mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 89e9b5c091
			
		
	
	
		89e9b5c091
		
	
	
	
	
		
			
			For whatever reason we never actually update pagi_count (the in-core perag inode count) when we allocate or free inode chunks. Online scrub is going to use it, so we need to fix the accounting. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
		
			
				
	
	
		
			2777 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2777 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_defer.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_ialloc_btree.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_rtalloc.h"
 | |
| #include "xfs_errortag.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_cksum.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_buf_item.h"
 | |
| #include "xfs_icreate_item.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_rmap.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Allocation group level functions.
 | |
|  */
 | |
| int
 | |
| xfs_ialloc_cluster_alignment(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
 | |
| 	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
 | |
| 		return mp->m_sb.sb_inoalignmt;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup a record by ino in the btree given by cur.
 | |
|  */
 | |
| int					/* error */
 | |
| xfs_inobt_lookup(
 | |
| 	struct xfs_btree_cur	*cur,	/* btree cursor */
 | |
| 	xfs_agino_t		ino,	/* starting inode of chunk */
 | |
| 	xfs_lookup_t		dir,	/* <=, >=, == */
 | |
| 	int			*stat)	/* success/failure */
 | |
| {
 | |
| 	cur->bc_rec.i.ir_startino = ino;
 | |
| 	cur->bc_rec.i.ir_holemask = 0;
 | |
| 	cur->bc_rec.i.ir_count = 0;
 | |
| 	cur->bc_rec.i.ir_freecount = 0;
 | |
| 	cur->bc_rec.i.ir_free = 0;
 | |
| 	return xfs_btree_lookup(cur, dir, stat);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the record referred to by cur to the value given.
 | |
|  * This either works (return 0) or gets an EFSCORRUPTED error.
 | |
|  */
 | |
| STATIC int				/* error */
 | |
| xfs_inobt_update(
 | |
| 	struct xfs_btree_cur	*cur,	/* btree cursor */
 | |
| 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
 | |
| {
 | |
| 	union xfs_btree_rec	rec;
 | |
| 
 | |
| 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
 | |
| 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
 | |
| 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
 | |
| 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
 | |
| 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
 | |
| 	} else {
 | |
| 		/* ir_holemask/ir_count not supported on-disk */
 | |
| 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
 | |
| 	}
 | |
| 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
 | |
| 	return xfs_btree_update(cur, &rec);
 | |
| }
 | |
| 
 | |
| /* Convert on-disk btree record to incore inobt record. */
 | |
| void
 | |
| xfs_inobt_btrec_to_irec(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	union xfs_btree_rec		*rec,
 | |
| 	struct xfs_inobt_rec_incore	*irec)
 | |
| {
 | |
| 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
 | |
| 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
 | |
| 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
 | |
| 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
 | |
| 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
 | |
| 		 * values for full inode chunks.
 | |
| 		 */
 | |
| 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
 | |
| 		irec->ir_count = XFS_INODES_PER_CHUNK;
 | |
| 		irec->ir_freecount =
 | |
| 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
 | |
| 	}
 | |
| 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the data from the pointed-to record.
 | |
|  */
 | |
| int
 | |
| xfs_inobt_get_rec(
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	struct xfs_inobt_rec_incore	*irec,
 | |
| 	int				*stat)
 | |
| {
 | |
| 	struct xfs_mount		*mp = cur->bc_mp;
 | |
| 	xfs_agnumber_t			agno = cur->bc_private.a.agno;
 | |
| 	union xfs_btree_rec		*rec;
 | |
| 	int				error;
 | |
| 	uint64_t			realfree;
 | |
| 
 | |
| 	error = xfs_btree_get_rec(cur, &rec, stat);
 | |
| 	if (error || *stat == 0)
 | |
| 		return error;
 | |
| 
 | |
| 	xfs_inobt_btrec_to_irec(mp, rec, irec);
 | |
| 
 | |
| 	if (!xfs_verify_agino(mp, agno, irec->ir_startino))
 | |
| 		goto out_bad_rec;
 | |
| 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 | |
| 	    irec->ir_count > XFS_INODES_PER_CHUNK)
 | |
| 		goto out_bad_rec;
 | |
| 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 | |
| 		goto out_bad_rec;
 | |
| 
 | |
| 	/* if there are no holes, return the first available offset */
 | |
| 	if (!xfs_inobt_issparse(irec->ir_holemask))
 | |
| 		realfree = irec->ir_free;
 | |
| 	else
 | |
| 		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
 | |
| 	if (hweight64(realfree) != irec->ir_freecount)
 | |
| 		goto out_bad_rec;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_bad_rec:
 | |
| 	xfs_warn(mp,
 | |
| 		"%s Inode BTree record corruption in AG %d detected!",
 | |
| 		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
 | |
| 	xfs_warn(mp,
 | |
| "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 | |
| 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
 | |
| 		irec->ir_free, irec->ir_holemask);
 | |
| 	return -EFSCORRUPTED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a single inobt record. Cursor must already point to desired location.
 | |
|  */
 | |
| int
 | |
| xfs_inobt_insert_rec(
 | |
| 	struct xfs_btree_cur	*cur,
 | |
| 	uint16_t		holemask,
 | |
| 	uint8_t			count,
 | |
| 	int32_t			freecount,
 | |
| 	xfs_inofree_t		free,
 | |
| 	int			*stat)
 | |
| {
 | |
| 	cur->bc_rec.i.ir_holemask = holemask;
 | |
| 	cur->bc_rec.i.ir_count = count;
 | |
| 	cur->bc_rec.i.ir_freecount = freecount;
 | |
| 	cur->bc_rec.i.ir_free = free;
 | |
| 	return xfs_btree_insert(cur, stat);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert records describing a newly allocated inode chunk into the inobt.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_inobt_insert(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_buf		*agbp,
 | |
| 	xfs_agino_t		newino,
 | |
| 	xfs_agino_t		newlen,
 | |
| 	xfs_btnum_t		btnum)
 | |
| {
 | |
| 	struct xfs_btree_cur	*cur;
 | |
| 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
 | |
| 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
 | |
| 	xfs_agino_t		thisino;
 | |
| 	int			i;
 | |
| 	int			error;
 | |
| 
 | |
| 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 | |
| 
 | |
| 	for (thisino = newino;
 | |
| 	     thisino < newino + newlen;
 | |
| 	     thisino += XFS_INODES_PER_CHUNK) {
 | |
| 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 | |
| 		if (error) {
 | |
| 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 | |
| 			return error;
 | |
| 		}
 | |
| 		ASSERT(i == 0);
 | |
| 
 | |
| 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 | |
| 					     XFS_INODES_PER_CHUNK,
 | |
| 					     XFS_INODES_PER_CHUNK,
 | |
| 					     XFS_INOBT_ALL_FREE, &i);
 | |
| 		if (error) {
 | |
| 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 | |
| 			return error;
 | |
| 		}
 | |
| 		ASSERT(i == 1);
 | |
| 	}
 | |
| 
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that the number of free inodes in the AGI is correct.
 | |
|  */
 | |
| #ifdef DEBUG
 | |
| STATIC int
 | |
| xfs_check_agi_freecount(
 | |
| 	struct xfs_btree_cur	*cur,
 | |
| 	struct xfs_agi		*agi)
 | |
| {
 | |
| 	if (cur->bc_nlevels == 1) {
 | |
| 		xfs_inobt_rec_incore_t rec;
 | |
| 		int		freecount = 0;
 | |
| 		int		error;
 | |
| 		int		i;
 | |
| 
 | |
| 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		do {
 | |
| 			error = xfs_inobt_get_rec(cur, &rec, &i);
 | |
| 			if (error)
 | |
| 				return error;
 | |
| 
 | |
| 			if (i) {
 | |
| 				freecount += rec.ir_freecount;
 | |
| 				error = xfs_btree_increment(cur, 0, &i);
 | |
| 				if (error)
 | |
| 					return error;
 | |
| 			}
 | |
| 		} while (i == 1);
 | |
| 
 | |
| 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 | |
| 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define xfs_check_agi_freecount(cur, agi)	0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initialise a new set of inodes. When called without a transaction context
 | |
|  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 | |
|  * than logging them (which in a transaction context puts them into the AIL
 | |
|  * for writeback rather than the xfsbufd queue).
 | |
|  */
 | |
| int
 | |
| xfs_ialloc_inode_init(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct list_head	*buffer_list,
 | |
| 	int			icount,
 | |
| 	xfs_agnumber_t		agno,
 | |
| 	xfs_agblock_t		agbno,
 | |
| 	xfs_agblock_t		length,
 | |
| 	unsigned int		gen)
 | |
| {
 | |
| 	struct xfs_buf		*fbuf;
 | |
| 	struct xfs_dinode	*free;
 | |
| 	int			nbufs, blks_per_cluster, inodes_per_cluster;
 | |
| 	int			version;
 | |
| 	int			i, j;
 | |
| 	xfs_daddr_t		d;
 | |
| 	xfs_ino_t		ino = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop over the new block(s), filling in the inodes.  For small block
 | |
| 	 * sizes, manipulate the inodes in buffers  which are multiples of the
 | |
| 	 * blocks size.
 | |
| 	 */
 | |
| 	blks_per_cluster = xfs_icluster_size_fsb(mp);
 | |
| 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
 | |
| 	nbufs = length / blks_per_cluster;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out what version number to use in the inodes we create.  If
 | |
| 	 * the superblock version has caught up to the one that supports the new
 | |
| 	 * inode format, then use the new inode version.  Otherwise use the old
 | |
| 	 * version so that old kernels will continue to be able to use the file
 | |
| 	 * system.
 | |
| 	 *
 | |
| 	 * For v3 inodes, we also need to write the inode number into the inode,
 | |
| 	 * so calculate the first inode number of the chunk here as
 | |
| 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
 | |
| 	 * across multiple filesystem blocks (such as a cluster) and so cannot
 | |
| 	 * be used in the cluster buffer loop below.
 | |
| 	 *
 | |
| 	 * Further, because we are writing the inode directly into the buffer
 | |
| 	 * and calculating a CRC on the entire inode, we have ot log the entire
 | |
| 	 * inode so that the entire range the CRC covers is present in the log.
 | |
| 	 * That means for v3 inode we log the entire buffer rather than just the
 | |
| 	 * inode cores.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 | |
| 		version = 3;
 | |
| 		ino = XFS_AGINO_TO_INO(mp, agno,
 | |
| 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
 | |
| 
 | |
| 		/*
 | |
| 		 * log the initialisation that is about to take place as an
 | |
| 		 * logical operation. This means the transaction does not
 | |
| 		 * need to log the physical changes to the inode buffers as log
 | |
| 		 * recovery will know what initialisation is actually needed.
 | |
| 		 * Hence we only need to log the buffers as "ordered" buffers so
 | |
| 		 * they track in the AIL as if they were physically logged.
 | |
| 		 */
 | |
| 		if (tp)
 | |
| 			xfs_icreate_log(tp, agno, agbno, icount,
 | |
| 					mp->m_sb.sb_inodesize, length, gen);
 | |
| 	} else
 | |
| 		version = 2;
 | |
| 
 | |
| 	for (j = 0; j < nbufs; j++) {
 | |
| 		/*
 | |
| 		 * Get the block.
