mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 a3ed0e4393
			
		
	
	
		a3ed0e4393
		
	
	
	
	
		
			
			Revert commits92af4dcb4e("tracing: Unify the "boot" and "mono" tracing clocks")127bfa5f43("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior")7250a4047a("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior")d6c7270e91("timekeeping: Remove boot time specific code")f2d6fdbfd2("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior")d6ed449afd("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock")72199320d4("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock") As stated in the pull request for the unification of CLOCK_MONOTONIC and CLOCK_BOOTTIME, it was clear that we might have to revert the change. As reported by several folks systemd and other applications rely on the documented behaviour of CLOCK_MONOTONIC on Linux and break with the above changes. After resume daemons time out and other timeout related issues are observed. Rafael compiled this list: * systemd kills daemons on resume, after >WatchdogSec seconds of suspending (Genki Sky). [Verified that that's because systemd uses CLOCK_MONOTONIC and expects it to not include the suspend time.] * systemd-journald misbehaves after resume: systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal corrupted or uncleanly shut down, renaming and replacing. (Mike Galbraith). * NetworkManager reports "networking disabled" and networking is broken after resume 50% of the time (Pavel). [May be because of systemd.] * MATE desktop dims the display and starts the screensaver right after system resume (Pavel). * Full system hang during resume (me). [May be due to systemd or NM or both.] That happens on debian and open suse systems. It's sad, that these problems were neither catched in -next nor by those folks who expressed interest in this change. Reported-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reported-by: Genki Sky <sky@genki.is>, Reported-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org>
		
			
				
	
	
		
			1390 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1390 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/time/tick-sched.c
 | |
|  *
 | |
|  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 | |
|  *
 | |
|  *  No idle tick implementation for low and high resolution timers
 | |
|  *
 | |
|  *  Started by: Thomas Gleixner and Ingo Molnar
 | |
|  *
 | |
|  *  Distribute under GPLv2.
 | |
|  */
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/sched/stat.h>
 | |
| #include <linux/sched/nohz.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/mm.h>
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| #include "tick-internal.h"
 | |
| 
 | |
| #include <trace/events/timer.h>
 | |
| 
 | |
| /*
 | |
|  * Per-CPU nohz control structure
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
 | |
| 
 | |
| struct tick_sched *tick_get_tick_sched(int cpu)
 | |
| {
 | |
| 	return &per_cpu(tick_cpu_sched, cpu);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
 | |
| /*
 | |
|  * The time, when the last jiffy update happened. Protected by jiffies_lock.
 | |
|  */
 | |
| static ktime_t last_jiffies_update;
 | |
| 
 | |
| /*
 | |
|  * Must be called with interrupts disabled !
 | |
|  */
 | |
| static void tick_do_update_jiffies64(ktime_t now)
 | |
| {
 | |
| 	unsigned long ticks = 0;
 | |
| 	ktime_t delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do a quick check without holding jiffies_lock:
 | |
| 	 */
 | |
| 	delta = ktime_sub(now, last_jiffies_update);
 | |
| 	if (delta < tick_period)
 | |
| 		return;
 | |
| 
 | |
| 	/* Reevaluate with jiffies_lock held */
 | |
| 	write_seqlock(&jiffies_lock);
 | |
| 
 | |
| 	delta = ktime_sub(now, last_jiffies_update);
 | |
| 	if (delta >= tick_period) {
 | |
| 
 | |
| 		delta = ktime_sub(delta, tick_period);
 | |
| 		last_jiffies_update = ktime_add(last_jiffies_update,
 | |
| 						tick_period);
 | |
| 
 | |
| 		/* Slow path for long timeouts */
 | |
| 		if (unlikely(delta >= tick_period)) {
 | |
| 			s64 incr = ktime_to_ns(tick_period);
 | |
| 
 | |
| 			ticks = ktime_divns(delta, incr);
 | |
| 
 | |
| 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
 | |
| 							   incr * ticks);
 | |
| 		}
 | |
| 		do_timer(++ticks);
 | |
| 
 | |
| 		/* Keep the tick_next_period variable up to date */
 | |
| 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 | |
| 	} else {
 | |
| 		write_sequnlock(&jiffies_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	write_sequnlock(&jiffies_lock);
 | |
| 	update_wall_time();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize and return retrieve the jiffies update.
 | |
|  */
 | |
| static ktime_t tick_init_jiffy_update(void)
 | |
| {
 | |
| 	ktime_t period;
 | |
| 
 | |
| 	write_seqlock(&jiffies_lock);
 | |
| 	/* Did we start the jiffies update yet ? */
 | |
| 	if (last_jiffies_update == 0)
 | |
| 		last_jiffies_update = tick_next_period;
 | |
| 	period = last_jiffies_update;
 | |
| 	write_sequnlock(&jiffies_lock);
 | |
| 	return period;
 | |
| }
 | |
| 
 | |
| static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 	/*
 | |
| 	 * Check if the do_timer duty was dropped. We don't care about
 | |
| 	 * concurrency: This happens only when the CPU in charge went
 | |
| 	 * into a long sleep. If two CPUs happen to assign themselves to
 | |
| 	 * this duty, then the jiffies update is still serialized by
 | |
| 	 * jiffies_lock.
