mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 a666b54ada
			
		
	
	
		a666b54ada
		
	
	
	
	
		
			
			"brd->nasync" amd "brd->maxports" are the same. They hold the number of filled out channels in the brd->channels[] array. These tests should be ">=" instead of ">" so that we don't read one element past the end. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			1414 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1414 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /************************************************************************
 | |
|  * Copyright 2003 Digi International (www.digi.com)
 | |
|  *
 | |
|  * Copyright (C) 2004 IBM Corporation. All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
 | |
|  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE.  See the GNU General Public License for more details.
 | |
|  *
 | |
|  * Contact Information:
 | |
|  * Scott H Kilau <Scott_Kilau@digi.com>
 | |
|  * Wendy Xiong   <wendyx@us.ibm.com>
 | |
|  *
 | |
|  ***********************************************************************/
 | |
| #include <linux/delay.h>	/* For udelay */
 | |
| #include <linux/serial_reg.h>	/* For the various UART offsets */
 | |
| #include <linux/tty.h>
 | |
| #include <linux/pci.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include "jsm.h"		/* Driver main header file */
 | |
| 
 | |
| static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
 | |
| 
 | |
| /*
 | |
|  * This function allows calls to ensure that all outstanding
 | |
|  * PCI writes have been completed, by doing a PCI read against
 | |
|  * a non-destructive, read-only location on the Neo card.
 | |
|  *
 | |
|  * In this case, we are reading the DVID (Read-only Device Identification)
 | |
|  * value of the Neo card.
 | |
|  */
 | |
| static inline void neo_pci_posting_flush(struct jsm_board *bd)
 | |
| {
 | |
|       readb(bd->re_map_membase + 0x8D);
 | |
| }
 | |
| 
 | |
| static void neo_set_cts_flow_control(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 ier, efr;
 | |
| 	ier = readb(&ch->ch_neo_uart->ier);
 | |
| 	efr = readb(&ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
 | |
| 
 | |
| 	/* Turn on auto CTS flow control */
 | |
| 	ier |= (UART_17158_IER_CTSDSR);
 | |
| 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
 | |
| 
 | |
| 	/* Turn off auto Xon flow control */
 | |
| 	efr &= ~(UART_17158_EFR_IXON);
 | |
| 
 | |
| 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on UART enhanced bits */
 | |
| 	writeb(efr, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on table D, with 8 char hi/low watermarks */
 | |
| 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
 | |
| 
 | |
| 	/* Feed the UART our trigger levels */
 | |
| 	writeb(8, &ch->ch_neo_uart->tfifo);
 | |
| 	ch->ch_t_tlevel = 8;
 | |
| 
 | |
| 	writeb(ier, &ch->ch_neo_uart->ier);
 | |
| }
 | |
| 
 | |
| static void neo_set_rts_flow_control(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 ier, efr;
 | |
| 	ier = readb(&ch->ch_neo_uart->ier);
 | |
| 	efr = readb(&ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
 | |
| 
 | |
| 	/* Turn on auto RTS flow control */
 | |
| 	ier |= (UART_17158_IER_RTSDTR);
 | |
| 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
 | |
| 
 | |
| 	/* Turn off auto Xoff flow control */
 | |
| 	ier &= ~(UART_17158_IER_XOFF);
 | |
| 	efr &= ~(UART_17158_EFR_IXOFF);
 | |
| 
 | |
| 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on UART enhanced bits */
 | |
| 	writeb(efr, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
 | |
| 	ch->ch_r_watermark = 4;
 | |
| 
 | |
| 	writeb(56, &ch->ch_neo_uart->rfifo);
 | |
| 	ch->ch_r_tlevel = 56;
 | |
| 
 | |
| 	writeb(ier, &ch->ch_neo_uart->ier);
 | |
| 
 | |
| 	/*
 | |
| 	 * From the Neo UART spec sheet:
 | |
| 	 * The auto RTS/DTR function must be started by asserting
 | |
| 	 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
 | |
| 	 * it is enabled.
 | |
| 	 */
 | |
| 	ch->ch_mostat |= (UART_MCR_RTS);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void neo_set_ixon_flow_control(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 ier, efr;
 | |
| 	ier = readb(&ch->ch_neo_uart->ier);
 | |
| 	efr = readb(&ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
 | |
| 
 | |
| 	/* Turn off auto CTS flow control */
 | |
| 	ier &= ~(UART_17158_IER_CTSDSR);
 | |
| 	efr &= ~(UART_17158_EFR_CTSDSR);
 | |
| 
 | |
| 	/* Turn on auto Xon flow control */
 | |
| 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
 | |
| 
 | |
| 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on UART enhanced bits */
 | |
| 	writeb(efr, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 | |
| 	ch->ch_r_watermark = 4;
 | |
| 
 | |
| 	writeb(32, &ch->ch_neo_uart->rfifo);
 | |
| 	ch->ch_r_tlevel = 32;
 | |
| 
 | |
| 	/* Tell UART what start/stop chars it should be looking for */
 | |
| 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 | |
| 	writeb(0, &ch->ch_neo_uart->xonchar2);
 | |
| 
 | |
| 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 | |
| 	writeb(0, &ch->ch_neo_uart->xoffchar2);
 | |
| 
 | |
| 	writeb(ier, &ch->ch_neo_uart->ier);
 | |
| }
 | |
| 
 | |
| static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 ier, efr;
 | |
| 	ier = readb(&ch->ch_neo_uart->ier);
 | |
| 	efr = readb(&ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
 | |
| 
 | |
| 	/* Turn off auto RTS flow control */
 | |
| 	ier &= ~(UART_17158_IER_RTSDTR);
 | |
| 	efr &= ~(UART_17158_EFR_RTSDTR);
 | |
| 
 | |
| 	/* Turn on auto Xoff flow control */
 | |
| 	ier |= (UART_17158_IER_XOFF);
 | |
| 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
 | |
| 
 | |
| 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on UART enhanced bits */
