mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 34441361c4
			
		
	
	
		34441361c4
		
	
	
	
	
		
			
			The helpers are trivial and we don't use them consistently. Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			3727 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3727 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2008 Red Hat.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include "ctree.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "transaction.h"
 | |
| #include "disk-io.h"
 | |
| #include "extent_io.h"
 | |
| #include "inode-map.h"
 | |
| #include "volumes.h"
 | |
| 
 | |
| #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
 | |
| #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
 | |
| 
 | |
| struct btrfs_trim_range {
 | |
| 	u64 start;
 | |
| 	u64 bytes;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| static int link_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			   struct btrfs_free_space *info);
 | |
| static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info);
 | |
| static int btrfs_wait_cache_io_root(struct btrfs_root *root,
 | |
| 			     struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_io_ctl *io_ctl,
 | |
| 			     struct btrfs_path *path);
 | |
| 
 | |
| static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
 | |
| 					       struct btrfs_path *path,
 | |
| 					       u64 offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key location;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct inode *inode = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ERR_PTR(ret);
 | |
| 	if (ret > 0) {
 | |
| 		btrfs_release_path(path);
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	btrfs_free_space_key(leaf, header, &disk_key);
 | |
| 	btrfs_disk_key_to_cpu(&location, &disk_key);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return inode;
 | |
| 	if (is_bad_inode(inode)) {
 | |
| 		iput(inode);
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	mapping_set_gfp_mask(inode->i_mapping,
 | |
| 			mapping_gfp_constraint(inode->i_mapping,
 | |
| 			~(__GFP_FS | __GFP_HIGHMEM)));
 | |
| 
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| struct inode *lookup_free_space_inode(struct btrfs_root *root,
 | |
| 				      struct btrfs_block_group_cache
 | |
| 				      *block_group, struct btrfs_path *path)
 | |
| {
 | |
| 	struct inode *inode = NULL;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->inode)
 | |
| 		inode = igrab(block_group->inode);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 	if (inode)
 | |
| 		return inode;
 | |
| 
 | |
| 	inode = __lookup_free_space_inode(root, path,
 | |
| 					  block_group->key.objectid);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return inode;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 | |
| 		btrfs_info(fs_info, "Old style space inode found, converting.");
 | |
| 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 | |
| 			BTRFS_INODE_NODATACOW;
 | |
| 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 	}
 | |
| 
 | |
| 	if (!block_group->iref) {
 | |
| 		block_group->inode = igrab(inode);
 | |
| 		block_group->iref = 1;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| static int __create_free_space_inode(struct btrfs_root *root,
 | |
| 				     struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_path *path,
 | |
| 				     u64 ino, u64 offset)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* We inline crc's for the free disk space cache */
 | |
| 	if (ino != BTRFS_FREE_INO_OBJECTID)
 | |
| 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_inode_item);
 | |
| 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 | |
| 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 | |
| 			     sizeof(*inode_item));
 | |
| 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 | |
| 	btrfs_set_inode_size(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_uid(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_gid(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 | |
| 	btrfs_set_inode_flags(leaf, inode_item, flags);
 | |
| 	btrfs_set_inode_nlink(leaf, inode_item, 1);
 | |
| 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 | |
| 	btrfs_set_inode_block_group(leaf, inode_item, offset);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 				      sizeof(struct btrfs_free_space_header));
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_release_path(path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 | |
| 	btrfs_set_free_space_key(leaf, header, &disk_key);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int create_free_space_inode(struct btrfs_root *root,
 | |
| 			    struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_block_group_cache *block_group,
 | |
| 			    struct btrfs_path *path)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 ino;
 | |
| 
 | |
| 	ret = btrfs_find_free_objectid(root, &ino);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return __create_free_space_inode(root, trans, path, ino,
 | |
| 					 block_group->key.objectid);
 | |
| }
 | |
| 
 | |
| int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 | |
| 				       struct btrfs_block_rsv *rsv)
 | |
| {
 | |
| 	u64 needed_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* 1 for slack space, 1 for updating the inode */
 | |
| 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
 | |
| 		btrfs_calc_trans_metadata_size(fs_info, 1);
 | |
| 
 | |
| 	spin_lock(&rsv->lock);
 | |
| 	if (rsv->reserved < needed_bytes)
 | |
| 		ret = -ENOSPC;
 | |
| 	else
 | |
| 		ret = 0;
 | |
| 	spin_unlock(&rsv->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_truncate_free_space_cache(struct btrfs_root *root,
 | |
| 				    struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_block_group_cache *block_group,
 | |
| 				    struct inode *inode)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_path *path = btrfs_alloc_path();
 | |
| 	bool locked = false;
 | |
| 
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (block_group) {
 | |
| 		locked = true;
 | |
| 		mutex_lock(&trans->transaction->cache_write_mutex);
 | |
| 		if (!list_empty(&block_group->io_list)) {
 | |
| 			list_del_init(&block_group->io_list);
 | |
| 
 | |
| 			btrfs_wait_cache_io(trans, block_group, path);
 | |
| 			btrfs_put_block_group(block_group);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * now that we've truncated the cache away, its no longer
 | |
| 		 * setup or written
 | |
| 		 */
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	btrfs_i_size_write(inode, 0);
 | |
| 	truncate_pagecache(inode, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need an orphan item because truncating the free space cache
 | |
| 	 * will never be split across transactions.
 | |
| 	 * We don't need to check for -EAGAIN because we're a free space
 | |
| 	 * cache inode
 | |
| 	 */
 | |
| 	ret = btrfs_truncate_inode_items(trans, root, inode,
 | |
| 					 0, BTRFS_EXTENT_DATA_KEY);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ret = btrfs_update_inode(trans, root, inode);
 | |
| 
 | |
| fail:
 | |
| 	if (locked)
 | |
| 		mutex_unlock(&trans->transaction->cache_write_mutex);
 | |
| 	if (ret)
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int readahead_cache(struct inode *inode)
 | |
| {
 | |
| 	struct file_ra_state *ra;
 | |
| 	unsigned long last_index;
 | |
| 
 | |
| 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 | |
| 	if (!ra)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	file_ra_state_init(ra, inode->i_mapping);
 | |
| 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 | |
| 
 | |
| 	kfree(ra);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 | |
| 		       int write)
 | |
| {
 | |
| 	int num_pages;
 | |
| 	int check_crcs = 0;
 | |
| 
 | |
| 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 
 | |
| 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
 | |
| 		check_crcs = 1;
 | |
| 
 | |
| 	/* Make sure we can fit our crcs into the first page */
 | |
| 	if (write && check_crcs &&
 | |
| 	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 | |
| 
 | |
| 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 | |
| 	if (!io_ctl->pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	io_ctl->num_pages = num_pages;
 | |
| 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 | |
| 	io_ctl->check_crcs = check_crcs;
 | |
| 	io_ctl->inode = inode;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	kfree(io_ctl->pages);
 | |
| 	io_ctl->pages = NULL;
 | |
| }
 | |
| 
 | |
| static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	if (io_ctl->cur) {
 | |
| 		io_ctl->cur = NULL;
 | |
| 		io_ctl->orig = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 | |
| {
 | |
| 	ASSERT(io_ctl->index < io_ctl->num_pages);
 | |
| 	io_ctl->page = io_ctl->pages[io_ctl->index++];
 | |
| 	io_ctl->cur = page_address(io_ctl->page);
 | |
| 	io_ctl->orig = io_ctl->cur;
 | |
| 	io_ctl->size = PAGE_SIZE;
 | |
| 	if (clear)
 | |
| 		memset(io_ctl->cur, 0, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	for (i = 0; i < io_ctl->num_pages; i++) {
 | |
| 		if (io_ctl->pages[i]) {
 | |
| 			ClearPageChecked(io_ctl->pages[i]);
 | |
| 			unlock_page(io_ctl->pages[i]);
 | |
| 			put_page(io_ctl->pages[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 | |
| 				int uptodate)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < io_ctl->num_pages; i++) {
 | |
| 		page = find_or_create_page(inode->i_mapping, i, mask);
 | |
| 		if (!page) {
 | |
| 			io_ctl_drop_pages(io_ctl);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		io_ctl->pages[i] = page;
 | |
| 		if (uptodate && !PageUptodate(page)) {
 | |
| 			btrfs_readpage(NULL, page);
 | |
| 			lock_page(page);
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				btrfs_err(BTRFS_I(inode)->root->fs_info,
 | |
| 					   "error reading free space cache");
 | |
| 				io_ctl_drop_pages(io_ctl);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < io_ctl->num_pages; i++) {
 | |
| 		clear_page_dirty_for_io(io_ctl->pages[i]);
 | |
| 		set_page_extent_mapped(io_ctl->pages[i]);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 | |
| {
 | |
| 	__le64 *val;
 | |
| 
 | |
| 	io_ctl_map_page(io_ctl, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip the csum areas.  If we don't check crcs then we just have a
 | |
| 	 * 64bit chunk at the front of the first page.
 | |
| 	 */
 | |
| 	if (io_ctl->check_crcs) {
 | |
| 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 | |
| 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 | |
| 	} else {
 | |
| 		io_ctl->cur += sizeof(u64);
 | |
| 		io_ctl->size -= sizeof(u64) * 2;
 | |
| 	}
 | |
| 
 | |
| 	val = io_ctl->cur;
 | |
| 	*val = cpu_to_le64(generation);
 | |
| 	io_ctl->cur += sizeof(u64);
 | |
| }
 | |
| 
 | |
| static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 | |
| {
 | |
| 	__le64 *gen;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 | |
| 	 * chunk at the front of the first page.
 | |
| 	 */
 | |
| 	if (io_ctl->check_crcs) {
 | |
| 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 | |
| 		io_ctl->size -= sizeof(u64) +
 | |
| 			(sizeof(u32) * io_ctl->num_pages);
 | |
| 	} else {
 | |
| 		io_ctl->cur += sizeof(u64);
 | |
| 		io_ctl->size -= sizeof(u64) * 2;
 | |
| 	}
 | |
| 
 | |
| 	gen = io_ctl->cur;
 | |
| 	if (le64_to_cpu(*gen) != generation) {
 | |
| 		btrfs_err_rl(io_ctl->fs_info,
 | |
| 			"space cache generation (%llu) does not match inode (%llu)",
 | |
| 				*gen, generation);
 | |
| 		io_ctl_unmap_page(io_ctl);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	io_ctl->cur += sizeof(u64);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 | |
| {
 | |
| 	u32 *tmp;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	unsigned offset = 0;
 | |
| 
 | |
| 	if (!io_ctl->check_crcs) {
 | |
| 		io_ctl_unmap_page(io_ctl);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (index == 0)
 | |
| 		offset = sizeof(u32) * io_ctl->num_pages;
 | |
| 
 | |
| 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 | |
| 			      PAGE_SIZE - offset);
 | |
| 	btrfs_csum_final(crc, (u8 *)&crc);
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 	tmp = page_address(io_ctl->pages[0]);
 | |
| 	tmp += index;
 | |
| 	*tmp = crc;
 | |
| }
 | |
| 
 | |
| static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 | |
| {
 | |
| 	u32 *tmp, val;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	unsigned offset = 0;
 | |
| 
 | |
| 	if (!io_ctl->check_crcs) {
 | |
| 		io_ctl_map_page(io_ctl, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (index == 0)
 | |
| 		offset = sizeof(u32) * io_ctl->num_pages;
 | |
| 
 | |
| 	tmp = page_address(io_ctl->pages[0]);
 | |
| 	tmp += index;
 | |
| 	val = *tmp;
 | |
| 
 | |
| 	io_ctl_map_page(io_ctl, 0);
 | |
| 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 | |
| 			      PAGE_SIZE - offset);
 | |
| 	btrfs_csum_final(crc, (u8 *)&crc);
 | |
| 	if (val != crc) {
 | |
| 		btrfs_err_rl(io_ctl->fs_info,
 | |
| 			"csum mismatch on free space cache");
 | |
| 		io_ctl_unmap_page(io_ctl);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 | |
| 			    void *bitmap)
 | |
| {
 | |
| 	struct btrfs_free_space_entry *entry;
 | |
| 
 | |
| 	if (!io_ctl->cur)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	entry = io_ctl->cur;
 | |
| 	entry->offset = cpu_to_le64(offset);
 | |
| 	entry->bytes = cpu_to_le64(bytes);
 | |
| 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 | |
| 		BTRFS_FREE_SPACE_EXTENT;
 | |
| 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 | |
| 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 | |
| 
 | |
| 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 | |
| 		return 0;
 | |
| 
 | |
| 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 
 | |
| 	/* No more pages to map */
 | |
| 	if (io_ctl->index >= io_ctl->num_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* map the next page */
 | |
| 	io_ctl_map_page(io_ctl, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 | |
| {
 | |
| 	if (!io_ctl->cur)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we aren't at the start of the current page, unmap this one and
 | |
| 	 * map the next one if there is any left.
