mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 0e0ffa855d
			
		
	
	
		0e0ffa855d
		
	
	
	
	
		
			
			The Energy Model framework supports not only CPU devices. Drop the CPU specific interface with cpumask and add struct device. Add also a return value, user might use it. This new interface provides easy way to create a simple Energy Model, which then might be used by e.g. thermal subsystem. Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
		
			
				
	
	
		
			606 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			606 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Versatile Express SPC CPUFreq Interface driver
 | |
|  *
 | |
|  * Copyright (C) 2013 - 2019 ARM Ltd.
 | |
|  * Sudeep Holla <sudeep.holla@arm.com>
 | |
|  *
 | |
|  * Copyright (C) 2013 Linaro.
 | |
|  * Viresh Kumar <viresh.kumar@linaro.org>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpu_cooling.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_opp.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| /* Currently we support only two clusters */
 | |
| #define A15_CLUSTER	0
 | |
| #define A7_CLUSTER	1
 | |
| #define MAX_CLUSTERS	2
 | |
| 
 | |
| #ifdef CONFIG_BL_SWITCHER
 | |
| #include <asm/bL_switcher.h>
 | |
| static bool bL_switching_enabled;
 | |
| #define is_bL_switching_enabled()	bL_switching_enabled
 | |
| #define set_switching_enabled(x)	(bL_switching_enabled = (x))
 | |
| #else
 | |
| #define is_bL_switching_enabled()	false
 | |
| #define set_switching_enabled(x)	do { } while (0)
 | |
| #define bL_switch_request(...)		do { } while (0)
 | |
| #define bL_switcher_put_enabled()	do { } while (0)
 | |
| #define bL_switcher_get_enabled()	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define ACTUAL_FREQ(cluster, freq)  ((cluster == A7_CLUSTER) ? freq << 1 : freq)
 | |
| #define VIRT_FREQ(cluster, freq)    ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
 | |
| 
 | |
| static struct thermal_cooling_device *cdev[MAX_CLUSTERS];
 | |
| static struct clk *clk[MAX_CLUSTERS];
 | |
| static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
 | |
| static atomic_t cluster_usage[MAX_CLUSTERS + 1];
 | |
| 
 | |
| static unsigned int clk_big_min;	/* (Big) clock frequencies */
 | |
| static unsigned int clk_little_max;	/* Maximum clock frequency (Little) */
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned int, physical_cluster);
 | |
| static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
 | |
| 
 | |
| static struct mutex cluster_lock[MAX_CLUSTERS];
 | |
| 
 | |
| static inline int raw_cpu_to_cluster(int cpu)
 | |
| {
 | |
| 	return topology_physical_package_id(cpu);
 | |
| }
 | |
| 
 | |
| static inline int cpu_to_cluster(int cpu)
 | |
| {
 | |
| 	return is_bL_switching_enabled() ?
 | |
| 		MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
 | |
| }
 | |
| 
 | |
| static unsigned int find_cluster_maxfreq(int cluster)
 | |
| {
 | |
| 	int j;
 | |
| 	u32 max_freq = 0, cpu_freq;
 | |
| 
 | |
| 	for_each_online_cpu(j) {
 | |
| 		cpu_freq = per_cpu(cpu_last_req_freq, j);
 | |
| 
 | |
| 		if (cluster == per_cpu(physical_cluster, j) &&
 | |
| 		    max_freq < cpu_freq)
 | |
| 			max_freq = cpu_freq;
 | |
| 	}
 | |
| 
 | |
| 	return max_freq;
 | |
| }
 | |
| 
 | |
| static unsigned int clk_get_cpu_rate(unsigned int cpu)
 | |
| {
 | |
| 	u32 cur_cluster = per_cpu(physical_cluster, cpu);
 | |
| 	u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
 | |
| 
 | |
| 	/* For switcher we use virtual A7 clock rates */
 | |
| 	if (is_bL_switching_enabled())
 | |
| 		rate = VIRT_FREQ(cur_cluster, rate);
 | |
| 
 | |
| 	return rate;
 | |
| }
 | |
| 
 | |
| static unsigned int ve_spc_cpufreq_get_rate(unsigned int cpu)
 | |
| {
 | |
| 	if (is_bL_switching_enabled())
 | |
| 		return per_cpu(cpu_last_req_freq, cpu);
 | |
| 	else
 | |
| 		return clk_get_cpu_rate(cpu);
