_cell *virt_cell)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need to lock the data blocks, since there's no
 | |
| 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
 | |
| 	 */
 | |
| 	m->tc = tc;
 | |
| 	m->virt_begin = virt_cell->key.block_begin;
 | |
| 	m->virt_end = virt_cell->key.block_end;
 | |
| 	m->cell = virt_cell;
 | |
| 	m->bio = virt_cell->holder;
 | |
| 
 | |
| 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
 | |
| 		pool->process_prepared_discard(m);
 | |
| }
 | |
| 
 | |
| static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
 | |
| 				 struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	int r;
 | |
| 	bool maybe_shared;
 | |
| 	struct dm_cell_key data_key;
 | |
| 	struct dm_bio_prison_cell *data_cell;
 | |
| 	struct dm_thin_new_mapping *m;
 | |
| 	dm_block_t virt_begin, virt_end, data_begin;
 | |
| 
 | |
| 	while (begin != end) {
 | |
| 		r = ensure_next_mapping(pool);
 | |
| 		if (r)
 | |
| 			/* we did our best */
 | |
| 			return;
 | |
| 
 | |
| 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
 | |
| 					      &data_begin, &maybe_shared);
 | |
| 		if (r)
 | |
| 			/*
 | |
| 			 * Silently fail, letting any mappings we've
 | |
| 			 * created complete.
 | |
| 			 */
 | |
| 			break;
 | |
| 
 | |
| 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
 | |
| 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
 | |
| 			/* contention, we'll give up with this range */
 | |
| 			begin = virt_end;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * IO may still be going to the destination block.  We must
 | |
| 		 * quiesce before we can do the removal.
 | |
| 		 */
 | |
| 		m = get_next_mapping(pool);
 | |
| 		m->tc = tc;
 | |
| 		m->maybe_shared = maybe_shared;
 | |
| 		m->virt_begin = virt_begin;
 | |
| 		m->virt_end = virt_end;
 | |
| 		m->data_block = data_begin;
 | |
| 		m->cell = data_cell;
 | |
| 		m->bio = bio;
 | |
| 
 | |
| 		/*
 | |
| 		 * The parent bio must not complete before sub discard bios are
 | |
| 		 * chained to it (see end_discard's bio_chain)!
 | |
| 		 *
 | |
| 		 * This per-mapping bi_remaining increment is paired with
 | |
| 		 * the implicit decrement that occurs via bio_endio() in
 | |
| 		 * end_discard().
 | |
| 		 */
 | |
| 		bio_inc_remaining(bio);
 | |
| 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
 | |
| 			pool->process_prepared_discard(m);
 | |
| 
 | |
| 		begin = virt_end;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
 | |
| {
 | |
| 	struct bio *bio = virt_cell->holder;
 | |
| 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 
 | |
| 	/*
 | |
| 	 * The virt_cell will only get freed once the origin bio completes.
 | |
| 	 * This means it will remain locked while all the individual
 | |
| 	 * passdown bios are in flight.
 | |
| 	 */
 | |
| 	h->cell = virt_cell;
 | |
| 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * We complete the bio now, knowing that the bi_remaining field
 | |
| 	 * will prevent completion until the sub range discards have
 | |
| 	 * completed.
 | |
| 	 */
 | |
| 	bio_endio(bio);
 | |
| }
 | |
| 
 | |
| static void process_discard_bio(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	dm_block_t begin, end;
 | |
| 	struct dm_cell_key virt_key;
 | |
| 	struct dm_bio_prison_cell *virt_cell;
 | |
| 
 | |
| 	get_bio_block_range(tc, bio, &begin, &end);
 | |
| 	if (begin == end) {
 | |
| 		/*
 | |
| 		 * The discard covers less than a block.
 | |
| 		 */
 | |
| 		bio_endio(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
 | |
| 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
 | |
| 		/*
 | |
| 		 * Potential starvation issue: We're relying on the
 | |
| 		 * fs/application being well behaved, and not trying to
 | |
| 		 * send IO to a region at the same time as discarding it.
 | |
| 		 * If they do this persistently then it's possible this
 | |
| 		 * cell will never be granted.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	tc->pool->process_discard_cell(tc, virt_cell);
 | |
| }
 | |
| 
 | |
| static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
 | |
| 			  struct dm_cell_key *key,
 | |
| 			  struct dm_thin_lookup_result *lookup_result,
 | |
| 			  struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	int r;
 | |
| 	dm_block_t data_block;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	r = alloc_data_block(tc, &data_block);
 | |
| 	switch (r) {
 | |
| 	case 0:
 | |
| 		schedule_internal_copy(tc, block, lookup_result->block,
 | |
| 				       data_block, cell, bio);
 | |
| 		break;
 | |
| 
 | |
| 	case -ENOSPC:
 | |
| 		retry_bios_on_resume(pool, cell);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
 | |
| 			    __func__, r);
 | |
| 		cell_error(pool, cell);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __remap_and_issue_shared_cell(void *context,
 | |
| 					  struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	struct remap_info *info = context;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&cell->bios))) {
 | |
| 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
 | |
| 		    bio_op(bio) == REQ_OP_DISCARD)
 | |
| 			bio_list_add(&info->defer_bios, bio);
 | |
| 		else {
 | |
| 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 
 | |
| 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
 | |
| 			inc_all_io_entry(info->tc->pool, bio);
 | |
| 			bio_list_add(&info->issue_bios, bio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void remap_and_issue_shared_cell(struct thin_c *tc,
 | |
| 					struct dm_bio_prison_cell *cell,
 | |
| 					dm_block_t block)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct remap_info info;
 | |
| 
 | |
| 	info.tc = tc;
 | |
| 	bio_list_init(&info.defer_bios);
 | |
| 	bio_list_init(&info.issue_bios);
 | |
| 
 | |
| 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
 | |
| 			   &info, cell);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&info.defer_bios)))
 | |
| 		thin_defer_bio(tc, bio);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&info.issue_bios)))
 | |
| 		remap_and_issue(tc, bio, block);
 | |
| }
 | |
| 
 | |
| static void process_shared_bio(struct thin_c *tc, struct bio *bio,
 | |
| 			       dm_block_t block,
 | |
| 			       struct dm_thin_lookup_result *lookup_result,
 | |
| 			       struct dm_bio_prison_cell *virt_cell)
 | |
| {
 | |
| 	struct dm_bio_prison_cell *data_cell;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct dm_cell_key key;
 | |
| 
 | |
| 	/*
 | |
| 	 * If cell is already occupied, then sharing is already in the process
 | |
| 	 * of being broken so we have nothing further to do here.
 | |
| 	 */
 | |
| 	build_data_key(tc->td, lookup_result->block, &key);
 | |
| 	if (bio_detain(pool, &key, bio, &data_cell)) {
 | |
| 		cell_defer_no_holder(tc, virt_cell);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
 | |
| 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
 | |
| 		cell_defer_no_holder(tc, virt_cell);
 | |
| 	} else {
 | |
| 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 
 | |
| 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
 | |
| 		inc_all_io_entry(pool, bio);
 | |
| 		remap_and_issue(tc, bio, lookup_result->block);
 | |
| 
 | |
| 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
 | |
| 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
 | |
| 			    struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	int r;
 | |
| 	dm_block_t data_block;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remap empty bios (flushes) immediately, without provisioning.
 | |
| 	 */
 | |
| 	if (!bio->bi_iter.bi_size) {
 | |
| 		inc_all_io_entry(pool, bio);
 | |
| 		cell_defer_no_holder(tc, cell);
 | |
| 
 | |
| 		remap_and_issue(tc, bio, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill read bios with zeroes and complete them immediately.
 | |
| 	 */
 | |
| 	if (bio_data_dir(bio) == READ) {
 | |
| 		zero_fill_bio(bio);
 | |
| 		cell_defer_no_holder(tc, cell);
 | |
| 		bio_endio(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	r = alloc_data_block(tc, &data_block);
 | |
| 	switch (r) {
 | |
| 	case 0:
 | |
| 		if (tc->origin_dev)
 | |
| 			schedule_external_copy(tc, block, data_block, cell, bio);
 | |
| 		else
 | |
| 			schedule_zero(tc, block, data_block, cell, bio);
 | |
| 		break;
 | |
| 
 | |
| 	case -ENOSPC:
 | |
| 		retry_bios_on_resume(pool, cell);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
 | |
| 			    __func__, r);
 | |
| 		cell_error(pool, cell);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	int r;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct bio *bio = cell->holder;
 | |
| 	dm_block_t block = get_bio_block(tc, bio);
 | |
| 	struct dm_thin_lookup_result lookup_result;
 | |
| 
 | |
| 	if (tc->requeue_mode) {
 | |
| 		cell_requeue(pool, cell);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
 | |
| 	switch (r) {
 | |
| 	case 0:
 | |
| 		if (lookup_result.shared)
 | |
| 			process_shared_bio(tc, bio, block, &lookup_result, cell);
 | |
| 		else {
 | |
| 			inc_all_io_entry(pool, bio);
 | |
| 			remap_and_issue(tc, bio, lookup_result.block);
 | |
| 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case -ENODATA:
 | |
| 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
 | |
| 			inc_all_io_entry(pool, bio);
 | |
| 			cell_defer_no_holder(tc, cell);
 | |
| 
 | |
| 			if (bio_end_sector(bio) <= tc->origin_size)
 | |
| 				remap_to_origin_and_issue(tc, bio);
 | |
| 
 | |
| 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
 | |
| 				zero_fill_bio(bio);
 | |
| 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
 | |
| 				remap_to_origin_and_issue(tc, bio);
 | |
| 
 | |
| 			} else {
 | |
| 				zero_fill_bio(bio);
 | |
| 				bio_endio(bio);
 | |
| 			}
 | |
| 		} else
 | |
| 			provision_block(tc, bio, block, cell);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
 | |
| 			    __func__, r);
 | |
| 		cell_defer_no_holder(tc, cell);
 | |
| 		bio_io_error(bio);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void process_bio(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	dm_block_t block = get_bio_block(tc, bio);
 | |
| 	struct dm_bio_prison_cell *cell;
 | |
| 	struct dm_cell_key key;
 | |
| 
 | |
| 	/*
 | |
| 	 * If cell is already occupied, then the block is already
 | |
| 	 * being provisioned so we have nothing further to do here.
