mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 ccbd59c1c1
			
		
	
	
		ccbd59c1c1
		
	
	
	
	
		
			
			printk and friends can now format bitmaps using '%*pb[l]'. cpumask and nodemask also provide cpumask_pr_args() and nodemask_pr_args() respectively which can be used to generate the two printf arguments necessary to format the specified cpu/nodemask. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			614 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			614 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/profile.c
 | |
|  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
 | |
|  *  with configurable resolution, support for restricting the cpus on
 | |
|  *  which profiling is done, and switching between cpu time and
 | |
|  *  schedule() calls via kernel command line parameters passed at boot.
 | |
|  *
 | |
|  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 | |
|  *	Red Hat, July 2004
 | |
|  *  Consolidation of architecture support code for profiling,
 | |
|  *	Nadia Yvette Chambers, Oracle, July 2004
 | |
|  *  Amortized hit count accounting via per-cpu open-addressed hashtables
 | |
|  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 | |
|  *	Oracle, 2004
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/irq_regs.h>
 | |
| #include <asm/ptrace.h>
 | |
| 
 | |
| struct profile_hit {
 | |
| 	u32 pc, hits;
 | |
| };
 | |
| #define PROFILE_GRPSHIFT	3
 | |
| #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 | |
| #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 | |
| #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 | |
| 
 | |
| static atomic_t *prof_buffer;
 | |
| static unsigned long prof_len, prof_shift;
 | |
| 
 | |
| int prof_on __read_mostly;
 | |
| EXPORT_SYMBOL_GPL(prof_on);
 | |
| 
 | |
| static cpumask_var_t prof_cpu_mask;
 | |
| #ifdef CONFIG_SMP
 | |
| static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 | |
| static DEFINE_PER_CPU(int, cpu_profile_flip);
 | |
| static DEFINE_MUTEX(profile_flip_mutex);
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| int profile_setup(char *str)
 | |
| {
 | |
| 	static const char schedstr[] = "schedule";
 | |
| 	static const char sleepstr[] = "sleep";
 | |
| 	static const char kvmstr[] = "kvm";
 | |
| 	int par;
 | |
| 
 | |
| 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 		prof_on = SLEEP_PROFILING;
 | |
| 		if (str[strlen(sleepstr)] == ',')
 | |
| 			str += strlen(sleepstr) + 1;
 | |
| 		if (get_option(&str, &par))
 | |
| 			prof_shift = par;
 | |
| 		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 | |
| 			prof_shift);
 | |
| #else
 | |
| 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 | |
| #endif /* CONFIG_SCHEDSTATS */
 | |
| 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 | |
| 		prof_on = SCHED_PROFILING;
 | |
| 		if (str[strlen(schedstr)] == ',')
 | |
| 			str += strlen(schedstr) + 1;
 | |
| 		if (get_option(&str, &par))
 | |
| 			prof_shift = par;
 | |
| 		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 | |
| 			prof_shift);
 | |
| 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 | |
| 		prof_on = KVM_PROFILING;
 | |
| 		if (str[strlen(kvmstr)] == ',')
 | |
| 			str += strlen(kvmstr) + 1;
 | |
| 		if (get_option(&str, &par))
 | |
| 			prof_shift = par;
 | |
| 		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 | |
| 			prof_shift);
 | |
| 	} else if (get_option(&str, &par)) {
 | |
| 		prof_shift = par;
 | |
| 		prof_on = CPU_PROFILING;
 | |
| 		pr_info("kernel profiling enabled (shift: %ld)\n",
 | |
| 			prof_shift);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("profile=", profile_setup);
 | |
| 
 | |
| 
 | |
| int __ref profile_init(void)
 | |
| {
 | |
| 	int buffer_bytes;
 | |
| 	if (!prof_on)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* only text is profiled */
 | |
| 	prof_len = (_etext - _stext) >> prof_shift;
 | |
| 	buffer_bytes = prof_len*sizeof(atomic_t);
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 | |
| 
 | |
| 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 | |
| 	if (prof_buffer)
 | |
| 		return 0;
 | |
| 
 | |
| 	prof_buffer = alloc_pages_exact(buffer_bytes,
 | |
| 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 | |