 | |
| 		 */
 | |
| 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
 | |
| 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 | |
| 					 mp->m_bsize * blks_per_cluster,
 | |
| 					 XBF_UNMAPPED);
 | |
| 		if (!fbuf)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* Initialize the inode buffers and log them appropriately. */
 | |
| 		fbuf->b_ops = &xfs_inode_buf_ops;
 | |
| 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 | |
| 		for (i = 0; i < inodes_per_cluster; i++) {
 | |
| 			int	ioffset = i << mp->m_sb.sb_inodelog;
 | |
| 			uint	isize = xfs_dinode_size(version);
 | |
| 
 | |
| 			free = xfs_make_iptr(mp, fbuf, i);
 | |
| 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 | |
| 			free->di_version = version;
 | |
| 			free->di_gen = cpu_to_be32(gen);
 | |
| 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 | |
| 
 | |
| 			if (version == 3) {
 | |
| 				free->di_ino = cpu_to_be64(ino);
 | |
| 				ino++;
 | |
| 				uuid_copy(&free->di_uuid,
 | |
| 					  &mp->m_sb.sb_meta_uuid);
 | |
| 				xfs_dinode_calc_crc(mp, free);
 | |
| 			} else if (tp) {
 | |
| 				/* just log the inode core */
 | |
| 				xfs_trans_log_buf(tp, fbuf, ioffset,
 | |
| 						  ioffset + isize - 1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (tp) {
 | |
| 			/*
 | |
| 			 * Mark the buffer as an inode allocation buffer so it
 | |
| 			 * sticks in AIL at the point of this allocation
 | |
| 			 * transaction. This ensures the they are on disk before
 | |
| 			 * the tail of the log can be moved past this
 | |
| 			 * transaction (i.e. by preventing relogging from moving
 | |
| 			 * it forward in the log).
 | |
| 			 */
 | |
| 			xfs_trans_inode_alloc_buf(tp, fbuf);
 | |
| 			if (version == 3) {
 | |
| 				/*
 | |
| 				 * Mark the buffer as ordered so that they are
 | |
| 				 * not physically logged in the transaction but
 | |
| 				 * still tracked in the AIL as part of the
 | |
| 				 * transaction and pin the log appropriately.
 | |
| 				 */
 | |
| 				xfs_trans_ordered_buf(tp, fbuf);
 | |
| 			}
 | |
| 		} else {
 | |
| 			fbuf->b_flags |= XBF_DONE;
 | |
| 			xfs_buf_delwri_queue(fbuf, buffer_list);
 | |
| 			xfs_buf_relse(fbuf);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Align startino and allocmask for a recently allocated sparse chunk such that
 | |
|  * they are fit for insertion (or merge) into the on-disk inode btrees.
 | |
|  *
 | |
|  * Background:
 | |
|  *
 | |
|  * When enabled, sparse inode support increases the inode alignment from cluster
 | |
|  * size to inode chunk size. This means that the minimum range between two
 | |
|  * non-adjacent inode records in the inobt is large enough for a full inode
 | |
|  * record. This allows for cluster sized, cluster aligned block allocation
 | |
|  * without need to worry about whether the resulting inode record overlaps with
 | |
|  * another record in the tree. Without this basic rule, we would have to deal
 | |
|  * with the consequences of overlap by potentially undoing recent allocations in
 | |
|  * the inode allocation codepath.
 | |
|  *
 | |
|  * Because of this alignment rule (which is enforced on mount), there are two
 | |
|  * inobt possibilities for newly allocated sparse chunks. One is that the
 | |
|  * aligned inode record for the chunk covers a range of inodes not already
 | |
|  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 | |
|  * other is that a record already exists at the aligned startino that considers
 | |
|  * the newly allocated range as sparse. In the latter case, record content is
 | |
|  * merged in hope that sparse inode chunks fill to full chunks over time.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_align_sparse_ino(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	xfs_agino_t			*startino,
 | |
| 	uint16_t			*allocmask)
 | |
| {
 | |
| 	xfs_agblock_t			agbno;
 | |
| 	xfs_agblock_t			mod;
 | |
| 	int				offset;
 | |
| 
 | |
| 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 | |
| 	mod = agbno % mp->m_sb.sb_inoalignmt;
 | |
| 	if (!mod)
 | |
| 		return;
 | |
| 
 | |
| 	/* calculate the inode offset and align startino */
 | |
| 	offset = mod << mp->m_sb.sb_inopblog;
 | |
| 	*startino -= offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since startino has been aligned down, left shift allocmask such that
 | |
| 	 * it continues to represent the same physical inodes relative to the
 | |
| 	 * new startino.
 | |
| 	 */
 | |
| 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine whether the source inode record can merge into the target. Both
 | |
|  * records must be sparse, the inode ranges must match and there must be no
 | |
|  * allocation overlap between the records.
 | |
|  */
 | |
| STATIC bool
 | |
| __xfs_inobt_can_merge(
 | |
| 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
 | |
| 	struct xfs_inobt_rec_incore	*srec)	/* src record */
 | |
| {
 | |
| 	uint64_t			talloc;
 | |
| 	uint64_t			salloc;
 | |
| 
 | |
| 	/* records must cover the same inode range */
 | |
| 	if (trec->ir_startino != srec->ir_startino)
 | |
| 		return false;
 | |
| 
 | |
| 	/* both records must be sparse */
 | |
| 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
 | |
| 	    !xfs_inobt_issparse(srec->ir_holemask))
 | |
| 		return false;
 | |
| 
 | |
| 	/* both records must track some inodes */
 | |
| 	if (!trec->ir_count || !srec->ir_count)
 | |
| 		return false;
 | |
| 
 | |
| 	/* can't exceed capacity of a full record */
 | |
| 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 | |
| 		return false;
 | |
| 
 | |
| 	/* verify there is no allocation overlap */
 | |
| 	talloc = xfs_inobt_irec_to_allocmask(trec);
 | |
| 	salloc = xfs_inobt_irec_to_allocmask(srec);
 | |
| 	if (talloc & salloc)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge the source inode record into the target. The caller must call
 | |
|  * __xfs_inobt_can_merge() to ensure the merge is valid.
 | |
|  */
 | |
| STATIC void
 | |
| __xfs_inobt_rec_merge(
 | |
| 	struct xfs_inobt_rec_incore	*trec,	/* target */
 | |
| 	struct xfs_inobt_rec_incore	*srec)	/* src */
 | |
| {
 | |
| 	ASSERT(trec->ir_startino == srec->ir_startino);
 | |
| 
 | |
| 	/* combine the counts */
 | |
| 	trec->ir_count += srec->ir_count;
 | |
| 	trec->ir_freecount += srec->ir_freecount;
 | |
| 
 | |
| 	/*
 | |
| 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
 | |
| 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
 | |
| 	 */
 | |
| 	trec->ir_holemask &= srec->ir_holemask;
 | |
| 	trec->ir_free &= srec->ir_free;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a new sparse inode chunk into the associated inode btree. The inode
 | |
|  * record for the sparse chunk is pre-aligned to a startino that should match
 | |
|  * any pre-existing sparse inode record in the tree. This allows sparse chunks
 | |
|  * to fill over time.
 | |
|  *
 | |
|  * This function supports two modes of handling preexisting records depending on
 | |
|  * the merge flag. If merge is true, the provided record is merged with the
 | |
|  * existing record and updated in place. The merged record is returned in nrec.
 | |
|  * If merge is false, an existing record is replaced with the provided record.
 | |
|  * If no preexisting record exists, the provided record is always inserted.
 | |
|  *
 | |
|  * It is considered corruption if a merge is requested and not possible. Given
 | |
|  * the sparse inode alignment constraints, this should never happen.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_inobt_insert_sprec(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_trans		*tp,
 | |
| 	struct xfs_buf			*agbp,
 | |
| 	int				btnum,
 | |
| 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
 | |
| 	bool				merge)	/* merge or replace */
 | |
| {
 | |
| 	struct xfs_btree_cur		*cur;
 | |
| 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
 | |
| 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
 | |
| 	int				error;
 | |
| 	int				i;
 | |
| 	struct xfs_inobt_rec_incore	rec;
 | |
| 
 | |
| 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 | |
| 
 | |
| 	/* the new record is pre-aligned so we know where to look */
 | |
| 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 	/* if nothing there, insert a new record and return */
 | |
| 	if (i == 0) {
 | |
| 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 | |
| 					     nrec->ir_count, nrec->ir_freecount,
 | |
| 					     nrec->ir_free, &i);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A record exists at this startino. Merge or replace the record
 | |
| 	 * depending on what we've been asked to do.
 | |
| 	 */
 | |
| 	if (merge) {
 | |
| 		error = xfs_inobt_get_rec(cur, &rec, &i);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp,
 | |
| 					rec.ir_startino == nrec->ir_startino,
 | |
| 					error);
 | |
| 
 | |
| 		/*
 | |
| 		 * This should never fail. If we have coexisting records that
 | |
| 		 * cannot merge, something is seriously wrong.
 | |
| 		 */
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
 | |
| 					error);
 | |
| 
 | |
| 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 | |
| 					 rec.ir_holemask, nrec->ir_startino,
 | |
| 					 nrec->ir_holemask);
 | |
| 
 | |
| 		/* merge to nrec to output the updated record */
 | |
| 		__xfs_inobt_rec_merge(nrec, &rec);
 | |
| 
 | |
| 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 | |
| 					  nrec->ir_holemask);
 | |
| 
 | |
| 		error = xfs_inobt_rec_check_count(mp, nrec);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_inobt_update(cur, nrec);
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 
 | |
| out:
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 	return 0;
 | |
| error:
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate new inodes in the allocation group specified by agbp.
 | |
|  * Return 0 for success, else error code.
 | |
|  */
 | |
| STATIC int				/* error code or 0 */
 | |
| xfs_ialloc_ag_alloc(
 | |
| 	xfs_trans_t	*tp,		/* transaction pointer */
 | |
| 	xfs_buf_t	*agbp,		/* alloc group buffer */
 | |
| 	int		*alloc)
 | |
| {
 | |
| 	xfs_agi_t	*agi;		/* allocation group header */
 | |
| 	xfs_alloc_arg_t	args;		/* allocation argument structure */
 | |
| 	xfs_agnumber_t	agno;
 | |
| 	int		error;
 | |
| 	xfs_agino_t	newino;		/* new first inode's number */
 | |
| 	xfs_agino_t	newlen;		/* new number of inodes */
 | |
| 	int		isaligned = 0;	/* inode allocation at stripe unit */
 | |
| 					/* boundary */
 | |
| 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
 | |
| 	struct xfs_inobt_rec_incore rec;
 | |
| 	struct xfs_perag *pag;
 | |
| 	int		do_sparse = 0;
 | |
| 
 | |
| 	memset(&args, 0, sizeof(args));
 | |
| 	args.tp = tp;
 | |
| 	args.mp = tp->t_mountp;
 | |
| 	args.fsbno = NULLFSBLOCK;
 | |
| 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	/* randomly do sparse inode allocations */
 | |
| 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 | |
| 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
 | |
| 		do_sparse = prandom_u32() & 1;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Locking will ensure that we don't have two callers in here
 | |
| 	 * at one time.
 | |
| 	 */
 | |
| 	newlen = args.mp->m_ialloc_inos;
 | |
| 	if (args.mp->m_maxicount &&
 | |
| 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 | |
| 							args.mp->m_maxicount)
 | |
| 		return -ENOSPC;
 | |
| 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
 | |
| 	/*
 | |
| 	 * First try to allocate inodes contiguous with the last-allocated
 | |
| 	 * chunk of inodes.  If the filesystem is striped, this will fill
 | |
| 	 * an entire stripe unit with inodes.