 | |
| 	 */
 | |
| 	build_virtual_key(tc->td, block, &key);
 | |
| 	if (bio_detain(pool, &key, bio, &cell))
 | |
| 		return;
 | |
| 
 | |
| 	process_cell(tc, cell);
 | |
| }
 | |
| 
 | |
| static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
 | |
| 				    struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	int r;
 | |
| 	int rw = bio_data_dir(bio);
 | |
| 	dm_block_t block = get_bio_block(tc, bio);
 | |
| 	struct dm_thin_lookup_result lookup_result;
 | |
| 
 | |
| 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
 | |
| 	switch (r) {
 | |
| 	case 0:
 | |
| 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
 | |
| 			handle_unserviceable_bio(tc->pool, bio);
 | |
| 			if (cell)
 | |
| 				cell_defer_no_holder(tc, cell);
 | |
| 		} else {
 | |
| 			inc_all_io_entry(tc->pool, bio);
 | |
| 			remap_and_issue(tc, bio, lookup_result.block);
 | |
| 			if (cell)
 | |
| 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case -ENODATA:
 | |
| 		if (cell)
 | |
| 			cell_defer_no_holder(tc, cell);
 | |
| 		if (rw != READ) {
 | |
| 			handle_unserviceable_bio(tc->pool, bio);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (tc->origin_dev) {
 | |
| 			inc_all_io_entry(tc->pool, bio);
 | |
| 			remap_to_origin_and_issue(tc, bio);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		zero_fill_bio(bio);
 | |
| 		bio_endio(bio);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
 | |
| 			    __func__, r);
 | |
| 		if (cell)
 | |
| 			cell_defer_no_holder(tc, cell);
 | |
| 		bio_io_error(bio);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	__process_bio_read_only(tc, bio, NULL);
 | |
| }
 | |
| 
 | |
| static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	__process_bio_read_only(tc, cell->holder, cell);
 | |
| }
 | |
| 
 | |
| static void process_bio_success(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	bio_endio(bio);
 | |
| }
 | |
| 
 | |
| static void process_bio_fail(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	bio_io_error(bio);
 | |
| }
 | |
| 
 | |
| static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	cell_success(tc->pool, cell);
 | |
| }
 | |
| 
 | |
| static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	cell_error(tc->pool, cell);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FIXME: should we also commit due to size of transaction, measured in
 | |
|  * metadata blocks?
 | |
|  */
 | |
| static int need_commit_due_to_time(struct pool *pool)
 | |
| {
 | |
| 	return !time_in_range(jiffies, pool->last_commit_jiffies,
 | |
| 			      pool->last_commit_jiffies + COMMIT_PERIOD);
 | |
| }
 | |
| 
 | |
| #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
 | |
| #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
 | |
| 
 | |
| static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct rb_node **rbp, *parent;
 | |
| 	struct dm_thin_endio_hook *pbd;
 | |
| 	sector_t bi_sector = bio->bi_iter.bi_sector;
 | |
| 
 | |
| 	rbp = &tc->sort_bio_list.rb_node;
 | |
| 	parent = NULL;
 | |
| 	while (*rbp) {
 | |
| 		parent = *rbp;
 | |
| 		pbd = thin_pbd(parent);
 | |
| 
 | |
| 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
 | |
| 			rbp = &(*rbp)->rb_left;
 | |
| 		else
 | |
| 			rbp = &(*rbp)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 	rb_link_node(&pbd->rb_node, parent, rbp);
 | |
| 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
 | |
| }
 | |
| 
 | |
| static void __extract_sorted_bios(struct thin_c *tc)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct dm_thin_endio_hook *pbd;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
 | |
| 		pbd = thin_pbd(node);
 | |
| 		bio = thin_bio(pbd);
 | |
| 
 | |
| 		bio_list_add(&tc->deferred_bio_list, bio);
 | |
| 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
 | |
| }
 | |
| 
 | |
| static void __sort_thin_deferred_bios(struct thin_c *tc)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct bio_list bios;
 | |
| 
 | |
| 	bio_list_init(&bios);
 | |
| 	bio_list_merge(&bios, &tc->deferred_bio_list);
 | |
| 	bio_list_init(&tc->deferred_bio_list);
 | |
| 
 | |
| 	/* Sort deferred_bio_list using rb-tree */
 | |
| 	while ((bio = bio_list_pop(&bios)))
 | |
| 		__thin_bio_rb_add(tc, bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Transfer the sorted bios in sort_bio_list back to
 | |
| 	 * deferred_bio_list to allow lockless submission of
 | |
| 	 * all bios.
 | |
| 	 */
 | |
| 	__extract_sorted_bios(tc);
 | |
| }
 | |
| 
 | |
| static void process_thin_deferred_bios(struct thin_c *tc)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct bio *bio;
 | |
| 	struct bio_list bios;
 | |
| 	struct blk_plug plug;
 | |
| 	unsigned count = 0;
 | |
| 
 | |
| 	if (tc->requeue_mode) {
 | |
| 		error_thin_bio_list(tc, &tc->deferred_bio_list,
 | |
| 				BLK_STS_DM_REQUEUE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bio_list_init(&bios);
 | |
| 
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 
 | |
| 	if (bio_list_empty(&tc->deferred_bio_list)) {
 | |
| 		spin_unlock_irq(&tc->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	__sort_thin_deferred_bios(tc);
 | |
| 
 | |
| 	bio_list_merge(&bios, &tc->deferred_bio_list);
 | |
| 	bio_list_init(&tc->deferred_bio_list);
 | |
| 
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	while ((bio = bio_list_pop(&bios))) {
 | |
| 		/*
 | |
| 		 * If we've got no free new_mapping structs, and processing
 | |
| 		 * this bio might require one, we pause until there are some
 | |
| 		 * prepared mappings to process.
 | |
| 		 */
 | |
| 		if (ensure_next_mapping(pool)) {
 | |
| 			spin_lock_irq(&tc->lock);
 | |
| 			bio_list_add(&tc->deferred_bio_list, bio);
 | |
| 			bio_list_merge(&tc->deferred_bio_list, &bios);
 | |
| 			spin_unlock_irq(&tc->lock);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (bio_op(bio) == REQ_OP_DISCARD)
 | |
| 			pool->process_discard(tc, bio);
 | |
| 		else
 | |
| 			pool->process_bio(tc, bio);
 | |
| 
 | |
| 		if ((count++ & 127) == 0) {
 | |
| 			throttle_work_update(&pool->throttle);
 | |
| 			dm_pool_issue_prefetches(pool->pmd);
 | |
| 		}
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| static int cmp_cells(const void *lhs, const void *rhs)
 | |
| {
 | |
| 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
 | |
| 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
 | |
| 
 | |
| 	BUG_ON(!lhs_cell->holder);
 | |
| 	BUG_ON(!rhs_cell->holder);
 | |
| 
 | |
| 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned sort_cells(struct pool *pool, struct list_head *cells)
 | |
| {
 | |
| 	unsigned count = 0;
 | |
| 	struct dm_bio_prison_cell *cell, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
 | |
| 		if (count >= CELL_SORT_ARRAY_SIZE)
 | |
| 			break;
 | |
| 
 | |
| 		pool->cell_sort_array[count++] = cell;
 | |
| 		list_del(&cell->user_list);
 | |
| 	}
 | |
| 
 | |
| 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void process_thin_deferred_cells(struct thin_c *tc)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 	struct list_head cells;
 | |
| 	struct dm_bio_prison_cell *cell;
 | |
| 	unsigned i, j, count;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cells);
 | |
| 
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 	list_splice_init(&tc->deferred_cells, &cells);
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| 
 | |
| 	if (list_empty(&cells))
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		count = sort_cells(tc->pool, &cells);
 | |
| 
 | |
| 		for (i = 0; i < count; i++) {
 | |
| 			cell = pool->cell_sort_array[i];
 | |
| 			BUG_ON(!cell->holder);
 | |
| 
 | |
| 			/*
 | |
| 			 * If we've got no free new_mapping structs, and processing
 | |
| 			 * this bio might require one, we pause until there are some
 | |
| 			 * prepared mappings to process.
 | |
| 			 */
 | |
| 			if (ensure_next_mapping(pool)) {
 | |
| 				for (j = i; j < count; j++)
 | |
| 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
 | |
| 
 | |
| 				spin_lock_irq(&tc->lock);
 | |
| 				list_splice(&cells, &tc->deferred_cells);
 | |
| 				spin_unlock_irq(&tc->lock);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
 | |
| 				pool->process_discard_cell(tc, cell);
 | |
| 			else
 | |
| 				pool->process_cell(tc, cell);
 | |
| 		}
 | |
| 	} while (!list_empty(&cells));
 | |
| }
 | |
| 
 | |
| static void thin_get(struct thin_c *tc);
 | |
| static void thin_put(struct thin_c *tc);
 | |
| 
 | |
| /*
 | |
|  * We can't hold rcu_read_lock() around code that can block.  So we
 | |
|  * find a thin with the rcu lock held; bump a refcount; then drop
 | |
|  * the lock.
 | |
|  */
 | |
| static struct thin_c *get_first_thin(struct pool *pool)
 | |
| {
 | |
| 	struct thin_c *tc = NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!list_empty(&pool->active_thins)) {
 | |
| 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
 | |
| 		thin_get(tc);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return tc;
 | |
| }
 | |
| 
 | |
| static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
 | |
| {
 | |
| 	struct thin_c *old_tc = tc;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
 | |
| 		thin_get(tc);
 | |
| 		thin_put(old_tc);
 | |
| 		rcu_read_unlock();
 | |
| 		return tc;
 | |
| 	}
 | |
| 	thin_put(old_tc);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void process_deferred_bios(struct pool *pool)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct bio_list bios, bio_completions;
 | |
| 	struct thin_c *tc;
 | |
| 
 | |
| 	tc = get_first_thin(pool);
 | |
| 	while (tc) {
 | |
| 		process_thin_deferred_cells(tc);
 | |
| 		process_thin_deferred_bios(tc);
 | |
| 		tc = get_next_thin(pool, tc);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are any deferred flush bios, we must commit the metadata
 | |
| 	 * before issuing them or signaling their completion.
 | |
| 	 */
 | |
| 	bio_list_init(&bios);
 | |
| 	bio_list_init(&bio_completions);
 | |
| 
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	bio_list_merge(&bios, &pool->deferred_flush_bios);
 | |
| 	bio_list_init(&pool->deferred_flush_bios);
 | |
| 
 | |
| 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
 | |
| 	bio_list_init(&pool->deferred_flush_completions);
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| 
 | |
| 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
 | |
| 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
 | |
| 		return;
 | |
| 
 | |
| 	if (commit(pool)) {
 | |
| 		bio_list_merge(&bios, &bio_completions);
 | |
| 
 | |
| 		while ((bio = bio_list_pop(&bios)))
 | |
| 			bio_io_error(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 	pool->last_commit_jiffies = jiffies;
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bio_completions)))
 | |
| 		bio_endio(bio);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&bios))) {
 | |
| 		/*
 | |
| 		 * The data device was flushed as part of metadata commit,
 | |
| 		 * so complete redundant flushes immediately.
 | |
| 		 */
 | |
| 		if (bio->bi_opf & REQ_PREFLUSH)
 | |
| 			bio_endio(bio);
 | |
| 		else
 | |
| 			submit_bio_noacct(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_worker(struct work_struct *ws)
 | |
| {
 | |
| 	struct pool *pool = container_of(ws, struct pool, worker);
 | |
| 
 | |
| 	throttle_work_start(&pool->throttle);
 | |
| 	dm_pool_issue_prefetches(pool->pmd);
 | |
| 	throttle_work_update(&pool->throttle);
 | |
| 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
 | |
| 	throttle_work_update(&pool->throttle);
 | |
| 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
 | |
| 	throttle_work_update(&pool->throttle);
 | |
| 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
 | |
| 	throttle_work_update(&pool->throttle);
 | |
| 	process_deferred_bios(pool);
 | |
| 	throttle_work_complete(&pool->throttle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to commit periodically so that not too much
 | |
|  * unwritten data builds up.