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| ve_spc_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
 | |
| {
 | |
| 	u32 new_rate, prev_rate;
 | |
| 	int ret;
 | |
| 	bool bLs = is_bL_switching_enabled();
 | |
| 
 | |
| 	mutex_lock(&cluster_lock[new_cluster]);
 | |
| 
 | |
| 	if (bLs) {
 | |
| 		prev_rate = per_cpu(cpu_last_req_freq, cpu);
 | |
| 		per_cpu(cpu_last_req_freq, cpu) = rate;
 | |
| 		per_cpu(physical_cluster, cpu) = new_cluster;
 | |
| 
 | |
| 		new_rate = find_cluster_maxfreq(new_cluster);
 | |
| 		new_rate = ACTUAL_FREQ(new_cluster, new_rate);
 | |
| 	} else {
 | |
| 		new_rate = rate;
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
 | |
| 	if (!ret) {
 | |
| 		/*
 | |
| 		 * FIXME: clk_set_rate hasn't returned an error here however it
 | |
| 		 * may be that clk_change_rate failed due to hardware or
 | |
| 		 * firmware issues and wasn't able to report that due to the
 | |
| 		 * current design of the clk core layer. To work around this
 | |
| 		 * problem we will read back the clock rate and check it is
 | |
| 		 * correct. This needs to be removed once clk core is fixed.
 | |
| 		 */
 | |
| 		if (clk_get_rate(clk[new_cluster]) != new_rate * 1000)
 | |
| 			ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON(ret)) {
 | |
| 		if (bLs) {
 | |
| 			per_cpu(cpu_last_req_freq, cpu) = prev_rate;
 | |
| 			per_cpu(physical_cluster, cpu) = old_cluster;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&cluster_lock[new_cluster]);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&cluster_lock[new_cluster]);
 | |
| 
 | |
| 	/* Recalc freq for old cluster when switching clusters */
 | |
| 	if (old_cluster != new_cluster) {
 | |
| 		/* Switch cluster */
 | |
| 		bL_switch_request(cpu, new_cluster);
 | |
| 
 | |
| 		mutex_lock(&cluster_lock[old_cluster]);
 | |
| 
 | |
| 		/* Set freq of old cluster if there are cpus left on it */
 | |
| 		new_rate = find_cluster_maxfreq(old_cluster);
 | |
| 		new_rate = ACTUAL_FREQ(old_cluster, new_rate);
 | |
| 
 | |
| 		if (new_rate &&
 | |
| 		    clk_set_rate(clk[old_cluster], new_rate * 1000)) {
 | |
| 			pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
 | |
| 			       __func__, ret, old_cluster);
 | |
| 		}
 | |
| 		mutex_unlock(&cluster_lock[old_cluster]);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Set clock frequency */
 | |
| static int ve_spc_cpufreq_set_target(struct cpufreq_policy *policy,
 | |
| 				     unsigned int index)
 | |
| {
 | |
| 	u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
 | |
| 	unsigned int freqs_new;
 | |
| 	int ret;
 | |
| 
 | |
| 	cur_cluster = cpu_to_cluster(cpu);
 | |
| 	new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
 | |
| 
 | |
| 	freqs_new = freq_table[cur_cluster][index].frequency;
 | |
| 
 | |
| 	if (is_bL_switching_enabled()) {
 | |
| 		if (actual_cluster == A15_CLUSTER && freqs_new < clk_big_min)
 | |
| 			new_cluster = A7_CLUSTER;
 | |
| 		else if (actual_cluster == A7_CLUSTER &&
 | |
| 			 freqs_new > clk_little_max)
 | |
| 			new_cluster = A15_CLUSTER;
 | |
| 	}
 | |
| 
 | |
| 	ret = ve_spc_cpufreq_set_rate(cpu, actual_cluster, new_cluster,
 | |
| 				      freqs_new);
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		arch_set_freq_scale(policy->related_cpus, freqs_new,
 | |
| 				    policy->cpuinfo.max_freq);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline u32 get_table_count(struct cpufreq_frequency_table *table)
 | |
| {
 | |
| 	int count;
 | |
| 
 | |
| 	for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
 | |
| 		;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* get the minimum frequency in the cpufreq_frequency_table */
 | |
| static inline u32 get_table_min(struct cpufreq_frequency_table *table)
 | |
| {
 | |
| 	struct cpufreq_frequency_table *pos;
 | |
