mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 7d3bf613e9
			
		
	
	
		7d3bf613e9
		
	
	
	
	
		
			
			* DAX broke a fundamental assumption of truncate of file mapped pages.
   The truncate path assumed that it is safe to disconnect a pinned page
   from a file and let the filesystem reclaim the physical block. With DAX
   the page is equivalent to the filesystem block. Introduce
   dax_layout_busy_page() to enable filesystems to wait for pinned DAX
   pages to be released. Without this wait a filesystem could allocate
   blocks under active device-DMA to a new file.
 
 * DAX arranges for the block layer to be bypassed and uses
   dax_direct_access() + copy_to_iter() to satisfy read(2) calls.
   However, the memcpy_mcsafe() facility is available through the pmem
   block driver. In order to safely handle media errors, via the DAX
   block-layer bypass, introduce copy_to_iter_mcsafe().
 
 * Fix cache management policy relative to the ACPI NFIT Platform
   Capabilities Structure to properly elide cache flushes when they are not
   necessary. The table indicates whether CPU caches are power-fail
   protected. Clarify that a deep flush is always performed on
   REQ_{FUA,PREFLUSH} requests.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJbGxI7AAoJEB7SkWpmfYgCDjsP/2Lcibu9Kf4tKIzuInsle6iE
 6qP29qlkpHVTpDKbhvIxTYTYL9sMU0DNUrpPCJR/EYdeyztLWDFC5EAT1wF240vf
 maV37s/uP331jSC/2VJnKWzBs2ztQxmKLEIQCxh6aT0qs9cbaOvJgB/WlVu+qtsl
 aGJFLmb6vdQacp31noU5plKrMgMA1pADyF5qx9I9K2HwowHE7T368ZEFS/3S//c3
 LXmpx/Nfq52sGu/qbRbu6B1CTJhIGhmarObyQnvBYoKntK1Ov4e8DS95wD3EhNDe
 FuRkOCUKhjl6cFy7QVWh1ct1bFm84ny+b4/AtbpOmv9l/+0mveJ7e+5mu8HQTifT
 wYiEe2xzXJ+OG/xntv8SvlZKMpjP3BqI0jYsTutsjT4oHrciiXdXM186cyS+BiGp
 KtFmWyncQJgfiTq6+Hj5XpP9BapNS+OYdYgUagw9ZwzdzptuGFYUMSVOBrYrn6c/
 fwqtxjubykJoW0P3pkIoT91arFSea7nxOKnGwft06imQ7TwR4ARsI308feQ9itJq
 2P2e7/20nYMsw2aRaUDDA70Yu+Lagn1m8WL87IybUGeUDLb1BAkjphAlWa6COJ+u
 PhvAD2tvyM9m0c7O5Mytvz7iWKG6SVgatoAyOPkaeplQK8khZ+wEpuK58sO6C1w8
 4GBvt9ri9i/Ww/A+ppWs
 =4bfw
 -----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
 "This adds a user for the new 'bytes-remaining' updates to
  memcpy_mcsafe() that you already received through Ingo via the
  x86-dax- for-linus pull.
  Not included here, but still targeting this cycle, is support for
  handling memory media errors (poison) consumed via userspace dax
  mappings.
  Summary:
   - DAX broke a fundamental assumption of truncate of file mapped
     pages. The truncate path assumed that it is safe to disconnect a
     pinned page from a file and let the filesystem reclaim the physical
     block. With DAX the page is equivalent to the filesystem block.
     Introduce dax_layout_busy_page() to enable filesystems to wait for
     pinned DAX pages to be released. Without this wait a filesystem
     could allocate blocks under active device-DMA to a new file.
   - DAX arranges for the block layer to be bypassed and uses
     dax_direct_access() + copy_to_iter() to satisfy read(2) calls.
     However, the memcpy_mcsafe() facility is available through the pmem
     block driver. In order to safely handle media errors, via the DAX
     block-layer bypass, introduce copy_to_iter_mcsafe().
   - Fix cache management policy relative to the ACPI NFIT Platform
     Capabilities Structure to properly elide cache flushes when they
     are not necessary. The table indicates whether CPU caches are
     power-fail protected. Clarify that a deep flush is always performed
     on REQ_{FUA,PREFLUSH} requests"
* tag 'libnvdimm-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (21 commits)
  dax: Use dax_write_cache* helpers
  libnvdimm, pmem: Do not flush power-fail protected CPU caches
  libnvdimm, pmem: Unconditionally deep flush on *sync
  libnvdimm, pmem: Complete REQ_FLUSH => REQ_PREFLUSH
  acpi, nfit: Remove ecc_unit_size
  dax: dax_insert_mapping_entry always succeeds
  libnvdimm, e820: Register all pmem resources
  libnvdimm: Debug probe times
  linvdimm, pmem: Preserve read-only setting for pmem devices
  x86, nfit_test: Add unit test for memcpy_mcsafe()
  pmem: Switch to copy_to_iter_mcsafe()
  dax: Report bytes remaining in dax_iomap_actor()
  dax: Introduce a ->copy_to_iter dax operation
  uio, lib: Fix CONFIG_ARCH_HAS_UACCESS_MCSAFE compilation
  xfs, dax: introduce xfs_break_dax_layouts()
  xfs: prepare xfs_break_layouts() for another layout type
  xfs: prepare xfs_break_layouts() to be called with XFS_MMAPLOCK_EXCL
  mm, fs, dax: handle layout changes to pinned dax mappings
  mm: fix __gup_device_huge vs unmap
  mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPS
  ...
		