 | |
| 	 */
 | |
| 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 | |
| 	    && !tick_nohz_full_cpu(cpu))
 | |
| 		tick_do_timer_cpu = cpu;
 | |
| #endif
 | |
| 
 | |
| 	/* Check, if the jiffies need an update */
 | |
| 	if (tick_do_timer_cpu == cpu)
 | |
| 		tick_do_update_jiffies64(now);
 | |
| 
 | |
| 	if (ts->inidle)
 | |
| 		ts->got_idle_tick = 1;
 | |
| }
 | |
| 
 | |
| static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 	/*
 | |
| 	 * When we are idle and the tick is stopped, we have to touch
 | |
| 	 * the watchdog as we might not schedule for a really long
 | |
| 	 * time. This happens on complete idle SMP systems while
 | |
| 	 * waiting on the login prompt. We also increment the "start of
 | |
| 	 * idle" jiffy stamp so the idle accounting adjustment we do
 | |
| 	 * when we go busy again does not account too much ticks.
 | |
| 	 */
 | |
| 	if (ts->tick_stopped) {
 | |
| 		touch_softlockup_watchdog_sched();
 | |
| 		if (is_idle_task(current))
 | |
| 			ts->idle_jiffies++;
 | |
| 		/*
 | |
| 		 * In case the current tick fired too early past its expected
 | |
| 		 * expiration, make sure we don't bypass the next clock reprogramming
 | |
| 		 * to the same deadline.
 | |
| 		 */
 | |
| 		ts->next_tick = 0;
 | |
| 	}
 | |
| #endif
 | |
| 	update_process_times(user_mode(regs));
 | |
| 	profile_tick(CPU_PROFILING);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| cpumask_var_t tick_nohz_full_mask;
 | |
| bool tick_nohz_full_running;
 | |
| static atomic_t tick_dep_mask;
 | |
| 
 | |
| static bool check_tick_dependency(atomic_t *dep)
 | |
| {
 | |
| 	int val = atomic_read(dep);
 | |
| 
 | |
| 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 | |
| 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 | |
| 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (val & TICK_DEP_MASK_SCHED) {
 | |
| 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 | |
| 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	if (unlikely(!cpu_online(cpu)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (check_tick_dependency(&tick_dep_mask))
 | |
| 		return false;
 | |
| 
 | |
| 	if (check_tick_dependency(&ts->tick_dep_mask))
 | |
| 		return false;
 | |
| 
 | |
| 	if (check_tick_dependency(¤t->tick_dep_mask))
 | |
| 		return false;
 | |
| 
 | |
| 	if (check_tick_dependency(¤t->signal->tick_dep_mask))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void nohz_full_kick_func(struct irq_work *work)
 | |
| {
 | |
| 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 | |
| 	.func = nohz_full_kick_func,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Kick this CPU if it's full dynticks in order to force it to
 | |
|  * re-evaluate its dependency on the tick and restart it if necessary.
 | |
|  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 | |
|  * is NMI safe.
 | |
|  */
 | |
| static void tick_nohz_full_kick(void)
 | |
| {
 | |
| 	if (!tick_nohz_full_cpu(smp_processor_id()))
 | |
| 		return;
 | |
| 
 | |
| 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick the CPU if it's full dynticks in order to force it to
 | |
|  * re-evaluate its dependency on the tick and restart it if necessary.
 | |
|  */
 | |
| void tick_nohz_full_kick_cpu(int cpu)
 | |
| {
 | |
| 	if (!tick_nohz_full_cpu(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick all full dynticks CPUs in order to force these to re-evaluate
 | |
|  * their dependency on the tick and restart it if necessary.
 | |
|  */
 | |
| static void tick_nohz_full_kick_all(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!tick_nohz_full_running)
 | |
| 		return;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 | |
| 		tick_nohz_full_kick_cpu(cpu);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void tick_nohz_dep_set_all(atomic_t *dep,
 | |
| 				  enum tick_dep_bits bit)
 | |
| {
 | |
| 	int prev;
 | |
| 
 | |
| 	prev = atomic_fetch_or(BIT(bit), dep);
 | |
| 	if (!prev)
 | |
| 		tick_nohz_full_kick_all();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a global tick dependency. Used by perf events that rely on freq and
 | |
|  * by unstable clock.
 | |
|  */
 | |
| void tick_nohz_dep_set(enum tick_dep_bits bit)
 | |
| {
 | |
| 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 | |
| }
 | |
| 
 | |
| void tick_nohz_dep_clear(enum tick_dep_bits bit)
 | |
| {
 | |
| 	atomic_andnot(BIT(bit), &tick_dep_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 | |
|  * manage events throttling.
 | |
|  */
 | |
| void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 | |
| {
 | |
| 	int prev;
 | |
| 	struct tick_sched *ts;
 | |
| 
 | |
| 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 | |
| 
 | |
| 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 | |
| 	if (!prev) {
 | |
| 		preempt_disable();
 | |
| 		/* Perf needs local kick that is NMI safe */
 | |
| 		if (cpu == smp_processor_id()) {
 | |
| 			tick_nohz_full_kick();
 | |
| 		} else {
 | |
| 			/* Remote irq work not NMI-safe */
 | |
| 			if (!WARN_ON_ONCE(in_nmi()))
 | |
| 				tick_nohz_full_kick_cpu(cpu);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 | |
| {
 | |
| 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 | |
| 
 | |
| 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 | |
|  * per task timers.