| 	u32 min_freq = ~0;
 | |
| 
 | |
| 	cpufreq_for_each_entry(pos, table)
 | |
| 		if (pos->frequency < min_freq)
 | |
| 			min_freq = pos->frequency;
 | |
| 	return min_freq;
 | |
| }
 | |
| 
 | |
| /* get the maximum frequency in the cpufreq_frequency_table */
 | |
| static inline u32 get_table_max(struct cpufreq_frequency_table *table)
 | |
| {
 | |
| 	struct cpufreq_frequency_table *pos;
 | |
| 	u32 max_freq = 0;
 | |
| 
 | |
| 	cpufreq_for_each_entry(pos, table)
 | |
| 		if (pos->frequency > max_freq)
 | |
| 			max_freq = pos->frequency;
 | |
| 	return max_freq;
 | |
| }
 | |
| 
 | |
| static bool search_frequency(struct cpufreq_frequency_table *table, int size,
 | |
| 			     unsigned int freq)
 | |
| {
 | |
| 	int count;
 | |
| 
 | |
| 	for (count = 0; count < size; count++) {
 | |
| 		if (table[count].frequency == freq)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int merge_cluster_tables(void)
 | |
| {
 | |
| 	int i, j, k = 0, count = 1;
 | |
| 	struct cpufreq_frequency_table *table;
 | |
| 
 | |
| 	for (i = 0; i < MAX_CLUSTERS; i++)
 | |
| 		count += get_table_count(freq_table[i]);
 | |
| 
 | |
| 	table = kcalloc(count, sizeof(*table), GFP_KERNEL);
 | |
| 	if (!table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	freq_table[MAX_CLUSTERS] = table;
 | |
| 
 | |
| 	/* Add in reverse order to get freqs in increasing order */
 | |
| 	for (i = MAX_CLUSTERS - 1; i >= 0; i--, count = k) {
 | |
| 		for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
 | |
| 		     j++) {
 | |
| 			if (i == A15_CLUSTER &&
 | |
| 			    search_frequency(table, count, freq_table[i][j].frequency))
 | |
| 				continue; /* skip duplicates */
 | |
| 			table[k++].frequency =
 | |
| 				VIRT_FREQ(i, freq_table[i][j].frequency);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	table[k].driver_data = k;
 | |
| 	table[k].frequency = CPUFREQ_TABLE_END;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void _put_cluster_clk_and_freq_table(struct device *cpu_dev,
 | |
| 					    const struct cpumask *cpumask)
 | |
| {
 | |
| 	u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
 | |
| 
 | |
| 	if (!freq_table[cluster])
 | |
| 		return;
 | |
| 
 | |
| 	clk_put(clk[cluster]);
 | |
| 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
 | |
| }
 | |
| 
 | |
| static void put_cluster_clk_and_freq_table(struct device *cpu_dev,
 | |
| 					   const struct cpumask *cpumask)
 | |
| {
 | |
| 	u32 cluster = cpu_to_cluster(cpu_dev->id);
 | |
| 	int i;
 | |
| 
 | |
| 	if (atomic_dec_return(&cluster_usage[cluster]))
 | |
| 		return;
 | |
| 
 | |
| 	if (cluster < MAX_CLUSTERS)
 | |
| 		return _put_cluster_clk_and_freq_table(cpu_dev, cpumask);
 | |
| 
 | |
| 	for_each_present_cpu(i) {
 | |
| 		struct device *cdev = get_cpu_device(i);
 | |
| 
 | |
| 		if (!cdev)
 | |
| 			return;
 | |
| 
 | |
| 		_put_cluster_clk_and_freq_table(cdev, cpumask);
 | |
| 	}
 | |
| 
 | |
| 	/* free virtual table */
 | |
| 	kfree(freq_table[cluster]);
 | |
| }
 | |
| 
 | |
| static int _get_cluster_clk_and_freq_table(struct device *cpu_dev,
 | |
| 					   const struct cpumask *cpumask)
 | |
| {
 | |
| 	u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (freq_table[cluster])
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * platform specific SPC code must initialise the opp table
 | |
| 	 * so just check if the OPP count is non-zero
 | |
| 	 */
 | |
| 	ret = dev_pm_opp_get_opp_count(cpu_dev) <= 0;
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	clk[cluster] = clk_get(cpu_dev, NULL);
 | |
| 	if (!IS_ERR(clk[cluster]))
 | |
| 		return 0;
 | |
| 
 | |
| 	dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
 | |
| 		__func__, cpu_dev->id, cluster);
 | |
| 	ret = PTR_ERR(clk[cluster]);
 | |
| 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
 | |
| 
 | |
| out:
 | |