 | |
| 	writeb(efr, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on table D, with 8 char hi/low watermarks */
 | |
| 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 | |
| 
 | |
| 	writeb(8, &ch->ch_neo_uart->tfifo);
 | |
| 	ch->ch_t_tlevel = 8;
 | |
| 
 | |
| 	/* Tell UART what start/stop chars it should be looking for */
 | |
| 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 | |
| 	writeb(0, &ch->ch_neo_uart->xonchar2);
 | |
| 
 | |
| 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 | |
| 	writeb(0, &ch->ch_neo_uart->xoffchar2);
 | |
| 
 | |
| 	writeb(ier, &ch->ch_neo_uart->ier);
 | |
| }
 | |
| 
 | |
| static void neo_set_no_input_flow_control(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 ier, efr;
 | |
| 	ier = readb(&ch->ch_neo_uart->ier);
 | |
| 	efr = readb(&ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
 | |
| 
 | |
| 	/* Turn off auto RTS flow control */
 | |
| 	ier &= ~(UART_17158_IER_RTSDTR);
 | |
| 	efr &= ~(UART_17158_EFR_RTSDTR);
 | |
| 
 | |
| 	/* Turn off auto Xoff flow control */
 | |
| 	ier &= ~(UART_17158_IER_XOFF);
 | |
| 	if (ch->ch_c_iflag & IXON)
 | |
| 		efr &= ~(UART_17158_EFR_IXOFF);
 | |
| 	else
 | |
| 		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
 | |
| 
 | |
| 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on UART enhanced bits */
 | |
| 	writeb(efr, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on table D, with 8 char hi/low watermarks */
 | |
| 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 | |
| 
 | |
| 	ch->ch_r_watermark = 0;
 | |
| 
 | |
| 	writeb(16, &ch->ch_neo_uart->tfifo);
 | |
| 	ch->ch_t_tlevel = 16;
 | |
| 
 | |
| 	writeb(16, &ch->ch_neo_uart->rfifo);
 | |
| 	ch->ch_r_tlevel = 16;
 | |
| 
 | |
| 	writeb(ier, &ch->ch_neo_uart->ier);
 | |
| }
 | |
| 
 | |
| static void neo_set_no_output_flow_control(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 ier, efr;
 | |
| 	ier = readb(&ch->ch_neo_uart->ier);
 | |
| 	efr = readb(&ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
 | |
| 
 | |
| 	/* Turn off auto CTS flow control */
 | |
| 	ier &= ~(UART_17158_IER_CTSDSR);
 | |
| 	efr &= ~(UART_17158_EFR_CTSDSR);
 | |
| 
 | |
| 	/* Turn off auto Xon flow control */
 | |
| 	if (ch->ch_c_iflag & IXOFF)
 | |
| 		efr &= ~(UART_17158_EFR_IXON);
 | |
| 	else
 | |
| 		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
 | |
| 
 | |
| 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on UART enhanced bits */
 | |
| 	writeb(efr, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Turn on table D, with 8 char hi/low watermarks */
 | |
| 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 | |
| 
 | |
| 	ch->ch_r_watermark = 0;
 | |
| 
 | |
| 	writeb(16, &ch->ch_neo_uart->tfifo);
 | |
| 	ch->ch_t_tlevel = 16;
 | |
| 
 | |
| 	writeb(16, &ch->ch_neo_uart->rfifo);
 | |
| 	ch->ch_r_tlevel = 16;
 | |
| 
 | |
| 	writeb(ier, &ch->ch_neo_uart->ier);
 | |
| }
 | |
| 
 | |
| static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
 | |
| {
 | |
| 
 | |
| 	/* if hardware flow control is set, then skip this whole thing */
 | |
| 	if (ch->ch_c_cflag & CRTSCTS)
 | |
| 		return;
 | |
| 
 | |
| 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "start\n");
 | |
| 
 | |
| 	/* Tell UART what start/stop chars it should be looking for */
 | |
| 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 | |
| 	writeb(0, &ch->ch_neo_uart->xonchar2);
 | |
| 
 | |
| 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 | |
| 	writeb(0, &ch->ch_neo_uart->xoffchar2);
 | |
| }
 | |
| 
 | |
| static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
 | |
| {
 | |
| 	int qleft = 0;
 | |
| 	u8 linestatus = 0;
 | |
| 	u8 error_mask = 0;
 | |
| 	int n = 0;
 | |
| 	int total = 0;
 | |
| 	u16 head;
 | |
| 	u16 tail;
 | |
| 
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	/* cache head and tail of queue */
 | |
| 	head = ch->ch_r_head & RQUEUEMASK;
 | |
| 	tail = ch->ch_r_tail & RQUEUEMASK;
 | |
| 
 | |
| 	/* Get our cached LSR */
 | |
| 	linestatus = ch->ch_cached_lsr;
 | |
| 	ch->ch_cached_lsr = 0;
 | |
| 
 | |
| 	/* Store how much space we have left in the queue */
 | |
| 	if ((qleft = tail - head - 1) < 0)
 | |
| 		qleft += RQUEUEMASK + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the UART is not in FIFO mode, force the FIFO copy to
 | |
| 	 * NOT be run, by setting total to 0.
 | |
| 	 *
 | |
| 	 * On the other hand, if the UART IS in FIFO mode, then ask
 | |
| 	 * the UART to give us an approximation of data it has RX'ed.
 | |
| 	 */
 | |
| 	if (!(ch->ch_flags & CH_FIFO_ENABLED))
 | |
| 		total = 0;
 | |
| 	else {
 | |
| 		total = readb(&ch->ch_neo_uart->rfifo);
 | |
| 
 | |
| 		/*
 | |
| 		 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
 | |
| 		 *
 | |
| 		 * This resolves a problem/bug with the Exar chip that sometimes
 | |
| 		 * returns a bogus value in the rfifo register.
 | |
| 		 * The count can be any where from 0-3 bytes "off".
 | |
| 		 * Bizarre, but true.
 | |
| 		 */
 | |
| 		total -= 3;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, bound the copy to make sure we don't overflow
 | |
| 	 * our own queue...
 | |
| 	 * The byte by byte copy loop below this loop this will
 | |
| 	 * deal with the queue overflow possibility.
 | |
| 	 */
 | |
| 	total = min(total, qleft);
 | |
| 
 | |
| 	while (total > 0) {
 | |
| 		/*
 | |
| 		 * Grab the linestatus register, we need to check
 | |
| 		 * to see if there are any errors in the FIFO.
 | |
| 		 */
 | |
| 		linestatus = readb(&ch->ch_neo_uart->lsr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Break out if there is a FIFO error somewhere.
 | |
| 		 * This will allow us to go byte by byte down below,
 | |
| 		 * finding the exact location of the error.