 | |
|  */
 | |
| void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 | |
| {
 | |
| 	/*
 | |
| 	 * We could optimize this with just kicking the target running the task
 | |
| 	 * if that noise matters for nohz full users.
 | |
| 	 */
 | |
| 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 | |
| }
 | |
| 
 | |
| void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 | |
| {
 | |
| 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 | |
|  * per process timers.
 | |
|  */
 | |
| void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 | |
| {
 | |
| 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 | |
| }
 | |
| 
 | |
| void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 | |
| {
 | |
| 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-evaluate the need for the tick as we switch the current task.
 | |
|  * It might need the tick due to per task/process properties:
 | |
|  * perf events, posix CPU timers, ...
 | |
|  */
 | |
| void __tick_nohz_task_switch(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct tick_sched *ts;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	if (!tick_nohz_full_cpu(smp_processor_id()))
 | |
| 		goto out;
 | |
| 
 | |
| 	ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	if (ts->tick_stopped) {
 | |
| 		if (atomic_read(¤t->tick_dep_mask) ||
 | |
| 		    atomic_read(¤t->signal->tick_dep_mask))
 | |
| 			tick_nohz_full_kick();
 | |
| 	}
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Get the boot-time nohz CPU list from the kernel parameters. */
 | |
| void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 | |
| {
 | |
| 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 | |
| 	cpumask_copy(tick_nohz_full_mask, cpumask);
 | |
| 	tick_nohz_full_running = true;
 | |
| }
 | |
| 
 | |
| static int tick_nohz_cpu_down(unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * The boot CPU handles housekeeping duty (unbound timers,
 | |
| 	 * workqueues, timekeeping, ...) on behalf of full dynticks
 | |
| 	 * CPUs. It must remain online when nohz full is enabled.
 | |
| 	 */
 | |
| 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 | |
| 		return -EBUSY;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __init tick_nohz_init(void)
 | |
| {
 | |
| 	int cpu, ret;
 | |
| 
 | |
| 	if (!tick_nohz_full_running)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 | |
| 	 * locking contexts. But then we need irq work to raise its own
 | |
| 	 * interrupts to avoid circular dependency on the tick
 | |
| 	 */
 | |
| 	if (!arch_irq_work_has_interrupt()) {
 | |
| 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 | |
| 		cpumask_clear(tick_nohz_full_mask);
 | |
| 		tick_nohz_full_running = false;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 
 | |
| 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 | |
| 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 | |
| 			cpu);
 | |
| 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu, tick_nohz_full_mask)
 | |
| 		context_tracking_cpu_set(cpu);
 | |
| 
 | |
| 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 | |
| 					"kernel/nohz:predown", NULL,
 | |
| 					tick_nohz_cpu_down);
 | |
| 	WARN_ON(ret < 0);
 | |
| 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 | |
| 		cpumask_pr_args(tick_nohz_full_mask));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * NOHZ - aka dynamic tick functionality
 | |
|  */
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| /*
 | |
|  * NO HZ enabled ?
 | |
|  */
 | |
| bool tick_nohz_enabled __read_mostly  = true;
 | |
| unsigned long tick_nohz_active  __read_mostly;
 | |
| /*
 | |
|  * Enable / Disable tickless mode
 | |
|  */
 | |
| static int __init setup_tick_nohz(char *str)
 | |
| {
 | |
| 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 | |
| }
 | |
| 
 | |
| __setup("nohz=", setup_tick_nohz);
 | |
| 
 | |
| bool tick_nohz_tick_stopped(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	return ts->tick_stopped;
 | |
| }
 | |
| 
 | |
| bool tick_nohz_tick_stopped_cpu(int cpu)
 | |
| {
 | |
| 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 | |
| 
 | |
| 	return ts->tick_stopped;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 | |
|  *
 | |
|  * Called from interrupt entry when the CPU was idle
 | |
|  *
 | |
|  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 | |
|  * must be updated. Otherwise an interrupt handler could use a stale jiffy
 | |
|  * value. We do this unconditionally on any CPU, as we don't know whether the
 | |
|  * CPU, which has the update task assigned is in a long sleep.
 | |
|  */
 | |
| static void tick_nohz_update_jiffies(ktime_t now)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	tick_do_update_jiffies64(now);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	touch_softlockup_watchdog_sched();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Updates the per-CPU time idle statistics counters
 | |
|  */
 | |
| static void
 | |
| update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 | |
| {
 | |
| 	ktime_t delta;
 | |
| 
 | |
| 	if (ts->idle_active) {
 | |
| 		delta = ktime_sub(now, ts->idle_entrytime);
 | |
| 		if (nr_iowait_cpu(cpu) > 0)
 | |
| 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 | |
| 		else
 | |
| 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 | |
| 		ts->idle_entrytime = now;
 | |
| 	}
 | |
| 
 | |
| 	if (last_update_time)
 | |
| 		*last_update_time = ktime_to_us(now);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 | |
| {
 | |
| 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 | |
| 	ts->idle_active = 0;
 | |
| 
 | |
| 	sched_clock_idle_wakeup_event();
 | |
| }
 | |
| 
 | |
| static void tick_nohz_start_idle(struct tick_sched *ts)
 | |
| {
 | |
| 	ts->idle_entrytime = ktime_get();
 | |
| 	ts->idle_active = 1;
 | |
| 	sched_clock_idle_sleep_event();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_cpu_idle_time_us - get the total idle time of a CPU
 | |
|  * @cpu: CPU number to query
 | |
|  * @last_update_time: variable to store update time in. Do not update
 | |
|  * counters if NULL.