| 	dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
 | |
| 		cluster);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int get_cluster_clk_and_freq_table(struct device *cpu_dev,
 | |
| 					  const struct cpumask *cpumask)
 | |
| {
 | |
| 	u32 cluster = cpu_to_cluster(cpu_dev->id);
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (atomic_inc_return(&cluster_usage[cluster]) != 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (cluster < MAX_CLUSTERS) {
 | |
| 		ret = _get_cluster_clk_and_freq_table(cpu_dev, cpumask);
 | |
| 		if (ret)
 | |
| 			atomic_dec(&cluster_usage[cluster]);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get data for all clusters and fill virtual cluster with a merge of
 | |
| 	 * both
 | |
| 	 */
 | |
| 	for_each_present_cpu(i) {
 | |
| 		struct device *cdev = get_cpu_device(i);
 | |
| 
 | |
| 		if (!cdev)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		ret = _get_cluster_clk_and_freq_table(cdev, cpumask);
 | |
| 		if (ret)
 | |
| 			goto put_clusters;
 | |
| 	}
 | |
| 
 | |
| 	ret = merge_cluster_tables();
 | |
| 	if (ret)
 | |
| 		goto put_clusters;
 | |
| 
 | |
| 	/* Assuming 2 cluster, set clk_big_min and clk_little_max */
 | |
| 	clk_big_min = get_table_min(freq_table[A15_CLUSTER]);
 | |
| 	clk_little_max = VIRT_FREQ(A7_CLUSTER,
 | |
| 				   get_table_max(freq_table[A7_CLUSTER]));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| put_clusters:
 | |
| 	for_each_present_cpu(i) {
 | |
| 		struct device *cdev = get_cpu_device(i);
 | |
| 
 | |
| 		if (!cdev)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		_put_cluster_clk_and_freq_table(cdev, cpumask);
 | |
| 	}
 | |
| 
 | |
| 	atomic_dec(&cluster_usage[cluster]);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Per-CPU initialization */
 | |
| static int ve_spc_cpufreq_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	u32 cur_cluster = cpu_to_cluster(policy->cpu);
 | |
| 	struct device *cpu_dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	cpu_dev = get_cpu_device(policy->cpu);
 | |
| 	if (!cpu_dev) {
 | |
| 		pr_err("%s: failed to get cpu%d device\n", __func__,
 | |
| 		       policy->cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (cur_cluster < MAX_CLUSTERS) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		dev_pm_opp_get_sharing_cpus(cpu_dev, policy->cpus);
 | |
| 
 | |
| 		for_each_cpu(cpu, policy->cpus)
 | |
| 			per_cpu(physical_cluster, cpu) = cur_cluster;
 | |
| 	} else {
 | |
| 		/* Assumption: during init, we are always running on A15 */
 | |
| 		per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
 | |
| 	}
 | |
| 
 | |
| 	ret = get_cluster_clk_and_freq_table(cpu_dev, policy->cpus);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	policy->freq_table = freq_table[cur_cluster];
 | |
| 	policy->cpuinfo.transition_latency = 1000000; /* 1 ms */
 | |
| 
 | |
| 	dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
 | |
| 
 | |
| 	if (is_bL_switching_enabled())
 | |
| 		per_cpu(cpu_last_req_freq, policy->cpu) =
 | |
| 						clk_get_cpu_rate(policy->cpu);
 | |
| 
 | |
| 	dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct device *cpu_dev;
 | |
| 	int cur_cluster = cpu_to_cluster(policy->cpu);
 | |
| 
 | |
| 	if (cur_cluster < MAX_CLUSTERS) {
 | |
| 		cpufreq_cooling_unregister(cdev[cur_cluster]);
 | |
| 		cdev[cur_cluster] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	cpu_dev = get_cpu_device(policy->cpu);
 | |
| 	if (!cpu_dev) {
 | |
| 		pr_err("%s: failed to get cpu%d device\n", __func__,
 | |
| 		       policy->cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	put_cluster_clk_and_freq_table(cpu_dev, policy->related_cpus);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ve_spc_cpufreq_ready(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	int cur_cluster = cpu_to_cluster(policy->cpu);
 | |
| 
 | |
