mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 564ee7a566
			
		
	
	
		564ee7a566
		
	
	
	
	
		
			
			This file is the same in both architectures so create arch/powerpc/kernel and move it there. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
		
			
				
	
	
		
			346 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Routines to emulate some Altivec/VMX instructions, specifically
 | |
|  * those that can trap when given denormalized operands in Java mode.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| /* Functions in vector.S */
 | |
| extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 | |
| extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 | |
| extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 | |
| extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 | |
| extern void vrefp(vector128 *dst, vector128 *src);
 | |
| extern void vrsqrtefp(vector128 *dst, vector128 *src);
 | |
| extern void vexptep(vector128 *dst, vector128 *src);
 | |
| 
 | |
| static unsigned int exp2s[8] = {
 | |
| 	0x800000,
 | |
| 	0x8b95c2,
 | |
| 	0x9837f0,
 | |
| 	0xa5fed7,
 | |
| 	0xb504f3,
 | |
| 	0xc5672a,
 | |
| 	0xd744fd,
 | |
| 	0xeac0c7
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 | |
|  * single-precision floating-point representation of x.
 | |
|  */
 | |
| static unsigned int eexp2(unsigned int s)
 | |
| {
 | |
| 	int exp, pwr;
 | |
| 	unsigned int mant, frac;
 | |
| 
 | |
| 	/* extract exponent field from input */
 | |
| 	exp = ((s >> 23) & 0xff) - 127;
 | |
| 	if (exp > 7) {
 | |
| 		/* check for NaN input */
 | |
| 		if (exp == 128 && (s & 0x7fffff) != 0)
 | |
| 			return s | 0x400000;	/* return QNaN */
 | |
| 		/* 2^-big = 0, 2^+big = +Inf */
 | |
| 		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 | |
| 	}
 | |
| 	if (exp < -23)
 | |
| 		return 0x3f800000;	/* 1.0 */
 | |
| 
 | |
| 	/* convert to fixed point integer in 9.23 representation */
 | |
| 	pwr = (s & 0x7fffff) | 0x800000;
 | |
| 	if (exp > 0)
 | |
| 		pwr <<= exp;
 | |
| 	else
 | |
| 		pwr >>= -exp;
 | |
| 	if (s & 0x80000000)
 | |
| 		pwr = -pwr;
 | |
| 
 | |
| 	/* extract integer part, which becomes exponent part of result */
 | |
| 	exp = (pwr >> 23) + 126;
 | |
| 	if (exp >= 254)
 | |
| 		return 0x7f800000;
 | |
| 	if (exp < -23)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* table lookup on top 3 bits of fraction to get mantissa */
 | |
| 	mant = exp2s[(pwr >> 20) & 7];
 | |
| 
 | |
| 	/* linear interpolation using remaining 20 bits of fraction */
 | |
| 	asm("mulhwu %0,%1,%2" : "=r" (frac)
 | |
| 	    : "r" (pwr << 12), "r" (0x172b83ff));
 | |
| 	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 | |
| 	mant += frac;
 | |
| 
 | |
| 	if (exp >= 0)
 | |
| 		return mant + (exp << 23);
 | |
| 
 | |
| 	/* denormalized result */
 | |
| 	exp = -exp;
 | |
| 	mant += 1 << (exp - 1);
 | |
| 	return mant >> exp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 | |
|  * single-precision floating-point representation of x.
 | |
|  */
 | |
| static unsigned int elog2(unsigned int s)
 | |
| {
 | |
| 	int exp, mant, lz, frac;
 | |
| 
 | |
| 	exp = s & 0x7f800000;
 | |
| 	mant = s & 0x7fffff;
 | |
| 	if (exp == 0x7f800000) {	/* Inf or NaN */
 | |
| 		if (mant != 0)
 | |
| 			s |= 0x400000;	/* turn NaN into QNaN */
 | |
| 		return s;
 | |
| 	}
 | |
| 	if ((exp | mant) == 0)		/* +0 or -0 */
 | |
| 		return 0xff800000;	/* return -Inf */
 | |
| 
 | |
| 	if (exp == 0) {
 | |
| 		/* denormalized */
 | |
| 		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
 | |
| 		mant <<= lz - 8;
 | |
| 		exp = (-118 - lz) << 23;
 | |
| 	} else {
 | |
| 		mant |= 0x800000;
 | |
| 		exp -= 127 << 23;
 | |
| 	}
 | |
| 
 | |