 | |
|  *
 | |
|  * Return the cumulative idle time (since boot) for a given
 | |
|  * CPU, in microseconds.
 | |
|  *
 | |
|  * This time is measured via accounting rather than sampling,
 | |
|  * and is as accurate as ktime_get() is.
 | |
|  *
 | |
|  * This function returns -1 if NOHZ is not enabled.
 | |
|  */
 | |
| u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 	ktime_t now, idle;
 | |
| 
 | |
| 	if (!tick_nohz_active)
 | |
| 		return -1;
 | |
| 
 | |
| 	now = ktime_get();
 | |
| 	if (last_update_time) {
 | |
| 		update_ts_time_stats(cpu, ts, now, last_update_time);
 | |
| 		idle = ts->idle_sleeptime;
 | |
| 	} else {
 | |
| 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 | |
| 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 | |
| 
 | |
| 			idle = ktime_add(ts->idle_sleeptime, delta);
 | |
| 		} else {
 | |
| 			idle = ts->idle_sleeptime;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ktime_to_us(idle);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 | |
| 
 | |
| /**
 | |
|  * get_cpu_iowait_time_us - get the total iowait time of a CPU
 | |
|  * @cpu: CPU number to query
 | |
|  * @last_update_time: variable to store update time in. Do not update
 | |
|  * counters if NULL.
 | |
|  *
 | |
|  * Return the cumulative iowait time (since boot) for a given
 | |
|  * CPU, in microseconds.
 | |
|  *
 | |
|  * This time is measured via accounting rather than sampling,
 | |
|  * and is as accurate as ktime_get() is.
 | |
|  *
 | |
|  * This function returns -1 if NOHZ is not enabled.
 | |
|  */
 | |
| u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 	ktime_t now, iowait;
 | |
| 
 | |
| 	if (!tick_nohz_active)
 | |
| 		return -1;
 | |
| 
 | |
| 	now = ktime_get();
 | |
| 	if (last_update_time) {
 | |
| 		update_ts_time_stats(cpu, ts, now, last_update_time);
 | |
| 		iowait = ts->iowait_sleeptime;
 | |
| 	} else {
 | |
| 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 | |
| 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 | |
| 
 | |
| 			iowait = ktime_add(ts->iowait_sleeptime, delta);
 | |
| 		} else {
 | |
| 			iowait = ts->iowait_sleeptime;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ktime_to_us(iowait);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 | |
| 
 | |
| static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 | |
| {
 | |
| 	hrtimer_cancel(&ts->sched_timer);
 | |
| 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 | |
| 
 | |
| 	/* Forward the time to expire in the future */
 | |
| 	hrtimer_forward(&ts->sched_timer, now, tick_period);
 | |
| 
 | |
| 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 | |
| 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 | |
| 	else
 | |
| 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset to make sure next tick stop doesn't get fooled by past
 | |
| 	 * cached clock deadline.
 | |
| 	 */
 | |
| 	ts->next_tick = 0;
 | |
| }
 | |
| 
 | |
| static inline bool local_timer_softirq_pending(void)
 | |
| {
 | |
| 	return local_softirq_pending() & TIMER_SOFTIRQ;
 | |
| }
 | |
| 
 | |
| static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 | |
| {
 | |
| 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 | |
| 	unsigned long seq, basejiff;
 | |
| 
 | |
| 	/* Read jiffies and the time when jiffies were updated last */
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&jiffies_lock);
 | |
| 		basemono = last_jiffies_update;
 | |
| 		basejiff = jiffies;
 | |
| 	} while (read_seqretry(&jiffies_lock, seq));
 | |
| 	ts->last_jiffies = basejiff;
 | |
| 	ts->timer_expires_base = basemono;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep the periodic tick, when RCU, architecture or irq_work
 | |
| 	 * requests it.
 | |
| 	 * Aside of that check whether the local timer softirq is
 | |
| 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 | |
| 	 * because there is an already expired timer, so it will request
 | |
| 	 * immeditate expiry, which rearms the hardware timer with a
 | |
| 	 * minimal delta which brings us back to this place
 | |
| 	 * immediately. Lather, rinse and repeat...
 | |
| 	 */
 | |
| 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 | |
| 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 | |
| 		next_tick = basemono + TICK_NSEC;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Get the next pending timer. If high resolution
 | |
| 		 * timers are enabled this only takes the timer wheel
 | |
| 		 * timers into account. If high resolution timers are
 | |
| 		 * disabled this also looks at the next expiring
 | |
| 		 * hrtimer.
 | |
| 		 */
 | |
| 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 | |
| 		ts->next_timer = next_tmr;
 | |
| 		/* Take the next rcu event into account */
 | |
| 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the tick is due in the next period, keep it ticking or
 | |
| 	 * force prod the timer.