| 	/* Do not register a cpu_cooling device if we are in IKS mode */
 | |
| 	if (cur_cluster >= MAX_CLUSTERS)
 | |
| 		return;
 | |
| 
 | |
| 	cdev[cur_cluster] = of_cpufreq_cooling_register(policy);
 | |
| }
 | |
| 
 | |
| static struct cpufreq_driver ve_spc_cpufreq_driver = {
 | |
| 	.name			= "vexpress-spc",
 | |
| 	.flags			= CPUFREQ_STICKY |
 | |
| 					CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
 | |
| 					CPUFREQ_NEED_INITIAL_FREQ_CHECK,
 | |
| 	.verify			= cpufreq_generic_frequency_table_verify,
 | |
| 	.target_index		= ve_spc_cpufreq_set_target,
 | |
| 	.get			= ve_spc_cpufreq_get_rate,
 | |
| 	.init			= ve_spc_cpufreq_init,
 | |
| 	.exit			= ve_spc_cpufreq_exit,
 | |
| 	.ready			= ve_spc_cpufreq_ready,
 | |
| 	.attr			= cpufreq_generic_attr,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_BL_SWITCHER
 | |
| static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
 | |
| 					unsigned long action, void *_arg)
 | |
| {
 | |
| 	pr_debug("%s: action: %ld\n", __func__, action);
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case BL_NOTIFY_PRE_ENABLE:
 | |
| 	case BL_NOTIFY_PRE_DISABLE:
 | |
| 		cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
 | |
| 		break;
 | |
| 
 | |
| 	case BL_NOTIFY_POST_ENABLE:
 | |
| 		set_switching_enabled(true);
 | |
| 		cpufreq_register_driver(&ve_spc_cpufreq_driver);
 | |
| 		break;
 | |
| 
 | |
| 	case BL_NOTIFY_POST_DISABLE:
 | |
| 		set_switching_enabled(false);
 | |
| 		cpufreq_register_driver(&ve_spc_cpufreq_driver);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block bL_switcher_notifier = {
 | |
| 	.notifier_call = bL_cpufreq_switcher_notifier,
 | |
| };
 | |
| 
 | |
| static int __bLs_register_notifier(void)
 | |
| {
 | |
| 	return bL_switcher_register_notifier(&bL_switcher_notifier);
 | |
| }
 | |
| 
 | |
| static int __bLs_unregister_notifier(void)
 | |
| {
 | |
| 	return bL_switcher_unregister_notifier(&bL_switcher_notifier);
 | |
| }
 | |
| #else
 | |
| static int __bLs_register_notifier(void) { return 0; }
 | |
| static int __bLs_unregister_notifier(void) { return 0; }
 | |
| #endif
 | |
| 
 | |
| static int ve_spc_cpufreq_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	int ret, i;
 | |
| 
 | |
| 	set_switching_enabled(bL_switcher_get_enabled());
 | |
| 
 | |
| 	for (i = 0; i < MAX_CLUSTERS; i++)
 | |
| 		mutex_init(&cluster_lock[i]);
 | |
| 
 | |
| 	ret = cpufreq_register_driver(&ve_spc_cpufreq_driver);
 | |
| 	if (ret) {
 | |
| 		pr_info("%s: Failed registering platform driver: %s, err: %d\n",
 | |
| 			__func__, ve_spc_cpufreq_driver.name, ret);
 | |
| 	} else {
 | |
| 		ret = __bLs_register_notifier();
 | |
| 		if (ret)
 | |
| 			cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
 | |
| 		else
 | |
| 			pr_info("%s: Registered platform driver: %s\n",
 | |
| 				__func__, ve_spc_cpufreq_driver.name);
 | |
| 	}
 | |
| 
 | |
| 	bL_switcher_put_enabled();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ve_spc_cpufreq_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	bL_switcher_get_enabled();
 | |
| 	__bLs_unregister_notifier();
 | |
| 	cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
 | |
| 	bL_switcher_put_enabled();
 | |
| 	pr_info("%s: Un-registered platform driver: %s\n", __func__,
 | |
| 		ve_spc_cpufreq_driver.name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver ve_spc_cpufreq_platdrv = {
 | |
| 	.driver = {
 | |
| 		.name	= "vexpress-spc-cpufreq",
 | |
| 	},
 | |
| 	.probe		= ve_spc_cpufreq_probe,
 | |
| 	.remove		= ve_spc_cpufreq_remove,
 | |
| };
 | |
| module_platform_driver(ve_spc_cpufreq_platdrv);
 | |
| 
 | |
| MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
 | |
| MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
 | |
| MODULE_DESCRIPTION("Vexpress SPC ARM big LITTLE cpufreq driver");
 | |
| MODULE_LICENSE("GPL v2");
 |