| 	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
 | |
| 		exp |= 0x400000;			/* 0.5 * 2^23 */
 | |
| 		asm("mulhwu %0,%1,%2" : "=r" (mant)
 | |
| 		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
 | |
| 	}
 | |
| 	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
 | |
| 		exp |= 0x200000;			/* 0.25 * 2^23 */
 | |
| 		asm("mulhwu %0,%1,%2" : "=r" (mant)
 | |
| 		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
 | |
| 	}
 | |
| 	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
 | |
| 		exp |= 0x100000;			/* 0.125 * 2^23 */
 | |
| 		asm("mulhwu %0,%1,%2" : "=r" (mant)
 | |
| 		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
 | |
| 	}
 | |
| 	if (mant > 0x800000) {				/* 1.0 * 2^23 */
 | |
| 		/* calculate (mant - 1) * 1.381097463 */
 | |
| 		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
 | |
| 		asm("mulhwu %0,%1,%2" : "=r" (frac)
 | |
| 		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
 | |
| 		exp += frac;
 | |
| 	}
 | |
| 	s = exp & 0x80000000;
 | |
| 	if (exp != 0) {
 | |
| 		if (s)
 | |
| 			exp = -exp;
 | |
| 		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
 | |
| 		lz = 8 - lz;
 | |
| 		if (lz > 0)
 | |
| 			exp >>= lz;
 | |
| 		else if (lz < 0)
 | |
| 			exp <<= -lz;
 | |
| 		s += ((lz + 126) << 23) + exp;
 | |
| 	}
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| #define VSCR_SAT	1
 | |
| 
 | |
| static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
 | |
| {
 | |
| 	int exp, mant;
 | |
| 
 | |
| 	exp = (x >> 23) & 0xff;
 | |
| 	mant = x & 0x7fffff;
 | |
| 	if (exp == 255 && mant != 0)
 | |
| 		return 0;		/* NaN -> 0 */
 | |
| 	exp = exp - 127 + scale;
 | |
| 	if (exp < 0)
 | |
| 		return 0;		/* round towards zero */
 | |
| 	if (exp >= 31) {
 | |
| 		/* saturate, unless the result would be -2^31 */
 | |
| 		if (x + (scale << 23) != 0xcf000000)
 | |
| 			*vscrp |= VSCR_SAT;
 | |
| 		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
 | |
| 	}
 | |
| 	mant |= 0x800000;
 | |
| 	mant = (mant << 7) >> (30 - exp);
 | |
| 	return (x & 0x80000000)? -mant: mant;
 | |
| }
 | |
| 
 | |
| static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
 | |
| {
 | |
| 	int exp;
 | |
| 	unsigned int mant;
 | |
| 
 | |
| 	exp = (x >> 23) & 0xff;
 | |
| 	mant = x & 0x7fffff;
 | |
| 	if (exp == 255 && mant != 0)
 | |
| 		return 0;		/* NaN -> 0 */
 | |
| 	exp = exp - 127 + scale;
 | |
| 	if (exp < 0)
 | |
| 		return 0;		/* round towards zero */
 | |
| 	if (x & 0x80000000) {
 | |
| 		/* negative => saturate to 0 */
 | |
| 		*vscrp |= VSCR_SAT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (exp >= 32) {
 | |
| 		/* saturate */
 | |
| 		*vscrp |= VSCR_SAT;
 | |
| 		return 0xffffffff;
 | |
| 	}
 | |
| 	mant |= 0x800000;
 | |
| 	mant = (mant << 8) >> (31 - exp);
 | |
| 	return mant;
 | |
| }
 | |
| 
 | |
| /* Round to floating integer, towards 0 */
 | |
| static unsigned int rfiz(unsigned int x)
 | |
| {
 | |
| 	int exp;
 | |
| 
 | |
| 	exp = ((x >> 23) & 0xff) - 127;
 | |
| 	if (exp == 128 && (x & 0x7fffff) != 0)
 | |
| 		return x | 0x400000;	/* NaN -> make it a QNaN */
 | |
| 	if (exp >= 23)
 | |
| 		return x;		/* it's an integer already (or Inf) */
 | |
| 	if (exp < 0)
 | |
| 		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
 | |
| 	return x & ~(0x7fffff >> exp);
 | |
| }
 | |
| 
 | |
| /* Round to floating integer, towards +/- Inf */
 | |
| static unsigned int rfii(unsigned int x)
 | |
| {
 | |
| 	int exp, mask;
 | |
| 
 | |
| 	exp = ((x >> 23) & 0xff) - 127;
 | |
| 	if (exp == 128 && (x & 0x7fffff) != 0)
 | |
| 		return x | 0x400000;	/* NaN -> make it a QNaN */
 | |
| 	if (exp >= 23)
 | |
| 		return x;		/* it's an integer already (or Inf) */
 | |
| 	if ((x & 0x7fffffff) == 0)
 | |