| 	if (prof_buffer)
 | |
| 		return 0;
 | |
| 
 | |
| 	prof_buffer = vzalloc(buffer_bytes);
 | |
| 	if (prof_buffer)
 | |
| 		return 0;
 | |
| 
 | |
| 	free_cpumask_var(prof_cpu_mask);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Profile event notifications */
 | |
| 
 | |
| static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 | |
| static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 | |
| static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 | |
| 
 | |
| void profile_task_exit(struct task_struct *task)
 | |
| {
 | |
| 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 | |
| }
 | |
| 
 | |
| int profile_handoff_task(struct task_struct *task)
 | |
| {
 | |
| 	int ret;
 | |
| 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 | |
| 	return (ret == NOTIFY_OK) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| void profile_munmap(unsigned long addr)
 | |
| {
 | |
| 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 | |
| }
 | |
| 
 | |
| int task_handoff_register(struct notifier_block *n)
 | |
| {
 | |
| 	return atomic_notifier_chain_register(&task_free_notifier, n);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(task_handoff_register);
 | |
| 
 | |
| int task_handoff_unregister(struct notifier_block *n)
 | |
| {
 | |
| 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(task_handoff_unregister);
 | |
| 
 | |
| int profile_event_register(enum profile_type type, struct notifier_block *n)
 | |
| {
 | |
| 	int err = -EINVAL;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case PROFILE_TASK_EXIT:
 | |
| 		err = blocking_notifier_chain_register(
 | |
| 				&task_exit_notifier, n);
 | |
| 		break;
 | |
| 	case PROFILE_MUNMAP:
 | |
| 		err = blocking_notifier_chain_register(
 | |
| 				&munmap_notifier, n);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(profile_event_register);
 | |
| 
 | |
| int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 | |
| {
 | |
| 	int err = -EINVAL;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case PROFILE_TASK_EXIT:
 | |
| 		err = blocking_notifier_chain_unregister(
 | |
| 				&task_exit_notifier, n);
 | |
| 		break;
 | |
| 	case PROFILE_MUNMAP:
 | |
| 		err = blocking_notifier_chain_unregister(
 | |
| 				&munmap_notifier, n);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(profile_event_unregister);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * Each cpu has a pair of open-addressed hashtables for pending
 | |
|  * profile hits. read_profile() IPI's all cpus to request them
 | |
|  * to flip buffers and flushes their contents to prof_buffer itself.
 | |
|  * Flip requests are serialized by the profile_flip_mutex. The sole
 | |
|  * use of having a second hashtable is for avoiding cacheline
 | |
|  * contention that would otherwise happen during flushes of pending
 | |
|  * profile hits required for the accuracy of reported profile hits
 | |
|  * and so resurrect the interrupt livelock issue.
 | |
|  *
 | |
|  * The open-addressed hashtables are indexed by profile buffer slot
 | |
|  * and hold the number of pending hits to that profile buffer slot on
 | |
|  * a cpu in an entry. When the hashtable overflows, all pending hits
 | |
|  * are accounted to their corresponding profile buffer slots with
 | |
|  * atomic_add() and the hashtable emptied. As numerous pending hits
 | |
|  * may be accounted to a profile buffer slot in a hashtable entry,
 | |
|  * this amortizes a number of atomic profile buffer increments likely
 | |
|  * to be far larger than the number of entries in the hashtable,
 | |
|  * particularly given that the number of distinct profile buffer
 | |
|  * positions to which hits are accounted during short intervals (e.g.
 | |
|  * several seconds) is usually very small. Exclusion from buffer
 | |
|  * flipping is provided by interrupt disablement (note that for
 | |
|  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 | |
|  * process context).
 | |
|  * The hash function is meant to be lightweight as opposed to strong,
 | |
|  * and was vaguely inspired by ppc64 firmware-supported inverted
 | |
|  * pagetable hash functions, but uses a full hashtable full of finite
 | |
|  * collision chains, not just pairs of them.