 | |
| 	 */
 | |
| 	if (io_ctl->cur != io_ctl->orig) {
 | |
| 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 		if (io_ctl->index >= io_ctl->num_pages)
 | |
| 			return -ENOSPC;
 | |
| 		io_ctl_map_page(io_ctl, 0);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
 | |
| 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 	if (io_ctl->index < io_ctl->num_pages)
 | |
| 		io_ctl_map_page(io_ctl, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we're not on the boundary we know we've modified the page and we
 | |
| 	 * need to crc the page.
 | |
| 	 */
 | |
| 	if (io_ctl->cur != io_ctl->orig)
 | |
| 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 	else
 | |
| 		io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	while (io_ctl->index < io_ctl->num_pages) {
 | |
| 		io_ctl_map_page(io_ctl, 1);
 | |
| 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 | |
| 			    struct btrfs_free_space *entry, u8 *type)
 | |
| {
 | |
| 	struct btrfs_free_space_entry *e;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!io_ctl->cur) {
 | |
| 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	e = io_ctl->cur;
 | |
| 	entry->offset = le64_to_cpu(e->offset);
 | |
| 	entry->bytes = le64_to_cpu(e->bytes);
 | |
| 	*type = e->type;
 | |
| 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 | |
| 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 | |
| 
 | |
| 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 | |
| 		return 0;
 | |
| 
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 | |
| 			      struct btrfs_free_space *entry)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since we attach pinned extents after the fact we can have contiguous sections
 | |
|  * of free space that are split up in entries.  This poses a problem with the
 | |
|  * tree logging stuff since it could have allocated across what appears to be 2
 | |
|  * entries since we would have merged the entries when adding the pinned extents
 | |
|  * back to the free space cache.  So run through the space cache that we just
 | |
|  * loaded and merge contiguous entries.  This will make the log replay stuff not
 | |
|  * blow up and it will make for nicer allocator behavior.
 | |
|  */
 | |
| static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	struct btrfs_free_space *e, *prev = NULL;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| again:
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 | |
| 		e = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (!prev)
 | |
| 			goto next;
 | |
| 		if (e->bitmap || prev->bitmap)
 | |
| 			goto next;
 | |
| 		if (prev->offset + prev->bytes == e->offset) {
 | |
| 			unlink_free_space(ctl, prev);
 | |
| 			unlink_free_space(ctl, e);
 | |
| 			prev->bytes += e->bytes;
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 			link_free_space(ctl, prev);
 | |
| 			prev = NULL;
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			goto again;
 | |
| 		}
 | |
| next:
 | |
| 		prev = e;
 | |
| 	}
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| }
 | |
| 
 | |
| static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 | |
| 				   struct btrfs_free_space_ctl *ctl,
 | |
| 				   struct btrfs_path *path, u64 offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_io_ctl io_ctl;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_free_space *e, *n;
 | |
| 	LIST_HEAD(bitmaps);
 | |
| 	u64 num_entries;
 | |
| 	u64 num_bitmaps;
 | |
| 	u64 generation;
 | |
| 	u8 type;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Nothing in the space cache, goodbye */
 | |
| 	if (!i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 	else if (ret > 0) {
 | |
| 		btrfs_release_path(path);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = -1;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	num_entries = btrfs_free_space_entries(leaf, header);
 | |
| 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 | |
| 	generation = btrfs_free_space_generation(leaf, header);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (!BTRFS_I(inode)->generation) {
 | |
| 		btrfs_info(fs_info,
 | |
| 			   "The free space cache file (%llu) is invalid. skip it\n",
 | |
| 			   offset);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (BTRFS_I(inode)->generation != generation) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 | |
| 			  BTRFS_I(inode)->generation, generation);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!num_entries)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = io_ctl_init(&io_ctl, inode, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = readahead_cache(inode);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = io_ctl_check_crc(&io_ctl, 0);
 | |
| 	if (ret)
 | |
| 		goto free_cache;
 | |
| 
 | |
| 	ret = io_ctl_check_generation(&io_ctl, generation);
 | |
| 	if (ret)
 | |
| 		goto free_cache;
 | |
| 
 | |
| 	while (num_entries) {
 | |
| 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 | |
| 				      GFP_NOFS);
 | |
| 		if (!e)
 | |
| 			goto free_cache;
 | |
| 
 | |
| 		ret = io_ctl_read_entry(&io_ctl, e, &type);
 | |
| 		if (ret) {
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 			goto free_cache;
 | |
| 		}
 | |
| 
 | |
| 		if (!e->bytes) {
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 			goto free_cache;
 | |
| 		}
 | |
| 
 | |
| 		if (type == BTRFS_FREE_SPACE_EXTENT) {
 | |
| 			spin_lock(&ctl->tree_lock);
 | |
| 			ret = link_free_space(ctl, e);
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			if (ret) {
 | |
| 				btrfs_err(fs_info,
 | |
| 					"Duplicate entries in free space cache, dumping");
 | |
| 				kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 				goto free_cache;
 | |
| 			}
 | |
| 		} else {
 | |
| 			ASSERT(num_bitmaps);
 | |
| 			num_bitmaps--;
 | |
| 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
 | |
| 			if (!e->bitmap) {
 | |
| 				kmem_cache_free(
 | |
| 					btrfs_free_space_cachep, e);
 | |
| 				goto free_cache;
 | |
| 			}
 | |
| 			spin_lock(&ctl->tree_lock);
 | |
| 			ret = link_free_space(ctl, e);
 | |
| 			ctl->total_bitmaps++;
 | |
| 			ctl->op->recalc_thresholds(ctl);
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			if (ret) {
 | |
| 				btrfs_err(fs_info,
 | |
| 					"Duplicate entries in free space cache, dumping");
 | |
| 				kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 				goto free_cache;
 | |
| 			}
 | |
| 			list_add_tail(&e->list, &bitmaps);
 | |
| 		}
 | |
| 
 | |
| 		num_entries--;
 | |
| 	}
 | |
| 
 | |
| 	io_ctl_unmap_page(&io_ctl);
 | |
| 
 | |
| 	/*
 | |
| 	 * We add the bitmaps at the end of the entries in order that
 | |
| 	 * the bitmap entries are added to the cache.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(e, n, &bitmaps, list) {
 | |
| 		list_del_init(&e->list);
 | |
| 		ret = io_ctl_read_bitmap(&io_ctl, e);
 | |
| 		if (ret)
 | |
| 			goto free_cache;
 | |
| 	}
 | |
| 
 | |
| 	io_ctl_drop_pages(&io_ctl);
 | |
| 	merge_space_tree(ctl);
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	io_ctl_free(&io_ctl);
 | |
| 	return ret;
 | |
| free_cache:
 | |
| 	io_ctl_drop_pages(&io_ctl);
 | |
| 	__btrfs_remove_free_space_cache(ctl);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| int load_free_space_cache(struct btrfs_fs_info *fs_info,
 | |
| 			  struct btrfs_block_group_cache *block_group)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret = 0;
 | |
| 	bool matched;
 | |
| 	u64 used = btrfs_block_group_used(&block_group->item);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this block group has been marked to be cleared for one reason or
 | |
| 	 * another then we can't trust the on disk cache, so just return.
 | |
| 	 */
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return 0;
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	inode = lookup_free_space_inode(root, block_group, path);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* We may have converted the inode and made the cache invalid. */
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		btrfs_free_path(path);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 | |
| 				      path, block_group->key.objectid);
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret <= 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	matched = (ctl->free_space == (block_group->key.offset - used -
 | |
| 				       block_group->bytes_super));
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (!matched) {
 | |
| 		__btrfs_remove_free_space_cache(ctl);
 | |
| 		btrfs_warn(fs_info,
 | |
| 			   "block group %llu has wrong amount of free space",
 | |
| 			   block_group->key.objectid);
 | |
| 		ret = -1;
 | |
| 	}
 | |
| out:
 | |
| 	if (ret < 0) {
 | |
| 		/* This cache is bogus, make sure it gets cleared */
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		ret = 0;
 | |
| 
 | |
| 		btrfs_warn(fs_info,
 | |
| 			   "failed to load free space cache for block group %llu, rebuilding it now",
 | |
| 			   block_group->key.objectid);
 | |
| 	}
 | |
| 
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 | |
| 			      struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_block_group_cache *block_group,
 | |
| 			      int *entries, int *bitmaps,
 | |
| 			      struct list_head *bitmap_list)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_free_cluster *cluster = NULL;
 | |
| 	struct btrfs_free_cluster *cluster_locked = NULL;
 | |
| 	struct rb_node *node = rb_first(&ctl->free_space_offset);
 | |
| 	struct btrfs_trim_range *trim_entry;
 | |
| 
 | |
| 	/* Get the cluster for this block_group if it exists */
 | |
| 	if (block_group && !list_empty(&block_group->cluster_list)) {
 | |
| 		cluster = list_entry(block_group->cluster_list.next,
 | |
| 				     struct btrfs_free_cluster,
 | |
| 				     block_group_list);
 | |
| 	}
 | |
| 
 | |
| 	if (!node && cluster) {
 | |
| 		cluster_locked = cluster;
 | |
| 		spin_lock(&cluster_locked->lock);
 | |
| 		node = rb_first(&cluster->root);
 | |
| 		cluster = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Write out the extent entries */
 | |
| 	while (node) {
 | |
| 		struct btrfs_free_space *e;
 | |
| 
 | |
| 		e = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		*entries += 1;
 | |
| 
 | |
| 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 | |
| 				       e->bitmap);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 
 | |
| 		if (e->bitmap) {
 | |
| 			list_add_tail(&e->list, bitmap_list);
 | |
| 			*bitmaps += 1;
 | |
| 		}
 | |
| 		node = rb_next(node);
 | |
| 		if (!node && cluster) {
 | |
| 			node = rb_first(&cluster->root);
 | |
| 			cluster_locked = cluster;
 | |
| 			spin_lock(&cluster_locked->lock);
 | |
| 			cluster = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (cluster_locked) {
 | |
| 		spin_unlock(&cluster_locked->lock);
 | |
| 		cluster_locked = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we don't miss any range that was removed from our rbtree
 | |
| 	 * because trimming is running. Otherwise after a umount+mount (or crash
 | |
| 	 * after committing the transaction) we would leak free space and get
 | |
| 	 * an inconsistent free space cache report from fsck.