| 		return x;		/* +/-0 -> +/-0 */
 | |
| 	if (exp < 0)
 | |
| 		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
 | |
| 		return (x & 0x80000000) | 0x3f800000;
 | |
| 	mask = 0x7fffff >> exp;
 | |
| 	/* mantissa overflows into exponent - that's OK,
 | |
| 	   it can't overflow into the sign bit */
 | |
| 	return (x + mask) & ~mask;
 | |
| }
 | |
| 
 | |
| /* Round to floating integer, to nearest */
 | |
| static unsigned int rfin(unsigned int x)
 | |
| {
 | |
| 	int exp, half;
 | |
| 
 | |
| 	exp = ((x >> 23) & 0xff) - 127;
 | |
| 	if (exp == 128 && (x & 0x7fffff) != 0)
 | |
| 		return x | 0x400000;	/* NaN -> make it a QNaN */
 | |
| 	if (exp >= 23)
 | |
| 		return x;		/* it's an integer already (or Inf) */
 | |
| 	if (exp < -1)
 | |
| 		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
 | |
| 	if (exp == -1)
 | |
| 		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
 | |
| 		return (x & 0x80000000) | 0x3f800000;
 | |
| 	half = 0x400000 >> exp;
 | |
| 	/* add 0.5 to the magnitude and chop off the fraction bits */
 | |
| 	return (x + half) & ~(0x7fffff >> exp);
 | |
| }
 | |
| 
 | |
| int emulate_altivec(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int instr, i;
 | |
| 	unsigned int va, vb, vc, vd;
 | |
| 	vector128 *vrs;
 | |
| 
 | |
| 	if (get_user(instr, (unsigned int __user *) regs->nip))
 | |
| 		return -EFAULT;
 | |
| 	if ((instr >> 26) != 4)
 | |
| 		return -EINVAL;		/* not an altivec instruction */
 | |
| 	vd = (instr >> 21) & 0x1f;
 | |
| 	va = (instr >> 16) & 0x1f;
 | |
| 	vb = (instr >> 11) & 0x1f;
 | |
| 	vc = (instr >> 6) & 0x1f;
 | |
| 
 | |
| 	vrs = current->thread.vr;
 | |
| 	switch (instr & 0x3f) {
 | |
| 	case 10:
 | |
| 		switch (vc) {
 | |
| 		case 0:	/* vaddfp */
 | |
| 			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
 | |
| 			break;
 | |
| 		case 1:	/* vsubfp */
 | |
| 			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
 | |
| 			break;
 | |
| 		case 4:	/* vrefp */
 | |
| 			vrefp(&vrs[vd], &vrs[vb]);
 | |
| 			break;
 | |
| 		case 5:	/* vrsqrtefp */
 | |
| 			vrsqrtefp(&vrs[vd], &vrs[vb]);
 | |
| 			break;
 | |
| 		case 6:	/* vexptefp */
 | |
| 			for (i = 0; i < 4; ++i)
 | |
| 				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
 | |
| 			break;
 | |
| 		case 7:	/* vlogefp */
 | |
| 			for (i = 0; i < 4; ++i)
 | |
| 				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
 | |
| 			break;
 | |
| 		case 8:		/* vrfin */
 | |
| 			for (i = 0; i < 4; ++i)
 | |
| 				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
 | |
| 			break;
 | |
| 		case 9:		/* vrfiz */
 | |
| 			for (i = 0; i < 4; ++i)
 | |
| 				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
 | |
| 			break;
 | |
| 		case 10:	/* vrfip */
 | |
| 			for (i = 0; i < 4; ++i) {
 | |
| 				u32 x = vrs[vb].u[i];
 | |
| 				x = (x & 0x80000000)? rfiz(x): rfii(x);
 | |
| 				vrs[vd].u[i] = x;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 11:	/* vrfim */
 | |
| 			for (i = 0; i < 4; ++i) {
 | |
| 				u32 x = vrs[vb].u[i];
 | |
| 				x = (x & 0x80000000)? rfii(x): rfiz(x);
 | |
| 				vrs[vd].u[i] = x;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 14:	/* vctuxs */
 | |
| 			for (i = 0; i < 4; ++i)
 | |
| 				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
 | |
| 						¤t->thread.vscr.u[3]);
 | |
| 			break;
 | |
| 		case 15:	/* vctsxs */
 | |
| 			for (i = 0; i < 4; ++i)
 | |
| 				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
 | |
| 						¤t->thread.vscr.u[3]);
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 46:	/* vmaddfp */
 | |
| 		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
 | |
| 		break;
 | |
| 	case 47:	/* vnmsubfp */
 | |
| 		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |