mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 d0637c505f
			
		
	
	
		d0637c505f
		
	
	
	
	
		
			
			THP_SWAP has been proven to improve the swap throughput significantly
on x86_64 according to commit bd4c82c22c ("mm, THP, swap: delay
splitting THP after swapped out").
As long as arm64 uses 4K page size, it is quite similar with x86_64
by having 2MB PMD THP. THP_SWAP is architecture-independent, thus,
enabling it on arm64 will benefit arm64 as well.
A corner case is that MTE has an assumption that only base pages
can be swapped. We won't enable THP_SWAP for ARM64 hardware with
MTE support until MTE is reworked to coexist with THP_SWAP.
A micro-benchmark is written to measure thp swapout throughput as
below,
 unsigned long long tv_to_ms(struct timeval tv)
 {
 	return tv.tv_sec * 1000 + tv.tv_usec / 1000;
 }
 main()
 {
 	struct timeval tv_b, tv_e;;
 #define SIZE 400*1024*1024
 	volatile void *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
 				MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 	if (!p) {
 		perror("fail to get memory");
 		exit(-1);
 	}
 	madvise(p, SIZE, MADV_HUGEPAGE);
 	memset(p, 0x11, SIZE); /* write to get mem */
 	gettimeofday(&tv_b, NULL);
 	madvise(p, SIZE, MADV_PAGEOUT);
 	gettimeofday(&tv_e, NULL);
 	printf("swp out bandwidth: %ld bytes/ms\n",
 			SIZE/(tv_to_ms(tv_e) - tv_to_ms(tv_b)));
 }
Testing is done on rk3568 64bit Quad Core Cortex-A55 platform -
ROCK 3A.
thp swp throughput w/o patch: 2734bytes/ms (mean of 10 tests)
thp swp throughput w/  patch: 3331bytes/ms (mean of 10 tests)
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Steven Price <steven.price@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Link: https://lore.kernel.org/r/20220720093737.133375-1-21cnbao@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
		
	
			
		
			
				
	
	
		