 | |
| 	 */
 | |
| 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 | |
| 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 | |
| 				       trim_entry->bytes, NULL);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 		*entries += 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	if (cluster_locked)
 | |
| 		spin_unlock(&cluster_locked->lock);
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| update_cache_item(struct btrfs_trans_handle *trans,
 | |
| 		  struct btrfs_root *root,
 | |
| 		  struct inode *inode,
 | |
| 		  struct btrfs_path *path, u64 offset,
 | |
| 		  int entries, int bitmaps)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 	if (ret < 0) {
 | |
| 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
 | |
| 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
 | |
| 				 GFP_NOFS);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	leaf = path->nodes[0];
 | |
| 	if (ret > 0) {
 | |
| 		struct btrfs_key found_key;
 | |
| 		ASSERT(path->slots[0]);
 | |
| 		path->slots[0]--;
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
 | |
| 		    found_key.offset != offset) {
 | |
| 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
 | |
| 					 inode->i_size - 1,
 | |
| 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
 | |
| 					 NULL, GFP_NOFS);
 | |
| 			btrfs_release_path(path);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BTRFS_I(inode)->generation = trans->transid;
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	btrfs_set_free_space_entries(leaf, header, entries);
 | |
| 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
 | |
| 	btrfs_set_free_space_generation(leaf, header, trans->transid);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_block_group_cache *block_group,
 | |
| 			    struct btrfs_io_ctl *io_ctl,
 | |
| 			    int *entries)
 | |
| {
 | |
| 	u64 start, extent_start, extent_end, len;
 | |
| 	struct extent_io_tree *unpin = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!block_group)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to add any pinned extents to our free space cache
 | |
| 	 * so we don't leak the space
 | |
| 	 *
 | |
| 	 * We shouldn't have switched the pinned extents yet so this is the
 | |
| 	 * right one
 | |
| 	 */
 | |
| 	unpin = fs_info->pinned_extents;
 | |
| 
 | |
| 	start = block_group->key.objectid;
 | |
| 
 | |
| 	while (start < block_group->key.objectid + block_group->key.offset) {
 | |
| 		ret = find_first_extent_bit(unpin, start,
 | |
| 					    &extent_start, &extent_end,
 | |
| 					    EXTENT_DIRTY, NULL);
 | |
| 		if (ret)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* This pinned extent is out of our range */
 | |
| 		if (extent_start >= block_group->key.objectid +
 | |
| 		    block_group->key.offset)
 | |
| 			return 0;
 | |
| 
 | |
| 		extent_start = max(extent_start, start);
 | |
| 		extent_end = min(block_group->key.objectid +
 | |
| 				 block_group->key.offset, extent_end + 1);
 | |
| 		len = extent_end - extent_start;
 | |
| 
 | |
| 		*entries += 1;
 | |
| 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
 | |
| 		if (ret)
 | |
| 			return -ENOSPC;
 | |
| 
 | |
| 		start = extent_end;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
 | |
| {
 | |
| 	struct btrfs_free_space *entry, *next;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Write out the bitmaps */
 | |
| 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
 | |
| 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
 | |
| 		if (ret)
 | |
| 			return -ENOSPC;
 | |
| 		list_del_init(&entry->list);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int flush_dirty_cache(struct inode *inode)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
 | |
| 	if (ret)
 | |
| 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
 | |
| 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
 | |
| 				 GFP_NOFS);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void noinline_for_stack
 | |
| cleanup_bitmap_list(struct list_head *bitmap_list)
 | |
| {
 | |
| 	struct btrfs_free_space *entry, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(entry, next, bitmap_list, list)
 | |
| 		list_del_init(&entry->list);
 | |
| }
 | |
| 
 | |
| static void noinline_for_stack
 | |
| cleanup_write_cache_enospc(struct inode *inode,
 | |
| 			   struct btrfs_io_ctl *io_ctl,
 | |
| 			   struct extent_state **cached_state,
 | |
| 			   struct list_head *bitmap_list)
 | |
| {
 | |
| 	io_ctl_drop_pages(io_ctl);
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
 | |
| 			     i_size_read(inode) - 1, cached_state,
 | |
| 			     GFP_NOFS);
 | |
| }
 | |
| 
 | |
| static int __btrfs_wait_cache_io(struct btrfs_root *root,
 | |
| 				 struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_block_group_cache *block_group,
 | |
| 				 struct btrfs_io_ctl *io_ctl,
 | |
| 				 struct btrfs_path *path, u64 offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct inode *inode = io_ctl->inode;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 
 | |
| 	if (!inode)
 | |
| 		return 0;
 | |
| 
 | |
| 	fs_info = btrfs_sb(inode->i_sb);
 | |
| 
 | |
| 	/* Flush the dirty pages in the cache file. */
 | |
| 	ret = flush_dirty_cache(inode);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Update the cache item to tell everyone this cache file is valid. */
 | |
| 	ret = update_cache_item(trans, root, inode, path, offset,
 | |
| 				io_ctl->entries, io_ctl->bitmaps);
 | |
| out:
 | |
| 	io_ctl_free(io_ctl);
 | |
| 	if (ret) {
 | |
| 		invalidate_inode_pages2(inode->i_mapping);
 | |
| 		BTRFS_I(inode)->generation = 0;
 | |
| 		if (block_group) {
 | |
| #ifdef DEBUG
 | |
| 			btrfs_err(fs_info,
 | |
| 				  "failed to write free space cache for block group %llu",
 | |
| 				  block_group->key.objectid);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_update_inode(trans, root, inode);
 | |
| 
 | |
| 	if (block_group) {
 | |
| 		/* the dirty list is protected by the dirty_bgs_lock */
 | |
| 		spin_lock(&trans->transaction->dirty_bgs_lock);
 | |
| 
 | |
| 		/* the disk_cache_state is protected by the block group lock */
 | |
| 		spin_lock(&block_group->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * only mark this as written if we didn't get put back on
 | |
| 		 * the dirty list while waiting for IO.   Otherwise our
 | |
| 		 * cache state won't be right, and we won't get written again
 | |
| 		 */
 | |
| 		if (!ret && list_empty(&block_group->dirty_list))
 | |
| 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 | |
| 		else if (ret)
 | |
| 			block_group->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		spin_unlock(&trans->transaction->dirty_bgs_lock);
 | |
| 		io_ctl->inode = NULL;
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int btrfs_wait_cache_io_root(struct btrfs_root *root,
 | |
| 				    struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_io_ctl *io_ctl,
 | |
| 				    struct btrfs_path *path)
 | |
| {
 | |
| 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
 | |
| }
 | |
| 
 | |
| int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
 | |
| 			struct btrfs_block_group_cache *block_group,
 | |
| 			struct btrfs_path *path)
 | |
| {
 | |
| 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
 | |
| 				     block_group, &block_group->io_ctl,
 | |
| 				     path, block_group->key.objectid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __btrfs_write_out_cache - write out cached info to an inode
 | |
|  * @root - the root the inode belongs to
 | |
|  * @ctl - the free space cache we are going to write out
 | |
|  * @block_group - the block_group for this cache if it belongs to a block_group
 | |
|  * @trans - the trans handle
 | |
|  * @path - the path to use
 | |
|  * @offset - the offset for the key we'll insert
 | |
|  *
 | |
|  * This function writes out a free space cache struct to disk for quick recovery
 | |
|  * on mount.  This will return 0 if it was successful in writing the cache out,
 | |
|  * or an errno if it was not.
 | |
|  */
 | |
| static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
 | |
| 				   struct btrfs_free_space_ctl *ctl,
 | |
| 				   struct btrfs_block_group_cache *block_group,
 | |
| 				   struct btrfs_io_ctl *io_ctl,
 | |
| 				   struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_path *path, u64 offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	LIST_HEAD(bitmap_list);
 | |
| 	int entries = 0;
 | |
| 	int bitmaps = 0;
 | |
| 	int ret;
 | |
| 	int must_iput = 0;
 | |
| 
 | |
| 	if (!i_size_read(inode))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	WARN_ON(io_ctl->pages);
 | |
| 	ret = io_ctl_init(io_ctl, inode, 1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
 | |
| 		down_write(&block_group->data_rwsem);
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		if (block_group->delalloc_bytes) {
 | |
| 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			up_write(&block_group->data_rwsem);
 | |
| 			BTRFS_I(inode)->generation = 0;
 | |
| 			ret = 0;
 | |
| 			must_iput = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Lock all pages first so we can lock the extent safely. */
 | |
| 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
 | |
| 			 &cached_state);
 | |
| 
 | |
| 	io_ctl_set_generation(io_ctl, trans->transid);
 | |
| 
 | |
| 	mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 	/* Write out the extent entries in the free space cache */
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	ret = write_cache_extent_entries(io_ctl, ctl,
 | |
| 					 block_group, &entries, &bitmaps,
 | |
| 					 &bitmap_list);
 | |
| 	if (ret)
 | |
| 		goto out_nospc_locked;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some spaces that are freed in the current transaction are pinned,
 | |
| 	 * they will be added into free space cache after the transaction is
 | |
| 	 * committed, we shouldn't lose them.
 | |
| 	 *
 | |
| 	 * If this changes while we are working we'll get added back to
 | |
| 	 * the dirty list and redo it.  No locking needed
 | |
| 	 */
 | |
| 	ret = write_pinned_extent_entries(fs_info, block_group,
 | |
| 					  io_ctl, &entries);
 | |
| 	if (ret)
 | |
| 		goto out_nospc_locked;
 | |
| 
 | |
| 	/*
 | |
| 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
 | |
| 	 * locked while doing it because a concurrent trim can be manipulating
 | |
| 	 * or freeing the bitmap.
 | |
| 	 */
 | |
| 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 	if (ret)
 | |
| 		goto out_nospc;
 | |
| 
 | |
| 	/* Zero out the rest of the pages just to make sure */
 | |
| 	io_ctl_zero_remaining_pages(io_ctl);
 | |
| 
 | |
| 	/* Everything is written out, now we dirty the pages in the file. */
 | |
| 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
 | |
| 				i_size_read(inode), &cached_state);
 | |
| 	if (ret)
 | |
| 		goto out_nospc;
 | |
| 
 | |
| 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
 | |
| 		up_write(&block_group->data_rwsem);
 | |
| 	/*
 | |
| 	 * Release the pages and unlock the extent, we will flush
 | |
| 	 * them out later
 | |
| 	 */
 | |
| 	io_ctl_drop_pages(io_ctl);
 | |
| 
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
 | |
| 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
 | |
| 
 | |
| 	/*
 | |
| 	 * at this point the pages are under IO and we're happy,
 | |
| 	 * The caller is responsible for waiting on them and updating the
 | |
| 	 * the cache and the inode
 | |
| 	 */
 | |
| 	io_ctl->entries = entries;
 | |
| 	io_ctl->bitmaps = bitmaps;
 | |
| 
 | |
| 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	io_ctl->inode = NULL;
 | |
| 	io_ctl_free(io_ctl);
 | |
| 	if (ret) {
 | |
| 		invalidate_inode_pages2(inode->i_mapping);
 | |
| 		BTRFS_I(inode)->generation = 0;
 | |
| 	}
 | |
| 	btrfs_update_inode(trans, root, inode);
 | |
| 	if (must_iput)
 | |
| 		iput(inode);
 | |
| 	return ret;
 | |
| 
 | |
| out_nospc_locked:
 | |
| 	cleanup_bitmap_list(&bitmap_list);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| out_nospc:
 | |
| 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
 | |
| 
 | |
| 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
 | |
| 		up_write(&block_group->data_rwsem);
 | |
| 
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
 | |
| 			  struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_block_group_cache *block_group,
 | |
| 			  struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct inode *inode;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	inode = lookup_free_space_inode(root, block_group, path);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
 | |
| 				      &block_group->io_ctl, trans,
 | |
| 				      path, block_group->key.objectid);
 | |
| 	if (ret) {
 | |
| #ifdef DEBUG
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "failed to write free space cache for block group %llu",
 | |
| 			  block_group->key.objectid);
 | |
| #endif
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 
 | |
| 		block_group->io_ctl.inode = NULL;
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
 | |
| 	 * to wait for IO and put the inode
 | |
| 	 */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
 | |
| 					  u64 offset)
 | |
| {
 | |
| 	ASSERT(offset >= bitmap_start);
 | |
| 	offset -= bitmap_start;
 | |
| 	return (unsigned long)(div_u64(offset, unit));
 | |
| }
 | |
| 
 | |
| static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
 | |
| {
 | |
| 	return (unsigned long)(div_u64(bytes, unit));
 | |
| }
 | |
| 
 | |
| static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 				   u64 offset)
 | |
| {
 | |
| 	u64 bitmap_start;
 | |
| 	u64 bytes_per_bitmap;
 | |
| 
 | |
| 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
 | |
| 	bitmap_start = offset - ctl->start;
 | |
| 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
 | |
| 	bitmap_start *= bytes_per_bitmap;
 | |
| 	bitmap_start += ctl->start;
 | |
| 
 | |
| 	return bitmap_start;
 | |
| }
 | |
| 
 | |
| static int tree_insert_offset(struct rb_root *root, u64 offset,
 | |
| 			      struct rb_node *node, int bitmap)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct btrfs_free_space *info;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		if (offset < info->offset) {
 | |
| 			p = &(*p)->rb_left;
 | |
| 		} else if (offset > info->offset) {
 | |
| 			p = &(*p)->rb_right;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * we could have a bitmap entry and an extent entry
 | |
| 			 * share the same offset.  If this is the case, we want
 | |
| 			 * the extent entry to always be found first if we do a
 | |
| 			 * linear search through the tree, since we want to have
 | |
| 			 * the quickest allocation time, and allocating from an
 | |
| 			 * extent is faster than allocating from a bitmap.  So
 | |
| 			 * if we're inserting a bitmap and we find an entry at
 | |
| 			 * this offset, we want to go right, or after this entry
 | |
| 			 * logically.  If we are inserting an extent and we've
 | |
| 			 * found a bitmap, we want to go left, or before
 | |
| 			 * logically.
 | |
| 			 */
 | |
| 			if (bitmap) {
 | |
| 				if (info->bitmap) {
 | |
| 					WARN_ON_ONCE(1);
 | |
| 					return -EEXIST;
 | |
| 				}
 | |
| 				p = &(*p)->rb_right;
 | |
| 			} else {
 | |
| 				if (!info->bitmap) {
 | |
| 					WARN_ON_ONCE(1);
 | |
| 					return -EEXIST;
 | |
| 				}
 | |
| 				p = &(*p)->rb_left;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * searches the tree for the given offset.
 | |
|  *
 | |
|  * fuzzy - If this is set, then we are trying to make an allocation, and we just
 | |
|  * want a section that has at least bytes size and comes at or after the given
 | |
|  * offset.
 | |
|  */
 | |
| static struct btrfs_free_space *
 | |
| tree_search_offset(struct btrfs_free_space_ctl *ctl,
 | |
| 		   u64 offset, int bitmap_only, int fuzzy)
 | |
| {
 | |
| 	struct rb_node *n = ctl->free_space_offset.rb_node;
 | |
| 	struct btrfs_free_space *entry, *prev = NULL;
 | |
| 
 | |
| 	/* find entry that is closest to the 'offset' */
 | |
| 	while (1) {
 | |
| 		if (!n) {
 | |
| 			entry = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		prev = entry;
 | |
| 
 | |
| 		if (offset < entry->offset)
 | |
| 			n = n->rb_left;
 | |
| 		else if (offset > entry->offset)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (bitmap_only) {
 | |
| 		if (!entry)
 | |
| 			return NULL;
 | |
| 		if (entry->bitmap)
 | |
| 			return entry;
 | |
| 
 | |
| 		/*
 | |
| 		 * bitmap entry and extent entry may share same offset,
 | |
| 		 * in that case, bitmap entry comes after extent entry.
 | |
| 		 */
 | |
| 		n = rb_next(n);
 | |
| 		if (!n)
 | |
| 			return NULL;
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (entry->offset != offset)
 | |
| 			return NULL;
 | |
| 
 | |
| 		WARN_ON(!entry->bitmap);
 | |
| 		return entry;
 | |
| 	} else if (entry) {
 | |
| 		if (entry->bitmap) {
 | |
| 			/*
 | |
| 			 * if previous extent entry covers the offset,
 | |
| 			 * we should return it instead of the bitmap entry
 | |
| 			 */
 | |
| 			n = rb_prev(&entry->offset_index);
 | |
| 			if (n) {
 | |
| 				prev = rb_entry(n, struct btrfs_free_space,
 | |
| 						offset_index);
 | |
| 				if (!prev->bitmap &&
 | |
| 				    prev->offset + prev->bytes > offset)
 | |
| 					entry = prev;
 | |
| 			}
 | |
| 		}
 | |
| 		return entry;
 | |
| 	}
 | |
| 
 | |
| 	if (!prev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* find last entry before the 'offset' */
 | |
| 	entry = prev;
 | |
| 	if (entry->offset > offset) {
 | |
| 		n = rb_prev(&entry->offset_index);
 | |
| 		if (n) {
 | |
| 			entry = rb_entry(n, struct btrfs_free_space,
 | |
| 					offset_index);
 | |
| 			ASSERT(entry->offset <= offset);
 | |
| 		} else {
 | |
| 			if (fuzzy)
 | |
| 				return entry;
 | |
| 			else
 | |
| 				return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (entry->bitmap) {
 | |
| 		n = rb_prev(&entry->offset_index);
 | |
| 		if (n) {
 | |
| 			prev = rb_entry(n, struct btrfs_free_space,
 | |
| 					offset_index);
 | |
| 			if (!prev->bitmap &&
 | |
| 			    prev->offset + prev->bytes > offset)
 | |
| 				return prev;
 | |
| 		}
 | |
| 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
 | |
| 			return entry;
 | |
| 	} else if (entry->offset + entry->bytes > offset)
 | |
| 		return entry;
 | |
| 
 | |
| 	if (!fuzzy)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (entry->bitmap) {
 | |
| 			if (entry->offset + BITS_PER_BITMAP *
 | |
| 			    ctl->unit > offset)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if (entry->offset + entry->bytes > offset)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		n = rb_next(&entry->offset_index);
 | |
| 		if (!n)
 | |
| 			return NULL;
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 	}
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| __unlink_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 		    struct btrfs_free_space *info)
 | |
| {
 | |
| 	rb_erase(&info->offset_index, &ctl->free_space_offset);
 | |
| 	ctl->free_extents--;
 | |
| }
 | |
| 
 | |
| static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info)
 | |
| {
 | |
| 	__unlink_free_space(ctl, info);
 | |
| 	ctl->free_space -= info->bytes;
 | |
| }
 | |
| 
 | |
| static int link_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			   struct btrfs_free_space *info)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ASSERT(info->bytes || info->bitmap);
 | |
| 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
 | |
| 				 &info->offset_index, (info->bitmap != NULL));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ctl->free_space += info->bytes;
 | |
| 	ctl->free_extents++;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group = ctl->private;
 | |
| 	u64 max_bytes;
 | |
| 	u64 bitmap_bytes;
 | |
| 	u64 extent_bytes;
 | |
| 	u64 size = block_group->key.offset;
 | |
| 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 | |
| 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 | |
| 
 | |
| 	max_bitmaps = max_t(u64, max_bitmaps, 1);
 | |
| 
 | |
| 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 | |
| 
 | |
| 	/*
 | |
| 	 * The goal is to keep the total amount of memory used per 1gb of space
 | |
| 	 * at or below 32k, so we need to adjust how much memory we allow to be
 | |
| 	 * used by extent based free space tracking
 | |
| 	 */
 | |
| 	if (size < SZ_1G)
 | |
| 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 | |
| 	else
 | |
| 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 | |
| 
 | |
| 	/*
 | |
| 	 * we want to account for 1 more bitmap than what we have so we can make
 | |
| 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
 | |
| 	 * we add more bitmaps.
 | |
| 	 */
 | |
| 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
 | |
| 
 | |
| 	if (bitmap_bytes >= max_bytes) {
 | |
| 		ctl->extents_thresh = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we want the extent entry threshold to always be at most 1/2 the max
 | |
| 	 * bytes we can have, or whatever is less than that.
 | |
| 	 */
 | |
| 	extent_bytes = max_bytes - bitmap_bytes;
 | |
| 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 | |
| 
 | |
| 	ctl->extents_thresh =
 | |
| 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 | |
| }
 | |
| 
 | |
| static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
 | |
| 				       struct btrfs_free_space *info,
 | |
| 				       u64 offset, u64 bytes)
 | |
| {
 | |
| 	unsigned long start, count;
 | |
| 
 | |
| 	start = offset_to_bit(info->offset, ctl->unit, offset);
 | |
| 	count = bytes_to_bits(bytes, ctl->unit);
 | |
| 	ASSERT(start + count <= BITS_PER_BITMAP);
 | |
| 
 | |
| 	bitmap_clear(info->bitmap, start, count);
 | |
| 
 | |
| 	info->bytes -= bytes;
 | |
| }
 | |
| 
 | |
| static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info, u64 offset,
 | |
| 			      u64 bytes)
 | |
| {
 | |
| 	__bitmap_clear_bits(ctl, info, offset, bytes);
 | |
| 	ctl->free_space -= bytes;
 | |
| }
 | |
| 
 | |
| static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
 | |
| 			    struct btrfs_free_space *info, u64 offset,
 | |
| 			    u64 bytes)
 | |
| {
 | |
| 	unsigned long start, count;
 | |
| 
 | |
| 	start = offset_to_bit(info->offset, ctl->unit, offset);
 | |
| 	count = bytes_to_bits(bytes, ctl->unit);
 | |
| 	ASSERT(start + count <= BITS_PER_BITMAP);
 | |
| 
 | |
| 	bitmap_set(info->bitmap, start, count);
 | |
| 
 | |
| 	info->bytes += bytes;
 | |
| 	ctl->free_space += bytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we can not find suitable extent, we will use bytes to record
 | |
|  * the size of the max extent.
 | |
|  */
 | |
| static int search_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			 struct btrfs_free_space *bitmap_info, u64 *offset,
 | |
| 			 u64 *bytes, bool for_alloc)
 | |
| {
 | |
| 	unsigned long found_bits = 0;
 | |
| 	unsigned long max_bits = 0;
 | |
| 	unsigned long bits, i;
 | |
| 	unsigned long next_zero;
 | |
| 	unsigned long extent_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip searching the bitmap if we don't have a contiguous section that
 | |
| 	 * is large enough for this allocation.
 | |
| 	 */
 | |
| 	if (for_alloc &&
 | |
| 	    bitmap_info->max_extent_size &&
 | |
| 	    bitmap_info->max_extent_size < *bytes) {
 | |
| 		*bytes = bitmap_info->max_extent_size;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
 | |
| 			  max_t(u64, *offset, bitmap_info->offset));
 | |
| 	bits = bytes_to_bits(*bytes, ctl->unit);
 | |
| 
 | |
| 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
 | |
| 		if (for_alloc && bits == 1) {
 | |
| 			found_bits = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
 | |
| 					       BITS_PER_BITMAP, i);
 | |
| 		extent_bits = next_zero - i;
 | |
| 		if (extent_bits >= bits) {
 | |
| 			found_bits = extent_bits;
 | |
| 			break;
 | |
| 		} else if (extent_bits > max_bits) {
 | |
| 			max_bits = extent_bits;
 | |
| 		}
 | |
| 		i = next_zero;
 | |
| 	}
 | |
| 
 | |
| 	if (found_bits) {
 | |
| 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
 | |
| 		*bytes = (u64)(found_bits) * ctl->unit;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*bytes = (u64)(max_bits) * ctl->unit;
 | |
| 	bitmap_info->max_extent_size = *bytes;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Cache the size of the max extent in bytes */
 | |
| static struct btrfs_free_space *
 | |
| find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
 | |
| 		unsigned long align, u64 *max_extent_size)
 | |
| {
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	struct rb_node *node;
 | |
| 	u64 tmp;
 | |
| 	u64 align_off;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!ctl->free_space_offset.rb_node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
 | |
| 	if (!entry)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (node = &entry->offset_index; node; node = rb_next(node)) {
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		if (entry->bytes < *bytes) {
 | |
| 			if (entry->bytes > *max_extent_size)
 | |
| 				*max_extent_size = entry->bytes;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure the space returned is big enough
 | |
| 		 * to match our requested alignment
 | |
| 		 */
 | |
| 		if (*bytes >= align) {
 | |
| 			tmp = entry->offset - ctl->start + align - 1;
 | |
| 			tmp = div64_u64(tmp, align);
 | |
| 			tmp = tmp * align + ctl->start;
 | |
| 			align_off = tmp - entry->offset;
 | |
| 		} else {
 | |
| 			align_off = 0;
 | |
| 			tmp = entry->offset;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bytes < *bytes + align_off) {
 | |
| 			if (entry->bytes > *max_extent_size)
 | |
| 				*max_extent_size = entry->bytes;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bitmap) {
 | |
| 			u64 size = *bytes;
 | |
| 
 | |
| 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
 | |
| 			if (!ret) {
 | |
| 				*offset = tmp;
 | |
| 				*bytes = size;
 | |
| 				return entry;
 | |
| 			} else if (size > *max_extent_size) {
 | |
| 				*max_extent_size = size;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		*offset = tmp;
 | |
| 		*bytes = entry->bytes - align_off;
 | |
| 		return entry;
 | |
| 	}
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			   struct btrfs_free_space *info, u64 offset)
 | |
| {
 | |
| 	info->offset = offset_to_bitmap(ctl, offset);
 | |
| 	info->bytes = 0;
 | |
| 	INIT_LIST_HEAD(&info->list);
 | |
| 	link_free_space(ctl, info);
 | |
| 	ctl->total_bitmaps++;
 | |
| 
 | |
| 	ctl->op->recalc_thresholds(ctl);
 | |
| }
 | |
| 
 | |
| static void free_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			struct btrfs_free_space *bitmap_info)
 | |
| {
 | |
| 	unlink_free_space(ctl, bitmap_info);
 | |
| 	kfree(bitmap_info->bitmap);
 | |
| 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
 | |
| 	ctl->total_bitmaps--;
 | |
| 	ctl->op->recalc_thresholds(ctl);
 | |
| }
 | |
| 
 | |
| static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *bitmap_info,
 | |
| 			      u64 *offset, u64 *bytes)
 | |
| {
 | |
| 	u64 end;
 | |
| 	u64 search_start, search_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| again:
 | |
| 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to search for bits in this bitmap.  We could only cover some
 | |
| 	 * of the extent in this bitmap thanks to how we add space, so we need
 | |
| 	 * to search for as much as it as we can and clear that amount, and then
 | |
| 	 * go searching for the next bit.
 | |
| 	 */
 | |
| 	search_start = *offset;
 | |
| 	search_bytes = ctl->unit;
 | |
| 	search_bytes = min(search_bytes, end - search_start + 1);
 | |
| 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
 | |
| 			    false);
 | |
| 	if (ret < 0 || search_start != *offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* We may have found more bits than what we need */
 | |
| 	search_bytes = min(search_bytes, *bytes);
 | |
| 
 | |
| 	/* Cannot clear past the end of the bitmap */
 | |
| 	search_bytes = min(search_bytes, end - search_start + 1);
 | |
| 
 | |
| 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
 | |
| 	*offset += search_bytes;
 | |
| 	*bytes -= search_bytes;
 | |
| 
 | |
| 	if (*bytes) {
 | |
| 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
 | |
| 		if (!bitmap_info->bytes)
 | |
| 			free_bitmap(ctl, bitmap_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * no entry after this bitmap, but we still have bytes to
 | |
| 		 * remove, so something has gone wrong.
 | |
| 		 */
 | |
| 		if (!next)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		bitmap_info = rb_entry(next, struct btrfs_free_space,
 | |
| 				       offset_index);
 | |
| 
 | |
| 		/*
 | |
| 		 * if the next entry isn't a bitmap we need to return to let the
 | |
| 		 * extent stuff do its work.
 | |
| 		 */
 | |
| 		if (!bitmap_info->bitmap)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok the next item is a bitmap, but it may not actually hold
 | |
| 		 * the information for the rest of this free space stuff, so
 | |
| 		 * look for it, and if we don't find it return so we can try
 | |
| 		 * everything over again.
 | |
| 		 */
 | |
| 		search_start = *offset;
 | |
| 		search_bytes = ctl->unit;
 | |
| 		ret = search_bitmap(ctl, bitmap_info, &search_start,
 | |
| 				    &search_bytes, false);
 | |
| 		if (ret < 0 || search_start != *offset)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		goto again;
 | |
| 	} else if (!bitmap_info->bytes)
 | |
| 		free_bitmap(ctl, bitmap_info);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			       struct btrfs_free_space *info, u64 offset,
 | |
| 			       u64 bytes)
 | |
| {
 | |
| 	u64 bytes_to_set = 0;
 | |
| 	u64 end;
 | |
| 
 | |
| 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
 | |
| 
 | |
| 	bytes_to_set = min(end - offset, bytes);
 | |
| 
 | |
| 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * We set some bytes, we have no idea what the max extent size is
 | |
| 	 * anymore.
 | |
| 	 */
 | |
| 	info->max_extent_size = 0;
 | |
| 
 | |
| 	return bytes_to_set;
 | |
| 
 | |
| }
 | |
| 
 | |
| static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 		      struct btrfs_free_space *info)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group = ctl->private;
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	bool forced = false;
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 	if (btrfs_should_fragment_free_space(block_group))
 | |
| 		forced = true;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are below the extents threshold then we can add this as an
 | |
| 	 * extent, and don't have to deal with the bitmap
 | |
| 	 */
 | |
| 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
 | |
| 		/*
 | |
| 		 * If this block group has some small extents we don't want to
 | |
| 		 * use up all of our free slots in the cache with them, we want
 | |
| 		 * to reserve them to larger extents, however if we have plenty
 | |
| 		 * of cache left then go ahead an dadd them, no sense in adding
 | |
| 		 * the overhead of a bitmap if we don't have to.
 | |
| 		 */
 | |
| 		if (info->bytes <= fs_info->sectorsize * 4) {
 | |
| 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
 | |
| 				return false;
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The original block groups from mkfs can be really small, like 8
 | |
| 	 * megabytes, so don't bother with a bitmap for those entries.  However
 | |
| 	 * some block groups can be smaller than what a bitmap would cover but
 | |
| 	 * are still large enough that they could overflow the 32k memory limit,
 | |
| 	 * so allow those block groups to still be allowed to have a bitmap
 | |
| 	 * entry.
 | |
| 	 */
 | |
| 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static const struct btrfs_free_space_op free_space_op = {
 | |
| 	.recalc_thresholds	= recalculate_thresholds,
 | |
| 	.use_bitmap		= use_bitmap,
 | |
| };
 | |
| 
 | |
| static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info)
 | |
| {
 | |
| 	struct btrfs_free_space *bitmap_info;
 | |
| 	struct btrfs_block_group_cache *block_group = NULL;
 | |
| 	int added = 0;
 | |
| 	u64 bytes, offset, bytes_added;
 | |
| 	int ret;
 | |
| 
 | |
| 	bytes = info->bytes;
 | |
| 	offset = info->offset;
 | |
| 
 | |
| 	if (!ctl->op->use_bitmap(ctl, info))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ctl->op == &free_space_op)
 | |
| 		block_group = ctl->private;
 | |
| again:
 | |
| 	/*
 | |
| 	 * Since we link bitmaps right into the cluster we need to see if we
 | |
| 	 * have a cluster here, and if so and it has our bitmap we need to add
 | |
| 	 * the free space to that bitmap.
 | |
| 	 */
 | |
| 	if (block_group && !list_empty(&block_group->cluster_list)) {
 | |
| 		struct btrfs_free_cluster *cluster;
 | |
| 		struct rb_node *node;
 | |
| 		struct btrfs_free_space *entry;
 | |
| 
 | |
| 		cluster = list_entry(block_group->cluster_list.next,
 | |
| 				     struct btrfs_free_cluster,
 | |
| 				     block_group_list);
 | |
| 		spin_lock(&cluster->lock);
 | |
| 		node = rb_first(&cluster->root);
 | |
| 		if (!node) {
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 			goto no_cluster_bitmap;
 | |
| 		}
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		if (!entry->bitmap) {
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 			goto no_cluster_bitmap;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
 | |
| 			bytes_added = add_bytes_to_bitmap(ctl, entry,
 | |
| 							  offset, bytes);
 | |
| 			bytes -= bytes_added;
 | |
| 			offset += bytes_added;
 | |
| 		}
 | |
| 		spin_unlock(&cluster->lock);
 | |
| 		if (!bytes) {
 | |
| 			ret = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| no_cluster_bitmap:
 | |
| 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					 1, 0);
 | |
| 	if (!bitmap_info) {
 | |
| 		ASSERT(added == 0);
 | |
| 		goto new_bitmap;
 | |
| 	}
 | |
| 
 | |
| 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 | |
| 	bytes -= bytes_added;
 | |
| 	offset += bytes_added;
 | |
| 	added = 0;
 | |
| 
 | |
| 	if (!bytes) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	} else
 | |
| 		goto again;
 | |
| 
 | |
| new_bitmap:
 | |
| 	if (info && info->bitmap) {
 | |
| 		add_new_bitmap(ctl, info, offset);
 | |
| 		added = 1;
 | |
| 		info = NULL;
 | |
| 		goto again;
 | |
| 	} else {
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 		/* no pre-allocated info, allocate a new one */
 | |
| 		if (!info) {
 | |
| 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
 | |
| 						 GFP_NOFS);
 | |
| 			if (!info) {
 | |
| 				spin_lock(&ctl->tree_lock);
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* allocate the bitmap */
 | |
| 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 		if (!info->bitmap) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (info) {
 | |
| 		if (info->bitmap)
 | |
| 			kfree(info->bitmap);
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			  struct btrfs_free_space *info, bool update_stat)
 | |
| {
 | |
| 	struct btrfs_free_space *left_info;
 | |
| 	struct btrfs_free_space *right_info;
 | |
| 	bool merged = false;
 | |
| 	u64 offset = info->offset;
 | |
| 	u64 bytes = info->bytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * first we want to see if there is free space adjacent to the range we
 | |
| 	 * are adding, if there is remove that struct and add a new one to
 | |
| 	 * cover the entire range
 | |
| 	 */
 | |
| 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
 | |
| 	if (right_info && rb_prev(&right_info->offset_index))
 | |
| 		left_info = rb_entry(rb_prev(&right_info->offset_index),
 | |
| 				     struct btrfs_free_space, offset_index);
 | |
| 	else
 | |
| 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
 | |
| 
 | |
| 	if (right_info && !right_info->bitmap) {
 | |
| 		if (update_stat)
 | |
| 			unlink_free_space(ctl, right_info);
 | |
| 		else
 | |
| 			__unlink_free_space(ctl, right_info);
 | |
| 		info->bytes += right_info->bytes;
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, right_info);
 | |
| 		merged = true;
 | |
| 	}
 | |
| 
 | |
| 	if (left_info && !left_info->bitmap &&
 | |
| 	    left_info->offset + left_info->bytes == offset) {
 | |
| 		if (update_stat)
 | |
| 			unlink_free_space(ctl, left_info);
 | |
| 		else
 | |
| 			__unlink_free_space(ctl, left_info);
 | |
| 		info->offset = left_info->offset;
 | |
| 		info->bytes += left_info->bytes;
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, left_info);
 | |
| 		merged = true;
 | |
| 	}
 | |
| 
 | |
| 	return merged;
 | |
| }
 | |
| 
 | |
| static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
 | |
| 				     struct btrfs_free_space *info,
 | |
| 				     bool update_stat)
 | |
| {
 | |
| 	struct btrfs_free_space *bitmap;
 | |
| 	unsigned long i;
 | |
| 	unsigned long j;
 | |
| 	const u64 end = info->offset + info->bytes;
 | |
| 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
 | |
| 	u64 bytes;
 | |
| 
 | |
| 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
 | |
| 	if (!bitmap)
 | |
| 		return false;
 | |
| 
 | |
| 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
 | |
| 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
 | |
| 	if (j == i)
 | |
| 		return false;
 | |
| 	bytes = (j - i) * ctl->unit;
 | |
| 	info->bytes += bytes;
 | |
| 
 | |
| 	if (update_stat)
 | |
| 		bitmap_clear_bits(ctl, bitmap, end, bytes);
 | |
| 	else
 | |
| 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
 | |
| 
 | |
| 	if (!bitmap->bytes)
 | |
| 		free_bitmap(ctl, bitmap);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
 | |
| 				       struct btrfs_free_space *info,
 | |
| 				       bool update_stat)
 | |
| {
 | |
| 	struct btrfs_free_space *bitmap;
 | |
| 	u64 bitmap_offset;
 | |
| 	unsigned long i;
 | |
| 	unsigned long j;
 | |
| 	unsigned long prev_j;
 | |
| 	u64 bytes;
 | |
| 
 | |
| 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
 | |
| 	/* If we're on a boundary, try the previous logical bitmap. */
 | |
| 	if (bitmap_offset == info->offset) {
 | |
| 		if (info->offset == 0)
 | |
| 			return false;
 | |
| 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
 | |
| 	}
 | |
| 
 | |
| 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
 | |
| 	if (!bitmap)
 | |
| 		return false;
 | |
| 
 | |
| 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
 | |
| 	j = 0;
 | |
| 	prev_j = (unsigned long)-1;
 | |
| 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
 | |
| 		if (j > i)
 | |
| 			break;
 | |
| 		prev_j = j;
 | |
| 	}
 | |
| 	if (prev_j == i)
 | |
| 		return false;
 | |
| 
 | |
| 	if (prev_j == (unsigned long)-1)
 | |
| 		bytes = (i + 1) * ctl->unit;
 | |
| 	else
 | |
| 		bytes = (i - prev_j) * ctl->unit;
 | |
| 
 | |
| 	info->offset -= bytes;
 | |
| 	info->bytes += bytes;
 | |
| 
 | |
| 	if (update_stat)
 | |
| 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
 | |
| 	else
 | |
| 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
 | |
| 
 | |
| 	if (!bitmap->bytes)
 | |
| 		free_bitmap(ctl, bitmap);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We prefer always to allocate from extent entries, both for clustered and
 | |
|  * non-clustered allocation requests. So when attempting to add a new extent
 | |
|  * entry, try to see if there's adjacent free space in bitmap entries, and if
 | |
|  * there is, migrate that space from the bitmaps to the extent.
 | |
|  * Like this we get better chances of satisfying space allocation requests
 | |
|  * because we attempt to satisfy them based on a single cache entry, and never
 | |
|  * on 2 or more entries - even if the entries represent a contiguous free space
 | |
|  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 | |
|  * ends).
 | |
|  */
 | |
| static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info,
 | |
| 			      bool update_stat)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only work with disconnected entries, as we can change their offset,
 | |
| 	 * and must be extent entries.
 | |
| 	 */
 | |
| 	ASSERT(!info->bitmap);
 | |
| 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
 | |
| 
 | |
| 	if (ctl->total_bitmaps > 0) {
 | |
| 		bool stole_end;
 | |
| 		bool stole_front = false;
 | |
| 
 | |
| 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
 | |
| 		if (ctl->total_bitmaps > 0)
 | |
| 			stole_front = steal_from_bitmap_to_front(ctl, info,
 | |
| 								 update_stat);
 | |
| 
 | |
| 		if (stole_end || stole_front)
 | |
| 			try_merge_free_space(ctl, info, update_stat);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
 | |
| 			   struct btrfs_free_space_ctl *ctl,
 | |
| 			   u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	info->offset = offset;
 | |
| 	info->bytes = bytes;
 | |
| 	RB_CLEAR_NODE(&info->offset_index);
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (try_merge_free_space(ctl, info, true))
 | |
| 		goto link;
 | |
| 
 | |
| 	/*
 | |
| 	 * There was no extent directly to the left or right of this new
 | |
| 	 * extent then we know we're going to have to allocate a new extent, so
 | |
| 	 * before we do that see if we need to drop this into a bitmap
 | |
| 	 */
 | |
| 	ret = insert_into_bitmap(ctl, info);
 | |
| 	if (ret < 0) {
 | |
| 		goto out;
 | |
| 	} else if (ret) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| link:
 | |
| 	/*
 | |
| 	 * Only steal free space from adjacent bitmaps if we're sure we're not
 | |
| 	 * going to add the new free space to existing bitmap entries - because
 | |
| 	 * that would mean unnecessary work that would be reverted. Therefore
 | |
| 	 * attempt to steal space from bitmaps if we're adding an extent entry.
 | |
| 	 */
 | |
| 	steal_from_bitmap(ctl, info, true);
 | |
| 
 | |
| 	ret = link_free_space(ctl, info);
 | |
| 	if (ret)
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| out:
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
 | |
| 		ASSERT(ret != -EEXIST);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			    u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	int ret;
 | |
| 	bool re_search = false;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| again:
 | |
| 	ret = 0;
 | |
| 	if (!bytes)
 | |
| 		goto out_lock;
 | |
| 
 | |
| 	info = tree_search_offset(ctl, offset, 0, 0);
 | |
| 	if (!info) {
 | |
| 		/*
 | |
| 		 * oops didn't find an extent that matched the space we wanted
 | |
| 		 * to remove, look for a bitmap instead
 | |
| 		 */
 | |
| 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					  1, 0);
 | |
| 		if (!info) {
 | |
| 			/*
 | |
| 			 * If we found a partial bit of our free space in a
 | |
| 			 * bitmap but then couldn't find the other part this may
 | |
| 			 * be a problem, so WARN about it.
 | |
| 			 */
 | |
| 			WARN_ON(re_search);
 | |
| 			goto out_lock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	re_search = false;
 | |
| 	if (!info->bitmap) {
 | |
| 		unlink_free_space(ctl, info);
 | |
| 		if (offset == info->offset) {
 | |
| 			u64 to_free = min(bytes, info->bytes);
 | |
| 
 | |
| 			info->bytes -= to_free;
 | |
| 			info->offset += to_free;
 | |
| 			if (info->bytes) {
 | |
| 				ret = link_free_space(ctl, info);
 | |
| 				WARN_ON(ret);
 | |
| 			} else {
 | |
| 				kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 			}
 | |
| 
 | |
| 			offset += to_free;
 | |
| 			bytes -= to_free;
 | |
| 			goto again;
 | |
| 		} else {
 | |
| 			u64 old_end = info->bytes + info->offset;
 | |
| 
 | |
| 			info->bytes = offset - info->offset;
 | |
| 			ret = link_free_space(ctl, info);
 | |
| 			WARN_ON(ret);
 | |
| 			if (ret)
 | |
| 				goto out_lock;
 | |
| 
 | |
| 			/* Not enough bytes in this entry to satisfy us */
 | |
| 			if (old_end < offset + bytes) {
 | |
| 				bytes -= old_end - offset;
 | |
| 				offset = old_end;
 | |
| 				goto again;
 | |
| 			} else if (old_end == offset + bytes) {
 | |
| 				/* all done */
 | |
| 				goto out_lock;
 | |
| 			}
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 			ret = btrfs_add_free_space(block_group, offset + bytes,
 | |
| 						   old_end - (offset + bytes));
 | |
| 			WARN_ON(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		re_search = true;
 | |
| 		goto again;
 | |
| 	}
 | |
| out_lock:
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			   u64 bytes)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *n;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 | |
| 		info = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (info->bytes >= bytes && !block_group->ro)
 | |
| 			count++;
 | |
| 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
 | |
| 			   info->offset, info->bytes,
 | |
| 		       (info->bitmap) ? "yes" : "no");
 | |
| 	}
 | |
| 	btrfs_info(fs_info, "block group has cluster?: %s",
 | |
| 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
 | |
| 	btrfs_info(fs_info,
 | |
| 		   "%d blocks of free space at or bigger than bytes is", count);
 | |
| }
 | |
| 
 | |
| void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 
 | |
| 	spin_lock_init(&ctl->tree_lock);
 | |
| 	ctl->unit = fs_info->sectorsize;
 | |
| 	ctl->start = block_group->key.objectid;
 | |
| 	ctl->private = block_group;
 | |
| 	ctl->op = &free_space_op;
 | |
| 	INIT_LIST_HEAD(&ctl->trimming_ranges);
 | |
| 	mutex_init(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * we only want to have 32k of ram per block group for keeping
 | |
| 	 * track of free space, and if we pass 1/2 of that we want to
 | |
| 	 * start converting things over to using bitmaps
 | |
| 	 */
 | |
| 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for a given cluster, put all of its extents back into the free
 | |
|  * space cache.  If the block group passed doesn't match the block group
 | |
|  * pointed to by the cluster, someone else raced in and freed the
 | |
|  * cluster already.  In that case, we just return without changing anything
 | |
|  */
 | |
| static int
 | |
| __btrfs_return_cluster_to_free_space(
 | |
| 			     struct btrfs_block_group_cache *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (cluster->block_group != block_group)
 | |
| 		goto out;
 | |
| 
 | |
| 	cluster->block_group = NULL;
 | |
| 	cluster->window_start = 0;
 | |
| 	list_del_init(&cluster->block_group_list);
 | |
| 
 | |
| 	node = rb_first(&cluster->root);
 | |
| 	while (node) {
 | |
| 		bool bitmap;
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		rb_erase(&entry->offset_index, &cluster->root);
 | |
| 		RB_CLEAR_NODE(&entry->offset_index);
 | |
| 
 | |
| 		bitmap = (entry->bitmap != NULL);
 | |
| 		if (!bitmap) {
 | |
| 			try_merge_free_space(ctl, entry, false);
 | |
| 			steal_from_bitmap(ctl, entry, false);
 | |
| 		}
 | |
| 		tree_insert_offset(&ctl->free_space_offset,
 | |
| 				   entry->offset, &entry->offset_index, bitmap);
 | |
| 	}
 | |
| 	cluster->root = RB_ROOT;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __btrfs_remove_free_space_cache_locked(
 | |
| 				struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
 | |
| 		info = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		if (!info->bitmap) {
 | |
| 			unlink_free_space(ctl, info);
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 		} else {
 | |
| 			free_bitmap(ctl, info);
 | |
| 		}
 | |
| 
 | |
| 		cond_resched_lock(&ctl->tree_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	__btrfs_remove_free_space_cache_locked(ctl);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| }
 | |
| 
 | |
| void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_cluster *cluster;
 | |
| 	struct list_head *head;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	while ((head = block_group->cluster_list.next) !=
 | |
| 	       &block_group->cluster_list) {
 | |
| 		cluster = list_entry(head, struct btrfs_free_cluster,
 | |
| 				     block_group_list);
 | |
| 
 | |
| 		WARN_ON(cluster->block_group != block_group);
 | |
| 		__btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 
 | |
| 		cond_resched_lock(&ctl->tree_lock);
 | |
| 	}
 | |
| 	__btrfs_remove_free_space_cache_locked(ctl);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| }
 | |
| 
 | |
| u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 | |
| 			       u64 offset, u64 bytes, u64 empty_size,
 | |
| 			       u64 *max_extent_size)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	u64 bytes_search = bytes + empty_size;
 | |
| 	u64 ret = 0;
 | |
| 	u64 align_gap = 0;
 | |
| 	u64 align_gap_len = 0;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	entry = find_free_space(ctl, &offset, &bytes_search,
 | |
| 				block_group->full_stripe_len, max_extent_size);
 | |
| 	if (!entry)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = offset;
 | |
| 	if (entry->bitmap) {
 | |
| 		bitmap_clear_bits(ctl, entry, offset, bytes);
 | |
| 		if (!entry->bytes)
 | |
| 			free_bitmap(ctl, entry);
 | |
| 	} else {
 | |
| 		unlink_free_space(ctl, entry);
 | |
| 		align_gap_len = offset - entry->offset;
 | |
| 		align_gap = entry->offset;
 | |
| 
 | |
| 		entry->offset = offset + bytes;
 | |
| 		WARN_ON(entry->bytes < bytes + align_gap_len);
 | |
| 
 | |
| 		entry->bytes -= bytes + align_gap_len;
 | |
| 		if (!entry->bytes)
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 		else
 | |
| 			link_free_space(ctl, entry);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (align_gap_len)
 | |
| 		__btrfs_add_free_space(block_group->fs_info, ctl,
 | |
| 				       align_gap, align_gap_len);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * given a cluster, put all of its extents back into the free space
 | |
|  * cache.  If a block group is passed, this function will only free
 | |
|  * a cluster that belongs to the passed block group.
 | |
|  *
 | |
|  * Otherwise, it'll get a reference on the block group pointed to by the
 | |
|  * cluster and remove the cluster from it.