 | |
|  *
 | |
|  * -- nyc
 | |
|  */
 | |
| static void __profile_flip_buffers(void *unused)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 | |
| }
 | |
| 
 | |
| static void profile_flip_buffers(void)
 | |
| {
 | |
| 	int i, j, cpu;
 | |
| 
 | |
| 	mutex_lock(&profile_flip_mutex);
 | |
| 	j = per_cpu(cpu_profile_flip, get_cpu());
 | |
| 	put_cpu();
 | |
| 	on_each_cpu(__profile_flip_buffers, NULL, 1);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 | |
| 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
 | |
| 			if (!hits[i].hits) {
 | |
| 				if (hits[i].pc)
 | |
| 					hits[i].pc = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 | |
| 			hits[i].hits = hits[i].pc = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&profile_flip_mutex);
 | |
| }
 | |
| 
 | |
| static void profile_discard_flip_buffers(void)
 | |
| {
 | |
| 	int i, cpu;
 | |
| 
 | |
| 	mutex_lock(&profile_flip_mutex);
 | |
| 	i = per_cpu(cpu_profile_flip, get_cpu());
 | |
| 	put_cpu();
 | |
| 	on_each_cpu(__profile_flip_buffers, NULL, 1);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 | |
| 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 | |
| 	}
 | |
| 	mutex_unlock(&profile_flip_mutex);
 | |
| }
 | |
| 
 | |
| static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 | |
| {
 | |
| 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 | |
| 	int i, j, cpu;
 | |
| 	struct profile_hit *hits;
 | |
| 
 | |
| 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 | |
| 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 | |
| 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 | |
| 	cpu = get_cpu();
 | |
| 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 | |
| 	if (!hits) {
 | |
| 		put_cpu();
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We buffer the global profiler buffer into a per-CPU
 | |
| 	 * queue and thus reduce the number of global (and possibly
 | |
| 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	do {
 | |
| 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
 | |
| 			if (hits[i + j].pc == pc) {
 | |
| 				hits[i + j].hits += nr_hits;
 | |
| 				goto out;
 | |
| 			} else if (!hits[i + j].hits) {
 | |
| 				hits[i + j].pc = pc;
 | |
| 				hits[i + j].hits = nr_hits;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
 | |
| 	} while (i != primary);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add the current hit(s) and flush the write-queue out
 | |
| 	 * to the global buffer:
 | |
| 	 */
 | |
| 	atomic_add(nr_hits, &prof_buffer[pc]);
 | |
| 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
 | |
| 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 | |
| 		hits[i].pc = hits[i].hits = 0;
 | |
| 	}
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| static int profile_cpu_callback(struct notifier_block *info,
 | |
| 					unsigned long action, void *__cpu)
 | |
| {
 | |
| 	int node, cpu = (unsigned long)__cpu;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		node = cpu_to_mem(cpu);
 | |
| 		per_cpu(cpu_profile_flip, cpu) = 0;
 | |
| 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 | |
| 			page = alloc_pages_exact_node(node,
 | |
| 					GFP_KERNEL | __GFP_ZERO,
 | |
| 					0);
 | |
| 			if (!page)
 | |
| 				return notifier_from_errno(-ENOMEM);
 | |
| 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 | |
| 		}
 | |
| 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 | |
| 			page = alloc_pages_exact_node(node,
 | |
| 					GFP_KERNEL | __GFP_ZERO,
 | |
| 					0);
 | |
| 			if (!page)
 | |
| 				goto out_free;
 | |
| 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 | |
| 		}
 | |
| 		break;
 | |
| out_free:
 | |
| 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 | |
| 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 | |
| 		__free_page(page);
 | |
| 		return notifier_from_errno(-ENOMEM);
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_ONLINE_FROZEN:
 | |
| 		if (prof_cpu_mask != NULL)
 | |
| 			cpumask_set_cpu(cpu, prof_cpu_mask);
 | |
| 		break;
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 		if (prof_cpu_mask != NULL)
 | |
| 			cpumask_clear_cpu(cpu, prof_cpu_mask);
 | |
| 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
 | |
| 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 | |
| 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 | |
| 			__free_page(page);
 | |
| 		}
 | |
| 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
 | |
| 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 | |
| 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 | |
| 			__free_page(page);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| #else /* !CONFIG_SMP */
 | |
| #define profile_flip_buffers()		do { } while (0)
 | |
| #define profile_discard_flip_buffers()	do { } while (0)
 | |
| #define profile_cpu_callback		NULL
 | |
| 
 | |
| static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 | |
| {
 | |
| 	unsigned long pc;
 | |
| 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 | |
| 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 | |
| }
 | |
| #endif /* !CONFIG_SMP */
 | |
| 
 | |
| void profile_hits(int type, void *__pc, unsigned int nr_hits)
 | |
| {
 | |
| 	if (prof_on != type || !prof_buffer)
 | |
| 		return;
 | |
| 	do_profile_hits(type, __pc, nr_hits);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(profile_hits);
 | |
| 
 | |
| void profile_tick(int type)
 | |
| {
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 
 | |
| 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
 | |
| 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 | |
| 		profile_hit(type, (void *)profile_pc(regs));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, prof_cpu_mask_proc_show, NULL);
 | |
| }
 | |
| 
 | |
| static ssize_t prof_cpu_mask_proc_write(struct file *file,
 | |
| 	const char __user *buffer, size_t count, loff_t *pos)
 | |
| {
 | |
| 	cpumask_var_t new_value;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = cpumask_parse_user(buffer, count, new_value);
 | |
| 	if (!err) {
 | |
| 		cpumask_copy(prof_cpu_mask, new_value);
 | |
| 		err = count;
 | |
| 	}
 | |
| 	free_cpumask_var(new_value);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static const struct file_operations prof_cpu_mask_proc_fops = {
 | |
| 	.open		= prof_cpu_mask_proc_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| 	.write		= prof_cpu_mask_proc_write,
 | |
| };
 | |
| 
 | |
| void create_prof_cpu_mask(void)
 | |
| {
 | |
| 	/* create /proc/irq/prof_cpu_mask */
 | |
| 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function accesses profiling information. The returned data is
 | |
|  * binary: the sampling step and the actual contents of the profile
 | |
|  * buffer. Use of the program readprofile is recommended in order to
 | |
|  * get meaningful info out of these data.