 | |
|  */
 | |
| static void do_waker(struct work_struct *ws)
 | |
| {
 | |
| 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
 | |
| 	wake_worker(pool);
 | |
| 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're holding onto IO to allow userland time to react.  After the
 | |
|  * timeout either the pool will have been resized (and thus back in
 | |
|  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
 | |
|  */
 | |
| static void do_no_space_timeout(struct work_struct *ws)
 | |
| {
 | |
| 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
 | |
| 					 no_space_timeout);
 | |
| 
 | |
| 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
 | |
| 		pool->pf.error_if_no_space = true;
 | |
| 		notify_of_pool_mode_change(pool);
 | |
| 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| struct pool_work {
 | |
| 	struct work_struct worker;
 | |
| 	struct completion complete;
 | |
| };
 | |
| 
 | |
| static struct pool_work *to_pool_work(struct work_struct *ws)
 | |
| {
 | |
| 	return container_of(ws, struct pool_work, worker);
 | |
| }
 | |
| 
 | |
| static void pool_work_complete(struct pool_work *pw)
 | |
| {
 | |
| 	complete(&pw->complete);
 | |
| }
 | |
| 
 | |
| static void pool_work_wait(struct pool_work *pw, struct pool *pool,
 | |
| 			   void (*fn)(struct work_struct *))
 | |
| {
 | |
| 	INIT_WORK_ONSTACK(&pw->worker, fn);
 | |
| 	init_completion(&pw->complete);
 | |
| 	queue_work(pool->wq, &pw->worker);
 | |
| 	wait_for_completion(&pw->complete);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| struct noflush_work {
 | |
| 	struct pool_work pw;
 | |
| 	struct thin_c *tc;
 | |
| };
 | |
| 
 | |
| static struct noflush_work *to_noflush(struct work_struct *ws)
 | |
| {
 | |
| 	return container_of(to_pool_work(ws), struct noflush_work, pw);
 | |
| }
 | |
| 
 | |
| static void do_noflush_start(struct work_struct *ws)
 | |
| {
 | |
| 	struct noflush_work *w = to_noflush(ws);
 | |
| 	w->tc->requeue_mode = true;
 | |
| 	requeue_io(w->tc);
 | |
| 	pool_work_complete(&w->pw);
 | |
| }
 | |
| 
 | |
| static void do_noflush_stop(struct work_struct *ws)
 | |
| {
 | |
| 	struct noflush_work *w = to_noflush(ws);
 | |
| 	w->tc->requeue_mode = false;
 | |
| 	pool_work_complete(&w->pw);
 | |
| }
 | |
| 
 | |
| static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
 | |
| {
 | |
| 	struct noflush_work w;
 | |
| 
 | |
| 	w.tc = tc;
 | |
| 	pool_work_wait(&w.pw, tc->pool, fn);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static bool passdown_enabled(struct pool_c *pt)
 | |
| {
 | |
| 	return pt->adjusted_pf.discard_passdown;
 | |
| }
 | |
| 
 | |
| static void set_discard_callbacks(struct pool *pool)
 | |
| {
 | |
| 	struct pool_c *pt = pool->ti->private;
 | |
| 
 | |
| 	if (passdown_enabled(pt)) {
 | |
| 		pool->process_discard_cell = process_discard_cell_passdown;
 | |
| 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
 | |
| 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
 | |
| 	} else {
 | |
| 		pool->process_discard_cell = process_discard_cell_no_passdown;
 | |
| 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
 | |
| {
 | |
| 	struct pool_c *pt = pool->ti->private;
 | |
| 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
 | |
| 	enum pool_mode old_mode = get_pool_mode(pool);
 | |
| 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
 | |
| 
 | |
| 	/*
 | |
| 	 * Never allow the pool to transition to PM_WRITE mode if user
 | |
| 	 * intervention is required to verify metadata and data consistency.
 | |
| 	 */
 | |
| 	if (new_mode == PM_WRITE && needs_check) {
 | |
| 		DMERR("%s: unable to switch pool to write mode until repaired.",
 | |
| 		      dm_device_name(pool->pool_md));
 | |
| 		if (old_mode != new_mode)
 | |
| 			new_mode = old_mode;
 | |
| 		else
 | |
| 			new_mode = PM_READ_ONLY;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
 | |
| 	 * not going to recover without a thin_repair.	So we never let the
 | |
| 	 * pool move out of the old mode.
 | |
| 	 */
 | |
| 	if (old_mode == PM_FAIL)
 | |
| 		new_mode = old_mode;
 | |
| 
 | |
| 	switch (new_mode) {
 | |
| 	case PM_FAIL:
 | |
| 		dm_pool_metadata_read_only(pool->pmd);
 | |
| 		pool->process_bio = process_bio_fail;
 | |
| 		pool->process_discard = process_bio_fail;
 | |
| 		pool->process_cell = process_cell_fail;
 | |
| 		pool->process_discard_cell = process_cell_fail;
 | |
| 		pool->process_prepared_mapping = process_prepared_mapping_fail;
 | |
| 		pool->process_prepared_discard = process_prepared_discard_fail;
 | |
| 
 | |
| 		error_retry_list(pool);
 | |
| 		break;
 | |
| 
 | |
| 	case PM_OUT_OF_METADATA_SPACE:
 | |
| 	case PM_READ_ONLY:
 | |
| 		dm_pool_metadata_read_only(pool->pmd);
 | |
| 		pool->process_bio = process_bio_read_only;
 | |
| 		pool->process_discard = process_bio_success;
 | |
| 		pool->process_cell = process_cell_read_only;
 | |
| 		pool->process_discard_cell = process_cell_success;
 | |
| 		pool->process_prepared_mapping = process_prepared_mapping_fail;
 | |
| 		pool->process_prepared_discard = process_prepared_discard_success;
 | |
| 
 | |
| 		error_retry_list(pool);
 | |
| 		break;
 | |
| 
 | |
| 	case PM_OUT_OF_DATA_SPACE:
 | |
| 		/*
 | |
| 		 * Ideally we'd never hit this state; the low water mark
 | |
| 		 * would trigger userland to extend the pool before we
 | |
| 		 * completely run out of data space.  However, many small
 | |
| 		 * IOs to unprovisioned space can consume data space at an
 | |
| 		 * alarming rate.  Adjust your low water mark if you're
 | |
| 		 * frequently seeing this mode.
 | |
| 		 */
 | |
| 		pool->out_of_data_space = true;
 | |
| 		pool->process_bio = process_bio_read_only;
 | |
| 		pool->process_discard = process_discard_bio;
 | |
| 		pool->process_cell = process_cell_read_only;
 | |
| 		pool->process_prepared_mapping = process_prepared_mapping;
 | |
| 		set_discard_callbacks(pool);
 | |
| 
 | |
| 		if (!pool->pf.error_if_no_space && no_space_timeout)
 | |
| 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
 | |
| 		break;
 | |
| 
 | |
| 	case PM_WRITE:
 | |
| 		if (old_mode == PM_OUT_OF_DATA_SPACE)
 | |
| 			cancel_delayed_work_sync(&pool->no_space_timeout);
 | |
| 		pool->out_of_data_space = false;
 | |
| 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
 | |
| 		dm_pool_metadata_read_write(pool->pmd);
 | |
| 		pool->process_bio = process_bio;
 | |
| 		pool->process_discard = process_discard_bio;
 | |
| 		pool->process_cell = process_cell;
 | |
| 		pool->process_prepared_mapping = process_prepared_mapping;
 | |
| 		set_discard_callbacks(pool);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	pool->pf.mode = new_mode;
 | |
| 	/*
 | |
| 	 * The pool mode may have changed, sync it so bind_control_target()
 | |
| 	 * doesn't cause an unexpected mode transition on resume.
 | |
| 	 */
 | |
| 	pt->adjusted_pf.mode = new_mode;
 | |
| 
 | |
| 	if (old_mode != new_mode)
 | |
| 		notify_of_pool_mode_change(pool);
 | |
| }
 | |
| 
 | |
| static void abort_transaction(struct pool *pool)
 | |
| {
 | |
| 	const char *dev_name = dm_device_name(pool->pool_md);
 | |
| 
 | |
| 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
 | |
| 	if (dm_pool_abort_metadata(pool->pmd)) {
 | |
| 		DMERR("%s: failed to abort metadata transaction", dev_name);
 | |
| 		set_pool_mode(pool, PM_FAIL);
 | |
| 	}
 | |
| 
 | |
| 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
 | |
| 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 | |
| 		set_pool_mode(pool, PM_FAIL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void metadata_operation_failed(struct pool *pool, const char *op, int r)
 | |
| {
 | |
| 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
 | |
| 		    dm_device_name(pool->pool_md), op, r);
 | |
| 
 | |
| 	abort_transaction(pool);
 | |
| 	set_pool_mode(pool, PM_READ_ONLY);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Mapping functions.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Called only while mapping a thin bio to hand it over to the workqueue.
 | |
|  */
 | |
| static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 	bio_list_add(&tc->deferred_bio_list, bio);
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| 
 | |
| 	wake_worker(pool);
 | |
| }
 | |
| 
 | |
| static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	throttle_lock(&pool->throttle);
 | |
| 	thin_defer_bio(tc, bio);
 | |
| 	throttle_unlock(&pool->throttle);
 | |
| }
 | |
| 
 | |
| static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 | |
| {
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	throttle_lock(&pool->throttle);
 | |
| 	spin_lock_irq(&tc->lock);
 | |
| 	list_add_tail(&cell->user_list, &tc->deferred_cells);
 | |
| 	spin_unlock_irq(&tc->lock);
 | |
| 	throttle_unlock(&pool->throttle);
 | |
| 
 | |
| 	wake_worker(pool);
 | |
| }
 | |
| 
 | |
| static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
 | |
| {
 | |
| 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 
 | |
| 	h->tc = tc;
 | |
| 	h->shared_read_entry = NULL;
 | |
| 	h->all_io_entry = NULL;
 | |
| 	h->overwrite_mapping = NULL;
 | |
| 	h->cell = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Non-blocking function called from the thin target's map function.
 | |
|  */
 | |
| static int thin_bio_map(struct dm_target *ti, struct bio *bio)
 | |
| {
 | |
| 	int r;
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 	dm_block_t block = get_bio_block(tc, bio);
 | |
| 	struct dm_thin_device *td = tc->td;
 | |
| 	struct dm_thin_lookup_result result;
 | |
| 	struct dm_bio_prison_cell *virt_cell, *data_cell;
 | |
| 	struct dm_cell_key key;
 | |
| 
 | |
| 	thin_hook_bio(tc, bio);
 | |
| 
 | |
| 	if (tc->requeue_mode) {
 | |
| 		bio->bi_status = BLK_STS_DM_REQUEUE;
 | |
| 		bio_endio(bio);
 | |
| 		return DM_MAPIO_SUBMITTED;
 | |
| 	}
 | |
| 
 | |
| 	if (get_pool_mode(tc->pool) == PM_FAIL) {
 | |
| 		bio_io_error(bio);
 | |
| 		return DM_MAPIO_SUBMITTED;
 | |
| 	}
 | |
| 
 | |
| 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
 | |
| 		thin_defer_bio_with_throttle(tc, bio);
 | |
| 		return DM_MAPIO_SUBMITTED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We must hold the virtual cell before doing the lookup, otherwise
 | |
| 	 * there's a race with discard.