 | |
| 		 */
 | |
| 		if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
 | |
| 			break;
 | |
| 
 | |
| 		/* Make sure we don't go over the end of our queue */
 | |
| 		n = min(((u32) total), (RQUEUESIZE - (u32) head));
 | |
| 
 | |
| 		/*
 | |
| 		 * Cut down n even further if needed, this is to fix
 | |
| 		 * a problem with memcpy_fromio() with the Neo on the
 | |
| 		 * IBM pSeries platform.
 | |
| 		 * 15 bytes max appears to be the magic number.
 | |
| 		 */
 | |
| 		n = min((u32) n, (u32) 12);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we are grabbing the linestatus register, which
 | |
| 		 * will reset some bits after our read, we need to ensure
 | |
| 		 * we don't miss our TX FIFO emptys.
 | |
| 		 */
 | |
| 		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
 | |
| 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| 
 | |
| 		linestatus = 0;
 | |
| 
 | |
| 		/* Copy data from uart to the queue */
 | |
| 		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
 | |
| 		/*
 | |
| 		 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
 | |
| 		 * that all the data currently in the FIFO is free of
 | |
| 		 * breaks and parity/frame/orun errors.
 | |
| 		 */
 | |
| 		memset(ch->ch_equeue + head, 0, n);
 | |
| 
 | |
| 		/* Add to and flip head if needed */
 | |
| 		head = (head + n) & RQUEUEMASK;
 | |
| 		total -= n;
 | |
| 		qleft -= n;
 | |
| 		ch->ch_rxcount += n;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a mask to determine whether we should
 | |
| 	 * insert the character (if any) into our queue.
 | |
| 	 */
 | |
| 	if (ch->ch_c_iflag & IGNBRK)
 | |
| 		error_mask |= UART_LSR_BI;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now cleanup any leftover bytes still in the UART.
 | |
| 	 * Also deal with any possible queue overflow here as well.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Its possible we have a linestatus from the loop above
 | |
| 		 * this, so we "OR" on any extra bits.
 | |
| 		 */
 | |
| 		linestatus |= readb(&ch->ch_neo_uart->lsr);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the chip tells us there is no more data pending to
 | |
| 		 * be read, we can then leave.
 | |
| 		 * But before we do, cache the linestatus, just in case.
 | |
| 		 */
 | |
| 		if (!(linestatus & UART_LSR_DR)) {
 | |
| 			ch->ch_cached_lsr = linestatus;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* No need to store this bit */
 | |
| 		linestatus &= ~UART_LSR_DR;
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we are grabbing the linestatus register, which
 | |
| 		 * will reset some bits after our read, we need to ensure
 | |
| 		 * we don't miss our TX FIFO emptys.
 | |
| 		 */
 | |
| 		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
 | |
| 			linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
 | |
| 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Discard character if we are ignoring the error mask.
 | |
| 		 */
 | |
| 		if (linestatus & error_mask) {
 | |
| 			u8 discard;
 | |
| 			linestatus = 0;
 | |
| 			memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If our queue is full, we have no choice but to drop some data.
 | |
| 		 * The assumption is that HWFLOW or SWFLOW should have stopped
 | |
| 		 * things way way before we got to this point.
 | |
| 		 *
 | |
| 		 * I decided that I wanted to ditch the oldest data first,
 | |
| 		 * I hope thats okay with everyone? Yes? Good.
 | |
| 		 */
 | |
| 		while (qleft < 1) {
 | |
| 			jsm_dbg(READ, &ch->ch_bd->pci_dev,
 | |
| 				"Queue full, dropping DATA:%x LSR:%x\n",
 | |
| 				ch->ch_rqueue[tail], ch->ch_equeue[tail]);
 | |
| 
 | |
| 			ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
 | |
| 			ch->ch_err_overrun++;
 | |
| 			qleft++;
 | |
| 		}
 | |
| 
 | |
| 		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
 | |
| 		ch->ch_equeue[head] = (u8) linestatus;
 | |
| 
 | |
| 		jsm_dbg(READ, &ch->ch_bd->pci_dev, "DATA/LSR pair: %x %x\n",
 | |
| 			ch->ch_rqueue[head], ch->ch_equeue[head]);
 | |
| 
 | |
| 		/* Ditch any remaining linestatus value. */
 | |
| 		linestatus = 0;
 | |
| 
 | |
| 		/* Add to and flip head if needed */
 | |
| 		head = (head + 1) & RQUEUEMASK;
 | |
| 
 | |
| 		qleft--;
 | |
| 		ch->ch_rxcount++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Write new final heads to channel structure.
 | |
| 	 */
 | |
| 	ch->ch_r_head = head & RQUEUEMASK;
 | |
| 	ch->ch_e_head = head & EQUEUEMASK;
 | |
| 	jsm_input(ch);
 | |
| }
 | |
| 
 | |
| static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
 | |
| {
 | |
| 	u16 head;
 | |
| 	u16 tail;
 | |
| 	int n;
 | |
| 	int s;
 | |
| 	int qlen;
 | |
| 	u32 len_written = 0;
 | |
| 	struct circ_buf *circ;
 | |
| 
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	circ = &ch->uart_port.state->xmit;
 | |
| 
 | |
| 	/* No data to write to the UART */
 | |
| 	if (uart_circ_empty(circ))
 | |
| 		return;
 | |
| 
 | |
| 	/* If port is "stopped", don't send any data to the UART */
 | |
| 	if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * If FIFOs are disabled. Send data directly to txrx register
 | |
| 	 */
 | |
| 	if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
 | |
| 		u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
 | |
| 
 | |
| 		ch->ch_cached_lsr |= lsrbits;
 | |
| 		if (ch->ch_cached_lsr & UART_LSR_THRE) {
 | |
| 			ch->ch_cached_lsr &= ~(UART_LSR_THRE);
 | |
| 
 | |
| 			writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx);
 | |
| 			jsm_dbg(WRITE, &ch->ch_bd->pci_dev,
 | |
| 				"Tx data: %x\n", circ->buf[circ->tail]);
 | |
| 			circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1);
 | |
| 			ch->ch_txcount++;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to do it this way, because of the EXAR TXFIFO count bug.