			351 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Manage cache of swap slots to be used for and returned from
 | |
|  * swap.
 | |
|  *
 | |
|  * Copyright(c) 2016 Intel Corporation.
 | |
|  *
 | |
|  * Author: Tim Chen <tim.c.chen@linux.intel.com>
 | |
|  *
 | |
|  * We allocate the swap slots from the global pool and put
 | |
|  * it into local per cpu caches.  This has the advantage
 | |
|  * of no needing to acquire the swap_info lock every time
 | |
|  * we need a new slot.
 | |
|  *
 | |
|  * There is also opportunity to simply return the slot
 | |
|  * to local caches without needing to acquire swap_info
 | |
|  * lock.  We do not reuse the returned slots directly but
 | |
|  * move them back to the global pool in a batch.  This
 | |
|  * allows the slots to coalesce and reduce fragmentation.
 | |
|  *
 | |
|  * The swap entry allocated is marked with SWAP_HAS_CACHE
 | |
|  * flag in map_count that prevents it from being allocated
 | |
|  * again from the global pool.
 | |
|  *
 | |
|  * The swap slots cache is protected by a mutex instead of
 | |
|  * a spin lock as when we search for slots with scan_swap_map,
 | |
|  * we can possibly sleep.
 | |
|  */
 | |
| 
 | |
| #include <linux/swap_slots.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/mm.h>
 | |
| 
 | |
| static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
 | |
| static bool	swap_slot_cache_active;
 | |
| bool	swap_slot_cache_enabled;
 | |
| static bool	swap_slot_cache_initialized;
 | |
| static DEFINE_MUTEX(swap_slots_cache_mutex);
 | |
| /* Serialize swap slots cache enable/disable operations */
 | |
| static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
 | |
| 
 | |
| static void __drain_swap_slots_cache(unsigned int type);
 | |
| 
 | |
| #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
 | |
| #define SLOTS_CACHE 0x1
 | |
| #define SLOTS_CACHE_RET 0x2
 | |
| 
 | |
| static void deactivate_swap_slots_cache(void)
 | |
| {
 | |
| 	mutex_lock(&swap_slots_cache_mutex);
 | |
| 	swap_slot_cache_active = false;
 | |
| 	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 | |
| 	mutex_unlock(&swap_slots_cache_mutex);
 | |
| }
 | |
| 
 | |
| static void reactivate_swap_slots_cache(void)
 | |
| {
 | |
| 	mutex_lock(&swap_slots_cache_mutex);
 | |
| 	swap_slot_cache_active = true;
 | |
| 	mutex_unlock(&swap_slots_cache_mutex);
 | |
| }
 | |
| 
 | |
| /* Must not be called with cpu hot plug lock */
 | |
| void disable_swap_slots_cache_lock(void)
 | |
| {
 | |
| 	mutex_lock(&swap_slots_cache_enable_mutex);
 | |
| 	swap_slot_cache_enabled = false;
 | |
| 	if (swap_slot_cache_initialized) {
 | |
| 		/* serialize with cpu hotplug operations */
 | |
| 		cpus_read_lock();
 | |
| 		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 | |
| 		cpus_read_unlock();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __reenable_swap_slots_cache(void)
 | |
| {
 | |
| 	swap_slot_cache_enabled = has_usable_swap();
 | |
| }
 | |
| 
 | |
| void reenable_swap_slots_cache_unlock(void)
 | |
| {
 | |
| 	__reenable_swap_slots_cache();
 | |
| 	mutex_unlock(&swap_slots_cache_enable_mutex);
 | |
| }
 | |
| 
 | |
| static bool check_cache_active(void)
 | |
| {
 | |
| 	long pages;
 | |
| 
 | |
| 	if (!swap_slot_cache_enabled)
 | |
| 		return false;
 | |
| 
 | |
| 	pages = get_nr_swap_pages();
 | |
| 	if (!swap_slot_cache_active) {
 | |
| 		if (pages > num_online_cpus() *
 | |
| 		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
 | |
| 			reactivate_swap_slots_cache();
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* if global pool of slot caches too low, deactivate cache */
 | |
| 	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
 | |
| 		deactivate_swap_slots_cache();
 | |
| out:
 | |
| 	return swap_slot_cache_active;
 | |
| }
 | |
| 
 | |
| static int alloc_swap_slot_cache(unsigned int cpu)