 | |
| 	 */
 | |
| 	delta = next_tick - basemono;
 | |
| 	if (delta <= (u64)TICK_NSEC) {
 | |
| 		/*
 | |
| 		 * Tell the timer code that the base is not idle, i.e. undo
 | |
| 		 * the effect of get_next_timer_interrupt():
 | |
| 		 */
 | |
| 		timer_clear_idle();
 | |
| 		/*
 | |
| 		 * We've not stopped the tick yet, and there's a timer in the
 | |
| 		 * next period, so no point in stopping it either, bail.
 | |
| 		 */
 | |
| 		if (!ts->tick_stopped) {
 | |
| 			ts->timer_expires = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this CPU is the one which had the do_timer() duty last, we limit
 | |
| 	 * the sleep time to the timekeeping max_deferment value.
 | |
| 	 * Otherwise we can sleep as long as we want.
 | |
| 	 */
 | |
| 	delta = timekeeping_max_deferment();
 | |
| 	if (cpu != tick_do_timer_cpu &&
 | |
| 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 | |
| 		delta = KTIME_MAX;
 | |
| 
 | |
| 	/* Calculate the next expiry time */
 | |
| 	if (delta < (KTIME_MAX - basemono))
 | |
| 		expires = basemono + delta;
 | |
| 	else
 | |
| 		expires = KTIME_MAX;
 | |
| 
 | |
| 	ts->timer_expires = min_t(u64, expires, next_tick);
 | |
| 
 | |
| out:
 | |
| 	return ts->timer_expires;
 | |
| }
 | |
| 
 | |
| static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 | |
| {
 | |
| 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 | |
| 	u64 basemono = ts->timer_expires_base;
 | |
| 	u64 expires = ts->timer_expires;
 | |
| 	ktime_t tick = expires;
 | |
| 
 | |
| 	/* Make sure we won't be trying to stop it twice in a row. */
 | |
| 	ts->timer_expires_base = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this CPU is the one which updates jiffies, then give up
 | |
| 	 * the assignment and let it be taken by the CPU which runs
 | |
| 	 * the tick timer next, which might be this CPU as well. If we
 | |
| 	 * don't drop this here the jiffies might be stale and
 | |
| 	 * do_timer() never invoked. Keep track of the fact that it
 | |
| 	 * was the one which had the do_timer() duty last.
 | |
| 	 */
 | |
| 	if (cpu == tick_do_timer_cpu) {
 | |
| 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 | |
| 		ts->do_timer_last = 1;
 | |
| 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 | |
| 		ts->do_timer_last = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip reprogram of event if its not changed */
 | |
| 	if (ts->tick_stopped && (expires == ts->next_tick)) {
 | |
| 		/* Sanity check: make sure clockevent is actually programmed */
 | |
| 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 | |
| 			return;
 | |
| 
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 | |
| 			    basemono, ts->next_tick, dev->next_event,
 | |
| 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * nohz_stop_sched_tick can be called several times before
 | |
| 	 * the nohz_restart_sched_tick is called. This happens when
 | |
| 	 * interrupts arrive which do not cause a reschedule. In the
 | |
| 	 * first call we save the current tick time, so we can restart
 | |
| 	 * the scheduler tick in nohz_restart_sched_tick.
 | |
| 	 */
 | |
| 	if (!ts->tick_stopped) {
 | |
| 		calc_load_nohz_start();
 | |
| 		cpu_load_update_nohz_start();
 | |
| 		quiet_vmstat();
 | |
| 
 | |
| 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 | |
| 		ts->tick_stopped = 1;
 | |
| 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 | |
| 	}
 | |
| 
 | |
| 	ts->next_tick = tick;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the expiration time == KTIME_MAX, then we simply stop
 | |
| 	 * the tick timer.
 | |
| 	 */
 | |
| 	if (unlikely(expires == KTIME_MAX)) {
 | |
| 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 | |
| 			hrtimer_cancel(&ts->sched_timer);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 | |
| 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 | |
| 	} else {
 | |
| 		hrtimer_set_expires(&ts->sched_timer, tick);
 | |
| 		tick_program_event(tick, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tick_nohz_retain_tick(struct tick_sched *ts)
 | |
| {
 | |
| 	ts->timer_expires_base = 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 | |
| {
 | |
| 	if (tick_nohz_next_event(ts, cpu))
 | |
| 		tick_nohz_stop_tick(ts, cpu);
 | |
| 	else
 | |
| 		tick_nohz_retain_tick(ts);
 | |
| }
 | |
| #endif /* CONFIG_NO_HZ_FULL */
 | |
| 
 | |
| static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 | |
| {
 | |
| 	/* Update jiffies first */
 | |
| 	tick_do_update_jiffies64(now);
 | |
| 	cpu_load_update_nohz_stop();
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 | |
| 	 * the clock forward checks in the enqueue path:
 | |
| 	 */
 | |
| 	timer_clear_idle();
 | |
| 
 | |
| 	calc_load_nohz_stop();
 | |
| 	touch_softlockup_watchdog_sched();
 | |
| 	/*
 | |
| 	 * Cancel the scheduled timer and restore the tick
 | |
| 	 */
 | |
| 	ts->tick_stopped  = 0;
 | |
| 	ts->idle_exittime = now;
 | |
| 
 | |
| 	tick_nohz_restart(ts, now);
 | |
| }
 | |
| 
 | |
| static void tick_nohz_full_update_tick(struct tick_sched *ts)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	if (!tick_nohz_full_cpu(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	if (can_stop_full_tick(cpu, ts))
 | |
| 		tick_nohz_stop_sched_tick(ts, cpu);
 | |
| 	else if (ts->tick_stopped)
 | |
| 		tick_nohz_restart_sched_tick(ts, ktime_get());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 | |
| {
 | |
| 	/*
 | |
| 	 * If this CPU is offline and it is the one which updates
 | |
| 	 * jiffies, then give up the assignment and let it be taken by
 | |
| 	 * the CPU which runs the tick timer next. If we don't drop
 | |
| 	 * this here the jiffies might be stale and do_timer() never
 | |
| 	 * invoked.