 | |
| 	 */
 | |
| 	if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
 | |
| 		return;
 | |
| 
 | |
| 	n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
 | |
| 
 | |
| 	/* cache head and tail of queue */
 | |
| 	head = circ->head & (UART_XMIT_SIZE - 1);
 | |
| 	tail = circ->tail & (UART_XMIT_SIZE - 1);
 | |
| 	qlen = uart_circ_chars_pending(circ);
 | |
| 
 | |
| 	/* Find minimum of the FIFO space, versus queue length */
 | |
| 	n = min(n, qlen);
 | |
| 
 | |
| 	while (n > 0) {
 | |
| 
 | |
| 		s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail;
 | |
| 		s = min(s, n);
 | |
| 
 | |
| 		if (s <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s);
 | |
| 		/* Add and flip queue if needed */
 | |
| 		tail = (tail + s) & (UART_XMIT_SIZE - 1);
 | |
| 		n -= s;
 | |
| 		ch->ch_txcount += s;
 | |
| 		len_written += s;
 | |
| 	}
 | |
| 
 | |
| 	/* Update the final tail */
 | |
| 	circ->tail = tail & (UART_XMIT_SIZE - 1);
 | |
| 
 | |
| 	if (len_written >= ch->ch_t_tlevel)
 | |
| 		ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| 
 | |
| 	if (uart_circ_empty(circ))
 | |
| 		uart_write_wakeup(&ch->uart_port);
 | |
| }
 | |
| 
 | |
| static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
 | |
| {
 | |
| 	u8 msignals = signals;
 | |
| 
 | |
| 	jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
 | |
| 		"neo_parse_modem: port: %d msignals: %x\n",
 | |
| 		ch->ch_portnum, msignals);
 | |
| 
 | |
| 	/* Scrub off lower bits. They signify delta's, which I don't care about */
 | |
| 	/* Keep DDCD and DDSR though */
 | |
| 	msignals &= 0xf8;
 | |
| 
 | |
| 	if (msignals & UART_MSR_DDCD)
 | |
| 		uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
 | |
| 	if (msignals & UART_MSR_DDSR)
 | |
| 		uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
 | |
| 	if (msignals & UART_MSR_DCD)
 | |
| 		ch->ch_mistat |= UART_MSR_DCD;
 | |
| 	else
 | |
| 		ch->ch_mistat &= ~UART_MSR_DCD;
 | |
| 
 | |
| 	if (msignals & UART_MSR_DSR)
 | |
| 		ch->ch_mistat |= UART_MSR_DSR;
 | |
| 	else
 | |
| 		ch->ch_mistat &= ~UART_MSR_DSR;
 | |
| 
 | |
| 	if (msignals & UART_MSR_RI)
 | |
| 		ch->ch_mistat |= UART_MSR_RI;
 | |
| 	else
 | |
| 		ch->ch_mistat &= ~UART_MSR_RI;
 | |
| 
 | |
| 	if (msignals & UART_MSR_CTS)
 | |
| 		ch->ch_mistat |= UART_MSR_CTS;
 | |
| 	else
 | |
| 		ch->ch_mistat &= ~UART_MSR_CTS;
 | |
| 
 | |
| 	jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
 | |
| 		"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
 | |
| 		ch->ch_portnum,
 | |
| 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
 | |
| 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
 | |
| 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
 | |
| 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
 | |
| 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
 | |
| 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
 | |
| }
 | |
| 
 | |
| /* Make the UART raise any of the output signals we want up */
 | |
| static void neo_assert_modem_signals(struct jsm_channel *ch)
 | |
| {
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
 | |
| 
 | |
| 	/* flush write operation */
 | |
| 	neo_pci_posting_flush(ch->ch_bd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the WRITE FIFO on the Neo.
 | |
|  *
 | |
|  * NOTE: Channel lock MUST be held before calling this function!
 | |
|  */
 | |
| static void neo_flush_uart_write(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 tmp = 0;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 
 | |
| 		/* Check to see if the UART feels it completely flushed the FIFO. */
 | |
| 		tmp = readb(&ch->ch_neo_uart->isr_fcr);
 | |
| 		if (tmp & UART_FCR_CLEAR_XMIT) {
 | |
| 			jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
 | |
| 				"Still flushing TX UART... i: %d\n", i);
 | |
| 			udelay(10);
 | |
| 		}
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Flush the READ FIFO on the Neo.
 | |
|  *
 | |
|  * NOTE: Channel lock MUST be held before calling this function!
 | |
|  */
 | |
| static void neo_flush_uart_read(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 tmp = 0;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 
 | |
| 		/* Check to see if the UART feels it completely flushed the FIFO. */
 | |
| 		tmp = readb(&ch->ch_neo_uart->isr_fcr);
 | |
| 		if (tmp & 2) {
 | |
| 			jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
 | |
| 				"Still flushing RX UART... i: %d\n", i);
 | |
| 			udelay(10);
 | |
| 		}
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No locks are assumed to be held when calling this function.
 | |
|  */
 | |
| static void neo_clear_break(struct jsm_channel *ch)
 | |
| {
 | |
| 	unsigned long lock_flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 
 | |
| 	/* Turn break off, and unset some variables */
 | |
| 	if (ch->ch_flags & CH_BREAK_SENDING) {
 | |
| 		u8 temp = readb(&ch->ch_neo_uart->lcr);
 | |
| 		writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
 | |
| 
 | |
| 		ch->ch_flags &= ~(CH_BREAK_SENDING);
 | |
| 		jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
 | |
| 			"clear break Finishing UART_LCR_SBC! finished: %lx\n",
 | |
| 			jiffies);
 | |
| 
 | |
| 		/* flush write operation */
 | |
| 		neo_pci_posting_flush(ch->ch_bd);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse the ISR register.
 | |
|  */
 | |
| static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
 | |
| {
 | |
| 	struct jsm_channel *ch;
 | |
| 	u8 isr;
 | |
| 	u8 cause;
 | |
| 	unsigned long lock_flags;
 | |
| 
 | |
| 	if (!brd)
 | |
| 		return;
 | |
| 
 | |
| 	if (port >= brd->maxports)
 | |
| 		return;
 | |
| 
 | |
| 	ch = brd->channels[port];
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	/* Here we try to figure out what caused the interrupt to happen */
 | |
| 	while (1) {
 | |
| 
 | |
| 		isr = readb(&ch->ch_neo_uart->isr_fcr);
 | |
| 
 | |
| 		/* Bail if no pending interrupt */
 | |
| 		if (isr & UART_IIR_NO_INT)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
 | |
| 		 */
 | |
| 		isr &= ~(UART_17158_IIR_FIFO_ENABLED);
 | |
| 
 | |
| 		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d isr: %x\n",
 | |
| 			__FILE__, __LINE__, isr);
 | |
| 
 | |
| 		if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
 | |
| 			/* Read data from uart -> queue */
 | |
| 			neo_copy_data_from_uart_to_queue(ch);
 | |
| 
 | |
| 			/* Call our tty layer to enforce queue flow control if needed. */
 | |
| 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 			jsm_check_queue_flow_control(ch);
 | |
| 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| 		}
 | |
| 
 | |
| 		if (isr & UART_IIR_THRI) {
 | |
| 			/* Transfer data (if any) from Write Queue -> UART. */
 | |
| 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| 			neo_copy_data_from_queue_to_uart(ch);
 | |
| 		}
 | |
| 
 | |
| 		if (isr & UART_17158_IIR_XONXOFF) {
 | |
| 			cause = readb(&ch->ch_neo_uart->xoffchar1);
 | |
| 
 | |
| 			jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 				"Port %d. Got ISR_XONXOFF: cause:%x\n",
 | |
| 				port, cause);
 | |
| 
 | |
| 			/*
 | |
| 			 * Since the UART detected either an XON or
 | |
| 			 * XOFF match, we need to figure out which
 | |
| 			 * one it was, so we can suspend or resume data flow.
 | |
| 			 */
 | |
| 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 			if (cause == UART_17158_XON_DETECT) {
 | |
| 				/* Is output stopped right now, if so, resume it */
 | |
| 				if (brd->channels[port]->ch_flags & CH_STOP) {
 | |
| 					ch->ch_flags &= ~(CH_STOP);
 | |
| 				}
 | |
| 				jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 					"Port %d. XON detected in incoming data\n",
 | |
| 					port);
 | |
| 			}
 | |
| 			else if (cause == UART_17158_XOFF_DETECT) {
 | |
| 				if (!(brd->channels[port]->ch_flags & CH_STOP)) {
 | |
| 					ch->ch_flags |= CH_STOP;
 | |
| 					jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 						"Setting CH_STOP\n");
 | |
| 				}
 | |
| 				jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 					"Port: %d. XOFF detected in incoming data\n",
 | |
| 					port);
 | |
| 			}
 | |
| 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| 		}
 | |
| 
 | |
| 		if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
 | |
| 			/*
 | |
| 			 * If we get here, this means the hardware is doing auto flow control.
 | |
| 			 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
 | |
| 			 */
 | |
| 			cause = readb(&ch->ch_neo_uart->mcr);
 | |
| 
 | |
| 			/* Which pin is doing auto flow? RTS or DTR? */
 | |
| 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 			if ((cause & 0x4) == 0) {
 | |
| 				if (cause & UART_MCR_RTS)
 | |
| 					ch->ch_mostat |= UART_MCR_RTS;
 | |
| 				else
 | |
| 					ch->ch_mostat &= ~(UART_MCR_RTS);
 | |
| 			} else {
 | |
| 				if (cause & UART_MCR_DTR)
 | |
| 					ch->ch_mostat |= UART_MCR_DTR;
 | |
| 				else
 | |
| 					ch->ch_mostat &= ~(UART_MCR_DTR);
 | |
| 			}
 | |
| 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| 		}
 | |
| 
 | |
| 		/* Parse any modem signal changes */
 | |
| 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 			"MOD_STAT: sending to parse_modem_sigs\n");
 | |
| 		neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
 | |
| {
 | |
| 	struct jsm_channel *ch;
 | |
| 	int linestatus;
 | |
| 	unsigned long lock_flags;
 | |
| 
 | |
| 	if (!brd)
 | |
| 		return;
 | |
| 
 | |
| 	if (port >= brd->maxports)
 | |
| 		return;
 | |
| 
 | |
| 	ch = brd->channels[port];
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	linestatus = readb(&ch->ch_neo_uart->lsr);
 | |
| 
 | |
| 	jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d port: %d linestatus: %x\n",
 | |
| 		__FILE__, __LINE__, port, linestatus);
 | |
| 
 | |
| 	ch->ch_cached_lsr |= linestatus;
 | |
| 
 | |
| 	if (ch->ch_cached_lsr & UART_LSR_DR) {
 | |
| 		/* Read data from uart -> queue */
 | |
| 		neo_copy_data_from_uart_to_queue(ch);
 | |
| 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 		jsm_check_queue_flow_control(ch);
 | |
| 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a special flag. It indicates that at least 1
 | |
| 	 * RX error (parity, framing, or break) has happened.
 | |
| 	 * Mark this in our struct, which will tell me that I have
 | |
| 	 *to do the special RX+LSR read for this FIFO load.
 | |
| 	 */
 | |
| 	if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
 | |
| 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 			"%s:%d Port: %d Got an RX error, need to parse LSR\n",
 | |
| 			__FILE__, __LINE__, port);
 | |
| 
 | |
| 	/*
 | |
| 	 * The next 3 tests should *NOT* happen, as the above test
 | |
| 	 * should encapsulate all 3... At least, thats what Exar says.
 | |
| 	 */
 | |
| 
 | |
| 	if (linestatus & UART_LSR_PE) {
 | |
| 		ch->ch_err_parity++;
 | |
| 		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. PAR ERR!\n",
 | |
| 			__FILE__, __LINE__, port);
 | |
| 	}
 | |
| 
 | |
| 	if (linestatus & UART_LSR_FE) {
 | |
| 		ch->ch_err_frame++;
 | |
| 		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. FRM ERR!\n",
 | |
| 			__FILE__, __LINE__, port);
 | |
| 	}
 | |
| 
 | |
| 	if (linestatus & UART_LSR_BI) {
 | |
| 		ch->ch_err_break++;
 | |
| 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 			"%s:%d Port: %d. BRK INTR!\n",
 | |
| 			__FILE__, __LINE__, port);
 | |
| 	}
 | |
| 
 | |
| 	if (linestatus & UART_LSR_OE) {
 | |
| 		/*
 | |
| 		 * Rx Oruns. Exar says that an orun will NOT corrupt
 | |
| 		 * the FIFO. It will just replace the holding register
 | |
| 		 * with this new data byte. So basically just ignore this.
 | |
| 		 * Probably we should eventually have an orun stat in our driver...
 | |
| 		 */
 | |
| 		ch->ch_err_overrun++;
 | |
| 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
 | |
| 			"%s:%d Port: %d. Rx Overrun!\n",
 | |
| 			__FILE__, __LINE__, port);
 | |
| 	}
 | |
| 
 | |
| 	if (linestatus & UART_LSR_THRE) {
 | |
| 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| 
 | |
| 		/* Transfer data (if any) from Write Queue -> UART. */
 | |
| 		neo_copy_data_from_queue_to_uart(ch);
 | |
| 	}
 | |
| 	else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
 | |
| 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 | |
| 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 | |
| 
 | |
| 		/* Transfer data (if any) from Write Queue -> UART. */
 | |
| 		neo_copy_data_from_queue_to_uart(ch);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * neo_param()
 | |
|  * Send any/all changes to the line to the UART.
 | |
|  */
 | |
| static void neo_param(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 lcr = 0;
 | |
| 	u8 uart_lcr, ier;
 | |
| 	u32 baud;
 | |
| 	int quot;
 | |
| 	struct jsm_board *bd;
 | |
| 
 | |
| 	bd = ch->ch_bd;
 | |
| 	if (!bd)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If baud rate is zero, flush queues, and set mval to drop DTR.
 | |
| 	 */
 | |
| 	if ((ch->ch_c_cflag & (CBAUD)) == 0) {
 | |
| 		ch->ch_r_head = ch->ch_r_tail = 0;
 | |
| 		ch->ch_e_head = ch->ch_e_tail = 0;
 | |
| 
 | |
| 		neo_flush_uart_write(ch);
 | |
| 		neo_flush_uart_read(ch);
 | |
| 
 | |
| 		ch->ch_flags |= (CH_BAUD0);
 | |
| 		ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
 | |
| 		neo_assert_modem_signals(ch);
 | |
| 		return;
 | |
| 
 | |
| 	} else {
 | |
| 		int i;
 | |
| 		unsigned int cflag;
 | |
| 		static struct {
 | |
| 			unsigned int rate;
 | |
| 			unsigned int cflag;
 | |
| 		} baud_rates[] = {
 | |
| 			{ 921600, B921600 },
 | |
| 			{ 460800, B460800 },
 | |
| 			{ 230400, B230400 },
 | |
| 			{ 115200, B115200 },
 | |
| 			{  57600, B57600  },
 | |
| 			{  38400, B38400  },
 | |
| 			{  19200, B19200  },
 | |
| 			{   9600, B9600   },
 | |
| 			{   4800, B4800   },
 | |
| 			{   2400, B2400   },
 | |
| 			{   1200, B1200   },
 | |
| 			{    600, B600    },
 | |
| 			{    300, B300    },
 | |
| 			{    200, B200    },
 | |
| 			{    150, B150    },
 | |
| 			{    134, B134    },
 | |
| 			{    110, B110    },
 | |
| 			{     75, B75     },
 | |
| 			{     50, B50     },
 | |
| 		};
 | |
| 
 | |
| 		cflag = C_BAUD(ch->uart_port.state->port.tty);
 | |
| 		baud = 9600;
 | |
| 		for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
 | |
| 			if (baud_rates[i].cflag == cflag) {
 | |
| 				baud = baud_rates[i].rate;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ch->ch_flags & CH_BAUD0)
 | |
| 			ch->ch_flags &= ~(CH_BAUD0);
 | |
| 	}
 | |
| 
 | |
| 	if (ch->ch_c_cflag & PARENB)
 | |
| 		lcr |= UART_LCR_PARITY;
 | |
| 
 | |
| 	if (!(ch->ch_c_cflag & PARODD))
 | |
| 		lcr |= UART_LCR_EPAR;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not all platforms support mark/space parity,
 | |
| 	 * so this will hide behind an ifdef.
 | |
| 	 */
 | |
| #ifdef CMSPAR
 | |
| 	if (ch->ch_c_cflag & CMSPAR)
 | |
| 		lcr |= UART_LCR_SPAR;
 | |
| #endif
 | |
| 
 | |
| 	if (ch->ch_c_cflag & CSTOPB)
 | |
| 		lcr |= UART_LCR_STOP;
 | |
| 
 | |
| 	switch (ch->ch_c_cflag & CSIZE) {
 | |
| 	case CS5:
 | |
| 		lcr |= UART_LCR_WLEN5;
 | |
| 		break;
 | |
| 	case CS6:
 | |
| 		lcr |= UART_LCR_WLEN6;
 | |
| 		break;
 | |
| 	case CS7:
 | |
| 		lcr |= UART_LCR_WLEN7;
 | |
| 		break;
 | |
| 	case CS8:
 | |
| 	default:
 | |
| 		lcr |= UART_LCR_WLEN8;
 | |
| 	break;
 | |
| 	}
 | |
| 
 | |
| 	ier = readb(&ch->ch_neo_uart->ier);
 | |
| 	uart_lcr = readb(&ch->ch_neo_uart->lcr);
 | |
| 
 | |
| 	quot = ch->ch_bd->bd_dividend / baud;
 | |
| 
 | |
| 	if (quot != 0) {
 | |
| 		writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
 | |
| 		writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
 | |
| 		writeb((quot >> 8), &ch->ch_neo_uart->ier);
 | |
| 		writeb(lcr, &ch->ch_neo_uart->lcr);
 | |
| 	}
 | |
| 
 | |
| 	if (uart_lcr != lcr)
 | |
| 		writeb(lcr, &ch->ch_neo_uart->lcr);
 | |
| 
 | |
| 	if (ch->ch_c_cflag & CREAD)
 | |
| 		ier |= (UART_IER_RDI | UART_IER_RLSI);
 | |
| 
 | |
| 	ier |= (UART_IER_THRI | UART_IER_MSI);
 | |
| 
 | |
| 	writeb(ier, &ch->ch_neo_uart->ier);
 | |
| 
 | |
| 	/* Set new start/stop chars */
 | |
| 	neo_set_new_start_stop_chars(ch);
 | |
| 
 | |
| 	if (ch->ch_c_cflag & CRTSCTS)
 | |
| 		neo_set_cts_flow_control(ch);
 | |
| 	else if (ch->ch_c_iflag & IXON) {
 | |
| 		/* If start/stop is set to disable, then we should disable flow control */
 | |
| 		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
 | |
| 			neo_set_no_output_flow_control(ch);
 | |
| 		else
 | |
| 			neo_set_ixon_flow_control(ch);
 | |
| 	}
 | |
| 	else
 | |
| 		neo_set_no_output_flow_control(ch);
 | |
| 
 | |
| 	if (ch->ch_c_cflag & CRTSCTS)
 | |
| 		neo_set_rts_flow_control(ch);
 | |
| 	else if (ch->ch_c_iflag & IXOFF) {
 | |
| 		/* If start/stop is set to disable, then we should disable flow control */
 | |
| 		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
 | |
| 			neo_set_no_input_flow_control(ch);
 | |
| 		else
 | |
| 			neo_set_ixoff_flow_control(ch);
 | |
| 	}
 | |
| 	else
 | |
| 		neo_set_no_input_flow_control(ch);
 | |
| 	/*
 | |
| 	 * Adjust the RX FIFO Trigger level if baud is less than 9600.
 | |
| 	 * Not exactly elegant, but this is needed because of the Exar chip's
 | |
| 	 * delay on firing off the RX FIFO interrupt on slower baud rates.
 | |
| 	 */
 | |
| 	if (baud < 9600) {
 | |
| 		writeb(1, &ch->ch_neo_uart->rfifo);
 | |
| 		ch->ch_r_tlevel = 1;
 | |
| 	}
 | |
| 
 | |
| 	neo_assert_modem_signals(ch);
 | |
| 
 | |
| 	/* Get current status of the modem signals now */
 | |
| 	neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * jsm_neo_intr()
 | |
|  *
 | |
|  * Neo specific interrupt handler.
 | |
|  */
 | |
| static irqreturn_t neo_intr(int irq, void *voidbrd)
 | |
| {
 | |
| 	struct jsm_board *brd = voidbrd;
 | |
| 	struct jsm_channel *ch;
 | |
| 	int port = 0;
 | |
| 	int type = 0;
 | |
| 	int current_port;
 | |
| 	u32 tmp;
 | |
| 	u32 uart_poll;
 | |
| 	unsigned long lock_flags;
 | |
| 	unsigned long lock_flags2;
 | |
| 	int outofloop_count = 0;
 | |
| 
 | |
| 	/* Lock out the slow poller from running on this board. */
 | |
| 	spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read in "extended" IRQ information from the 32bit Neo register.
 | |
| 	 * Bits 0-7: What port triggered the interrupt.
 | |
| 	 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
 | |
| 	 */
 | |
| 	uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
 | |
| 
 | |
| 	jsm_dbg(INTR, &brd->pci_dev, "%s:%d uart_poll: %x\n",
 | |
| 		__FILE__, __LINE__, uart_poll);
 | |
| 
 | |
| 	if (!uart_poll) {
 | |
| 		jsm_dbg(INTR, &brd->pci_dev,
 | |
| 			"Kernel interrupted to me, but no pending interrupts...\n");
 | |
| 		spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* At this point, we have at least SOMETHING to service, dig further... */
 | |
| 
 | |
| 	current_port = 0;
 | |
| 
 | |
| 	/* Loop on each port */
 | |
| 	while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
 | |
| 
 | |
| 		tmp = uart_poll;
 | |
| 		outofloop_count++;
 | |
| 
 | |
| 		/* Check current port to see if it has interrupt pending */
 | |
| 		if ((tmp & jsm_offset_table[current_port]) != 0) {
 | |
| 			port = current_port;
 | |
| 			type = tmp >> (8 + (port * 3));
 | |
| 			type &= 0x7;
 | |
| 		} else {
 | |
| 			current_port++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		jsm_dbg(INTR, &brd->pci_dev, "%s:%d port: %x type: %x\n",
 | |
| 			__FILE__, __LINE__, port, type);
 | |
| 
 | |
| 		/* Remove this port + type from uart_poll */
 | |
| 		uart_poll &= ~(jsm_offset_table[port]);
 | |
| 
 | |
| 		if (!type) {
 | |
| 			/* If no type, just ignore it, and move onto next port */
 | |
| 			jsm_dbg(INTR, &brd->pci_dev,
 | |
| 				"Interrupt with no type! port: %d\n", port);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Switch on type of interrupt we have */
 | |
| 		switch (type) {
 | |
| 
 | |
| 		case UART_17158_RXRDY_TIMEOUT:
 | |
| 			/*
 | |
| 			 * RXRDY Time-out is cleared by reading data in the
 | |
| 			* RX FIFO until it falls below the trigger level.
 | |
| 			 */
 | |
| 
 | |
| 			/* Verify the port is in range. */
 | |
| 			if (port >= brd->nasync)
 | |
| 				continue;
 | |
| 
 | |
| 			ch = brd->channels[port];
 | |
| 			neo_copy_data_from_uart_to_queue(ch);
 | |
| 
 | |
| 			/* Call our tty layer to enforce queue flow control if needed. */
 | |
| 			spin_lock_irqsave(&ch->ch_lock, lock_flags2);
 | |
| 			jsm_check_queue_flow_control(ch);
 | |
| 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
 | |
| 
 | |
| 			continue;
 | |
| 
 | |
| 		case UART_17158_RX_LINE_STATUS:
 | |
| 			/*
 | |
| 			 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
 | |
| 			 */
 | |
| 			neo_parse_lsr(brd, port);
 | |
| 			continue;
 | |
| 
 | |
| 		case UART_17158_TXRDY:
 | |
| 			/*
 | |
| 			 * TXRDY interrupt clears after reading ISR register for the UART channel.
 | |
| 			 */
 | |
| 
 | |
| 			/*
 | |
| 			 * Yes, this is odd...
 | |
| 			 * Why would I check EVERY possibility of type of
 | |
| 			 * interrupt, when we know its TXRDY???
 | |
| 			 * Becuz for some reason, even tho we got triggered for TXRDY,
 | |
| 			 * it seems to be occasionally wrong. Instead of TX, which
 | |
| 			 * it should be, I was getting things like RXDY too. Weird.
 | |
| 			 */
 | |
| 			neo_parse_isr(brd, port);
 | |
| 			continue;
 | |
| 
 | |
| 		case UART_17158_MSR:
 | |
| 			/*
 | |
| 			 * MSR or flow control was seen.
 | |
| 			 */
 | |
| 			neo_parse_isr(brd, port);
 | |
| 			continue;
 | |
| 
 | |
| 		default:
 | |
| 			/*
 | |
| 			 * The UART triggered us with a bogus interrupt type.
 | |
| 			 * It appears the Exar chip, when REALLY bogged down, will throw
 | |
| 			 * these once and awhile.
 | |
| 			 * Its harmless, just ignore it and move on.
 | |
| 			 */
 | |
| 			jsm_dbg(INTR, &brd->pci_dev,
 | |
| 				"%s:%d Unknown Interrupt type: %x\n",
 | |
| 				__FILE__, __LINE__, type);
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
 | |
| 
 | |
| 	jsm_dbg(INTR, &brd->pci_dev, "finish\n");
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Neo specific way of turning off the receiver.
 | |
|  * Used as a way to enforce queue flow control when in
 | |
|  * hardware flow control mode.
 | |
|  */
 | |
| static void neo_disable_receiver(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 tmp = readb(&ch->ch_neo_uart->ier);
 | |
| 	tmp &= ~(UART_IER_RDI);
 | |
| 	writeb(tmp, &ch->ch_neo_uart->ier);
 | |
| 
 | |
| 	/* flush write operation */
 | |
| 	neo_pci_posting_flush(ch->ch_bd);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Neo specific way of turning on the receiver.
 | |
|  * Used as a way to un-enforce queue flow control when in
 | |
|  * hardware flow control mode.
 | |
|  */
 | |
| static void neo_enable_receiver(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 tmp = readb(&ch->ch_neo_uart->ier);
 | |
| 	tmp |= (UART_IER_RDI);
 | |
| 	writeb(tmp, &ch->ch_neo_uart->ier);
 | |
| 
 | |
| 	/* flush write operation */
 | |
| 	neo_pci_posting_flush(ch->ch_bd);
 | |
| }
 | |
| 
 | |
| static void neo_send_start_character(struct jsm_channel *ch)
 | |
| {
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	if (ch->ch_startc != __DISABLED_CHAR) {
 | |
| 		ch->ch_xon_sends++;
 | |
| 		writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
 | |
| 
 | |
| 		/* flush write operation */
 | |
| 		neo_pci_posting_flush(ch->ch_bd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void neo_send_stop_character(struct jsm_channel *ch)
 | |
| {
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	if (ch->ch_stopc != __DISABLED_CHAR) {
 | |
| 		ch->ch_xoff_sends++;
 | |
| 		writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
 | |
| 
 | |
| 		/* flush write operation */
 | |
| 		neo_pci_posting_flush(ch->ch_bd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * neo_uart_init
 | |
|  */
 | |
| static void neo_uart_init(struct jsm_channel *ch)
 | |
| {
 | |
| 	writeb(0, &ch->ch_neo_uart->ier);
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 	writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Clear out UART and FIFO */
 | |
| 	readb(&ch->ch_neo_uart->txrx);
 | |
| 	writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
 | |
| 	readb(&ch->ch_neo_uart->lsr);
 | |
| 	readb(&ch->ch_neo_uart->msr);
 | |
| 
 | |
| 	ch->ch_flags |= CH_FIFO_ENABLED;
 | |
| 
 | |
| 	/* Assert any signals we want up */
 | |
| 	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make the UART completely turn off.
 | |
|  */
 | |
| static void neo_uart_off(struct jsm_channel *ch)
 | |
| {
 | |
| 	/* Turn off UART enhanced bits */
 | |
| 	writeb(0, &ch->ch_neo_uart->efr);
 | |
| 
 | |
| 	/* Stop all interrupts from occurring. */
 | |
| 	writeb(0, &ch->ch_neo_uart->ier);
 | |
| }
 | |
| 
 | |
| static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
 | |
| {
 | |
| 	u8 left = 0;
 | |
| 	u8 lsr = readb(&ch->ch_neo_uart->lsr);
 | |
| 
 | |
| 	/* We must cache the LSR as some of the bits get reset once read... */
 | |
| 	ch->ch_cached_lsr |= lsr;
 | |
| 
 | |
| 	/* Determine whether the Transmitter is empty or not */
 | |
| 	if (!(lsr & UART_LSR_TEMT))
 | |
| 		left = 1;
 | |
| 	else {
 | |
| 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 | |
| 		left = 0;
 | |
| 	}
 | |
| 
 | |
| 	return left;
 | |
| }
 | |
| 
 | |
| /* Channel lock MUST be held by the calling function! */
 | |
| static void neo_send_break(struct jsm_channel *ch)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set the time we should stop sending the break.
 | |
| 	 * If we are already sending a break, toss away the existing
 | |
| 	 * time to stop, and use this new value instead.
 | |
| 	 */
 | |
| 
 | |
| 	/* Tell the UART to start sending the break */
 | |
| 	if (!(ch->ch_flags & CH_BREAK_SENDING)) {
 | |
| 		u8 temp = readb(&ch->ch_neo_uart->lcr);
 | |
| 		writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
 | |
| 		ch->ch_flags |= (CH_BREAK_SENDING);
 | |
| 
 | |
| 		/* flush write operation */
 | |
| 		neo_pci_posting_flush(ch->ch_bd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * neo_send_immediate_char.
 | |
|  *
 | |
|  * Sends a specific character as soon as possible to the UART,
 | |
|  * jumping over any bytes that might be in the write queue.
 | |
|  *
 | |
|  * The channel lock MUST be held by the calling function.
 | |
|  */
 | |
| static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
 | |
| {
 | |
| 	if (!ch)
 | |
| 		return;
 | |
| 
 | |
| 	writeb(c, &ch->ch_neo_uart->txrx);
 | |
| 
 | |
| 	/* flush write operation */
 | |
| 	neo_pci_posting_flush(ch->ch_bd);
 | |
| }
 | |
| 
 | |
| struct board_ops jsm_neo_ops = {
 | |
| 	.intr				= neo_intr,
 | |
| 	.uart_init			= neo_uart_init,
 | |
| 	.uart_off			= neo_uart_off,
 | |
| 	.param				= neo_param,
 | |
| 	.assert_modem_signals		= neo_assert_modem_signals,
 | |
| 	.flush_uart_write		= neo_flush_uart_write,
 | |
| 	.flush_uart_read		= neo_flush_uart_read,
 | |
| 	.disable_receiver		= neo_disable_receiver,
 | |
| 	.enable_receiver		= neo_enable_receiver,
 | |
| 	.send_break			= neo_send_break,
 | |
| 	.clear_break			= neo_clear_break,
 | |
| 	.send_start_character		= neo_send_start_character,
 | |
| 	.send_stop_character		= neo_send_stop_character,
 | |
| 	.copy_data_from_queue_to_uart	= neo_copy_data_from_queue_to_uart,
 | |
| 	.get_uart_bytes_left		= neo_get_uart_bytes_left,
 | |
| 	.send_immediate_char		= neo_send_immediate_char
 | |
| };
 |