 | |
| {
 | |
| 	struct swap_slots_cache *cache;
 | |
| 	swp_entry_t *slots, *slots_ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do allocation outside swap_slots_cache_mutex
 | |
| 	 * as kvzalloc could trigger reclaim and folio_alloc_swap,
 | |
| 	 * which can lock swap_slots_cache_mutex.
 | |
| 	 */
 | |
| 	slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
 | |
| 			 GFP_KERNEL);
 | |
| 	if (!slots)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!slots_ret) {
 | |
| 		kvfree(slots);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&swap_slots_cache_mutex);
 | |
| 	cache = &per_cpu(swp_slots, cpu);
 | |
| 	if (cache->slots || cache->slots_ret) {
 | |
| 		/* cache already allocated */
 | |
| 		mutex_unlock(&swap_slots_cache_mutex);
 | |
| 
 | |
| 		kvfree(slots);
 | |
| 		kvfree(slots_ret);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!cache->lock_initialized) {
 | |
| 		mutex_init(&cache->alloc_lock);
 | |
| 		spin_lock_init(&cache->free_lock);
 | |
| 		cache->lock_initialized = true;
 | |
| 	}
 | |
| 	cache->nr = 0;
 | |
| 	cache->cur = 0;
 | |
| 	cache->n_ret = 0;
 | |
| 	/*
 | |
| 	 * We initialized alloc_lock and free_lock earlier.  We use
 | |
| 	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
 | |
| 	 * the corresponding lock and use the cache.  Memory barrier below
 | |
| 	 * ensures the assumption.
 | |
| 	 */
 | |
| 	mb();
 | |
| 	cache->slots = slots;
 | |
| 	cache->slots_ret = slots_ret;
 | |
| 	mutex_unlock(&swap_slots_cache_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
 | |
| 				  bool free_slots)
 | |
| {
 | |
| 	struct swap_slots_cache *cache;
 | |
| 	swp_entry_t *slots = NULL;
 | |
| 
 | |
| 	cache = &per_cpu(swp_slots, cpu);
 | |
| 	if ((type & SLOTS_CACHE) && cache->slots) {
 | |
| 		mutex_lock(&cache->alloc_lock);
 | |
| 		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
 | |
| 		cache->cur = 0;
 | |
| 		cache->nr = 0;
 | |
| 		if (free_slots && cache->slots) {
 | |
| 			kvfree(cache->slots);
 | |
| 			cache->slots = NULL;
 | |
| 		}
 | |
| 		mutex_unlock(&cache->alloc_lock);
 | |
| 	}
 | |
| 	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
 | |
| 		spin_lock_irq(&cache->free_lock);
 | |
| 		swapcache_free_entries(cache->slots_ret, cache->n_ret);
 | |
| 		cache->n_ret = 0;
 | |
| 		if (free_slots && cache->slots_ret) {
 | |
| 			slots = cache->slots_ret;
 | |
| 			cache->slots_ret = NULL;
 | |
| 		}
 | |
| 		spin_unlock_irq(&cache->free_lock);
 | |
| 		kvfree(slots);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __drain_swap_slots_cache(unsigned int type)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is called during
 | |
| 	 *	1) swapoff, when we have to make sure no
 | |
| 	 *	   left over slots are in cache when we remove
 | |
| 	 *	   a swap device;
 | |
| 	 *      2) disabling of swap slot cache, when we run low
 | |
| 	 *	   on swap slots when allocating memory and need
 | |
| 	 *	   to return swap slots to global pool.
 | |
| 	 *
 | |
| 	 * We cannot acquire cpu hot plug lock here as
 | |
| 	 * this function can be invoked in the cpu
 | |
| 	 * hot plug path:
 | |
| 	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
 | |
| 	 *   -> memory allocation -> direct reclaim -> folio_alloc_swap
 | |
| 	 *   -> drain_swap_slots_cache
 | |
| 	 *
 | |
| 	 * Hence the loop over current online cpu below could miss cpu that
 | |
| 	 * is being brought online but not yet marked as online.
 | |
| 	 * That is okay as we do not schedule and run anything on a
 | |
| 	 * cpu before it has been marked online. Hence, we will not
 | |
| 	 * fill any swap slots in slots cache of such cpu.
 | |
| 	 * There are no slots on such cpu that need to be drained.
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		drain_slots_cache_cpu(cpu, type, false);
 | |
| }
 | |
| 
 | |
| static int free_slot_cache(unsigned int cpu)