 | |
| 	 */
 | |
| 	agi = XFS_BUF_TO_AGI(agbp);
 | |
| 	newino = be32_to_cpu(agi->agi_newino);
 | |
| 	agno = be32_to_cpu(agi->agi_seqno);
 | |
| 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 | |
| 		     args.mp->m_ialloc_blks;
 | |
| 	if (do_sparse)
 | |
| 		goto sparse_alloc;
 | |
| 	if (likely(newino != NULLAGINO &&
 | |
| 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 | |
| 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 | |
| 		args.type = XFS_ALLOCTYPE_THIS_BNO;
 | |
| 		args.prod = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to take into account alignment here to ensure that
 | |
| 		 * we don't modify the free list if we fail to have an exact
 | |
| 		 * block. If we don't have an exact match, and every oher
 | |
| 		 * attempt allocation attempt fails, we'll end up cancelling
 | |
| 		 * a dirty transaction and shutting down.
 | |
| 		 *
 | |
| 		 * For an exact allocation, alignment must be 1,
 | |
| 		 * however we need to take cluster alignment into account when
 | |
| 		 * fixing up the freelist. Use the minalignslop field to
 | |
| 		 * indicate that extra blocks might be required for alignment,
 | |
| 		 * but not to use them in the actual exact allocation.
 | |
| 		 */
 | |
| 		args.alignment = 1;
 | |
| 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
 | |
| 
 | |
| 		/* Allow space for the inode btree to split. */
 | |
| 		args.minleft = args.mp->m_in_maxlevels - 1;
 | |
| 		if ((error = xfs_alloc_vextent(&args)))
 | |
| 			return error;
 | |
| 
 | |
| 		/*
 | |
| 		 * This request might have dirtied the transaction if the AG can
 | |
| 		 * satisfy the request, but the exact block was not available.
 | |
| 		 * If the allocation did fail, subsequent requests will relax
 | |
| 		 * the exact agbno requirement and increase the alignment
 | |
| 		 * instead. It is critical that the total size of the request
 | |
| 		 * (len + alignment + slop) does not increase from this point
 | |
| 		 * on, so reset minalignslop to ensure it is not included in
 | |
| 		 * subsequent requests.
 | |
| 		 */
 | |
| 		args.minalignslop = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
 | |
| 		/*
 | |
| 		 * Set the alignment for the allocation.
 | |
| 		 * If stripe alignment is turned on then align at stripe unit
 | |
| 		 * boundary.
 | |
| 		 * If the cluster size is smaller than a filesystem block
 | |
| 		 * then we're doing I/O for inodes in filesystem block size
 | |
| 		 * pieces, so don't need alignment anyway.
 | |
| 		 */
 | |
| 		isaligned = 0;
 | |
| 		if (args.mp->m_sinoalign) {
 | |
| 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 | |
| 			args.alignment = args.mp->m_dalign;
 | |
| 			isaligned = 1;
 | |
| 		} else
 | |
| 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 | |
| 		/*
 | |
| 		 * Need to figure out where to allocate the inode blocks.
 | |
| 		 * Ideally they should be spaced out through the a.g.
 | |
| 		 * For now, just allocate blocks up front.
 | |
| 		 */
 | |
| 		args.agbno = be32_to_cpu(agi->agi_root);
 | |
| 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 | |
| 		/*
 | |
| 		 * Allocate a fixed-size extent of inodes.
 | |
| 		 */
 | |
| 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 | |
| 		args.prod = 1;
 | |
| 		/*
 | |
| 		 * Allow space for the inode btree to split.
 | |
| 		 */
 | |
| 		args.minleft = args.mp->m_in_maxlevels - 1;
 | |
| 		if ((error = xfs_alloc_vextent(&args)))
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If stripe alignment is turned on, then try again with cluster
 | |
| 	 * alignment.
 | |
| 	 */
 | |
| 	if (isaligned && args.fsbno == NULLFSBLOCK) {
 | |
| 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 | |
| 		args.agbno = be32_to_cpu(agi->agi_root);
 | |
| 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 | |
| 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 | |
| 		if ((error = xfs_alloc_vextent(&args)))
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, try a sparse allocation if the filesystem supports it and
 | |
| 	 * the sparse allocation length is smaller than a full chunk.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 | |
| 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
 | |
| 	    args.fsbno == NULLFSBLOCK) {
 | |
| sparse_alloc:
 | |
| 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 | |
| 		args.agbno = be32_to_cpu(agi->agi_root);
 | |
| 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 | |
| 		args.alignment = args.mp->m_sb.sb_spino_align;
 | |
| 		args.prod = 1;
 | |
| 
 | |
| 		args.minlen = args.mp->m_ialloc_min_blks;
 | |
| 		args.maxlen = args.minlen;
 | |
| 
 | |
| 		/*
 | |
| 		 * The inode record will be aligned to full chunk size. We must
 | |
| 		 * prevent sparse allocation from AG boundaries that result in
 | |
| 		 * invalid inode records, such as records that start at agbno 0
 | |
| 		 * or extend beyond the AG.
 | |
| 		 *
 | |
| 		 * Set min agbno to the first aligned, non-zero agbno and max to
 | |
| 		 * the last aligned agbno that is at least one full chunk from
 | |
| 		 * the end of the AG.
 | |
| 		 */
 | |
| 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 | |
| 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 | |
| 					    args.mp->m_sb.sb_inoalignmt) -
 | |
| 				 args.mp->m_ialloc_blks;
 | |
| 
 | |
| 		error = xfs_alloc_vextent(&args);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		newlen = args.len << args.mp->m_sb.sb_inopblog;
 | |
| 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 | |
| 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (args.fsbno == NULLFSBLOCK) {
 | |
| 		*alloc = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ASSERT(args.len == args.minlen);
 | |
| 
 | |
| 	/*
 | |
| 	 * Stamp and write the inode buffers.
 | |
| 	 *
 | |
| 	 * Seed the new inode cluster with a random generation number. This
 | |
| 	 * prevents short-term reuse of generation numbers if a chunk is
 | |
| 	 * freed and then immediately reallocated. We use random numbers
 | |
| 	 * rather than a linear progression to prevent the next generation
 | |
| 	 * number from being easily guessable.
 | |
| 	 */
 | |
| 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 | |
| 			args.agbno, args.len, prandom_u32());
 | |
| 
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	/*
 | |
| 	 * Convert the results.
 | |
| 	 */
 | |
| 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
 | |
| 
 | |
| 	if (xfs_inobt_issparse(~allocmask)) {
 | |
| 		/*
 | |
| 		 * We've allocated a sparse chunk. Align the startino and mask.
 | |
| 		 */
 | |
| 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 | |
| 
 | |
| 		rec.ir_startino = newino;
 | |
| 		rec.ir_holemask = ~allocmask;
 | |
| 		rec.ir_count = newlen;
 | |
| 		rec.ir_freecount = newlen;
 | |
| 		rec.ir_free = XFS_INOBT_ALL_FREE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Insert the sparse record into the inobt and allow for a merge
 | |
| 		 * if necessary. If a merge does occur, rec is updated to the
 | |
| 		 * merged record.
 | |
| 		 */
 | |
| 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 | |
| 					       &rec, true);
 | |
| 		if (error == -EFSCORRUPTED) {
 | |
| 			xfs_alert(args.mp,
 | |
| 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 | |
| 				  XFS_AGINO_TO_INO(args.mp, agno,
 | |
| 						   rec.ir_startino),
 | |
| 				  rec.ir_holemask, rec.ir_count);
 | |
| 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| 		}
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't merge the part we've just allocated as for the inobt
 | |
| 		 * due to finobt semantics. The original record may or may not
 | |
| 		 * exist independent of whether physical inodes exist in this
 | |
| 		 * sparse chunk.
 | |
| 		 *
 | |
| 		 * We must update the finobt record based on the inobt record.
 | |
| 		 * rec contains the fully merged and up to date inobt record
 | |
| 		 * from the previous call. Set merge false to replace any
 | |
| 		 * existing record with this one.
 | |
| 		 */
 | |
| 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 | |
| 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 | |
| 						       XFS_BTNUM_FINO, &rec,
 | |
| 						       false);
 | |
| 			if (error)
 | |
| 				return error;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* full chunk - insert new records to both btrees */
 | |
| 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 | |
| 					 XFS_BTNUM_INO);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 | |
| 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 | |
| 						 newlen, XFS_BTNUM_FINO);
 | |
| 			if (error)
 | |
| 				return error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update AGI counts and newino.
 | |
| 	 */
 | |
| 	be32_add_cpu(&agi->agi_count, newlen);
 | |
| 	be32_add_cpu(&agi->agi_freecount, newlen);
 | |
| 	pag = xfs_perag_get(args.mp, agno);
 | |
| 	pag->pagi_freecount += newlen;
 | |
| 	pag->pagi_count += newlen;
 | |
| 	xfs_perag_put(pag);
 | |
| 	agi->agi_newino = cpu_to_be32(newino);
 | |
| 
 | |
| 	/*
 | |
| 	 * Log allocation group header fields
 | |
| 	 */
 | |
| 	xfs_ialloc_log_agi(tp, agbp,
 | |
| 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 | |
| 	/*
 | |
| 	 * Modify/log superblock values for inode count and inode free count.
 | |
| 	 */
 | |
| 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 | |
| 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 | |
| 	*alloc = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC xfs_agnumber_t
 | |
| xfs_ialloc_next_ag(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_agnumber_t	agno;
 | |
| 
 | |
| 	spin_lock(&mp->m_agirotor_lock);
 | |
| 	agno = mp->m_agirotor;
 | |
| 	if (++mp->m_agirotor >= mp->m_maxagi)
 | |
| 		mp->m_agirotor = 0;
 | |
| 	spin_unlock(&mp->m_agirotor_lock);
 | |
| 
 | |
| 	return agno;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select an allocation group to look for a free inode in, based on the parent
 | |
|  * inode and the mode.  Return the allocation group buffer.
 | |
|  */
 | |
| STATIC xfs_agnumber_t
 | |
| xfs_ialloc_ag_select(
 | |
| 	xfs_trans_t	*tp,		/* transaction pointer */
 | |
| 	xfs_ino_t	parent,		/* parent directory inode number */
 | |
| 	umode_t		mode)		/* bits set to indicate file type */
 | |
| {
 | |
| 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
 | |
| 	xfs_agnumber_t	agno;		/* current ag number */
 | |
| 	int		flags;		/* alloc buffer locking flags */
 | |
| 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
 | |
| 	xfs_extlen_t	longest = 0;	/* longest extent available */
 | |
| 	xfs_mount_t	*mp;		/* mount point structure */
 | |
| 	int		needspace;	/* file mode implies space allocated */
 | |
| 	xfs_perag_t	*pag;		/* per allocation group data */
 | |
| 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
 | |
| 	int		error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Files of these types need at least one block if length > 0
 | |
| 	 * (and they won't fit in the inode, but that's hard to figure out).
 | |
| 	 */
 | |
| 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 | |
| 	mp = tp->t_mountp;
 | |
| 	agcount = mp->m_maxagi;
 | |
| 	if (S_ISDIR(mode))
 | |
| 		pagno = xfs_ialloc_next_ag(mp);
 | |
| 	else {
 | |
| 		pagno = XFS_INO_TO_AGNO(mp, parent);
 | |
| 		if (pagno >= agcount)
 | |
| 			pagno = 0;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(pagno < agcount);
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop through allocation groups, looking for one with a little
 | |
| 	 * free space in it.  Note we don't look for free inodes, exactly.
 | |
| 	 * Instead, we include whether there is a need to allocate inodes
 | |
| 	 * to mean that blocks must be allocated for them,
 | |
| 	 * if none are currently free.
 | |
| 	 */
 | |
| 	agno = pagno;
 | |
| 	flags = XFS_ALLOC_FLAG_TRYLOCK;
 | |
| 	for (;;) {
 | |
| 		pag = xfs_perag_get(mp, agno);
 | |
| 		if (!pag->pagi_inodeok) {
 | |
| 			xfs_ialloc_next_ag(mp);
 | |
| 			goto nextag;
 | |
| 		}
 | |
| 
 | |
| 		if (!pag->pagi_init) {
 | |
| 			error = xfs_ialloc_pagi_init(mp, tp, agno);
 | |
| 			if (error)
 | |
| 				goto nextag;
 | |
| 		}
 | |
| 
 | |
| 		if (pag->pagi_freecount) {
 | |
| 			xfs_perag_put(pag);
 | |
| 			return agno;
 | |
| 		}
 | |
| 
 | |
| 		if (!pag->pagf_init) {
 | |
| 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 | |
| 			if (error)
 | |
| 				goto nextag;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check that there is enough free space for the file plus a
 | |
| 		 * chunk of inodes if we need to allocate some. If this is the
 | |
| 		 * first pass across the AGs, take into account the potential
 | |
| 		 * space needed for alignment of inode chunks when checking the
 | |
| 		 * longest contiguous free space in the AG - this prevents us
 | |
| 		 * from getting ENOSPC because we have free space larger than
 | |
| 		 * m_ialloc_blks but alignment constraints prevent us from using
 | |
| 		 * it.
 | |
| 		 *
 | |
| 		 * If we can't find an AG with space for full alignment slack to
 | |
| 		 * be taken into account, we must be near ENOSPC in all AGs.
 | |
| 		 * Hence we don't include alignment for the second pass and so
 | |
| 		 * if we fail allocation due to alignment issues then it is most
 | |
| 		 * likely a real ENOSPC condition.
 | |
| 		 */
 | |
| 		ineed = mp->m_ialloc_min_blks;
 | |
| 		if (flags && ineed > 1)
 | |
| 			ineed += xfs_ialloc_cluster_alignment(mp);
 | |
| 		longest = pag->pagf_longest;
 | |
| 		if (!longest)
 | |
| 			longest = pag->pagf_flcount > 0;
 | |
| 
 | |
| 		if (pag->pagf_freeblks >= needspace + ineed &&
 | |
| 		    longest >= ineed) {
 | |
| 			xfs_perag_put(pag);
 | |
| 			return agno;
 | |
| 		}
 | |
| nextag:
 | |
| 		xfs_perag_put(pag);
 | |
| 		/*
 | |
| 		 * No point in iterating over the rest, if we're shutting
 | |
| 		 * down.
 | |
| 		 */
 | |
| 		if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 			return NULLAGNUMBER;
 | |
| 		agno++;
 | |
| 		if (agno >= agcount)
 | |
| 			agno = 0;
 | |
| 		if (agno == pagno) {
 | |
| 			if (flags == 0)
 | |
| 				return NULLAGNUMBER;
 | |
| 			flags = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to retrieve the next record to the left/right from the current one.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_ialloc_next_rec(
 | |
| 	struct xfs_btree_cur	*cur,
 | |
| 	xfs_inobt_rec_incore_t	*rec,
 | |
| 	int			*done,
 | |
| 	int			left)
 | |
| {
 | |
| 	int                     error;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (left)
 | |
| 		error = xfs_btree_decrement(cur, 0, &i);
 | |
| 	else
 | |
| 		error = xfs_btree_increment(cur, 0, &i);
 | |
| 
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	*done = !i;
 | |
| 	if (i) {
 | |
| 		error = xfs_inobt_get_rec(cur, rec, &i);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_ialloc_get_rec(
 | |
| 	struct xfs_btree_cur	*cur,
 | |
| 	xfs_agino_t		agino,
 | |
| 	xfs_inobt_rec_incore_t	*rec,
 | |
| 	int			*done)
 | |
| {
 | |
| 	int                     error;
 | |
| 	int			i;
 | |
| 
 | |
| 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	*done = !i;
 | |
| 	if (i) {
 | |
| 		error = xfs_inobt_get_rec(cur, rec, &i);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the offset of the first free inode in the record. If the inode chunk
 | |
|  * is sparsely allocated, we convert the record holemask to inode granularity
 | |
|  * and mask off the unallocated regions from the inode free mask.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_inobt_first_free_inode(
 | |
| 	struct xfs_inobt_rec_incore	*rec)
 | |
| {
 | |
| 	xfs_inofree_t			realfree;
 | |
| 
 | |
| 	/* if there are no holes, return the first available offset */
 | |
| 	if (!xfs_inobt_issparse(rec->ir_holemask))
 | |
| 		return xfs_lowbit64(rec->ir_free);
 | |
| 
 | |
| 	realfree = xfs_inobt_irec_to_allocmask(rec);
 | |
| 	realfree &= rec->ir_free;
 | |
| 
 | |
| 	return xfs_lowbit64(realfree);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an inode using the inobt-only algorithm.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_dialloc_ag_inobt(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_buf		*agbp,
 | |
| 	xfs_ino_t		parent,
 | |
| 	xfs_ino_t		*inop)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
 | |
| 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
 | |
| 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
 | |
| 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
 | |
| 	struct xfs_perag	*pag;
 | |
| 	struct xfs_btree_cur	*cur, *tcur;
 | |
| 	struct xfs_inobt_rec_incore rec, trec;
 | |
| 	xfs_ino_t		ino;
 | |
| 	int			error;
 | |
| 	int			offset;
 | |
| 	int			i, j;
 | |
| 	int			searchdistance = 10;
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, agno);
 | |
| 
 | |
| 	ASSERT(pag->pagi_init);
 | |
| 	ASSERT(pag->pagi_inodeok);
 | |
| 	ASSERT(pag->pagi_freecount > 0);
 | |
| 
 | |
|  restart_pagno:
 | |
| 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
 | |
| 	/*
 | |
| 	 * If pagino is 0 (this is the root inode allocation) use newino.
 | |
| 	 * This must work because we've just allocated some.
 | |
| 	 */
 | |
| 	if (!pagino)
 | |
| 		pagino = be32_to_cpu(agi->agi_newino);
 | |
| 
 | |
| 	error = xfs_check_agi_freecount(cur, agi);
 | |
| 	if (error)
 | |
| 		goto error0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If in the same AG as the parent, try to get near the parent.
 | |
| 	 */
 | |
| 	if (pagno == agno) {
 | |
| 		int		doneleft;	/* done, to the left */
 | |
| 		int		doneright;	/* done, to the right */
 | |
| 
 | |
| 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
 | |
| 		if (error)
 | |
| 			goto error0;
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 | |
| 
 | |
| 		error = xfs_inobt_get_rec(cur, &rec, &j);
 | |
| 		if (error)
 | |
| 			goto error0;
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
 | |
| 
 | |
| 		if (rec.ir_freecount > 0) {
 | |
| 			/*
 | |
| 			 * Found a free inode in the same chunk
 | |
| 			 * as the parent, done.
 | |
| 			 */
 | |
| 			goto alloc_inode;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * In the same AG as parent, but parent's chunk is full.
 | |
| 		 */
 | |
| 
 | |
| 		/* duplicate the cursor, search left & right simultaneously */
 | |
| 		error = xfs_btree_dup_cursor(cur, &tcur);
 | |
| 		if (error)
 | |
| 			goto error0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip to last blocks looked up if same parent inode.
 | |
| 		 */
 | |
| 		if (pagino != NULLAGINO &&
 | |
| 		    pag->pagl_pagino == pagino &&
 | |
| 		    pag->pagl_leftrec != NULLAGINO &&
 | |
| 		    pag->pagl_rightrec != NULLAGINO) {
 | |
| 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
 | |
| 						   &trec, &doneleft);
 | |
| 			if (error)
 | |
| 				goto error1;
 | |
| 
 | |
| 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
 | |
| 						   &rec, &doneright);
 | |
| 			if (error)
 | |
| 				goto error1;
 | |
| 		} else {
 | |
| 			/* search left with tcur, back up 1 record */
 | |
| 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
 | |
| 			if (error)
 | |
| 				goto error1;
 | |
| 
 | |
| 			/* search right with cur, go forward 1 record. */
 | |
| 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
 | |
| 			if (error)
 | |
| 				goto error1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Loop until we find an inode chunk with a free inode.
 | |
| 		 */
 | |
| 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
 | |
| 			int	useleft;  /* using left inode chunk this time */
 | |
| 
 | |
| 			/* figure out the closer block if both are valid. */
 | |
| 			if (!doneleft && !doneright) {
 | |
| 				useleft = pagino -
 | |
| 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
 | |
| 				  rec.ir_startino - pagino;
 | |
| 			} else {
 | |
| 				useleft = !doneleft;
 | |
| 			}
 | |
| 
 | |
| 			/* free inodes to the left? */
 | |
| 			if (useleft && trec.ir_freecount) {
 | |
| 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 				cur = tcur;
 | |
| 
 | |
| 				pag->pagl_leftrec = trec.ir_startino;
 | |
| 				pag->pagl_rightrec = rec.ir_startino;
 | |
| 				pag->pagl_pagino = pagino;
 | |
| 				rec = trec;
 | |
| 				goto alloc_inode;
 | |
| 			}
 | |
| 
 | |
| 			/* free inodes to the right? */
 | |
| 			if (!useleft && rec.ir_freecount) {
 | |
| 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
 | |
| 
 | |
| 				pag->pagl_leftrec = trec.ir_startino;
 | |
| 				pag->pagl_rightrec = rec.ir_startino;
 | |
| 				pag->pagl_pagino = pagino;
 | |
| 				goto alloc_inode;
 | |
| 			}
 | |
| 
 | |
| 			/* get next record to check */
 | |
| 			if (useleft) {
 | |
| 				error = xfs_ialloc_next_rec(tcur, &trec,
 | |
| 								 &doneleft, 1);
 | |
| 			} else {
 | |
| 				error = xfs_ialloc_next_rec(cur, &rec,
 | |
| 								 &doneright, 0);
 | |
| 			}
 | |
| 			if (error)
 | |
| 				goto error1;
 | |
| 		}
 | |
| 
 | |
| 		if (searchdistance <= 0) {
 | |
| 			/*
 | |
| 			 * Not in range - save last search
 | |
| 			 * location and allocate a new inode
 | |
| 			 */
 | |
| 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
 | |
| 			pag->pagl_leftrec = trec.ir_startino;
 | |
| 			pag->pagl_rightrec = rec.ir_startino;
 | |
| 			pag->pagl_pagino = pagino;
 | |
| 
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We've reached the end of the btree. because
 | |
| 			 * we are only searching a small chunk of the
 | |
| 			 * btree each search, there is obviously free
 | |
| 			 * inodes closer to the parent inode than we
 | |
| 			 * are now. restart the search again.
 | |
| 			 */
 | |
| 			pag->pagl_pagino = NULLAGINO;
 | |
| 			pag->pagl_leftrec = NULLAGINO;
 | |
| 			pag->pagl_rightrec = NULLAGINO;
 | |
| 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
 | |
| 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 			goto restart_pagno;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In a different AG from the parent.
 | |
| 	 * See if the most recently allocated block has any free.
 | |
| 	 */
 | |
| 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
 | |
| 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
 | |
| 					 XFS_LOOKUP_EQ, &i);
 | |
| 		if (error)
 | |
| 			goto error0;
 | |
| 
 | |
| 		if (i == 1) {
 | |
| 			error = xfs_inobt_get_rec(cur, &rec, &j);
 | |
| 			if (error)
 | |
| 				goto error0;
 | |
| 
 | |
| 			if (j == 1 && rec.ir_freecount > 0) {
 | |
| 				/*
 | |
| 				 * The last chunk allocated in the group
 | |
| 				 * still has a free inode.
 | |
| 				 */
 | |
| 				goto alloc_inode;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * None left in the last group, search the whole AG
 | |
| 	 */
 | |
| 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 | |
| 	if (error)
 | |
| 		goto error0;
 | |
| 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		error = xfs_inobt_get_rec(cur, &rec, &i);
 | |
| 		if (error)
 | |
| 			goto error0;
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 | |
| 		if (rec.ir_freecount > 0)
 | |
| 			break;
 | |
| 		error = xfs_btree_increment(cur, 0, &i);
 | |
| 		if (error)
 | |
| 			goto error0;
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 | |
| 	}
 | |
| 
 | |
| alloc_inode:
 | |
| 	offset = xfs_inobt_first_free_inode(&rec);
 | |
| 	ASSERT(offset >= 0);
 | |
| 	ASSERT(offset < XFS_INODES_PER_CHUNK);
 | |
| 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
 | |
| 				   XFS_INODES_PER_CHUNK) == 0);
 | |
| 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
 | |
| 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
 | |
| 	rec.ir_freecount--;
 | |
| 	error = xfs_inobt_update(cur, &rec);
 | |
| 	if (error)
 | |
| 		goto error0;
 | |
| 	be32_add_cpu(&agi->agi_freecount, -1);
 | |
| 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
 | |
| 	pag->pagi_freecount--;
 | |
| 
 | |
| 	error = xfs_check_agi_freecount(cur, agi);
 | |
| 	if (error)
 | |
| 		goto error0;
 | |
| 
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
 | |
| 	xfs_perag_put(pag);
 | |
| 	*inop = ino;
 | |
| 	return 0;
 | |
| error1:
 | |
| 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
 | |
| error0:
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 | |
| 	xfs_perag_put(pag);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the free inode btree to allocate an inode based on distance from the
 | |
|  * parent. Note that the provided cursor may be deleted and replaced.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_dialloc_ag_finobt_near(
 | |
| 	xfs_agino_t			pagino,
 | |
| 	struct xfs_btree_cur		**ocur,
 | |
| 	struct xfs_inobt_rec_incore	*rec)
 | |
| {
 | |
| 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
 | |
| 	struct xfs_btree_cur		*rcur;	/* right search cursor */
 | |
| 	struct xfs_inobt_rec_incore	rrec;
 | |
| 	int				error;
 | |
| 	int				i, j;
 | |
| 
 | |
| 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (i == 1) {
 | |
| 		error = xfs_inobt_get_rec(lcur, rec, &i);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * See if we've landed in the parent inode record. The finobt
 | |
| 		 * only tracks chunks with at least one free inode, so record
 | |
| 		 * existence is enough.
 | |
| 		 */
 | |
| 		if (pagino >= rec->ir_startino &&
 | |
| 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_btree_dup_cursor(lcur, &rcur);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
 | |
| 	if (error)
 | |
| 		goto error_rcur;
 | |
| 	if (j == 1) {
 | |
| 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
 | |
| 		if (error)
 | |
| 			goto error_rcur;
 | |
| 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
 | |
| 	}
 | |
| 
 | |
| 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
 | |
| 	if (i == 1 && j == 1) {
 | |
| 		/*
 | |
| 		 * Both the left and right records are valid. Choose the closer
 | |
| 		 * inode chunk to the target.
 | |
| 		 */
 | |
| 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
 | |
| 		    (rrec.ir_startino - pagino)) {
 | |
| 			*rec = rrec;
 | |
| 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
 | |
| 			*ocur = rcur;
 | |
| 		} else {
 | |
| 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
 | |
| 		}
 | |
| 	} else if (j == 1) {
 | |
| 		/* only the right record is valid */
 | |
| 		*rec = rrec;
 | |
| 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
 | |
| 		*ocur = rcur;
 | |
| 	} else if (i == 1) {
 | |
| 		/* only the left record is valid */
 | |
| 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_rcur:
 | |
| 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the free inode btree to find a free inode based on a newino hint. If
 | |
|  * the hint is NULL, find the first free inode in the AG.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_dialloc_ag_finobt_newino(
 | |
| 	struct xfs_agi			*agi,
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	struct xfs_inobt_rec_incore	*rec)
 | |
| {
 | |
| 	int error;
 | |
| 	int i;
 | |
| 
 | |
| 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
 | |
| 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
 | |
| 					 XFS_LOOKUP_EQ, &i);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		if (i == 1) {
 | |
| 			error = xfs_inobt_get_rec(cur, rec, &i);
 | |
| 			if (error)
 | |
| 				return error;
 | |
| 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the first inode available in the AG.
 | |
| 	 */
 | |
| 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 | |
| 
 | |
| 	error = xfs_inobt_get_rec(cur, rec, &i);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the inobt based on a modification made to the finobt. Also ensure that
 | |
|  * the records from both trees are equivalent post-modification.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_dialloc_ag_update_inobt(
 | |
| 	struct xfs_btree_cur		*cur,	/* inobt cursor */
 | |
| 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
 | |
| 	int				offset) /* inode offset */
 | |
| {
 | |
| 	struct xfs_inobt_rec_incore	rec;
 | |
| 	int				error;
 | |
| 	int				i;
 | |
| 
 | |
| 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 | |
| 
 | |
| 	error = xfs_inobt_get_rec(cur, &rec, &i);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 | |
| 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
 | |
| 				   XFS_INODES_PER_CHUNK) == 0);
 | |
| 
 | |
| 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
 | |
| 	rec.ir_freecount--;
 | |
| 
 | |
| 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
 | |
| 				  (rec.ir_freecount == frec->ir_freecount));
 | |
| 
 | |
| 	return xfs_inobt_update(cur, &rec);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an inode using the free inode btree, if available. Otherwise, fall
 | |
|  * back to the inobt search algorithm.
 | |
|  *
 | |
|  * The caller selected an AG for us, and made sure that free inodes are
 | |
|  * available.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_dialloc_ag(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_buf		*agbp,
 | |
| 	xfs_ino_t		parent,
 | |
| 	xfs_ino_t		*inop)
 | |
| {
 | |
| 	struct xfs_mount		*mp = tp->t_mountp;
 | |
| 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
 | |
| 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
 | |
| 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
 | |
| 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
 | |
| 	struct xfs_perag		*pag;
 | |
| 	struct xfs_btree_cur		*cur;	/* finobt cursor */
 | |
| 	struct xfs_btree_cur		*icur;	/* inobt cursor */
 | |
| 	struct xfs_inobt_rec_incore	rec;
 | |
| 	xfs_ino_t			ino;
 | |
| 	int				error;
 | |
| 	int				offset;
 | |
| 	int				i;
 | |
| 
 | |
| 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
 | |
| 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, agno);
 | |
| 
 | |
| 	/*
 | |
| 	 * If pagino is 0 (this is the root inode allocation) use newino.
 | |
| 	 * This must work because we've just allocated some.
 | |
| 	 */
 | |
| 	if (!pagino)
 | |
| 		pagino = be32_to_cpu(agi->agi_newino);
 | |
| 
 | |
| 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
 | |
| 
 | |
| 	error = xfs_check_agi_freecount(cur, agi);
 | |
| 	if (error)
 | |
| 		goto error_cur;
 | |
| 
 | |
| 	/*
 | |
| 	 * The search algorithm depends on whether we're in the same AG as the
 | |
| 	 * parent. If so, find the closest available inode to the parent. If
 | |
| 	 * not, consider the agi hint or find the first free inode in the AG.
 | |
| 	 */
 | |
| 	if (agno == pagno)
 | |
| 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
 | |
| 	else
 | |
| 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
 | |
| 	if (error)
 | |
| 		goto error_cur;
 | |
| 
 | |
| 	offset = xfs_inobt_first_free_inode(&rec);
 | |
| 	ASSERT(offset >= 0);
 | |
| 	ASSERT(offset < XFS_INODES_PER_CHUNK);
 | |
| 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
 | |
| 				   XFS_INODES_PER_CHUNK) == 0);
 | |
| 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Modify or remove the finobt record.
 | |
| 	 */
 | |
| 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
 | |
| 	rec.ir_freecount--;
 | |
| 	if (rec.ir_freecount)
 | |
| 		error = xfs_inobt_update(cur, &rec);
 | |
| 	else
 | |
| 		error = xfs_btree_delete(cur, &i);
 | |
| 	if (error)
 | |
| 		goto error_cur;
 | |
| 
 | |
| 	/*
 | |
| 	 * The finobt has now been updated appropriately. We haven't updated the
 | |
| 	 * agi and superblock yet, so we can create an inobt cursor and validate
 | |
| 	 * the original freecount. If all is well, make the equivalent update to
 | |
| 	 * the inobt using the finobt record and offset information.
 | |
| 	 */
 | |
| 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
 | |
| 
 | |
| 	error = xfs_check_agi_freecount(icur, agi);
 | |
| 	if (error)
 | |
| 		goto error_icur;
 | |
| 
 | |
| 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
 | |
| 	if (error)
 | |
| 		goto error_icur;
 | |
| 
 | |
| 	/*
 | |
| 	 * Both trees have now been updated. We must update the perag and
 | |
| 	 * superblock before we can check the freecount for each btree.
 | |
| 	 */
 | |
| 	be32_add_cpu(&agi->agi_freecount, -1);
 | |
| 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
 | |
| 	pag->pagi_freecount--;
 | |
| 
 | |
| 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
 | |
| 
 | |
| 	error = xfs_check_agi_freecount(icur, agi);
 | |
| 	if (error)
 | |
| 		goto error_icur;
 | |
| 	error = xfs_check_agi_freecount(cur, agi);
 | |
| 	if (error)
 | |
| 		goto error_icur;
 | |
| 
 | |
| 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 	xfs_perag_put(pag);
 | |
| 	*inop = ino;
 | |
| 	return 0;
 | |
| 
 | |
| error_icur:
 | |
| 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
 | |
| error_cur:
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 | |
| 	xfs_perag_put(pag);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an inode on disk.
 | |
|  *
 | |
|  * Mode is used to tell whether the new inode will need space, and whether it
 | |
|  * is a directory.
 | |
|  *
 | |
|  * This function is designed to be called twice if it has to do an allocation
 | |
|  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
 | |
|  * If an inode is available without having to performn an allocation, an inode
 | |
|  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
 | |
|  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
 | |
|  * The caller should then commit the current transaction, allocate a
 | |
|  * new transaction, and call xfs_dialloc() again, passing in the previous value
 | |
|  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
 | |
|  * buffer is locked across the two calls, the second call is guaranteed to have
 | |
|  * a free inode available.
 | |
|  *
 | |
|  * Once we successfully pick an inode its number is returned and the on-disk
 | |
|  * data structures are updated.  The inode itself is not read in, since doing so
 | |
|  * would break ordering constraints with xfs_reclaim.
 | |
|  */
 | |
| int
 | |
| xfs_dialloc(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	xfs_ino_t		parent,
 | |
| 	umode_t			mode,
 | |
| 	struct xfs_buf		**IO_agbp,
 | |
| 	xfs_ino_t		*inop)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	struct xfs_buf		*agbp;
 | |
| 	xfs_agnumber_t		agno;
 | |
| 	int			error;
 | |
| 	int			ialloced;
 | |
| 	int			noroom = 0;
 | |
| 	xfs_agnumber_t		start_agno;
 | |
| 	struct xfs_perag	*pag;
 | |
| 	int			okalloc = 1;
 | |
| 
 | |
| 	if (*IO_agbp) {
 | |
| 		/*
 | |
| 		 * If the caller passes in a pointer to the AGI buffer,
 | |
| 		 * continue where we left off before.  In this case, we
 | |
| 		 * know that the allocation group has free inodes.
 | |
| 		 */
 | |
| 		agbp = *IO_agbp;
 | |
| 		goto out_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not have an agbp, so select an initial allocation
 | |
| 	 * group for inode allocation.
 | |
| 	 */
 | |
| 	start_agno = xfs_ialloc_ag_select(tp, parent, mode);
 | |
| 	if (start_agno == NULLAGNUMBER) {
 | |
| 		*inop = NULLFSINO;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have already hit the ceiling of inode blocks then clear
 | |
| 	 * okalloc so we scan all available agi structures for a free
 | |
| 	 * inode.
 | |
| 	 *
 | |
| 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
 | |
| 	 * which will sacrifice the preciseness but improve the performance.
 | |
| 	 */
 | |
| 	if (mp->m_maxicount &&
 | |
| 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
 | |
| 							> mp->m_maxicount) {
 | |
| 		noroom = 1;
 | |
| 		okalloc = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop until we find an allocation group that either has free inodes
 | |
| 	 * or in which we can allocate some inodes.  Iterate through the
 | |
| 	 * allocation groups upward, wrapping at the end.
 | |
| 	 */
 | |
| 	agno = start_agno;
 | |
| 	for (;;) {
 | |
| 		pag = xfs_perag_get(mp, agno);
 | |
| 		if (!pag->pagi_inodeok) {
 | |
| 			xfs_ialloc_next_ag(mp);
 | |
| 			goto nextag;
 | |
| 		}
 | |
| 
 | |
| 		if (!pag->pagi_init) {
 | |
| 			error = xfs_ialloc_pagi_init(mp, tp, agno);
 | |
| 			if (error)
 | |
| 				goto out_error;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Do a first racy fast path check if this AG is usable.
 | |
| 		 */
 | |
| 		if (!pag->pagi_freecount && !okalloc)
 | |
| 			goto nextag;
 | |
| 
 | |
| 		/*
 | |
| 		 * Then read in the AGI buffer and recheck with the AGI buffer
 | |
| 		 * lock held.
 | |
| 		 */
 | |
| 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
 | |
| 		if (error)
 | |
| 			goto out_error;
 | |
| 
 | |
| 		if (pag->pagi_freecount) {
 | |
| 			xfs_perag_put(pag);
 | |
| 			goto out_alloc;
 | |
| 		}
 | |
| 
 | |
| 		if (!okalloc)
 | |
| 			goto nextag_relse_buffer;
 | |
| 
 | |
| 
 | |
| 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
 | |
| 		if (error) {
 | |
| 			xfs_trans_brelse(tp, agbp);
 | |
| 
 | |
| 			if (error != -ENOSPC)
 | |
| 				goto out_error;
 | |
| 
 | |
| 			xfs_perag_put(pag);
 | |
| 			*inop = NULLFSINO;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (ialloced) {
 | |
| 			/*
 | |
| 			 * We successfully allocated some inodes, return
 | |
| 			 * the current context to the caller so that it
 | |
| 			 * can commit the current transaction and call
 | |
| 			 * us again where we left off.
 | |
| 			 */
 | |
| 			ASSERT(pag->pagi_freecount > 0);
 | |
| 			xfs_perag_put(pag);
 | |
| 
 | |
| 			*IO_agbp = agbp;
 | |
| 			*inop = NULLFSINO;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| nextag_relse_buffer:
 | |
| 		xfs_trans_brelse(tp, agbp);
 | |
| nextag:
 | |
| 		xfs_perag_put(pag);
 | |
| 		if (++agno == mp->m_sb.sb_agcount)
 | |
| 			agno = 0;
 | |
| 		if (agno == start_agno) {
 | |
| 			*inop = NULLFSINO;
 | |
| 			return noroom ? -ENOSPC : 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_alloc:
 | |
| 	*IO_agbp = NULL;
 | |
| 	return xfs_dialloc_ag(tp, agbp, parent, inop);
 | |
| out_error:
 | |
| 	xfs_perag_put(pag);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the blocks of an inode chunk. We must consider that the inode chunk
 | |
|  * might be sparse and only free the regions that are allocated as part of the
 | |
|  * chunk.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_difree_inode_chunk(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	xfs_agnumber_t			agno,
 | |
| 	struct xfs_inobt_rec_incore	*rec,
 | |
| 	struct xfs_defer_ops		*dfops)
 | |
| {
 | |
| 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
 | |
| 	int		startidx, endidx;
 | |
| 	int		nextbit;
 | |
| 	xfs_agblock_t	agbno;
 | |
| 	int		contigblk;
 | |
| 	struct xfs_owner_info	oinfo;
 | |
| 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
 | |
| 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
 | |
| 
 | |
| 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
 | |
| 		/* not sparse, calculate extent info directly */
 | |
| 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
 | |
| 				  mp->m_ialloc_blks, &oinfo);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* holemask is only 16-bits (fits in an unsigned long) */
 | |
| 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
 | |
| 	holemask[0] = rec->ir_holemask;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
 | |
| 	 * holemask and convert the start/end index of each range to an extent.
 | |
| 	 * We start with the start and end index both pointing at the first 0 in
 | |
| 	 * the mask.
 | |
| 	 */
 | |
| 	startidx = endidx = find_first_zero_bit(holemask,
 | |
| 						XFS_INOBT_HOLEMASK_BITS);
 | |
| 	nextbit = startidx + 1;
 | |
| 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
 | |
| 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
 | |
| 					     nextbit);
 | |
| 		/*
 | |
| 		 * If the next zero bit is contiguous, update the end index of
 | |
| 		 * the current range and continue.
 | |
| 		 */
 | |
| 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
 | |
| 		    nextbit == endidx + 1) {
 | |
| 			endidx = nextbit;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * nextbit is not contiguous with the current end index. Convert
 | |
| 		 * the current start/end to an extent and add it to the free
 | |
| 		 * list.
 | |
| 		 */
 | |
| 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
 | |
| 				  mp->m_sb.sb_inopblock;
 | |
| 		contigblk = ((endidx - startidx + 1) *
 | |
| 			     XFS_INODES_PER_HOLEMASK_BIT) /
 | |
| 			    mp->m_sb.sb_inopblock;
 | |
| 
 | |
| 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
 | |
| 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
 | |
| 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
 | |
| 				  contigblk, &oinfo);
 | |
| 
 | |
| 		/* reset range to current bit and carry on... */
 | |
| 		startidx = endidx = nextbit;
 | |
| 
 | |
| next:
 | |
| 		nextbit++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_difree_inobt(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_trans		*tp,
 | |
| 	struct xfs_buf			*agbp,
 | |
| 	xfs_agino_t			agino,
 | |
| 	struct xfs_defer_ops		*dfops,
 | |
| 	struct xfs_icluster		*xic,
 | |
| 	struct xfs_inobt_rec_incore	*orec)
 | |
| {
 | |
| 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
 | |
| 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
 | |
| 	struct xfs_perag		*pag;
 | |
| 	struct xfs_btree_cur		*cur;
 | |
| 	struct xfs_inobt_rec_incore	rec;
 | |
| 	int				ilen;
 | |
| 	int				error;
 | |
| 	int				i;
 | |
| 	int				off;
 | |
| 
 | |
| 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
 | |
| 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the cursor.
 | |
| 	 */
 | |
| 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
 | |
| 
 | |
| 	error = xfs_check_agi_freecount(cur, agi);
 | |
| 	if (error)
 | |
| 		goto error0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Look for the entry describing this inode.
 | |
| 	 */
 | |
| 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
 | |
| 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
 | |
| 			__func__, error);
 | |
| 		goto error0;
 | |
| 	}
 | |
| 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 | |
| 	error = xfs_inobt_get_rec(cur, &rec, &i);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
 | |
| 			__func__, error);
 | |
| 		goto error0;
 | |
| 	}
 | |
| 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 | |
| 	/*
 | |
| 	 * Get the offset in the inode chunk.
 | |
| 	 */
 | |
| 	off = agino - rec.ir_startino;
 | |
| 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
 | |
| 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
 | |
| 	/*
 | |
| 	 * Mark the inode free & increment the count.
 | |
| 	 */
 | |
| 	rec.ir_free |= XFS_INOBT_MASK(off);
 | |
| 	rec.ir_freecount++;
 | |
| 
 | |
| 	/*
 | |
| 	 * When an inode chunk is free, it becomes eligible for removal. Don't
 | |
| 	 * remove the chunk if the block size is large enough for multiple inode
 | |
| 	 * chunks (that might not be free).
 | |
| 	 */
 | |
| 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
 | |
| 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
 | |
| 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
 | |
| 		xic->deleted = true;
 | |
| 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
 | |
| 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove the inode cluster from the AGI B+Tree, adjust the
 | |
| 		 * AGI and Superblock inode counts, and mark the disk space
 | |
| 		 * to be freed when the transaction is committed.
 | |
| 		 */
 | |
| 		ilen = rec.ir_freecount;
 | |
| 		be32_add_cpu(&agi->agi_count, -ilen);
 | |
| 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
 | |
| 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
 | |
| 		pag = xfs_perag_get(mp, agno);
 | |
| 		pag->pagi_freecount -= ilen - 1;
 | |
| 		pag->pagi_count -= ilen;
 | |
| 		xfs_perag_put(pag);
 | |
| 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
 | |
| 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
 | |
| 
 | |
| 		if ((error = xfs_btree_delete(cur, &i))) {
 | |
| 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
 | |
| 				__func__, error);
 | |
| 			goto error0;
 | |
| 		}
 | |
| 
 | |
| 		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
 | |
| 	} else {
 | |
| 		xic->deleted = false;
 | |
| 
 | |
| 		error = xfs_inobt_update(cur, &rec);
 | |
| 		if (error) {
 | |
| 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
 | |
| 				__func__, error);
 | |
| 			goto error0;
 | |
| 		}
 | |
| 
 | |
| 		/* 
 | |
| 		 * Change the inode free counts and log the ag/sb changes.
 | |
| 		 */
 | |
| 		be32_add_cpu(&agi->agi_freecount, 1);
 | |
| 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
 | |
| 		pag = xfs_perag_get(mp, agno);
 | |
| 		pag->pagi_freecount++;
 | |
| 		xfs_perag_put(pag);
 | |
| 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_check_agi_freecount(cur, agi);
 | |
| 	if (error)
 | |
| 		goto error0;
 | |
| 
 | |
| 	*orec = rec;
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 	return 0;
 | |
| 
 | |
| error0:
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free an inode in the free inode btree.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_difree_finobt(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_trans		*tp,
 | |
| 	struct xfs_buf			*agbp,
 | |
| 	xfs_agino_t			agino,
 | |
| 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
 | |
| {
 | |
| 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
 | |
| 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
 | |
| 	struct xfs_btree_cur		*cur;
 | |
| 	struct xfs_inobt_rec_incore	rec;
 | |
| 	int				offset = agino - ibtrec->ir_startino;
 | |
| 	int				error;
 | |
| 	int				i;
 | |
| 
 | |
| 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
 | |
| 
 | |
| 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 	if (i == 0) {
 | |
| 		/*
 | |
| 		 * If the record does not exist in the finobt, we must have just
 | |
| 		 * freed an inode in a previously fully allocated chunk. If not,
 | |
| 		 * something is out of sync.
 | |
| 		 */
 | |
| 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
 | |
| 
 | |
| 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
 | |
| 					     ibtrec->ir_count,
 | |
| 					     ibtrec->ir_freecount,
 | |
| 					     ibtrec->ir_free, &i);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 		ASSERT(i == 1);
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read and update the existing record. We could just copy the ibtrec
 | |
| 	 * across here, but that would defeat the purpose of having redundant
 | |
| 	 * metadata. By making the modifications independently, we can catch
 | |
| 	 * corruptions that we wouldn't see if we just copied from one record
 | |
| 	 * to another.
 | |
| 	 */
 | |
| 	error = xfs_inobt_get_rec(cur, &rec, &i);
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 | |
| 
 | |
| 	rec.ir_free |= XFS_INOBT_MASK(offset);
 | |
| 	rec.ir_freecount++;
 | |
| 
 | |
| 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
 | |
| 				(rec.ir_freecount == ibtrec->ir_freecount),
 | |
| 				error);
 | |
| 
 | |
| 	/*
 | |
| 	 * The content of inobt records should always match between the inobt
 | |
| 	 * and finobt. The lifecycle of records in the finobt is different from
 | |
| 	 * the inobt in that the finobt only tracks records with at least one
 | |
| 	 * free inode. Hence, if all of the inodes are free and we aren't
 | |
| 	 * keeping inode chunks permanently on disk, remove the record.
 | |
| 	 * Otherwise, update the record with the new information.
 | |
| 	 *
 | |
| 	 * Note that we currently can't free chunks when the block size is large
 | |
| 	 * enough for multiple chunks. Leave the finobt record to remain in sync
 | |
| 	 * with the inobt.
 | |
| 	 */
 | |
| 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
 | |
| 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
 | |
| 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
 | |
| 		error = xfs_btree_delete(cur, &i);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 		ASSERT(i == 1);
 | |
| 	} else {
 | |
| 		error = xfs_inobt_update(cur, &rec);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	error = xfs_check_agi_freecount(cur, agi);
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free disk inode.  Carefully avoids touching the incore inode, all
 | |
|  * manipulations incore are the caller's responsibility.
 | |
|  * The on-disk inode is not changed by this operation, only the
 | |
|  * btree (free inode mask) is changed.
 | |
|  */
 | |
| int
 | |
| xfs_difree(
 | |
| 	struct xfs_trans	*tp,		/* transaction pointer */
 | |
| 	xfs_ino_t		inode,		/* inode to be freed */
 | |
| 	struct xfs_defer_ops	*dfops,		/* extents to free */
 | |
| 	struct xfs_icluster	*xic)	/* cluster info if deleted */
 | |
| {
 | |
| 	/* REFERENCED */
 | |
| 	xfs_agblock_t		agbno;	/* block number containing inode */
 | |
| 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
 | |
| 	xfs_agino_t		agino;	/* allocation group inode number */
 | |
| 	xfs_agnumber_t		agno;	/* allocation group number */
 | |
| 	int			error;	/* error return value */
 | |
| 	struct xfs_mount	*mp;	/* mount structure for filesystem */
 | |
| 	struct xfs_inobt_rec_incore rec;/* btree record */
 | |
| 
 | |
| 	mp = tp->t_mountp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Break up inode number into its components.
 | |
| 	 */
 | |
| 	agno = XFS_INO_TO_AGNO(mp, inode);
 | |
| 	if (agno >= mp->m_sb.sb_agcount)  {
 | |
| 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
 | |
| 			__func__, agno, mp->m_sb.sb_agcount);
 | |
| 		ASSERT(0);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	agino = XFS_INO_TO_AGINO(mp, inode);
 | |
| 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
 | |
| 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
 | |
| 			__func__, (unsigned long long)inode,
 | |
| 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
 | |
| 		ASSERT(0);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
 | |
| 	if (agbno >= mp->m_sb.sb_agblocks)  {
 | |
| 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
 | |
| 			__func__, agbno, mp->m_sb.sb_agblocks);
 | |
| 		ASSERT(0);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Get the allocation group header.
 | |
| 	 */
 | |
| 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
 | |
| 			__func__, error);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Fix up the inode allocation btree.
 | |
| 	 */
 | |
| 	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
 | |
| 	if (error)
 | |
| 		goto error0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fix up the free inode btree.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
 | |
| 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
 | |
| 		if (error)
 | |
| 			goto error0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error0:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_imap_lookup(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_trans	*tp,
 | |
| 	xfs_agnumber_t		agno,
 | |
| 	xfs_agino_t		agino,
 | |
| 	xfs_agblock_t		agbno,
 | |
| 	xfs_agblock_t		*chunk_agbno,
 | |
| 	xfs_agblock_t		*offset_agbno,
 | |
| 	int			flags)
 | |
| {
 | |
| 	struct xfs_inobt_rec_incore rec;
 | |
| 	struct xfs_btree_cur	*cur;
 | |
| 	struct xfs_buf		*agbp;
 | |
| 	int			error;
 | |
| 	int			i;
 | |
| 
 | |
| 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
 | |
| 	if (error) {
 | |
| 		xfs_alert(mp,
 | |
| 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
 | |
| 			__func__, error, agno);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lookup the inode record for the given agino. If the record cannot be
 | |
| 	 * found, then it's an invalid inode number and we should abort. Once
 | |
| 	 * we have a record, we need to ensure it contains the inode number
 | |
| 	 * we are looking up.
 | |
| 	 */
 | |
| 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
 | |
| 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
 | |
| 	if (!error) {
 | |
| 		if (i)
 | |
| 			error = xfs_inobt_get_rec(cur, &rec, &i);
 | |
| 		if (!error && i == 0)
 | |
| 			error = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	xfs_trans_brelse(tp, agbp);
 | |
| 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/* check that the returned record contains the required inode */
 | |
| 	if (rec.ir_startino > agino ||
 | |
| 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* for untrusted inodes check it is allocated first */
 | |
| 	if ((flags & XFS_IGET_UNTRUSTED) &&
 | |
| 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
 | |
| 	*offset_agbno = agbno - *chunk_agbno;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the location of the inode in imap, for mapping it into a buffer.
 | |
|  */
 | |
| int
 | |
| xfs_imap(
 | |
| 	xfs_mount_t	 *mp,	/* file system mount structure */
 | |
| 	xfs_trans_t	 *tp,	/* transaction pointer */
 | |
| 	xfs_ino_t	ino,	/* inode to locate */
 | |
| 	struct xfs_imap	*imap,	/* location map structure */
 | |
| 	uint		flags)	/* flags for inode btree lookup */
 | |
| {
 | |
| 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
 | |
| 	xfs_agino_t	agino;	/* inode number within alloc group */
 | |
| 	xfs_agnumber_t	agno;	/* allocation group number */
 | |
| 	int		blks_per_cluster; /* num blocks per inode cluster */
 | |
| 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
 | |
| 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
 | |
| 	int		error;	/* error code */
 | |
| 	int		offset;	/* index of inode in its buffer */
 | |
| 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
 | |
| 
 | |
| 	ASSERT(ino != NULLFSINO);
 | |
| 
 | |
| 	/*
 | |
| 	 * Split up the inode number into its parts.
 | |
| 	 */
 | |
| 	agno = XFS_INO_TO_AGNO(mp, ino);
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ino);
 | |
| 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
 | |
| 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
 | |
| 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
 | |
| #ifdef DEBUG
 | |
| 		/*
 | |
| 		 * Don't output diagnostic information for untrusted inodes
 | |
| 		 * as they can be invalid without implying corruption.
 | |
| 		 */
 | |
| 		if (flags & XFS_IGET_UNTRUSTED)
 | |
| 			return -EINVAL;
 | |
| 		if (agno >= mp->m_sb.sb_agcount) {
 | |
| 			xfs_alert(mp,
 | |
| 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
 | |
| 				__func__, agno, mp->m_sb.sb_agcount);
 | |
| 		}
 | |
| 		if (agbno >= mp->m_sb.sb_agblocks) {
 | |
| 			xfs_alert(mp,
 | |
| 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
 | |
| 				__func__, (unsigned long long)agbno,
 | |
| 				(unsigned long)mp->m_sb.sb_agblocks);
 | |
| 		}
 | |
| 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
 | |
| 			xfs_alert(mp,
 | |
| 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
 | |
| 				__func__, ino,
 | |
| 				XFS_AGINO_TO_INO(mp, agno, agino));
 | |
| 		}
 | |
| 		xfs_stack_trace();
 | |
| #endif /* DEBUG */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	blks_per_cluster = xfs_icluster_size_fsb(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * For bulkstat and handle lookups, we have an untrusted inode number
 | |
| 	 * that we have to verify is valid. We cannot do this just by reading
 | |
| 	 * the inode buffer as it may have been unlinked and removed leaving
 | |
| 	 * inodes in stale state on disk. Hence we have to do a btree lookup
 | |
| 	 * in all cases where an untrusted inode number is passed.
 | |
| 	 */
 | |
| 	if (flags & XFS_IGET_UNTRUSTED) {
 | |
| 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
 | |
| 					&chunk_agbno, &offset_agbno, flags);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		goto out_map;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the inode cluster size is the same as the blocksize or
 | |
| 	 * smaller we get to the buffer by simple arithmetics.
 | |
| 	 */
 | |
| 	if (blks_per_cluster == 1) {
 | |
| 		offset = XFS_INO_TO_OFFSET(mp, ino);
 | |
| 		ASSERT(offset < mp->m_sb.sb_inopblock);
 | |
| 
 | |
| 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
 | |
| 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
 | |
| 		imap->im_boffset = (unsigned short)(offset <<
 | |
| 							mp->m_sb.sb_inodelog);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the inode chunks are aligned then use simple maths to
 | |
| 	 * find the location. Otherwise we have to do a btree
 | |
| 	 * lookup to find the location.
 | |
| 	 */
 | |
| 	if (mp->m_inoalign_mask) {
 | |
| 		offset_agbno = agbno & mp->m_inoalign_mask;
 | |
| 		chunk_agbno = agbno - offset_agbno;
 | |
| 	} else {
 | |
| 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
 | |
| 					&chunk_agbno, &offset_agbno, flags);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| out_map:
 | |
| 	ASSERT(agbno >= chunk_agbno);
 | |
| 	cluster_agbno = chunk_agbno +
 | |
| 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
 | |
| 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
 | |
| 		XFS_INO_TO_OFFSET(mp, ino);
 | |
| 
 | |
| 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
 | |
| 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
 | |
| 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the inode number maps to a block outside the bounds
 | |
| 	 * of the file system then return NULL rather than calling
 | |
| 	 * read_buf and panicing when we get an error from the
 | |
| 	 * driver.
 | |
| 	 */
 | |
| 	if ((imap->im_blkno + imap->im_len) >
 | |
| 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
 | |
| 		xfs_alert(mp,
 | |
| 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
 | |
| 			__func__, (unsigned long long) imap->im_blkno,
 | |
| 			(unsigned long long) imap->im_len,
 | |
| 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute and fill in value of m_in_maxlevels.