 | |
| 	 */
 | |
| 	if (unlikely(!cpu_online(cpu))) {
 | |
| 		if (cpu == tick_do_timer_cpu)
 | |
| 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 | |
| 		/*
 | |
| 		 * Make sure the CPU doesn't get fooled by obsolete tick
 | |
| 		 * deadline if it comes back online later.
 | |
| 		 */
 | |
| 		ts->next_tick = 0;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 | |
| 		return false;
 | |
| 
 | |
| 	if (need_resched())
 | |
| 		return false;
 | |
| 
 | |
| 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 | |
| 		static int ratelimit;
 | |
| 
 | |
| 		if (ratelimit < 10 &&
 | |
| 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 | |
| 			pr_warn("NOHZ: local_softirq_pending %02x\n",
 | |
| 				(unsigned int) local_softirq_pending());
 | |
| 			ratelimit++;
 | |
| 		}
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (tick_nohz_full_enabled()) {
 | |
| 		/*
 | |
| 		 * Keep the tick alive to guarantee timekeeping progression
 | |
| 		 * if there are full dynticks CPUs around
 | |
| 		 */
 | |
| 		if (tick_do_timer_cpu == cpu)
 | |
| 			return false;
 | |
| 		/*
 | |
| 		 * Boot safety: make sure the timekeeping duty has been
 | |
| 		 * assigned before entering dyntick-idle mode,
 | |
| 		 */
 | |
| 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 | |
| {
 | |
| 	ktime_t expires;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 | |
| 	 * tick timer expiration time is known already.
 | |
| 	 */
 | |
| 	if (ts->timer_expires_base)
 | |
| 		expires = ts->timer_expires;
 | |
| 	else if (can_stop_idle_tick(cpu, ts))
 | |
| 		expires = tick_nohz_next_event(ts, cpu);
 | |
| 	else
 | |
| 		return;
 | |
| 
 | |
| 	ts->idle_calls++;
 | |
| 
 | |
| 	if (expires > 0LL) {
 | |
| 		int was_stopped = ts->tick_stopped;
 | |
| 
 | |
| 		tick_nohz_stop_tick(ts, cpu);
 | |
| 
 | |
| 		ts->idle_sleeps++;
 | |
| 		ts->idle_expires = expires;
 | |
| 
 | |
| 		if (!was_stopped && ts->tick_stopped) {
 | |
| 			ts->idle_jiffies = ts->last_jiffies;
 | |
| 			nohz_balance_enter_idle(cpu);
 | |
| 		}
 | |
| 	} else {
 | |
| 		tick_nohz_retain_tick(ts);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 | |
|  *
 | |
|  * When the next event is more than a tick into the future, stop the idle tick
 | |
|  */
 | |
| void tick_nohz_idle_stop_tick(void)
 | |
| {
 | |
| 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 | |
| }
 | |
| 
 | |
| void tick_nohz_idle_retain_tick(void)
 | |
| {
 | |
| 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 | |
| 	/*
 | |
| 	 * Undo the effect of get_next_timer_interrupt() called from
 | |
| 	 * tick_nohz_next_event().
 | |
| 	 */
 | |
| 	timer_clear_idle();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 | |
|  *
 | |
|  * Called when we start the idle loop.
 | |
|  */
 | |
| void tick_nohz_idle_enter(void)
 | |
| {
 | |
| 	struct tick_sched *ts;
 | |
| 
 | |
| 	lockdep_assert_irqs_enabled();
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	WARN_ON_ONCE(ts->timer_expires_base);
 | |
| 
 | |
| 	ts->inidle = 1;
 | |
| 	tick_nohz_start_idle(ts);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_irq_exit - update next tick event from interrupt exit
 | |
|  *
 | |
|  * When an interrupt fires while we are idle and it doesn't cause
 | |
|  * a reschedule, it may still add, modify or delete a timer, enqueue
 | |
|  * an RCU callback, etc...
 | |
|  * So we need to re-calculate and reprogram the next tick event.
 | |
|  */
 | |
| void tick_nohz_irq_exit(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	if (ts->inidle)
 | |
| 		tick_nohz_start_idle(ts);
 | |
| 	else
 | |
| 		tick_nohz_full_update_tick(ts);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
 | |
|  */
 | |
| bool tick_nohz_idle_got_tick(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	if (ts->got_idle_tick) {
 | |
| 		ts->got_idle_tick = 0;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_get_sleep_length - return the expected length of the current sleep
 | |
|  * @delta_next: duration until the next event if the tick cannot be stopped
 | |
|  *
 | |
|  * Called from power state control code with interrupts disabled
 | |
|  */
 | |
| ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
 | |
| {
 | |
| 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 	int cpu = smp_processor_id();
 | |
| 	/*
 | |
| 	 * The idle entry time is expected to be a sufficient approximation of
 | |
| 	 * the current time at this point.