 | |
|  */
 | |
| int btrfs_return_cluster_to_free_space(
 | |
| 			       struct btrfs_block_group_cache *block_group,
 | |
| 			       struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* first, get a safe pointer to the block group */
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (!block_group) {
 | |
| 		block_group = cluster->block_group;
 | |
| 		if (!block_group) {
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else if (cluster->block_group != block_group) {
 | |
| 		/* someone else has already freed it don't redo their work */
 | |
| 		spin_unlock(&cluster->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	atomic_inc(&block_group->count);
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 
 | |
| 	ctl = block_group->free_space_ctl;
 | |
| 
 | |
| 	/* now return any extents the cluster had on it */
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	/* finally drop our ref */
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
 | |
| 				   struct btrfs_free_cluster *cluster,
 | |
| 				   struct btrfs_free_space *entry,
 | |
| 				   u64 bytes, u64 min_start,
 | |
| 				   u64 *max_extent_size)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	int err;
 | |
| 	u64 search_start = cluster->window_start;
 | |
| 	u64 search_bytes = bytes;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	search_start = min_start;
 | |
| 	search_bytes = bytes;
 | |
| 
 | |
| 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
 | |
| 	if (err) {
 | |
| 		if (search_bytes > *max_extent_size)
 | |
| 			*max_extent_size = search_bytes;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = search_start;
 | |
| 	__bitmap_clear_bits(ctl, entry, ret, bytes);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * given a cluster, try to allocate 'bytes' from it, returns 0
 | |
|  * if it couldn't find anything suitably large, or a logical disk offset
 | |
|  * if things worked out
 | |
|  */
 | |
| u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster, u64 bytes,
 | |
| 			     u64 min_start, u64 *max_extent_size)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (bytes > cluster->max_size)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (cluster->block_group != block_group)
 | |
| 		goto out;
 | |
| 
 | |
| 	node = rb_first(&cluster->root);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 	while (1) {
 | |
| 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
 | |
| 			*max_extent_size = entry->bytes;
 | |
| 
 | |
| 		if (entry->bytes < bytes ||
 | |
| 		    (!entry->bitmap && entry->offset < min_start)) {
 | |
| 			node = rb_next(&entry->offset_index);
 | |
| 			if (!node)
 | |
| 				break;
 | |
| 			entry = rb_entry(node, struct btrfs_free_space,
 | |
| 					 offset_index);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bitmap) {
 | |
| 			ret = btrfs_alloc_from_bitmap(block_group,
 | |
| 						      cluster, entry, bytes,
 | |
| 						      cluster->window_start,
 | |
| 						      max_extent_size);
 | |
| 			if (ret == 0) {
 | |
| 				node = rb_next(&entry->offset_index);
 | |
| 				if (!node)
 | |
| 					break;
 | |
| 				entry = rb_entry(node, struct btrfs_free_space,
 | |
| 						 offset_index);
 | |
| 				continue;
 | |
| 			}
 | |
| 			cluster->window_start += bytes;
 | |
| 		} else {
 | |
| 			ret = entry->offset;
 | |
| 
 | |
| 			entry->offset += bytes;
 | |
| 			entry->bytes -= bytes;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bytes == 0)
 | |
| 			rb_erase(&entry->offset_index, &cluster->root);
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 	ctl->free_space -= bytes;
 | |
| 	if (entry->bytes == 0) {
 | |
| 		ctl->free_extents--;
 | |
| 		if (entry->bitmap) {
 | |
| 			kfree(entry->bitmap);
 | |
| 			ctl->total_bitmaps--;
 | |
| 			ctl->op->recalc_thresholds(ctl);
 | |
| 		}
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
 | |
| 				struct btrfs_free_space *entry,
 | |
| 				struct btrfs_free_cluster *cluster,
 | |
| 				u64 offset, u64 bytes,
 | |
| 				u64 cont1_bytes, u64 min_bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	unsigned long next_zero;
 | |
| 	unsigned long i;
 | |
| 	unsigned long want_bits;
 | |
| 	unsigned long min_bits;
 | |
| 	unsigned long found_bits;
 | |
| 	unsigned long max_bits = 0;
 | |
| 	unsigned long start = 0;
 | |
| 	unsigned long total_found = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	i = offset_to_bit(entry->offset, ctl->unit,
 | |
| 			  max_t(u64, offset, entry->offset));
 | |
| 	want_bits = bytes_to_bits(bytes, ctl->unit);
 | |
| 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't bother looking for a cluster in this bitmap if it's heavily
 | |
| 	 * fragmented.
 | |
| 	 */
 | |
| 	if (entry->max_extent_size &&
 | |
| 	    entry->max_extent_size < cont1_bytes)
 | |
| 		return -ENOSPC;
 | |
| again:
 | |
| 	found_bits = 0;
 | |
| 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
 | |
| 		next_zero = find_next_zero_bit(entry->bitmap,
 | |
| 					       BITS_PER_BITMAP, i);
 | |
| 		if (next_zero - i >= min_bits) {
 | |
| 			found_bits = next_zero - i;
 | |
| 			if (found_bits > max_bits)
 | |
| 				max_bits = found_bits;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (next_zero - i > max_bits)
 | |
| 			max_bits = next_zero - i;
 | |
| 		i = next_zero;
 | |
| 	}
 | |
| 
 | |
| 	if (!found_bits) {
 | |
| 		entry->max_extent_size = (u64)max_bits * ctl->unit;
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	if (!total_found) {
 | |
| 		start = i;
 | |
| 		cluster->max_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	total_found += found_bits;
 | |
| 
 | |
| 	if (cluster->max_size < found_bits * ctl->unit)
 | |
| 		cluster->max_size = found_bits * ctl->unit;
 | |
| 
 | |
| 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
 | |
| 		i = next_zero + 1;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	cluster->window_start = start * ctl->unit + entry->offset;
 | |
| 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
 | |
| 	ret = tree_insert_offset(&cluster->root, entry->offset,
 | |
| 				 &entry->offset_index, 1);
 | |
| 	ASSERT(!ret); /* -EEXIST; Logic error */
 | |
| 
 | |
| 	trace_btrfs_setup_cluster(block_group, cluster,
 | |
| 				  total_found * ctl->unit, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This searches the block group for just extents to fill the cluster with.
 | |
|  * Try to find a cluster with at least bytes total bytes, at least one
 | |
|  * extent of cont1_bytes, and other clusters of at least min_bytes.
 | |
|  */
 | |
| static noinline int
 | |
| setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
 | |
| 			struct btrfs_free_cluster *cluster,
 | |
| 			struct list_head *bitmaps, u64 offset, u64 bytes,
 | |
| 			u64 cont1_bytes, u64 min_bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *first = NULL;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	struct btrfs_free_space *last;
 | |
| 	struct rb_node *node;
 | |
| 	u64 window_free;
 | |
| 	u64 max_extent;
 | |
| 	u64 total_size = 0;
 | |
| 
 | |
| 	entry = tree_search_offset(ctl, offset, 0, 1);
 | |
| 	if (!entry)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want bitmaps, so just move along until we find a normal
 | |
| 	 * extent entry.
 | |
| 	 */
 | |
| 	while (entry->bitmap || entry->bytes < min_bytes) {
 | |
| 		if (entry->bitmap && list_empty(&entry->list))
 | |
| 			list_add_tail(&entry->list, bitmaps);
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		if (!node)
 | |
| 			return -ENOSPC;
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 	}
 | |
| 
 | |
| 	window_free = entry->bytes;
 | |
| 	max_extent = entry->bytes;
 | |
| 	first = entry;
 | |
| 	last = entry;
 | |
| 
 | |
| 	for (node = rb_next(&entry->offset_index); node;
 | |
| 	     node = rb_next(&entry->offset_index)) {
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		if (entry->bitmap) {
 | |
| 			if (list_empty(&entry->list))
 | |
| 				list_add_tail(&entry->list, bitmaps);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bytes < min_bytes)
 | |
| 			continue;
 | |
| 
 | |
| 		last = entry;
 | |
| 		window_free += entry->bytes;
 | |
| 		if (entry->bytes > max_extent)
 | |
| 			max_extent = entry->bytes;
 | |
| 	}
 | |
| 
 | |
| 	if (window_free < bytes || max_extent < cont1_bytes)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	cluster->window_start = first->offset;
 | |
| 
 | |
| 	node = &first->offset_index;
 | |
| 
 | |
| 	/*
 | |
| 	 * now we've found our entries, pull them out of the free space
 | |
| 	 * cache and put them into the cluster rbtree
 | |
| 	 */
 | |
| 	do {
 | |
| 		int ret;
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		if (entry->bitmap || entry->bytes < min_bytes)
 | |
| 			continue;
 | |
| 
 | |
| 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
 | |
| 		ret = tree_insert_offset(&cluster->root, entry->offset,
 | |
| 					 &entry->offset_index, 0);
 | |
| 		total_size += entry->bytes;
 | |
| 		ASSERT(!ret); /* -EEXIST; Logic error */
 | |
| 	} while (node && entry != last);
 | |
| 
 | |
| 	cluster->max_size = max_extent;
 | |
| 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This specifically looks for bitmaps that may work in the cluster, we assume
 | |
|  * that we have already failed to find extents that will work.
 | |
|  */
 | |
| static noinline int
 | |
| setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
 | |
| 		     struct btrfs_free_cluster *cluster,
 | |
| 		     struct list_head *bitmaps, u64 offset, u64 bytes,
 | |
| 		     u64 cont1_bytes, u64 min_bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	int ret = -ENOSPC;
 | |
| 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
 | |
| 
 | |
| 	if (ctl->total_bitmaps == 0)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/*
 | |
| 	 * The bitmap that covers offset won't be in the list unless offset
 | |
| 	 * is just its start offset.
 | |
| 	 */
 | |
| 	if (!list_empty(bitmaps))
 | |
| 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
 | |
| 
 | |
| 	if (!entry || entry->offset != bitmap_offset) {
 | |
| 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
 | |
| 		if (entry && list_empty(&entry->list))
 | |
| 			list_add(&entry->list, bitmaps);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(entry, bitmaps, list) {
 | |
| 		if (entry->bytes < bytes)
 | |
| 			continue;
 | |
| 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
 | |
| 					   bytes, cont1_bytes, min_bytes);
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The bitmaps list has all the bitmaps that record free space
 | |
| 	 * starting after offset, so no more search is required.
 | |
| 	 */
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * here we try to find a cluster of blocks in a block group.  The goal
 | |
|  * is to find at least bytes+empty_size.
 | |
|  * We might not find them all in one contiguous area.
 | |
|  *
 | |
|  * returns zero and sets up cluster if things worked out, otherwise
 | |
|  * it returns -enospc
 | |
|  */
 | |
| int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
 | |
| 			     struct btrfs_block_group_cache *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster,
 | |
| 			     u64 offset, u64 bytes, u64 empty_size)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry, *tmp;
 | |
| 	LIST_HEAD(bitmaps);
 | |
| 	u64 min_bytes;
 | |
| 	u64 cont1_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Choose the minimum extent size we'll require for this
 | |
| 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
 | |
| 	 * For metadata, allow allocates with smaller extents.  For
 | |
| 	 * data, keep it dense.
 | |
| 	 */
 | |
| 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
 | |
| 		cont1_bytes = min_bytes = bytes + empty_size;
 | |
| 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		cont1_bytes = bytes;
 | |
| 		min_bytes = fs_info->sectorsize;
 | |
| 	} else {
 | |
| 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
 | |
| 		min_bytes = fs_info->sectorsize;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we know we don't have enough space to make a cluster don't even
 | |
| 	 * bother doing all the work to try and find one.