 | |
| 	 */
 | |
| 	build_virtual_key(tc->td, block, &key);
 | |
| 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
 | |
| 		return DM_MAPIO_SUBMITTED;
 | |
| 
 | |
| 	r = dm_thin_find_block(td, block, 0, &result);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that we defer readahead too.
 | |
| 	 */
 | |
| 	switch (r) {
 | |
| 	case 0:
 | |
| 		if (unlikely(result.shared)) {
 | |
| 			/*
 | |
| 			 * We have a race condition here between the
 | |
| 			 * result.shared value returned by the lookup and
 | |
| 			 * snapshot creation, which may cause new
 | |
| 			 * sharing.
 | |
| 			 *
 | |
| 			 * To avoid this always quiesce the origin before
 | |
| 			 * taking the snap.  You want to do this anyway to
 | |
| 			 * ensure a consistent application view
 | |
| 			 * (i.e. lockfs).
 | |
| 			 *
 | |
| 			 * More distant ancestors are irrelevant. The
 | |
| 			 * shared flag will be set in their case.
 | |
| 			 */
 | |
| 			thin_defer_cell(tc, virt_cell);
 | |
| 			return DM_MAPIO_SUBMITTED;
 | |
| 		}
 | |
| 
 | |
| 		build_data_key(tc->td, result.block, &key);
 | |
| 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
 | |
| 			cell_defer_no_holder(tc, virt_cell);
 | |
| 			return DM_MAPIO_SUBMITTED;
 | |
| 		}
 | |
| 
 | |
| 		inc_all_io_entry(tc->pool, bio);
 | |
| 		cell_defer_no_holder(tc, data_cell);
 | |
| 		cell_defer_no_holder(tc, virt_cell);
 | |
| 
 | |
| 		remap(tc, bio, result.block);
 | |
| 		return DM_MAPIO_REMAPPED;
 | |
| 
 | |
| 	case -ENODATA:
 | |
| 	case -EWOULDBLOCK:
 | |
| 		thin_defer_cell(tc, virt_cell);
 | |
| 		return DM_MAPIO_SUBMITTED;
 | |
| 
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * Must always call bio_io_error on failure.
 | |
| 		 * dm_thin_find_block can fail with -EINVAL if the
 | |
| 		 * pool is switched to fail-io mode.
 | |
| 		 */
 | |
| 		bio_io_error(bio);
 | |
| 		cell_defer_no_holder(tc, virt_cell);
 | |
| 		return DM_MAPIO_SUBMITTED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void requeue_bios(struct pool *pool)
 | |
| {
 | |
| 	struct thin_c *tc;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
 | |
| 		spin_lock_irq(&tc->lock);
 | |
| 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
 | |
| 		bio_list_init(&tc->retry_on_resume_list);
 | |
| 		spin_unlock_irq(&tc->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------
 | |
|  * Binding of control targets to a pool object
 | |
|  *--------------------------------------------------------------*/
 | |
| static bool data_dev_supports_discard(struct pool_c *pt)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
 | |
| 
 | |
| 	return q && blk_queue_discard(q);
 | |
| }
 | |
| 
 | |
| static bool is_factor(sector_t block_size, uint32_t n)
 | |
| {
 | |
| 	return !sector_div(block_size, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If discard_passdown was enabled verify that the data device
 | |
|  * supports discards.  Disable discard_passdown if not.
 | |
|  */
 | |
| static void disable_passdown_if_not_supported(struct pool_c *pt)
 | |
| {
 | |
| 	struct pool *pool = pt->pool;
 | |
| 	struct block_device *data_bdev = pt->data_dev->bdev;
 | |
| 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
 | |
| 	const char *reason = NULL;
 | |
| 	char buf[BDEVNAME_SIZE];
 | |
| 
 | |
| 	if (!pt->adjusted_pf.discard_passdown)
 | |
| 		return;
 | |
| 
 | |
| 	if (!data_dev_supports_discard(pt))
 | |
| 		reason = "discard unsupported";
 | |
| 
 | |
| 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
 | |
| 		reason = "max discard sectors smaller than a block";
 | |
| 
 | |
| 	if (reason) {
 | |
| 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
 | |
| 		pt->adjusted_pf.discard_passdown = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bind_control_target(struct pool *pool, struct dm_target *ti)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
 | |
| 	 */
 | |
| 	enum pool_mode old_mode = get_pool_mode(pool);
 | |
| 	enum pool_mode new_mode = pt->adjusted_pf.mode;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't change the pool's mode until set_pool_mode() below.
 | |
| 	 * Otherwise the pool's process_* function pointers may
 | |
| 	 * not match the desired pool mode.
 | |
| 	 */
 | |
| 	pt->adjusted_pf.mode = old_mode;
 | |
| 
 | |
| 	pool->ti = ti;
 | |
| 	pool->pf = pt->adjusted_pf;
 | |
| 	pool->low_water_blocks = pt->low_water_blocks;
 | |
| 
 | |
| 	set_pool_mode(pool, new_mode);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void unbind_control_target(struct pool *pool, struct dm_target *ti)
 | |
| {
 | |
| 	if (pool->ti == ti)
 | |
| 		pool->ti = NULL;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------
 | |
|  * Pool creation
 | |
|  *--------------------------------------------------------------*/
 | |
| /* Initialize pool features. */
 | |
| static void pool_features_init(struct pool_features *pf)
 | |
| {
 | |
| 	pf->mode = PM_WRITE;
 | |
| 	pf->zero_new_blocks = true;
 | |
| 	pf->discard_enabled = true;
 | |
| 	pf->discard_passdown = true;
 | |
| 	pf->error_if_no_space = false;
 | |
| }
 | |
| 
 | |
| static void __pool_destroy(struct pool *pool)
 | |
| {
 | |
| 	__pool_table_remove(pool);
 | |
| 
 | |
| 	vfree(pool->cell_sort_array);
 | |
| 	if (dm_pool_metadata_close(pool->pmd) < 0)
 | |
| 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
 | |
| 
 | |
| 	dm_bio_prison_destroy(pool->prison);
 | |
| 	dm_kcopyd_client_destroy(pool->copier);
 | |
| 
 | |
| 	if (pool->wq)
 | |
| 		destroy_workqueue(pool->wq);
 | |
| 
 | |
| 	if (pool->next_mapping)
 | |
| 		mempool_free(pool->next_mapping, &pool->mapping_pool);
 | |
| 	mempool_exit(&pool->mapping_pool);
 | |
| 	bio_uninit(&pool->flush_bio);
 | |
| 	dm_deferred_set_destroy(pool->shared_read_ds);
 | |
| 	dm_deferred_set_destroy(pool->all_io_ds);
 | |
| 	kfree(pool);
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *_new_mapping_cache;
 | |
| 
 | |
| static struct pool *pool_create(struct mapped_device *pool_md,
 | |
| 				struct block_device *metadata_dev,
 | |
| 				struct block_device *data_dev,
 | |
| 				unsigned long block_size,
 | |
| 				int read_only, char **error)
 | |
| {
 | |
| 	int r;
 | |
| 	void *err_p;
 | |
| 	struct pool *pool;
 | |
| 	struct dm_pool_metadata *pmd;
 | |
| 	bool format_device = read_only ? false : true;
 | |
| 
 | |
| 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
 | |
| 	if (IS_ERR(pmd)) {
 | |
| 		*error = "Error creating metadata object";
 | |
| 		return (struct pool *)pmd;
 | |
| 	}
 | |
| 
 | |
| 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 | |
| 	if (!pool) {
 | |
| 		*error = "Error allocating memory for pool";
 | |
| 		err_p = ERR_PTR(-ENOMEM);
 | |
| 		goto bad_pool;
 | |
| 	}
 | |
| 
 | |
| 	pool->pmd = pmd;
 | |
| 	pool->sectors_per_block = block_size;
 | |
| 	if (block_size & (block_size - 1))
 | |
| 		pool->sectors_per_block_shift = -1;
 | |
| 	else
 | |
| 		pool->sectors_per_block_shift = __ffs(block_size);
 | |
| 	pool->low_water_blocks = 0;
 | |
| 	pool_features_init(&pool->pf);
 | |
| 	pool->prison = dm_bio_prison_create();
 | |
| 	if (!pool->prison) {
 | |
| 		*error = "Error creating pool's bio prison";
 | |
| 		err_p = ERR_PTR(-ENOMEM);
 | |
| 		goto bad_prison;
 | |
| 	}
 | |
| 
 | |
| 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
 | |
| 	if (IS_ERR(pool->copier)) {
 | |
| 		r = PTR_ERR(pool->copier);
 | |
| 		*error = "Error creating pool's kcopyd client";
 | |
| 		err_p = ERR_PTR(r);
 | |
| 		goto bad_kcopyd_client;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create singlethreaded workqueue that will service all devices
 | |
| 	 * that use this metadata.