 | |
| 	 */
 | |
| 	ktime_t now = ts->idle_entrytime;
 | |
| 	ktime_t next_event;
 | |
| 
 | |
| 	WARN_ON_ONCE(!ts->inidle);
 | |
| 
 | |
| 	*delta_next = ktime_sub(dev->next_event, now);
 | |
| 
 | |
| 	if (!can_stop_idle_tick(cpu, ts))
 | |
| 		return *delta_next;
 | |
| 
 | |
| 	next_event = tick_nohz_next_event(ts, cpu);
 | |
| 	if (!next_event)
 | |
| 		return *delta_next;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the next highres timer to expire is earlier than next_event, the
 | |
| 	 * idle governor needs to know that.
 | |
| 	 */
 | |
| 	next_event = min_t(u64, next_event,
 | |
| 			   hrtimer_next_event_without(&ts->sched_timer));
 | |
| 
 | |
| 	return ktime_sub(next_event, now);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
 | |
|  * for a particular CPU.
 | |
|  *
 | |
|  * Called from the schedutil frequency scaling governor in scheduler context.
 | |
|  */
 | |
| unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
 | |
| {
 | |
| 	struct tick_sched *ts = tick_get_tick_sched(cpu);
 | |
| 
 | |
| 	return ts->idle_calls;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_get_idle_calls - return the current idle calls counter value
 | |
|  *
 | |
|  * Called from the schedutil frequency scaling governor in scheduler context.
 | |
|  */
 | |
| unsigned long tick_nohz_get_idle_calls(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	return ts->idle_calls;
 | |
| }
 | |
| 
 | |
| static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 | |
| {
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 | |
| 	unsigned long ticks;
 | |
| 
 | |
| 	if (vtime_accounting_cpu_enabled())
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We stopped the tick in idle. Update process times would miss the
 | |
| 	 * time we slept as update_process_times does only a 1 tick
 | |
| 	 * accounting. Enforce that this is accounted to idle !
 | |
| 	 */
 | |
| 	ticks = jiffies - ts->idle_jiffies;
 | |
| 	/*
 | |
| 	 * We might be one off. Do not randomly account a huge number of ticks!
 | |
| 	 */
 | |
| 	if (ticks && ticks < LONG_MAX)
 | |
| 		account_idle_ticks(ticks);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
 | |
| {
 | |
| 	tick_nohz_restart_sched_tick(ts, now);
 | |
| 	tick_nohz_account_idle_ticks(ts);
 | |
| }
 | |
| 
 | |
| void tick_nohz_idle_restart_tick(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	if (ts->tick_stopped)
 | |
| 		__tick_nohz_idle_restart_tick(ts, ktime_get());
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_idle_exit - restart the idle tick from the idle task
 | |
|  *
 | |
|  * Restart the idle tick when the CPU is woken up from idle
 | |
|  * This also exit the RCU extended quiescent state. The CPU
 | |
|  * can use RCU again after this function is called.
 | |
|  */
 | |
| void tick_nohz_idle_exit(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 	bool idle_active, tick_stopped;
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	WARN_ON_ONCE(!ts->inidle);
 | |
| 	WARN_ON_ONCE(ts->timer_expires_base);
 | |
| 
 | |
| 	ts->inidle = 0;
 | |
| 	idle_active = ts->idle_active;
 | |
| 	tick_stopped = ts->tick_stopped;
 | |
| 
 | |
| 	if (idle_active || tick_stopped)
 | |
| 		now = ktime_get();
 | |
| 
 | |
| 	if (idle_active)
 | |
| 		tick_nohz_stop_idle(ts, now);
 | |
| 
 | |
| 	if (tick_stopped)
 | |
| 		__tick_nohz_idle_restart_tick(ts, now);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The nohz low res interrupt handler
 | |
|  */
 | |
| static void tick_nohz_handler(struct clock_event_device *dev)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 	ktime_t now = ktime_get();
 | |
| 
 | |
| 	dev->next_event = KTIME_MAX;
 | |
| 
 | |
| 	tick_sched_do_timer(ts, now);
 | |
| 	tick_sched_handle(ts, regs);
 | |
| 
 | |
| 	/* No need to reprogram if we are running tickless  */
 | |
| 	if (unlikely(ts->tick_stopped))
 | |
| 		return;
 | |
| 
 | |
| 	hrtimer_forward(&ts->sched_timer, now, tick_period);
 | |
| 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 | |
| }
 | |
| 
 | |
| static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
 | |
| {
 | |
| 	if (!tick_nohz_enabled)
 | |
| 		return;
 | |
| 	ts->nohz_mode = mode;
 | |
| 	/* One update is enough */
 | |
| 	if (!test_and_set_bit(0, &tick_nohz_active))
 | |
| 		timers_update_nohz();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_nohz_switch_to_nohz - switch to nohz mode
 | |
|  */
 | |
| static void tick_nohz_switch_to_nohz(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 	ktime_t next;
 | |
| 
 | |
| 	if (!tick_nohz_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (tick_switch_to_oneshot(tick_nohz_handler))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Recycle the hrtimer in ts, so we can share the
 | |
| 	 * hrtimer_forward with the highres code.