 | |
| {
 | |
| 	mutex_lock(&swap_slots_cache_mutex);
 | |
| 	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
 | |
| 	mutex_unlock(&swap_slots_cache_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void enable_swap_slots_cache(void)
 | |
| {
 | |
| 	mutex_lock(&swap_slots_cache_enable_mutex);
 | |
| 	if (!swap_slot_cache_initialized) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
 | |
| 					alloc_swap_slot_cache, free_slot_cache);
 | |
| 		if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
 | |
| 				       "without swap slots cache.\n", __func__))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		swap_slot_cache_initialized = true;
 | |
| 	}
 | |
| 
 | |
| 	__reenable_swap_slots_cache();
 | |
| out_unlock:
 | |
| 	mutex_unlock(&swap_slots_cache_enable_mutex);
 | |
| }
 | |
| 
 | |
| /* called with swap slot cache's alloc lock held */
 | |
| static int refill_swap_slots_cache(struct swap_slots_cache *cache)
 | |
| {
 | |
| 	if (!use_swap_slot_cache)
 | |
| 		return 0;
 | |
| 
 | |
| 	cache->cur = 0;
 | |
| 	if (swap_slot_cache_active)
 | |
| 		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
 | |
| 					   cache->slots, 1);
 | |
| 
 | |
| 	return cache->nr;
 | |
| }
 | |
| 
 | |
| void free_swap_slot(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_slots_cache *cache;
 | |
| 
 | |
| 	cache = raw_cpu_ptr(&swp_slots);
 | |
| 	if (likely(use_swap_slot_cache && cache->slots_ret)) {
 | |
| 		spin_lock_irq(&cache->free_lock);
 | |
| 		/* Swap slots cache may be deactivated before acquiring lock */
 | |
| 		if (!use_swap_slot_cache || !cache->slots_ret) {
 | |
| 			spin_unlock_irq(&cache->free_lock);
 | |
| 			goto direct_free;
 | |
| 		}
 | |
| 		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
 | |
| 			/*
 | |
| 			 * Return slots to global pool.
 | |
| 			 * The current swap_map value is SWAP_HAS_CACHE.
 | |
| 			 * Set it to 0 to indicate it is available for
 | |
| 			 * allocation in global pool
 | |
| 			 */
 | |
| 			swapcache_free_entries(cache->slots_ret, cache->n_ret);
 | |
| 			cache->n_ret = 0;
 | |
| 		}
 | |
| 		cache->slots_ret[cache->n_ret++] = entry;
 | |
| 		spin_unlock_irq(&cache->free_lock);
 | |
| 	} else {
 | |
| direct_free:
 | |
| 		swapcache_free_entries(&entry, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| swp_entry_t folio_alloc_swap(struct folio *folio)
 | |
| {
 | |
| 	swp_entry_t entry;
 | |
| 	struct swap_slots_cache *cache;
 | |
| 
 | |
| 	entry.val = 0;
 | |
| 
 | |
| 	if (folio_test_large(folio)) {
 | |
| 		if (IS_ENABLED(CONFIG_THP_SWAP) && arch_thp_swp_supported())
 | |
| 			get_swap_pages(1, &entry, folio_nr_pages(folio));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Preemption is allowed here, because we may sleep
 | |
| 	 * in refill_swap_slots_cache().  But it is safe, because
 | |
| 	 * accesses to the per-CPU data structure are protected by the
 | |
| 	 * mutex cache->alloc_lock.
 | |
| 	 *
 | |
| 	 * The alloc path here does not touch cache->slots_ret
 | |
| 	 * so cache->free_lock is not taken.
 | |
| 	 */
 | |
| 	cache = raw_cpu_ptr(&swp_slots);
 | |
| 
 | |
| 	if (likely(check_cache_active() && cache->slots)) {
 | |
| 		mutex_lock(&cache->alloc_lock);
 | |
| 		if (cache->slots) {
 | |
| repeat:
 | |
| 			if (cache->nr) {
 | |
| 				entry = cache->slots[cache->cur];
 | |
| 				cache->slots[cache->cur++].val = 0;
 | |
| 				cache->nr--;
 | |
| 			} else if (refill_swap_slots_cache(cache)) {
 | |
| 				goto repeat;
 | |
| 			}
 | |
| 		}
 | |
| 		mutex_unlock(&cache->alloc_lock);
 | |
| 		if (entry.val)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	get_swap_pages(1, &entry, 1);
 | |
| out:
 | |
| 	if (mem_cgroup_try_charge_swap(folio, entry)) {
 | |
| 		put_swap_page(&folio->page, entry);
 | |
| 		entry.val = 0;
 | |
| 	}
 | |
| 	return entry;
 | |
| }
 |