 | |
|  */
 | |
| void
 | |
| xfs_ialloc_compute_maxlevels(
 | |
| 	xfs_mount_t	*mp)		/* file system mount structure */
 | |
| {
 | |
| 	uint		inodes;
 | |
| 
 | |
| 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
 | |
| 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
 | |
| 							 inodes);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Log specified fields for the ag hdr (inode section). The growth of the agi
 | |
|  * structure over time requires that we interpret the buffer as two logical
 | |
|  * regions delineated by the end of the unlinked list. This is due to the size
 | |
|  * of the hash table and its location in the middle of the agi.
 | |
|  *
 | |
|  * For example, a request to log a field before agi_unlinked and a field after
 | |
|  * agi_unlinked could cause us to log the entire hash table and use an excessive
 | |
|  * amount of log space. To avoid this behavior, log the region up through
 | |
|  * agi_unlinked in one call and the region after agi_unlinked through the end of
 | |
|  * the structure in another.
 | |
|  */
 | |
| void
 | |
| xfs_ialloc_log_agi(
 | |
| 	xfs_trans_t	*tp,		/* transaction pointer */
 | |
| 	xfs_buf_t	*bp,		/* allocation group header buffer */
 | |
| 	int		fields)		/* bitmask of fields to log */
 | |
| {
 | |
| 	int			first;		/* first byte number */
 | |
| 	int			last;		/* last byte number */
 | |
| 	static const short	offsets[] = {	/* field starting offsets */
 | |
| 					/* keep in sync with bit definitions */
 | |
| 		offsetof(xfs_agi_t, agi_magicnum),
 | |
| 		offsetof(xfs_agi_t, agi_versionnum),
 | |
| 		offsetof(xfs_agi_t, agi_seqno),
 | |
| 		offsetof(xfs_agi_t, agi_length),
 | |
| 		offsetof(xfs_agi_t, agi_count),
 | |
| 		offsetof(xfs_agi_t, agi_root),
 | |
| 		offsetof(xfs_agi_t, agi_level),
 | |
| 		offsetof(xfs_agi_t, agi_freecount),
 | |
| 		offsetof(xfs_agi_t, agi_newino),
 | |
| 		offsetof(xfs_agi_t, agi_dirino),
 | |
| 		offsetof(xfs_agi_t, agi_unlinked),
 | |
| 		offsetof(xfs_agi_t, agi_free_root),
 | |
| 		offsetof(xfs_agi_t, agi_free_level),
 | |
| 		sizeof(xfs_agi_t)
 | |
| 	};
 | |
| #ifdef DEBUG
 | |
| 	xfs_agi_t		*agi;	/* allocation group header */
 | |
| 
 | |
| 	agi = XFS_BUF_TO_AGI(bp);
 | |
| 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute byte offsets for the first and last fields in the first
 | |
| 	 * region and log the agi buffer. This only logs up through
 | |
| 	 * agi_unlinked.
 | |
| 	 */
 | |
| 	if (fields & XFS_AGI_ALL_BITS_R1) {
 | |
| 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
 | |
| 				  &first, &last);
 | |
| 		xfs_trans_log_buf(tp, bp, first, last);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask off the bits in the first region and calculate the first and
 | |
| 	 * last field offsets for any bits in the second region.
 | |
| 	 */
 | |
| 	fields &= ~XFS_AGI_ALL_BITS_R1;
 | |
| 	if (fields) {
 | |
| 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
 | |
| 				  &first, &last);
 | |
| 		xfs_trans_log_buf(tp, bp, first, last);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static xfs_failaddr_t
 | |
| xfs_agi_verify(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_mount *mp = bp->b_target->bt_mount;
 | |
| 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
 | |
| 	int		i;
 | |
| 
 | |
| 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 | |
| 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
 | |
| 			return __this_address;
 | |
| 		if (!xfs_log_check_lsn(mp,
 | |
| 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
 | |
| 			return __this_address;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the magic number of the agi block.
 | |
| 	 */
 | |
| 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
 | |
| 		return __this_address;
 | |
| 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
 | |
| 		return __this_address;
 | |
| 
 | |
| 	if (be32_to_cpu(agi->agi_level) < 1 ||
 | |
| 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
 | |
| 		return __this_address;
 | |
| 
 | |
| 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
 | |
| 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
 | |
| 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
 | |
| 		return __this_address;
 | |
| 
 | |
| 	/*
 | |
| 	 * during growfs operations, the perag is not fully initialised,
 | |
| 	 * so we can't use it for any useful checking. growfs ensures we can't
 | |
| 	 * use it by using uncached buffers that don't have the perag attached
 | |
| 	 * so we can detect and avoid this problem.
 | |
| 	 */
 | |
| 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
 | |
| 		return __this_address;
 | |
| 
 | |
| 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
 | |
| 		if (agi->agi_unlinked[i] == NULLAGINO)
 | |
| 			continue;
 | |
| 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
 | |
| 			return __this_address;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_agi_read_verify(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_mount *mp = bp->b_target->bt_mount;
 | |
| 	xfs_failaddr_t	fa;
 | |
| 
 | |
| 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
 | |
| 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
 | |
| 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 | |
| 	else {
 | |
| 		fa = xfs_agi_verify(bp);
 | |
| 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
 | |
| 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_agi_write_verify(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_mount	*mp = bp->b_target->bt_mount;
 | |
| 	struct xfs_buf_log_item	*bip = bp->b_log_item;
 | |
| 	xfs_failaddr_t		fa;
 | |
| 
 | |
| 	fa = xfs_agi_verify(bp);
 | |
| 	if (fa) {
 | |
| 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!xfs_sb_version_hascrc(&mp->m_sb))
 | |
| 		return;
 | |
| 
 | |
| 	if (bip)
 | |
| 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 | |
| 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
 | |
| }
 | |
| 
 | |
| const struct xfs_buf_ops xfs_agi_buf_ops = {
 | |
| 	.name = "xfs_agi",
 | |
| 	.verify_read = xfs_agi_read_verify,
 | |
| 	.verify_write = xfs_agi_write_verify,
 | |
| 	.verify_struct = xfs_agi_verify,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Read in the allocation group header (inode allocation section)
 | |
|  */
 | |
| int
 | |
| xfs_read_agi(
 | |
| 	struct xfs_mount	*mp,	/* file system mount structure */
 | |
| 	struct xfs_trans	*tp,	/* transaction pointer */
 | |
| 	xfs_agnumber_t		agno,	/* allocation group number */
 | |
| 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
 | |
| {
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_read_agi(mp, agno);
 | |
| 
 | |
| 	ASSERT(agno != NULLAGNUMBER);
 | |
| 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 | |
| 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
 | |
| 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	if (tp)
 | |
| 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
 | |
| 
 | |
| 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_ialloc_read_agi(
 | |
| 	struct xfs_mount	*mp,	/* file system mount structure */
 | |
| 	struct xfs_trans	*tp,	/* transaction pointer */
 | |
| 	xfs_agnumber_t		agno,	/* allocation group number */
 | |
| 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
 | |
| {
 | |
| 	struct xfs_agi		*agi;	/* allocation group header */
 | |
| 	struct xfs_perag	*pag;	/* per allocation group data */
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_ialloc_read_agi(mp, agno);
 | |
| 
 | |
| 	error = xfs_read_agi(mp, tp, agno, bpp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	agi = XFS_BUF_TO_AGI(*bpp);
 | |
| 	pag = xfs_perag_get(mp, agno);
 | |
| 	if (!pag->pagi_init) {
 | |
| 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
 | |
| 		pag->pagi_count = be32_to_cpu(agi->agi_count);
 | |
| 		pag->pagi_init = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's possible for these to be out of sync if
 | |
| 	 * we are in the middle of a forced shutdown.
 | |
| 	 */
 | |
| 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
 | |
| 		XFS_FORCED_SHUTDOWN(mp));
 | |
| 	xfs_perag_put(pag);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read in the agi to initialise the per-ag data in the mount structure
 | |
|  */
 | |
| int
 | |
| xfs_ialloc_pagi_init(
 | |
| 	xfs_mount_t	*mp,		/* file system mount structure */
 | |
| 	xfs_trans_t	*tp,		/* transaction pointer */
 | |
| 	xfs_agnumber_t	agno)		/* allocation group number */
 | |
| {
 | |
| 	xfs_buf_t	*bp = NULL;
 | |
| 	int		error;
 | |
| 
 | |
| 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	if (bp)
 | |
| 		xfs_trans_brelse(tp, bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Is there an inode record covering a given range of inode numbers? */
 | |
| int
 | |
| xfs_ialloc_has_inode_record(
 | |
| 	struct xfs_btree_cur	*cur,
 | |
| 	xfs_agino_t		low,
 | |
| 	xfs_agino_t		high,
 | |
| 	bool			*exists)
 | |
| {
 | |
| 	struct xfs_inobt_rec_incore	irec;
 | |
| 	xfs_agino_t		agino;
 | |
| 	uint16_t		holemask;
 | |
| 	int			has_record;
 | |
| 	int			i;
 | |
| 	int			error;
 | |
| 
 | |
| 	*exists = false;
 | |
| 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
 | |
| 	while (error == 0 && has_record) {
 | |
| 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
 | |
| 		if (error || irec.ir_startino > high)
 | |
| 			break;
 | |
| 
 | |
| 		agino = irec.ir_startino;
 | |
| 		holemask = irec.ir_holemask;
 | |
| 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
 | |
| 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
 | |
| 			if (holemask & 1)
 | |
| 				continue;
 | |
| 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
 | |
| 					agino <= high) {
 | |
| 				*exists = true;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		error = xfs_btree_increment(cur, 0, &has_record);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* Is there an inode record covering a given extent? */
 | |
| int
 | |
| xfs_ialloc_has_inodes_at_extent(
 | |
| 	struct xfs_btree_cur	*cur,
 | |
| 	xfs_agblock_t		bno,
 | |
| 	xfs_extlen_t		len,
 | |
| 	bool			*exists)
 | |
| {
 | |
| 	xfs_agino_t		low;
 | |
| 	xfs_agino_t		high;
 | |
| 
 | |
| 	low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
 | |
| 	high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
 | |
| 
 | |
| 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
 | |
| }
 | |
| 
 | |
| struct xfs_ialloc_count_inodes {
 | |
| 	xfs_agino_t			count;
 | |
| 	xfs_agino_t			freecount;
 | |
| };
 | |
| 
 | |
| /* Record inode counts across all inobt records. */
 | |
| STATIC int
 | |
| xfs_ialloc_count_inodes_rec(
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	union xfs_btree_rec		*rec,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_inobt_rec_incore	irec;
 | |
| 	struct xfs_ialloc_count_inodes	*ci = priv;
 | |
| 
 | |
| 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
 | |
| 	ci->count += irec.ir_count;
 | |
| 	ci->freecount += irec.ir_freecount;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Count allocated and free inodes under an inobt. */
 | |
| int
 | |
| xfs_ialloc_count_inodes(
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	xfs_agino_t			*count,
 | |
| 	xfs_agino_t			*freecount)
 | |
| {
 | |
| 	struct xfs_ialloc_count_inodes	ci = {0};
 | |
| 	int				error;
 | |
| 
 | |
| 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
 | |
| 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	*count = ci.count;
 | |
| 	*freecount = ci.freecount;
 | |
| 	return 0;
 | |
| }
 |