 | |
| 	 */
 | |
| 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 | |
| 	/* Get the next period */
 | |
| 	next = tick_init_jiffy_update();
 | |
| 
 | |
| 	hrtimer_set_expires(&ts->sched_timer, next);
 | |
| 	hrtimer_forward_now(&ts->sched_timer, tick_period);
 | |
| 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 | |
| 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
 | |
| }
 | |
| 
 | |
| static inline void tick_nohz_irq_enter(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	if (!ts->idle_active && !ts->tick_stopped)
 | |
| 		return;
 | |
| 	now = ktime_get();
 | |
| 	if (ts->idle_active)
 | |
| 		tick_nohz_stop_idle(ts, now);
 | |
| 	if (ts->tick_stopped)
 | |
| 		tick_nohz_update_jiffies(now);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void tick_nohz_switch_to_nohz(void) { }
 | |
| static inline void tick_nohz_irq_enter(void) { }
 | |
| static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
 | |
| 
 | |
| #endif /* CONFIG_NO_HZ_COMMON */
 | |
| 
 | |
| /*
 | |
|  * Called from irq_enter to notify about the possible interruption of idle()
 | |
|  */
 | |
| void tick_irq_enter(void)
 | |
| {
 | |
| 	tick_check_oneshot_broadcast_this_cpu();
 | |
| 	tick_nohz_irq_enter();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * High resolution timer specific code
 | |
|  */
 | |
| #ifdef CONFIG_HIGH_RES_TIMERS
 | |
| /*
 | |
|  * We rearm the timer until we get disabled by the idle code.
 | |
|  * Called with interrupts disabled.
 | |
|  */
 | |
| static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct tick_sched *ts =
 | |
| 		container_of(timer, struct tick_sched, sched_timer);
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 	ktime_t now = ktime_get();
 | |
| 
 | |
| 	tick_sched_do_timer(ts, now);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not call, when we are not in irq context and have
 | |
| 	 * no valid regs pointer
 | |
| 	 */
 | |
| 	if (regs)
 | |
| 		tick_sched_handle(ts, regs);
 | |
| 	else
 | |
| 		ts->next_tick = 0;
 | |
| 
 | |
| 	/* No need to reprogram if we are in idle or full dynticks mode */
 | |
| 	if (unlikely(ts->tick_stopped))
 | |
| 		return HRTIMER_NORESTART;
 | |
| 
 | |
| 	hrtimer_forward(timer, now, tick_period);
 | |
| 
 | |
| 	return HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| static int sched_skew_tick;
 | |
| 
 | |
| static int __init skew_tick(char *str)
 | |
| {
 | |
| 	get_option(&str, &sched_skew_tick);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("skew_tick", skew_tick);
 | |
| 
 | |
| /**
 | |
|  * tick_setup_sched_timer - setup the tick emulation timer
 | |
|  */
 | |
| void tick_setup_sched_timer(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 	ktime_t now = ktime_get();
 | |
| 
 | |
| 	/*
 | |
| 	 * Emulate tick processing via per-CPU hrtimers:
 | |
| 	 */
 | |
| 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 | |
| 	ts->sched_timer.function = tick_sched_timer;
 | |
| 
 | |
| 	/* Get the next period (per-CPU) */
 | |
| 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
 | |
| 
 | |
| 	/* Offset the tick to avert jiffies_lock contention. */
 | |
| 	if (sched_skew_tick) {
 | |
| 		u64 offset = ktime_to_ns(tick_period) >> 1;
 | |
| 		do_div(offset, num_possible_cpus());
 | |
| 		offset *= smp_processor_id();
 | |
| 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
 | |
| 	}
 | |
| 
 | |
| 	hrtimer_forward(&ts->sched_timer, now, tick_period);
 | |
| 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 | |
| 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 | |
| }
 | |
| #endif /* HIGH_RES_TIMERS */
 | |
| 
 | |
| #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
 | |
| void tick_cancel_sched_timer(int cpu)
 | |
| {
 | |
| 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 | |
| 
 | |
| # ifdef CONFIG_HIGH_RES_TIMERS
 | |
| 	if (ts->sched_timer.base)
 | |
| 		hrtimer_cancel(&ts->sched_timer);
 | |
| # endif
 | |
| 
 | |
| 	memset(ts, 0, sizeof(*ts));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Async notification about clocksource changes
 | |
|  */
 | |
| void tick_clock_notify(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Async notification about clock event changes
 | |
|  */
 | |
| void tick_oneshot_notify(void)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	set_bit(0, &ts->check_clocks);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Check, if a change happened, which makes oneshot possible.
 | |
|  *
 | |
|  * Called cyclic from the hrtimer softirq (driven by the timer
 | |
|  * softirq) allow_nohz signals, that we can switch into low-res nohz
 | |
|  * mode, because high resolution timers are disabled (either compile
 | |
|  * or runtime). Called with interrupts disabled.
 | |
|  */
 | |
| int tick_check_oneshot_change(int allow_nohz)
 | |
| {
 | |
| 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 | |
| 
 | |
| 	if (!test_and_clear_bit(0, &ts->check_clocks))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!allow_nohz)
 | |
| 		return 1;
 | |
| 
 | |
| 	tick_nohz_switch_to_nohz();
 | |
| 	return 0;
 | |
| }
 |