 | |
|  */
 | |
| static ssize_t
 | |
| read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 | |
| {
 | |
| 	unsigned long p = *ppos;
 | |
| 	ssize_t read;
 | |
| 	char *pnt;
 | |
| 	unsigned int sample_step = 1 << prof_shift;
 | |
| 
 | |
| 	profile_flip_buffers();
 | |
| 	if (p >= (prof_len+1)*sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
 | |
| 		count = (prof_len+1)*sizeof(unsigned int) - p;
 | |
| 	read = 0;
 | |
| 
 | |
| 	while (p < sizeof(unsigned int) && count > 0) {
 | |
| 		if (put_user(*((char *)(&sample_step)+p), buf))
 | |
| 			return -EFAULT;
 | |
| 		buf++; p++; count--; read++;
 | |
| 	}
 | |
| 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 | |
| 	if (copy_to_user(buf, (void *)pnt, count))
 | |
| 		return -EFAULT;
 | |
| 	read += count;
 | |
| 	*ppos += read;
 | |
| 	return read;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writing to /proc/profile resets the counters
 | |
|  *
 | |
|  * Writing a 'profiling multiplier' value into it also re-sets the profiling
 | |
|  * interrupt frequency, on architectures that support this.
 | |
|  */
 | |
| static ssize_t write_profile(struct file *file, const char __user *buf,
 | |
| 			     size_t count, loff_t *ppos)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	extern int setup_profiling_timer(unsigned int multiplier);
 | |
| 
 | |
| 	if (count == sizeof(int)) {
 | |
| 		unsigned int multiplier;
 | |
| 
 | |
| 		if (copy_from_user(&multiplier, buf, sizeof(int)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (setup_profiling_timer(multiplier))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| #endif
 | |
| 	profile_discard_flip_buffers();
 | |
| 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_profile_operations = {
 | |
| 	.read		= read_profile,
 | |
| 	.write		= write_profile,
 | |
| 	.llseek		= default_llseek,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static void profile_nop(void *unused)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int create_hash_tables(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		int node = cpu_to_mem(cpu);
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = alloc_pages_exact_node(node,
 | |
| 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
 | |
| 				0);
 | |
| 		if (!page)
 | |
| 			goto out_cleanup;
 | |
| 		per_cpu(cpu_profile_hits, cpu)[1]
 | |
| 				= (struct profile_hit *)page_address(page);
 | |
| 		page = alloc_pages_exact_node(node,
 | |
| 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
 | |
| 				0);
 | |
| 		if (!page)
 | |
| 			goto out_cleanup;
 | |
| 		per_cpu(cpu_profile_hits, cpu)[0]
 | |
| 				= (struct profile_hit *)page_address(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| out_cleanup:
 | |
| 	prof_on = 0;
 | |
| 	smp_mb();
 | |
| 	on_each_cpu(profile_nop, NULL, 1);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
 | |
| 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 | |
| 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 | |
| 			__free_page(page);
 | |
| 		}
 | |
| 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
 | |
| 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 | |
| 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 | |
| 			__free_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| #else
 | |
| #define create_hash_tables()			({ 0; })
 | |
| #endif
 | |
| 
 | |
| int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 | |
| {
 | |
| 	struct proc_dir_entry *entry;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!prof_on)
 | |
| 		return 0;
 | |
| 
 | |
| 	cpu_notifier_register_begin();
 | |
| 
 | |
| 	if (create_hash_tables()) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
 | |
| 			    NULL, &proc_profile_operations);
 | |
| 	if (!entry)
 | |
| 		goto out;
 | |
| 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 | |
| 	__hotcpu_notifier(profile_cpu_callback, 0);
 | |
| 
 | |
| out:
 | |
| 	cpu_notifier_register_done();
 | |
| 	return err;
 | |
| }
 | |
| subsys_initcall(create_proc_profile);
 | |
| #endif /* CONFIG_PROC_FS */
 |