 | |
| 	 */
 | |
| 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
 | |
| 	if (!pool->wq) {
 | |
| 		*error = "Error creating pool's workqueue";
 | |
| 		err_p = ERR_PTR(-ENOMEM);
 | |
| 		goto bad_wq;
 | |
| 	}
 | |
| 
 | |
| 	throttle_init(&pool->throttle);
 | |
| 	INIT_WORK(&pool->worker, do_worker);
 | |
| 	INIT_DELAYED_WORK(&pool->waker, do_waker);
 | |
| 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
 | |
| 	spin_lock_init(&pool->lock);
 | |
| 	bio_list_init(&pool->deferred_flush_bios);
 | |
| 	bio_list_init(&pool->deferred_flush_completions);
 | |
| 	INIT_LIST_HEAD(&pool->prepared_mappings);
 | |
| 	INIT_LIST_HEAD(&pool->prepared_discards);
 | |
| 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
 | |
| 	INIT_LIST_HEAD(&pool->active_thins);
 | |
| 	pool->low_water_triggered = false;
 | |
| 	pool->suspended = true;
 | |
| 	pool->out_of_data_space = false;
 | |
| 	bio_init(&pool->flush_bio, NULL, 0);
 | |
| 
 | |
| 	pool->shared_read_ds = dm_deferred_set_create();
 | |
| 	if (!pool->shared_read_ds) {
 | |
| 		*error = "Error creating pool's shared read deferred set";
 | |
| 		err_p = ERR_PTR(-ENOMEM);
 | |
| 		goto bad_shared_read_ds;
 | |
| 	}
 | |
| 
 | |
| 	pool->all_io_ds = dm_deferred_set_create();
 | |
| 	if (!pool->all_io_ds) {
 | |
| 		*error = "Error creating pool's all io deferred set";
 | |
| 		err_p = ERR_PTR(-ENOMEM);
 | |
| 		goto bad_all_io_ds;
 | |
| 	}
 | |
| 
 | |
| 	pool->next_mapping = NULL;
 | |
| 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
 | |
| 				   _new_mapping_cache);
 | |
| 	if (r) {
 | |
| 		*error = "Error creating pool's mapping mempool";
 | |
| 		err_p = ERR_PTR(r);
 | |
| 		goto bad_mapping_pool;
 | |
| 	}
 | |
| 
 | |
| 	pool->cell_sort_array =
 | |
| 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
 | |
| 				   sizeof(*pool->cell_sort_array)));
 | |
| 	if (!pool->cell_sort_array) {
 | |
| 		*error = "Error allocating cell sort array";
 | |
| 		err_p = ERR_PTR(-ENOMEM);
 | |
| 		goto bad_sort_array;
 | |
| 	}
 | |
| 
 | |
| 	pool->ref_count = 1;
 | |
| 	pool->last_commit_jiffies = jiffies;
 | |
| 	pool->pool_md = pool_md;
 | |
| 	pool->md_dev = metadata_dev;
 | |
| 	pool->data_dev = data_dev;
 | |
| 	__pool_table_insert(pool);
 | |
| 
 | |
| 	return pool;
 | |
| 
 | |
| bad_sort_array:
 | |
| 	mempool_exit(&pool->mapping_pool);
 | |
| bad_mapping_pool:
 | |
| 	dm_deferred_set_destroy(pool->all_io_ds);
 | |
| bad_all_io_ds:
 | |
| 	dm_deferred_set_destroy(pool->shared_read_ds);
 | |
| bad_shared_read_ds:
 | |
| 	destroy_workqueue(pool->wq);
 | |
| bad_wq:
 | |
| 	dm_kcopyd_client_destroy(pool->copier);
 | |
| bad_kcopyd_client:
 | |
| 	dm_bio_prison_destroy(pool->prison);
 | |
| bad_prison:
 | |
| 	kfree(pool);
 | |
| bad_pool:
 | |
| 	if (dm_pool_metadata_close(pmd))
 | |
| 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
 | |
| 
 | |
| 	return err_p;
 | |
| }
 | |
| 
 | |
| static void __pool_inc(struct pool *pool)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 | |
| 	pool->ref_count++;
 | |
| }
 | |
| 
 | |
| static void __pool_dec(struct pool *pool)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 | |
| 	BUG_ON(!pool->ref_count);
 | |
| 	if (!--pool->ref_count)
 | |
| 		__pool_destroy(pool);
 | |
| }
 | |
| 
 | |
| static struct pool *__pool_find(struct mapped_device *pool_md,
 | |
| 				struct block_device *metadata_dev,
 | |
| 				struct block_device *data_dev,
 | |
| 				unsigned long block_size, int read_only,
 | |
| 				char **error, int *created)
 | |
| {
 | |
| 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
 | |
| 
 | |
| 	if (pool) {
 | |
| 		if (pool->pool_md != pool_md) {
 | |
| 			*error = "metadata device already in use by a pool";
 | |
| 			return ERR_PTR(-EBUSY);
 | |
| 		}
 | |
| 		if (pool->data_dev != data_dev) {
 | |
| 			*error = "data device already in use by a pool";
 | |
| 			return ERR_PTR(-EBUSY);
 | |
| 		}
 | |
| 		__pool_inc(pool);
 | |
| 
 | |
| 	} else {
 | |
| 		pool = __pool_table_lookup(pool_md);
 | |
| 		if (pool) {
 | |
| 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
 | |
| 				*error = "different pool cannot replace a pool";
 | |
| 				return ERR_PTR(-EINVAL);
 | |
| 			}
 | |
| 			__pool_inc(pool);
 | |
| 
 | |
| 		} else {
 | |
| 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
 | |
| 			*created = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return pool;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------
 | |
|  * Pool target methods
 | |
|  *--------------------------------------------------------------*/
 | |
| static void pool_dtr(struct dm_target *ti)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 
 | |
| 	mutex_lock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	unbind_control_target(pt->pool, ti);
 | |
| 	__pool_dec(pt->pool);
 | |
| 	dm_put_device(ti, pt->metadata_dev);
 | |
| 	dm_put_device(ti, pt->data_dev);
 | |
| 	kfree(pt);
 | |
| 
 | |
| 	mutex_unlock(&dm_thin_pool_table.mutex);
 | |
| }
 | |
| 
 | |
| static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
 | |
| 			       struct dm_target *ti)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned argc;
 | |
| 	const char *arg_name;
 | |
| 
 | |
| 	static const struct dm_arg _args[] = {
 | |
| 		{0, 4, "Invalid number of pool feature arguments"},
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * No feature arguments supplied.
 | |
| 	 */
 | |
| 	if (!as->argc)
 | |
| 		return 0;
 | |
| 
 | |
| 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
 | |
| 	if (r)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	while (argc && !r) {
 | |
| 		arg_name = dm_shift_arg(as);
 | |
| 		argc--;
 | |
| 
 | |
| 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
 | |
| 			pf->zero_new_blocks = false;
 | |
| 
 | |
| 		else if (!strcasecmp(arg_name, "ignore_discard"))
 | |
| 			pf->discard_enabled = false;
 | |
| 
 | |
| 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
 | |
| 			pf->discard_passdown = false;
 | |
| 
 | |
| 		else if (!strcasecmp(arg_name, "read_only"))
 | |
| 			pf->mode = PM_READ_ONLY;
 | |
| 
 | |
| 		else if (!strcasecmp(arg_name, "error_if_no_space"))
 | |
| 			pf->error_if_no_space = true;
 | |
| 
 | |
| 		else {
 | |
| 			ti->error = "Unrecognised pool feature requested";
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void metadata_low_callback(void *context)
 | |
| {
 | |
| 	struct pool *pool = context;
 | |
| 
 | |
| 	DMWARN("%s: reached low water mark for metadata device: sending event.",
 | |
| 	       dm_device_name(pool->pool_md));
 | |
| 
 | |
| 	dm_table_event(pool->ti->table);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to flush the data device **before** committing the metadata.
 | |
|  *
 | |
|  * This ensures that the data blocks of any newly inserted mappings are
 | |
|  * properly written to non-volatile storage and won't be lost in case of a
 | |
|  * crash.
 | |
|  *
 | |
|  * Failure to do so can result in data corruption in the case of internal or
 | |
|  * external snapshots and in the case of newly provisioned blocks, when block
 | |
|  * zeroing is enabled.
 | |
|  */
 | |
| static int metadata_pre_commit_callback(void *context)
 | |
| {
 | |
| 	struct pool *pool = context;
 | |
| 	struct bio *flush_bio = &pool->flush_bio;
 | |
| 
 | |
| 	bio_reset(flush_bio);
 | |
| 	bio_set_dev(flush_bio, pool->data_dev);
 | |
| 	flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 | |
| 
 | |
| 	return submit_bio_wait(flush_bio);
 | |
| }
 | |
| 
 | |
| static sector_t get_dev_size(struct block_device *bdev)
 | |
| {
 | |
| 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 | |
| }
 | |
| 
 | |
| static void warn_if_metadata_device_too_big(struct block_device *bdev)
 | |
| {
 | |
| 	sector_t metadata_dev_size = get_dev_size(bdev);
 | |
| 	char buffer[BDEVNAME_SIZE];
 | |
| 
 | |
| 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
 | |
| 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
 | |
| 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
 | |
| }
 | |
| 
 | |
| static sector_t get_metadata_dev_size(struct block_device *bdev)
 | |
| {
 | |
| 	sector_t metadata_dev_size = get_dev_size(bdev);
 | |
| 
 | |
| 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
 | |
| 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
 | |
| 
 | |
| 	return metadata_dev_size;
 | |
| }
 | |
| 
 | |
| static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
 | |
| {
 | |
| 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
 | |
| 
 | |
| 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
 | |
| 
 | |
| 	return metadata_dev_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a metadata threshold is crossed a dm event is triggered, and
 | |
|  * userland should respond by growing the metadata device.  We could let
 | |
|  * userland set the threshold, like we do with the data threshold, but I'm
 | |
|  * not sure they know enough to do this well.
 | |
|  */
 | |
| static dm_block_t calc_metadata_threshold(struct pool_c *pt)
 | |
| {
 | |
| 	/*
 | |
| 	 * 4M is ample for all ops with the possible exception of thin
 | |
| 	 * device deletion which is harmless if it fails (just retry the
 | |
| 	 * delete after you've grown the device).
 | |
| 	 */
 | |
| 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
 | |
| 	return min((dm_block_t)1024ULL /* 4M */, quarter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * thin-pool <metadata dev> <data dev>
 | |
|  *	     <data block size (sectors)>
 | |
|  *	     <low water mark (blocks)>
 | |
|  *	     [<#feature args> [<arg>]*]
 | |
|  *
 | |
|  * Optional feature arguments are:
 | |
|  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
 | |
|  *	     ignore_discard: disable discard
 | |
|  *	     no_discard_passdown: don't pass discards down to the data device
 | |
|  *	     read_only: Don't allow any changes to be made to the pool metadata.
 | |
|  *	     error_if_no_space: error IOs, instead of queueing, if no space.
 | |
|  */
 | |
| static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
 | |
| {
 | |
| 	int r, pool_created = 0;
 | |
| 	struct pool_c *pt;
 | |
| 	struct pool *pool;
 | |
| 	struct pool_features pf;
 | |
| 	struct dm_arg_set as;
 | |
| 	struct dm_dev *data_dev;
 | |
| 	unsigned long block_size;
 | |
| 	dm_block_t low_water_blocks;
 | |
| 	struct dm_dev *metadata_dev;
 | |
| 	fmode_t metadata_mode;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME Remove validation from scope of lock.
 | |
| 	 */
 | |
| 	mutex_lock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	if (argc < 4) {
 | |
| 		ti->error = "Invalid argument count";
 | |
| 		r = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	as.argc = argc;
 | |
| 	as.argv = argv;
 | |
| 
 | |
| 	/* make sure metadata and data are different devices */
 | |
| 	if (!strcmp(argv[0], argv[1])) {
 | |
| 		ti->error = "Error setting metadata or data device";
 | |
| 		r = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set default pool features.
 | |
| 	 */
 | |
| 	pool_features_init(&pf);
 | |
| 
 | |
| 	dm_consume_args(&as, 4);
 | |
| 	r = parse_pool_features(&as, &pf, ti);
 | |
| 	if (r)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
 | |
| 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
 | |
| 	if (r) {
 | |
| 		ti->error = "Error opening metadata block device";
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	warn_if_metadata_device_too_big(metadata_dev->bdev);
 | |
| 
 | |
| 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
 | |
| 	if (r) {
 | |
| 		ti->error = "Error getting data device";
 | |
| 		goto out_metadata;
 | |
| 	}
 | |
| 
 | |
| 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
 | |
| 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
 | |
| 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
 | |
| 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
 | |
| 		ti->error = "Invalid block size";
 | |
| 		r = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
 | |
| 		ti->error = "Invalid low water mark";
 | |
| 		r = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
 | |
| 	if (!pt) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
 | |
| 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
 | |
| 	if (IS_ERR(pool)) {
 | |
| 		r = PTR_ERR(pool);
 | |
| 		goto out_free_pt;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 'pool_created' reflects whether this is the first table load.
 | |
| 	 * Top level discard support is not allowed to be changed after
 | |
| 	 * initial load.  This would require a pool reload to trigger thin
 | |
| 	 * device changes.
 | |
| 	 */
 | |
| 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
 | |
| 		ti->error = "Discard support cannot be disabled once enabled";
 | |
| 		r = -EINVAL;
 | |
| 		goto out_flags_changed;
 | |
| 	}
 | |
| 
 | |
| 	pt->pool = pool;
 | |
| 	pt->ti = ti;
 | |
| 	pt->metadata_dev = metadata_dev;
 | |
| 	pt->data_dev = data_dev;
 | |
| 	pt->low_water_blocks = low_water_blocks;
 | |
| 	pt->adjusted_pf = pt->requested_pf = pf;
 | |
| 	ti->num_flush_bios = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only need to enable discards if the pool should pass
 | |
| 	 * them down to the data device.  The thin device's discard
 | |
| 	 * processing will cause mappings to be removed from the btree.
 | |
| 	 */
 | |
| 	if (pf.discard_enabled && pf.discard_passdown) {
 | |
| 		ti->num_discard_bios = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Setting 'discards_supported' circumvents the normal
 | |
| 		 * stacking of discard limits (this keeps the pool and
 | |
| 		 * thin devices' discard limits consistent).
 | |
| 		 */
 | |
| 		ti->discards_supported = true;
 | |
| 	}
 | |
| 	ti->private = pt;
 | |
| 
 | |
| 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
 | |
| 						calc_metadata_threshold(pt),
 | |
| 						metadata_low_callback,
 | |
| 						pool);
 | |
| 	if (r)
 | |
| 		goto out_flags_changed;
 | |
| 
 | |
| 	dm_pool_register_pre_commit_callback(pool->pmd,
 | |
| 					     metadata_pre_commit_callback, pool);
 | |
| 
 | |
| 	mutex_unlock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_flags_changed:
 | |
| 	__pool_dec(pool);
 | |
| out_free_pt:
 | |
| 	kfree(pt);
 | |
| out:
 | |
| 	dm_put_device(ti, data_dev);
 | |
| out_metadata:
 | |
| 	dm_put_device(ti, metadata_dev);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int pool_map(struct dm_target *ti, struct bio *bio)
 | |
| {
 | |
| 	int r;
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	/*
 | |
| 	 * As this is a singleton target, ti->begin is always zero.
 | |
| 	 */
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	bio_set_dev(bio, pt->data_dev->bdev);
 | |
| 	r = DM_MAPIO_REMAPPED;
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
 | |
| {
 | |
| 	int r;
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 	sector_t data_size = ti->len;
 | |
| 	dm_block_t sb_data_size;
 | |
| 
 | |
| 	*need_commit = false;
 | |
| 
 | |
| 	(void) sector_div(data_size, pool->sectors_per_block);
 | |
| 
 | |
| 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
 | |
| 	if (r) {
 | |
| 		DMERR("%s: failed to retrieve data device size",
 | |
| 		      dm_device_name(pool->pool_md));
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	if (data_size < sb_data_size) {
 | |
| 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
 | |
| 		      dm_device_name(pool->pool_md),
 | |
| 		      (unsigned long long)data_size, sb_data_size);
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	} else if (data_size > sb_data_size) {
 | |
| 		if (dm_pool_metadata_needs_check(pool->pmd)) {
 | |
| 			DMERR("%s: unable to grow the data device until repaired.",
 | |
| 			      dm_device_name(pool->pool_md));
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (sb_data_size)
 | |
| 			DMINFO("%s: growing the data device from %llu to %llu blocks",
 | |
| 			       dm_device_name(pool->pool_md),
 | |
| 			       sb_data_size, (unsigned long long)data_size);
 | |
| 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
 | |
| 		if (r) {
 | |
| 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		*need_commit = true;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
 | |
| {
 | |
| 	int r;
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
 | |
| 
 | |
| 	*need_commit = false;
 | |
| 
 | |
| 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
 | |
| 
 | |
| 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
 | |
| 	if (r) {
 | |
| 		DMERR("%s: failed to retrieve metadata device size",
 | |
| 		      dm_device_name(pool->pool_md));
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	if (metadata_dev_size < sb_metadata_dev_size) {
 | |
| 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
 | |
| 		      dm_device_name(pool->pool_md),
 | |
| 		      metadata_dev_size, sb_metadata_dev_size);
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	} else if (metadata_dev_size > sb_metadata_dev_size) {
 | |
| 		if (dm_pool_metadata_needs_check(pool->pmd)) {
 | |
| 			DMERR("%s: unable to grow the metadata device until repaired.",
 | |
| 			      dm_device_name(pool->pool_md));
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		warn_if_metadata_device_too_big(pool->md_dev);
 | |
| 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
 | |
| 		       dm_device_name(pool->pool_md),
 | |
| 		       sb_metadata_dev_size, metadata_dev_size);
 | |
| 
 | |
| 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
 | |
| 			set_pool_mode(pool, PM_WRITE);
 | |
| 
 | |
| 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
 | |
| 		if (r) {
 | |
| 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		*need_commit = true;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieves the number of blocks of the data device from
 | |
|  * the superblock and compares it to the actual device size,
 | |
|  * thus resizing the data device in case it has grown.
 | |
|  *
 | |
|  * This both copes with opening preallocated data devices in the ctr
 | |
|  * being followed by a resume
 | |
|  * -and-
 | |
|  * calling the resume method individually after userspace has
 | |
|  * grown the data device in reaction to a table event.
 | |
|  */
 | |
| static int pool_preresume(struct dm_target *ti)
 | |
| {
 | |
| 	int r;
 | |
| 	bool need_commit1, need_commit2;
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	/*
 | |
| 	 * Take control of the pool object.
 | |
| 	 */
 | |
| 	r = bind_control_target(pool, ti);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = maybe_resize_data_dev(ti, &need_commit1);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = maybe_resize_metadata_dev(ti, &need_commit2);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (need_commit1 || need_commit2)
 | |
| 		(void) commit(pool);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pool_suspend_active_thins(struct pool *pool)
 | |
| {
 | |
| 	struct thin_c *tc;
 | |
| 
 | |
| 	/* Suspend all active thin devices */
 | |
| 	tc = get_first_thin(pool);
 | |
| 	while (tc) {
 | |
| 		dm_internal_suspend_noflush(tc->thin_md);
 | |
| 		tc = get_next_thin(pool, tc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pool_resume_active_thins(struct pool *pool)
 | |
| {
 | |
| 	struct thin_c *tc;
 | |
| 
 | |
| 	/* Resume all active thin devices */
 | |
| 	tc = get_first_thin(pool);
 | |
| 	while (tc) {
 | |
| 		dm_internal_resume(tc->thin_md);
 | |
| 		tc = get_next_thin(pool, tc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pool_resume(struct dm_target *ti)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must requeue active_thins' bios and then resume
 | |
| 	 * active_thins _before_ clearing 'suspend' flag.
 | |
| 	 */
 | |
| 	requeue_bios(pool);
 | |
| 	pool_resume_active_thins(pool);
 | |
| 
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	pool->low_water_triggered = false;
 | |
| 	pool->suspended = false;
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| 
 | |
| 	do_waker(&pool->waker.work);
 | |
| }
 | |
| 
 | |
| static void pool_presuspend(struct dm_target *ti)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	pool->suspended = true;
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| 
 | |
| 	pool_suspend_active_thins(pool);
 | |
| }
 | |
| 
 | |
| static void pool_presuspend_undo(struct dm_target *ti)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	pool_resume_active_thins(pool);
 | |
| 
 | |
| 	spin_lock_irq(&pool->lock);
 | |
| 	pool->suspended = false;
 | |
| 	spin_unlock_irq(&pool->lock);
 | |
| }
 | |
| 
 | |
| static void pool_postsuspend(struct dm_target *ti)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	cancel_delayed_work_sync(&pool->waker);
 | |
| 	cancel_delayed_work_sync(&pool->no_space_timeout);
 | |
| 	flush_workqueue(pool->wq);
 | |
| 	(void) commit(pool);
 | |
| }
 | |
| 
 | |
| static int check_arg_count(unsigned argc, unsigned args_required)
 | |
| {
 | |
| 	if (argc != args_required) {
 | |
| 		DMWARN("Message received with %u arguments instead of %u.",
 | |
| 		       argc, args_required);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
 | |
| {
 | |
| 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
 | |
| 	    *dev_id <= MAX_DEV_ID)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (warning)
 | |
| 		DMWARN("Message received with invalid device id: %s", arg);
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
 | |
| {
 | |
| 	dm_thin_id dev_id;
 | |
| 	int r;
 | |
| 
 | |
| 	r = check_arg_count(argc, 2);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = read_dev_id(argv[1], &dev_id, 1);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = dm_pool_create_thin(pool->pmd, dev_id);
 | |
| 	if (r) {
 | |
| 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
 | |
| 		       argv[1]);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
 | |
| {
 | |
| 	dm_thin_id dev_id;
 | |
| 	dm_thin_id origin_dev_id;
 | |
| 	int r;
 | |
| 
 | |
| 	r = check_arg_count(argc, 3);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = read_dev_id(argv[1], &dev_id, 1);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = read_dev_id(argv[2], &origin_dev_id, 1);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
 | |
| 	if (r) {
 | |
| 		DMWARN("Creation of new snapshot %s of device %s failed.",
 | |
| 		       argv[1], argv[2]);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
 | |
| {
 | |
| 	dm_thin_id dev_id;
 | |
| 	int r;
 | |
| 
 | |
| 	r = check_arg_count(argc, 2);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = read_dev_id(argv[1], &dev_id, 1);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
 | |
| 	if (r)
 | |
| 		DMWARN("Deletion of thin device %s failed.", argv[1]);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
 | |
| {
 | |
| 	dm_thin_id old_id, new_id;
 | |
| 	int r;
 | |
| 
 | |
| 	r = check_arg_count(argc, 3);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
 | |
| 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
 | |
| 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
 | |
| 	if (r) {
 | |
| 		DMWARN("Failed to change transaction id from %s to %s.",
 | |
| 		       argv[1], argv[2]);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = check_arg_count(argc, 1);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	(void) commit(pool);
 | |
| 
 | |
| 	r = dm_pool_reserve_metadata_snap(pool->pmd);
 | |
| 	if (r)
 | |
| 		DMWARN("reserve_metadata_snap message failed.");
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = check_arg_count(argc, 1);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = dm_pool_release_metadata_snap(pool->pmd);
 | |
| 	if (r)
 | |
| 		DMWARN("release_metadata_snap message failed.");
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Messages supported:
 | |
|  *   create_thin	<dev_id>
 | |
|  *   create_snap	<dev_id> <origin_id>
 | |
|  *   delete		<dev_id>
 | |
|  *   set_transaction_id <current_trans_id> <new_trans_id>
 | |
|  *   reserve_metadata_snap
 | |
|  *   release_metadata_snap
 | |
|  */
 | |
| static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
 | |
| 			char *result, unsigned maxlen)
 | |
| {
 | |
| 	int r = -EINVAL;
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
 | |
| 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
 | |
| 		      dm_device_name(pool->pool_md));
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (!strcasecmp(argv[0], "create_thin"))
 | |
| 		r = process_create_thin_mesg(argc, argv, pool);
 | |
| 
 | |
| 	else if (!strcasecmp(argv[0], "create_snap"))
 | |
| 		r = process_create_snap_mesg(argc, argv, pool);
 | |
| 
 | |
| 	else if (!strcasecmp(argv[0], "delete"))
 | |
| 		r = process_delete_mesg(argc, argv, pool);
 | |
| 
 | |
| 	else if (!strcasecmp(argv[0], "set_transaction_id"))
 | |
| 		r = process_set_transaction_id_mesg(argc, argv, pool);
 | |
| 
 | |
| 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
 | |
| 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
 | |
| 
 | |
| 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
 | |
| 		r = process_release_metadata_snap_mesg(argc, argv, pool);
 | |
| 
 | |
| 	else
 | |
| 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
 | |
| 
 | |
| 	if (!r)
 | |
| 		(void) commit(pool);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void emit_flags(struct pool_features *pf, char *result,
 | |
| 		       unsigned sz, unsigned maxlen)
 | |
| {
 | |
| 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
 | |
| 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
 | |
| 		pf->error_if_no_space;
 | |
| 	DMEMIT("%u ", count);
 | |
| 
 | |
| 	if (!pf->zero_new_blocks)
 | |
| 		DMEMIT("skip_block_zeroing ");
 | |
| 
 | |
| 	if (!pf->discard_enabled)
 | |
| 		DMEMIT("ignore_discard ");
 | |
| 
 | |
| 	if (!pf->discard_passdown)
 | |
| 		DMEMIT("no_discard_passdown ");
 | |
| 
 | |
| 	if (pf->mode == PM_READ_ONLY)
 | |
| 		DMEMIT("read_only ");
 | |
| 
 | |
| 	if (pf->error_if_no_space)
 | |
| 		DMEMIT("error_if_no_space ");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Status line is:
 | |
|  *    <transaction id> <used metadata sectors>/<total metadata sectors>
 | |
|  *    <used data sectors>/<total data sectors> <held metadata root>
 | |
|  *    <pool mode> <discard config> <no space config> <needs_check>
 | |
|  */
 | |
| static void pool_status(struct dm_target *ti, status_type_t type,
 | |
| 			unsigned status_flags, char *result, unsigned maxlen)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned sz = 0;
 | |
| 	uint64_t transaction_id;
 | |
| 	dm_block_t nr_free_blocks_data;
 | |
| 	dm_block_t nr_free_blocks_metadata;
 | |
| 	dm_block_t nr_blocks_data;
 | |
| 	dm_block_t nr_blocks_metadata;
 | |
| 	dm_block_t held_root;
 | |
| 	enum pool_mode mode;
 | |
| 	char buf[BDEVNAME_SIZE];
 | |
| 	char buf2[BDEVNAME_SIZE];
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case STATUSTYPE_INFO:
 | |
| 		if (get_pool_mode(pool) == PM_FAIL) {
 | |
| 			DMEMIT("Fail");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Commit to ensure statistics aren't out-of-date */
 | |
| 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
 | |
| 			(void) commit(pool);
 | |
| 
 | |
| 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
 | |
| 			      dm_device_name(pool->pool_md), r);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
 | |
| 			      dm_device_name(pool->pool_md), r);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
 | |
| 			      dm_device_name(pool->pool_md), r);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: dm_pool_get_free_block_count returned %d",
 | |
| 			      dm_device_name(pool->pool_md), r);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
 | |
| 			      dm_device_name(pool->pool_md), r);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
 | |
| 			      dm_device_name(pool->pool_md), r);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		DMEMIT("%llu %llu/%llu %llu/%llu ",
 | |
| 		       (unsigned long long)transaction_id,
 | |
| 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
 | |
| 		       (unsigned long long)nr_blocks_metadata,
 | |
| 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
 | |
| 		       (unsigned long long)nr_blocks_data);
 | |
| 
 | |
| 		if (held_root)
 | |
| 			DMEMIT("%llu ", held_root);
 | |
| 		else
 | |
| 			DMEMIT("- ");
 | |
| 
 | |
| 		mode = get_pool_mode(pool);
 | |
| 		if (mode == PM_OUT_OF_DATA_SPACE)
 | |
| 			DMEMIT("out_of_data_space ");
 | |
| 		else if (is_read_only_pool_mode(mode))
 | |
| 			DMEMIT("ro ");
 | |
| 		else
 | |
| 			DMEMIT("rw ");
 | |
| 
 | |
| 		if (!pool->pf.discard_enabled)
 | |
| 			DMEMIT("ignore_discard ");
 | |
| 		else if (pool->pf.discard_passdown)
 | |
| 			DMEMIT("discard_passdown ");
 | |
| 		else
 | |
| 			DMEMIT("no_discard_passdown ");
 | |
| 
 | |
| 		if (pool->pf.error_if_no_space)
 | |
| 			DMEMIT("error_if_no_space ");
 | |
| 		else
 | |
| 			DMEMIT("queue_if_no_space ");
 | |
| 
 | |
| 		if (dm_pool_metadata_needs_check(pool->pmd))
 | |
| 			DMEMIT("needs_check ");
 | |
| 		else
 | |
| 			DMEMIT("- ");
 | |
| 
 | |
| 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case STATUSTYPE_TABLE:
 | |
| 		DMEMIT("%s %s %lu %llu ",
 | |
| 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
 | |
| 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
 | |
| 		       (unsigned long)pool->sectors_per_block,
 | |
| 		       (unsigned long long)pt->low_water_blocks);
 | |
| 		emit_flags(&pt->requested_pf, result, sz, maxlen);
 | |
| 		break;
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	DMEMIT("Error");
 | |
| }
 | |
| 
 | |
| static int pool_iterate_devices(struct dm_target *ti,
 | |
| 				iterate_devices_callout_fn fn, void *data)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 
 | |
| 	return fn(ti, pt->data_dev, 0, ti->len, data);
 | |
| }
 | |
| 
 | |
| static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
 | |
| {
 | |
| 	struct pool_c *pt = ti->private;
 | |
| 	struct pool *pool = pt->pool;
 | |
| 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
 | |
| 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
 | |
| 	 * This is especially beneficial when the pool's data device is a RAID
 | |
| 	 * device that has a full stripe width that matches pool->sectors_per_block
 | |
| 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
 | |
| 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
 | |
| 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
 | |
| 	 */
 | |
| 	if (limits->max_sectors < pool->sectors_per_block) {
 | |
| 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
 | |
| 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
 | |
| 				limits->max_sectors--;
 | |
| 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the system-determined stacked limits are compatible with the
 | |
| 	 * pool's blocksize (io_opt is a factor) do not override them.
 | |
| 	 */
 | |
| 	if (io_opt_sectors < pool->sectors_per_block ||
 | |
| 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
 | |
| 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
 | |
| 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
 | |
| 		else
 | |
| 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
 | |
| 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * pt->adjusted_pf is a staging area for the actual features to use.
 | |
| 	 * They get transferred to the live pool in bind_control_target()
 | |
| 	 * called from pool_preresume().
 | |
| 	 */
 | |
| 	if (!pt->adjusted_pf.discard_enabled) {
 | |
| 		/*
 | |
| 		 * Must explicitly disallow stacking discard limits otherwise the
 | |
| 		 * block layer will stack them if pool's data device has support.
 | |
| 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
 | |
| 		 * user to see that, so make sure to set all discard limits to 0.
 | |
| 		 */
 | |
| 		limits->discard_granularity = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	disable_passdown_if_not_supported(pt);
 | |
| 
 | |
| 	/*
 | |
| 	 * The pool uses the same discard limits as the underlying data
 | |
| 	 * device.  DM core has already set this up.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static struct target_type pool_target = {
 | |
| 	.name = "thin-pool",
 | |
| 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
 | |
| 		    DM_TARGET_IMMUTABLE,
 | |
| 	.version = {1, 22, 0},
 | |
| 	.module = THIS_MODULE,
 | |
| 	.ctr = pool_ctr,
 | |
| 	.dtr = pool_dtr,
 | |
| 	.map = pool_map,
 | |
| 	.presuspend = pool_presuspend,
 | |
| 	.presuspend_undo = pool_presuspend_undo,
 | |
| 	.postsuspend = pool_postsuspend,
 | |
| 	.preresume = pool_preresume,
 | |
| 	.resume = pool_resume,
 | |
| 	.message = pool_message,
 | |
| 	.status = pool_status,
 | |
| 	.iterate_devices = pool_iterate_devices,
 | |
| 	.io_hints = pool_io_hints,
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------
 | |
|  * Thin target methods
 | |
|  *--------------------------------------------------------------*/
 | |
| static void thin_get(struct thin_c *tc)
 | |
| {
 | |
| 	refcount_inc(&tc->refcount);
 | |
| }
 | |
| 
 | |
| static void thin_put(struct thin_c *tc)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&tc->refcount))
 | |
| 		complete(&tc->can_destroy);
 | |
| }
 | |
| 
 | |
| static void thin_dtr(struct dm_target *ti)
 | |
| {
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 
 | |
| 	spin_lock_irq(&tc->pool->lock);
 | |
| 	list_del_rcu(&tc->list);
 | |
| 	spin_unlock_irq(&tc->pool->lock);
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	thin_put(tc);
 | |
| 	wait_for_completion(&tc->can_destroy);
 | |
| 
 | |
| 	mutex_lock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	__pool_dec(tc->pool);
 | |
| 	dm_pool_close_thin_device(tc->td);
 | |
| 	dm_put_device(ti, tc->pool_dev);
 | |
| 	if (tc->origin_dev)
 | |
| 		dm_put_device(ti, tc->origin_dev);
 | |
| 	kfree(tc);
 | |
| 
 | |
| 	mutex_unlock(&dm_thin_pool_table.mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thin target parameters:
 | |
|  *
 | |
|  * <pool_dev> <dev_id> [origin_dev]
 | |
|  *
 | |
|  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
 | |
|  * dev_id: the internal device identifier
 | |
|  * origin_dev: a device external to the pool that should act as the origin
 | |
|  *
 | |
|  * If the pool device has discards disabled, they get disabled for the thin
 | |
|  * device as well.
 | |
|  */
 | |
| static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
 | |
| {
 | |
| 	int r;
 | |
| 	struct thin_c *tc;
 | |
| 	struct dm_dev *pool_dev, *origin_dev;
 | |
| 	struct mapped_device *pool_md;
 | |
| 
 | |
| 	mutex_lock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	if (argc != 2 && argc != 3) {
 | |
| 		ti->error = "Invalid argument count";
 | |
| 		r = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
 | |
| 	if (!tc) {
 | |
| 		ti->error = "Out of memory";
 | |
| 		r = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	tc->thin_md = dm_table_get_md(ti->table);
 | |
| 	spin_lock_init(&tc->lock);
 | |
| 	INIT_LIST_HEAD(&tc->deferred_cells);
 | |
| 	bio_list_init(&tc->deferred_bio_list);
 | |
| 	bio_list_init(&tc->retry_on_resume_list);
 | |
| 	tc->sort_bio_list = RB_ROOT;
 | |
| 
 | |
| 	if (argc == 3) {
 | |
| 		if (!strcmp(argv[0], argv[2])) {
 | |
| 			ti->error = "Error setting origin device";
 | |
| 			r = -EINVAL;
 | |
| 			goto bad_origin_dev;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
 | |
| 		if (r) {
 | |
| 			ti->error = "Error opening origin device";
 | |
| 			goto bad_origin_dev;
 | |
| 		}
 | |
| 		tc->origin_dev = origin_dev;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
 | |
| 	if (r) {
 | |
| 		ti->error = "Error opening pool device";
 | |
| 		goto bad_pool_dev;
 | |
| 	}
 | |
| 	tc->pool_dev = pool_dev;
 | |
| 
 | |
| 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
 | |
| 		ti->error = "Invalid device id";
 | |
| 		r = -EINVAL;
 | |
| 		goto bad_common;
 | |
| 	}
 | |
| 
 | |
| 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
 | |
| 	if (!pool_md) {
 | |
| 		ti->error = "Couldn't get pool mapped device";
 | |
| 		r = -EINVAL;
 | |
| 		goto bad_common;
 | |
| 	}
 | |
| 
 | |
| 	tc->pool = __pool_table_lookup(pool_md);
 | |
| 	if (!tc->pool) {
 | |
| 		ti->error = "Couldn't find pool object";
 | |
| 		r = -EINVAL;
 | |
| 		goto bad_pool_lookup;
 | |
| 	}
 | |
| 	__pool_inc(tc->pool);
 | |
| 
 | |
| 	if (get_pool_mode(tc->pool) == PM_FAIL) {
 | |
| 		ti->error = "Couldn't open thin device, Pool is in fail mode";
 | |
| 		r = -EINVAL;
 | |
| 		goto bad_pool;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
 | |
| 	if (r) {
 | |
| 		ti->error = "Couldn't open thin internal device";
 | |
| 		goto bad_pool;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
 | |
| 	if (r)
 | |
| 		goto bad;
 | |
| 
 | |
| 	ti->num_flush_bios = 1;
 | |
| 	ti->flush_supported = true;
 | |
| 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
 | |
| 
 | |
| 	/* In case the pool supports discards, pass them on. */
 | |
| 	if (tc->pool->pf.discard_enabled) {
 | |
| 		ti->discards_supported = true;
 | |
| 		ti->num_discard_bios = 1;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	spin_lock_irq(&tc->pool->lock);
 | |
| 	if (tc->pool->suspended) {
 | |
| 		spin_unlock_irq(&tc->pool->lock);
 | |
| 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
 | |
| 		ti->error = "Unable to activate thin device while pool is suspended";
 | |
| 		r = -EINVAL;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	refcount_set(&tc->refcount, 1);
 | |
| 	init_completion(&tc->can_destroy);
 | |
| 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
 | |
| 	spin_unlock_irq(&tc->pool->lock);
 | |
| 	/*
 | |
| 	 * This synchronize_rcu() call is needed here otherwise we risk a
 | |
| 	 * wake_worker() call finding no bios to process (because the newly
 | |
| 	 * added tc isn't yet visible).  So this reduces latency since we
 | |
| 	 * aren't then dependent on the periodic commit to wake_worker().
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	dm_put(pool_md);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bad:
 | |
| 	dm_pool_close_thin_device(tc->td);
 | |
| bad_pool:
 | |
| 	__pool_dec(tc->pool);
 | |
| bad_pool_lookup:
 | |
| 	dm_put(pool_md);
 | |
| bad_common:
 | |
| 	dm_put_device(ti, tc->pool_dev);
 | |
| bad_pool_dev:
 | |
| 	if (tc->origin_dev)
 | |
| 		dm_put_device(ti, tc->origin_dev);
 | |
| bad_origin_dev:
 | |
| 	kfree(tc);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&dm_thin_pool_table.mutex);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int thin_map(struct dm_target *ti, struct bio *bio)
 | |
| {
 | |
| 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
 | |
| 
 | |
| 	return thin_bio_map(ti, bio);
 | |
| }
 | |
| 
 | |
| static int thin_endio(struct dm_target *ti, struct bio *bio,
 | |
| 		blk_status_t *err)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 | |
| 	struct list_head work;
 | |
| 	struct dm_thin_new_mapping *m, *tmp;
 | |
| 	struct pool *pool = h->tc->pool;
 | |
| 
 | |
| 	if (h->shared_read_entry) {
 | |
| 		INIT_LIST_HEAD(&work);
 | |
| 		dm_deferred_entry_dec(h->shared_read_entry, &work);
 | |
| 
 | |
| 		spin_lock_irqsave(&pool->lock, flags);
 | |
| 		list_for_each_entry_safe(m, tmp, &work, list) {
 | |
| 			list_del(&m->list);
 | |
| 			__complete_mapping_preparation(m);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&pool->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (h->all_io_entry) {
 | |
| 		INIT_LIST_HEAD(&work);
 | |
| 		dm_deferred_entry_dec(h->all_io_entry, &work);
 | |
| 		if (!list_empty(&work)) {
 | |
| 			spin_lock_irqsave(&pool->lock, flags);
 | |
| 			list_for_each_entry_safe(m, tmp, &work, list)
 | |
| 				list_add_tail(&m->list, &pool->prepared_discards);
 | |
| 			spin_unlock_irqrestore(&pool->lock, flags);
 | |
| 			wake_worker(pool);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (h->cell)
 | |
| 		cell_defer_no_holder(h->tc, h->cell);
 | |
| 
 | |
| 	return DM_ENDIO_DONE;
 | |
| }
 | |
| 
 | |
| static void thin_presuspend(struct dm_target *ti)
 | |
| {
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 
 | |
| 	if (dm_noflush_suspending(ti))
 | |
| 		noflush_work(tc, do_noflush_start);
 | |
| }
 | |
| 
 | |
| static void thin_postsuspend(struct dm_target *ti)
 | |
| {
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 
 | |
| 	/*
 | |
| 	 * The dm_noflush_suspending flag has been cleared by now, so
 | |
| 	 * unfortunately we must always run this.
 | |
| 	 */
 | |
| 	noflush_work(tc, do_noflush_stop);
 | |
| }
 | |
| 
 | |
| static int thin_preresume(struct dm_target *ti)
 | |
| {
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 
 | |
| 	if (tc->origin_dev)
 | |
| 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * <nr mapped sectors> <highest mapped sector>
 | |
|  */
 | |
| static void thin_status(struct dm_target *ti, status_type_t type,
 | |
| 			unsigned status_flags, char *result, unsigned maxlen)
 | |
| {
 | |
| 	int r;
 | |
| 	ssize_t sz = 0;
 | |
| 	dm_block_t mapped, highest;
 | |
| 	char buf[BDEVNAME_SIZE];
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 
 | |
| 	if (get_pool_mode(tc->pool) == PM_FAIL) {
 | |
| 		DMEMIT("Fail");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!tc->td)
 | |
| 		DMEMIT("-");
 | |
| 	else {
 | |
| 		switch (type) {
 | |
| 		case STATUSTYPE_INFO:
 | |
| 			r = dm_thin_get_mapped_count(tc->td, &mapped);
 | |
| 			if (r) {
 | |
| 				DMERR("dm_thin_get_mapped_count returned %d", r);
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
 | |
| 			if (r < 0) {
 | |
| 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
 | |
| 			if (r)
 | |
| 				DMEMIT("%llu", ((highest + 1) *
 | |
| 						tc->pool->sectors_per_block) - 1);
 | |
| 			else
 | |
| 				DMEMIT("-");
 | |
| 			break;
 | |
| 
 | |
| 		case STATUSTYPE_TABLE:
 | |
| 			DMEMIT("%s %lu",
 | |
| 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
 | |
| 			       (unsigned long) tc->dev_id);
 | |
| 			if (tc->origin_dev)
 | |
| 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	DMEMIT("Error");
 | |
| }
 | |
| 
 | |
| static int thin_iterate_devices(struct dm_target *ti,
 | |
| 				iterate_devices_callout_fn fn, void *data)
 | |
| {
 | |
| 	sector_t blocks;
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
 | |
| 	 * we follow a more convoluted path through to the pool's target.
 | |
| 	 */
 | |
| 	if (!pool->ti)
 | |
| 		return 0;	/* nothing is bound */
 | |
| 
 | |
| 	blocks = pool->ti->len;
 | |
| 	(void) sector_div(blocks, pool->sectors_per_block);
 | |
| 	if (blocks)
 | |
| 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
 | |
| {
 | |
| 	struct thin_c *tc = ti->private;
 | |
| 	struct pool *pool = tc->pool;
 | |
| 
 | |
| 	if (!pool->pf.discard_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
 | |
| 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
 | |
| }
 | |
| 
 | |
| static struct target_type thin_target = {
 | |
| 	.name = "thin",
 | |
| 	.version = {1, 22, 0},
 | |
| 	.module	= THIS_MODULE,
 | |
| 	.ctr = thin_ctr,
 | |
| 	.dtr = thin_dtr,
 | |
| 	.map = thin_map,
 | |
| 	.end_io = thin_endio,
 | |
| 	.preresume = thin_preresume,
 | |
| 	.presuspend = thin_presuspend,
 | |
| 	.postsuspend = thin_postsuspend,
 | |
| 	.status = thin_status,
 | |
| 	.iterate_devices = thin_iterate_devices,
 | |
| 	.io_hints = thin_io_hints,
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static int __init dm_thin_init(void)
 | |
| {
 | |
| 	int r = -ENOMEM;
 | |
| 
 | |
| 	pool_table_init();
 | |
| 
 | |
| 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
 | |
| 	if (!_new_mapping_cache)
 | |
| 		return r;
 | |
| 
 | |
| 	r = dm_register_target(&thin_target);
 | |
| 	if (r)
 | |
| 		goto bad_new_mapping_cache;
 | |
| 
 | |
| 	r = dm_register_target(&pool_target);
 | |
| 	if (r)
 | |
| 		goto bad_thin_target;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bad_thin_target:
 | |
| 	dm_unregister_target(&thin_target);
 | |
| bad_new_mapping_cache:
 | |
| 	kmem_cache_destroy(_new_mapping_cache);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void dm_thin_exit(void)
 | |
| {
 | |
| 	dm_unregister_target(&thin_target);
 | |
| 	dm_unregister_target(&pool_target);
 | |
| 
 | |
| 	kmem_cache_destroy(_new_mapping_cache);
 | |
| 
 | |
| 	pool_table_exit();
 | |
| }
 | |
| 
 | |
| module_init(dm_thin_init);
 | |
| module_exit(dm_thin_exit);
 | |
| 
 | |
| module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
 | |
| MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
 | |
| 
 | |
| MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
 | |
| MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
 | |
| MODULE_LICENSE("GPL");
 |