 | |
| 	 */
 | |
| 	if (ctl->free_space < bytes) {
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 
 | |
| 	/* someone already found a cluster, hooray */
 | |
| 	if (cluster->block_group) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
 | |
| 				 min_bytes);
 | |
| 
 | |
| 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
 | |
| 				      bytes + empty_size,
 | |
| 				      cont1_bytes, min_bytes);
 | |
| 	if (ret)
 | |
| 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
 | |
| 					   offset, bytes + empty_size,
 | |
| 					   cont1_bytes, min_bytes);
 | |
| 
 | |
| 	/* Clear our temporary list */
 | |
| 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
 | |
| 		list_del_init(&entry->list);
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		atomic_inc(&block_group->count);
 | |
| 		list_add_tail(&cluster->block_group_list,
 | |
| 			      &block_group->cluster_list);
 | |
| 		cluster->block_group = block_group;
 | |
| 	} else {
 | |
| 		trace_btrfs_failed_cluster_setup(block_group);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * simple code to zero out a cluster
 | |
|  */
 | |
| void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	spin_lock_init(&cluster->lock);
 | |
| 	spin_lock_init(&cluster->refill_lock);
 | |
| 	cluster->root = RB_ROOT;
 | |
| 	cluster->max_size = 0;
 | |
| 	cluster->fragmented = false;
 | |
| 	INIT_LIST_HEAD(&cluster->block_group_list);
 | |
| 	cluster->block_group = NULL;
 | |
| }
 | |
| 
 | |
| static int do_trimming(struct btrfs_block_group_cache *block_group,
 | |
| 		       u64 *total_trimmed, u64 start, u64 bytes,
 | |
| 		       u64 reserved_start, u64 reserved_bytes,
 | |
| 		       struct btrfs_trim_range *trim_entry)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info = block_group->space_info;
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	int ret;
 | |
| 	int update = 0;
 | |
| 	u64 trimmed = 0;
 | |
| 
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (!block_group->ro) {
 | |
| 		block_group->reserved += reserved_bytes;
 | |
| 		space_info->bytes_reserved += reserved_bytes;
 | |
| 		update = 1;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
 | |
| 	if (!ret)
 | |
| 		*total_trimmed += trimmed;
 | |
| 
 | |
| 	mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 | |
| 	list_del(&trim_entry->list);
 | |
| 	mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 	if (update) {
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		if (block_group->ro)
 | |
| 			space_info->bytes_readonly += reserved_bytes;
 | |
| 		block_group->reserved -= reserved_bytes;
 | |
| 		space_info->bytes_reserved -= reserved_bytes;
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
 | |
| 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	struct rb_node *node;
 | |
| 	int ret = 0;
 | |
| 	u64 extent_start;
 | |
| 	u64 extent_bytes;
 | |
| 	u64 bytes;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		struct btrfs_trim_range trim_entry;
 | |
| 
 | |
| 		mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 		if (ctl->free_space < minlen) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		entry = tree_search_offset(ctl, start, 0, 1);
 | |
| 		if (!entry) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* skip bitmaps */
 | |
| 		while (entry->bitmap) {
 | |
| 			node = rb_next(&entry->offset_index);
 | |
| 			if (!node) {
 | |
| 				spin_unlock(&ctl->tree_lock);
 | |
| 				mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			entry = rb_entry(node, struct btrfs_free_space,
 | |
| 					 offset_index);
 | |
| 		}
 | |
| 
 | |
| 		if (entry->offset >= end) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		extent_start = entry->offset;
 | |
| 		extent_bytes = entry->bytes;
 | |
| 		start = max(start, extent_start);
 | |
| 		bytes = min(extent_start + extent_bytes, end) - start;
 | |
| 		if (bytes < minlen) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		unlink_free_space(ctl, entry);
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		trim_entry.start = extent_start;
 | |
| 		trim_entry.bytes = extent_bytes;
 | |
| 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
 | |
| 		mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 		ret = do_trimming(block_group, total_trimmed, start, bytes,
 | |
| 				  extent_start, extent_bytes, &trim_entry);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| next:
 | |
| 		start += bytes;
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
 | |
| 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	int ret = 0;
 | |
| 	int ret2;
 | |
| 	u64 bytes;
 | |
| 	u64 offset = offset_to_bitmap(ctl, start);
 | |
| 
 | |
| 	while (offset < end) {
 | |
| 		bool next_bitmap = false;
 | |
| 		struct btrfs_trim_range trim_entry;
 | |
| 
 | |
| 		mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 		if (ctl->free_space < minlen) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		entry = tree_search_offset(ctl, offset, 1, 0);
 | |
| 		if (!entry) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			next_bitmap = true;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		bytes = minlen;
 | |
| 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
 | |
| 		if (ret2 || start >= end) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			next_bitmap = true;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		bytes = min(bytes, end - start);
 | |
| 		if (bytes < minlen) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		bitmap_clear_bits(ctl, entry, start, bytes);
 | |
| 		if (entry->bytes == 0)
 | |
| 			free_bitmap(ctl, entry);
 | |
| 
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		trim_entry.start = start;
 | |
| 		trim_entry.bytes = bytes;
 | |
| 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
 | |
| 		mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 		ret = do_trimming(block_group, total_trimmed, start, bytes,
 | |
| 				  start, bytes, &trim_entry);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| next:
 | |
| 		if (next_bitmap) {
 | |
| 			offset += BITS_PER_BITMAP * ctl->unit;
 | |
| 		} else {
 | |
| 			start += bytes;
 | |
| 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
 | |
| 				offset += BITS_PER_BITMAP * ctl->unit;
 | |
| 		}
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	atomic_inc(&cache->trimming);
 | |
| }
 | |
| 
 | |
| void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_map *em;
 | |
| 	bool cleanup;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
 | |
| 		   block_group->removed);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	if (cleanup) {
 | |
| 		mutex_lock(&fs_info->chunk_mutex);
 | |
| 		em_tree = &fs_info->mapping_tree.map_tree;
 | |
| 		write_lock(&em_tree->lock);
 | |
| 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
 | |
| 					   1);
 | |
| 		BUG_ON(!em); /* logic error, can't happen */
 | |
| 		/*
 | |
| 		 * remove_extent_mapping() will delete us from the pinned_chunks
 | |
| 		 * list, which is protected by the chunk mutex.
 | |
| 		 */
 | |
| 		remove_extent_mapping(em_tree, em);
 | |
| 		write_unlock(&em_tree->lock);
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 		/* once for us and once for the tree */
 | |
| 		free_extent_map(em);
 | |
| 		free_extent_map(em);
 | |
| 
 | |
| 		/*
 | |
| 		 * We've left one free space entry and other tasks trimming
 | |
| 		 * this block group have left 1 entry each one. Free them.
 | |
| 		 */
 | |
| 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
 | |
| 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	*trimmed = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->removed) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	btrfs_get_block_group_trimming(block_group);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
 | |
| out:
 | |
| 	btrfs_put_block_group_trimming(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the left-most item in the cache tree, and then return the
 | |
|  * smallest inode number in the item.
 | |
|  *
 | |
|  * Note: the returned inode number may not be the smallest one in
 | |
|  * the tree, if the left-most item is a bitmap.
 | |
|  */
 | |
| u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	u64 ino = 0;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(rb_first(&ctl->free_space_offset),
 | |
| 			 struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 	if (!entry->bitmap) {
 | |
| 		ino = entry->offset;
 | |
| 
 | |
| 		unlink_free_space(ctl, entry);
 | |
| 		entry->offset++;
 | |
| 		entry->bytes--;
 | |
| 		if (!entry->bytes)
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 		else
 | |
| 			link_free_space(ctl, entry);
 | |
| 	} else {
 | |
| 		u64 offset = 0;
 | |
| 		u64 count = 1;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = search_bitmap(ctl, entry, &offset, &count, true);
 | |
| 		/* Logic error; Should be empty if it can't find anything */
 | |
| 		ASSERT(!ret);
 | |
| 
 | |
| 		ino = offset;
 | |
| 		bitmap_clear_bits(ctl, entry, offset, 1);
 | |
| 		if (entry->bytes == 0)
 | |
| 			free_bitmap(ctl, entry);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	return ino;
 | |
| }
 | |
| 
 | |
| struct inode *lookup_free_ino_inode(struct btrfs_root *root,
 | |
| 				    struct btrfs_path *path)
 | |
| {
 | |
| 	struct inode *inode = NULL;
 | |
| 
 | |
| 	spin_lock(&root->ino_cache_lock);
 | |
| 	if (root->ino_cache_inode)
 | |
| 		inode = igrab(root->ino_cache_inode);
 | |
| 	spin_unlock(&root->ino_cache_lock);
 | |
| 	if (inode)
 | |
| 		return inode;
 | |
| 
 | |
| 	inode = __lookup_free_space_inode(root, path, 0);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return inode;
 | |
| 
 | |
| 	spin_lock(&root->ino_cache_lock);
 | |
| 	if (!btrfs_fs_closing(root->fs_info))
 | |
| 		root->ino_cache_inode = igrab(inode);
 | |
| 	spin_unlock(&root->ino_cache_lock);
 | |
| 
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| int create_free_ino_inode(struct btrfs_root *root,
 | |
| 			  struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_path *path)
 | |
| {
 | |
| 	return __create_free_space_inode(root, trans, path,
 | |
| 					 BTRFS_FREE_INO_OBJECTID, 0);
 | |
| }
 | |
| 
 | |
| int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct inode *inode;
 | |
| 	int ret = 0;
 | |
| 	u64 root_gen = btrfs_root_generation(&root->root_item);
 | |
| 
 | |
| 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're unmounting then just return, since this does a search on the
 | |
| 	 * normal root and not the commit root and we could deadlock.
 | |
| 	 */
 | |
| 	if (btrfs_fs_closing(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return 0;
 | |
| 
 | |
| 	inode = lookup_free_ino_inode(root, path);
 | |
| 	if (IS_ERR(inode))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (root_gen != BTRFS_I(inode)->generation)
 | |
| 		goto out_put;
 | |
| 
 | |
| 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		btrfs_err(fs_info,
 | |
| 			"failed to load free ino cache for root %llu",
 | |
| 			root->root_key.objectid);
 | |
| out_put:
 | |
| 	iput(inode);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_write_out_ino_cache(struct btrfs_root *root,
 | |
| 			      struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_path *path,
 | |
| 			      struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 | |
| 	int ret;
 | |
| 	struct btrfs_io_ctl io_ctl;
 | |
| 	bool release_metadata = true;
 | |
| 
 | |
| 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
 | |
| 		return 0;
 | |
| 
 | |
| 	memset(&io_ctl, 0, sizeof(io_ctl));
 | |
| 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
 | |
| 				      trans, path, 0);
 | |
| 	if (!ret) {
 | |
| 		/*
 | |
| 		 * At this point writepages() didn't error out, so our metadata
 | |
| 		 * reservation is released when the writeback finishes, at
 | |
| 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
 | |
| 		 * with or without an error.
 | |
| 		 */
 | |
| 		release_metadata = false;
 | |
| 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		if (release_metadata)
 | |
| 			btrfs_delalloc_release_metadata(inode, inode->i_size);
 | |
| #ifdef DEBUG
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "failed to write free ino cache for root %llu",
 | |
| 			  root->root_key.objectid);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| /*
 | |
|  * Use this if you need to make a bitmap or extent entry specifically, it
 | |
|  * doesn't do any of the merging that add_free_space does, this acts a lot like
 | |
|  * how the free space cache loading stuff works, so you can get really weird
 | |
|  * configurations.
 | |
|  */
 | |
| int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
 | |
| 			      u64 offset, u64 bytes, bool bitmap)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
 | |
| 	struct btrfs_free_space *info = NULL, *bitmap_info;
 | |
| 	void *map = NULL;
 | |
| 	u64 bytes_added;
 | |
| 	int ret;
 | |
| 
 | |
| again:
 | |
| 	if (!info) {
 | |
| 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
 | |
| 		if (!info)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (!bitmap) {
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 		info->offset = offset;
 | |
| 		info->bytes = bytes;
 | |
| 		info->max_extent_size = 0;
 | |
| 		ret = link_free_space(ctl, info);
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		if (ret)
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!map) {
 | |
| 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
 | |
| 		if (!map) {
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					 1, 0);
 | |
| 	if (!bitmap_info) {
 | |
| 		info->bitmap = map;
 | |
| 		map = NULL;
 | |
| 		add_new_bitmap(ctl, info, offset);
 | |
| 		bitmap_info = info;
 | |
| 		info = NULL;
 | |
| 	}
 | |
| 
 | |
| 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 | |
| 
 | |
| 	bytes -= bytes_added;
 | |
| 	offset += bytes_added;
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (bytes)
 | |
| 		goto again;
 | |
| 
 | |
| 	if (info)
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 	if (map)
 | |
| 		kfree(map);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks to see if the given range is in the free space cache.  This is really
 | |
|  * just used to check the absence of space, so if there is free space in the
 | |
|  * range at all we will return 1.
 | |
|  */
 | |
| int test_check_exists(struct btrfs_block_group_cache *cache,
 | |
| 		      u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	info = tree_search_offset(ctl, offset, 0, 0);
 | |
| 	if (!info) {
 | |
| 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					  1, 0);
 | |
| 		if (!info)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| have_info:
 | |
| 	if (info->bitmap) {
 | |
| 		u64 bit_off, bit_bytes;
 | |
| 		struct rb_node *n;
 | |
| 		struct btrfs_free_space *tmp;
 | |
| 
 | |
| 		bit_off = offset;
 | |
| 		bit_bytes = ctl->unit;
 | |
| 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
 | |
| 		if (!ret) {
 | |
| 			if (bit_off == offset) {
 | |
| 				ret = 1;
 | |
| 				goto out;
 | |
| 			} else if (bit_off > offset &&
 | |
| 				   offset + bytes > bit_off) {
 | |
| 				ret = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		n = rb_prev(&info->offset_index);
 | |
| 		while (n) {
 | |
| 			tmp = rb_entry(n, struct btrfs_free_space,
 | |
| 				       offset_index);
 | |
| 			if (tmp->offset + tmp->bytes < offset)
 | |
| 				break;
 | |
| 			if (offset + bytes < tmp->offset) {
 | |
| 				n = rb_prev(&tmp->offset_index);
 | |
| 				continue;
 | |
| 			}
 | |
| 			info = tmp;
 | |
| 			goto have_info;
 | |
| 		}
 | |
| 
 | |
| 		n = rb_next(&info->offset_index);
 | |
| 		while (n) {
 | |
| 			tmp = rb_entry(n, struct btrfs_free_space,
 | |
| 				       offset_index);
 | |
| 			if (offset + bytes < tmp->offset)
 | |
| 				break;
 | |
| 			if (tmp->offset + tmp->bytes < offset) {
 | |
| 				n = rb_next(&tmp->offset_index);
 | |
| 				continue;
 | |
| 			}
 | |
| 			info = tmp;
 | |
| 			goto have_info;
 | |
| 		}
 | |
| 
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (info->offset == offset) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (offset > info->offset && offset < info->offset + info->bytes)
 | |
| 		ret = 1;
 | |
| out:
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	return ret;
 | |
| }
 | |
| #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
 |