	
			
		
			
				
	
	
		
			3185 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3185 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
 | |
|  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-core.h"
 | |
| #include "dm-rq.h"
 | |
| #include "dm-uevent.h"
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/blkpg.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/hdreg.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/pr.h>
 | |
| #include <linux/refcount.h>
 | |
| 
 | |
| #define DM_MSG_PREFIX "core"
 | |
| 
 | |
| /*
 | |
|  * Cookies are numeric values sent with CHANGE and REMOVE
 | |
|  * uevents while resuming, removing or renaming the device.
 | |
|  */
 | |
| #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
 | |
| #define DM_COOKIE_LENGTH 24
 | |
| 
 | |
| static const char *_name = DM_NAME;
 | |
| 
 | |
| static unsigned int major = 0;
 | |
| static unsigned int _major = 0;
 | |
| 
 | |
| static DEFINE_IDR(_minor_idr);
 | |
| 
 | |
| static DEFINE_SPINLOCK(_minor_lock);
 | |
| 
 | |
| static void do_deferred_remove(struct work_struct *w);
 | |
| 
 | |
| static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
 | |
| 
 | |
| static struct workqueue_struct *deferred_remove_workqueue;
 | |
| 
 | |
| atomic_t dm_global_event_nr = ATOMIC_INIT(0);
 | |
| DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
 | |
| 
 | |
| void dm_issue_global_event(void)
 | |
| {
 | |
| 	atomic_inc(&dm_global_event_nr);
 | |
| 	wake_up(&dm_global_eventq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * One of these is allocated (on-stack) per original bio.
 | |
|  */
 | |
| struct clone_info {
 | |
| 	struct dm_table *map;
 | |
| 	struct bio *bio;
 | |
| 	struct dm_io *io;
 | |
| 	sector_t sector;
 | |
| 	unsigned sector_count;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * One of these is allocated per clone bio.
 | |
|  */
 | |
| #define DM_TIO_MAGIC 7282014
 | |
| struct dm_target_io {
 | |
| 	unsigned magic;
 | |
| 	struct dm_io *io;
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned target_bio_nr;
 | |
| 	unsigned *len_ptr;
 | |
| 	bool inside_dm_io;
 | |
| 	struct bio clone;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * One of these is allocated per original bio.
 | |
|  * It contains the first clone used for that original.
 | |
|  */
 | |
| #define DM_IO_MAGIC 5191977
 | |
| struct dm_io {
 | |
| 	unsigned magic;
 | |
| 	struct mapped_device *md;
 | |
| 	blk_status_t status;
 | |
| 	atomic_t io_count;
 | |
| 	struct bio *orig_bio;
 | |
| 	unsigned long start_time;
 | |
| 	spinlock_t endio_lock;
 | |
| 	struct dm_stats_aux stats_aux;
 | |
| 	/* last member of dm_target_io is 'struct bio' */
 | |
| 	struct dm_target_io tio;
 | |
| };
 | |
| 
 | |
| void *dm_per_bio_data(struct bio *bio, size_t data_size)
 | |
| {
 | |
| 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 | |
| 	if (!tio->inside_dm_io)
 | |
| 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 | |
| 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_per_bio_data);
 | |
| 
 | |
| struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 | |
| {
 | |
| 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 | |
| 	if (io->magic == DM_IO_MAGIC)
 | |
| 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 | |
| 	BUG_ON(io->magic != DM_TIO_MAGIC);
 | |
| 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 | |
| 
 | |
| unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 | |
| {
 | |
| 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 | |
| 
 | |
| #define MINOR_ALLOCED ((void *)-1)
 | |
| 
 | |
| /*
 | |
|  * Bits for the md->flags field.
 | |
|  */
 | |
| #define DMF_BLOCK_IO_FOR_SUSPEND 0
 | |
| #define DMF_SUSPENDED 1
 | |
| #define DMF_FROZEN 2
 | |
| #define DMF_FREEING 3
 | |
| #define DMF_DELETING 4
 | |
| #define DMF_NOFLUSH_SUSPENDING 5
 | |
| #define DMF_DEFERRED_REMOVE 6
 | |
| #define DMF_SUSPENDED_INTERNALLY 7
 | |
| 
 | |
| #define DM_NUMA_NODE NUMA_NO_NODE
 | |
| static int dm_numa_node = DM_NUMA_NODE;
 | |
| 
 | |
| /*
 | |
|  * For mempools pre-allocation at the table loading time.
 | |
|  */
 | |
| struct dm_md_mempools {
 | |
| 	struct bio_set bs;
 | |
| 	struct bio_set io_bs;
 | |
| };
 | |
| 
 | |
| struct table_device {
 | |
| 	struct list_head list;
 | |
| 	refcount_t count;
 | |
| 	struct dm_dev dm_dev;
 | |
| };
 | |
| 
 | |
| static struct kmem_cache *_rq_tio_cache;
 | |
| static struct kmem_cache *_rq_cache;
 | |
| 
 | |
| /*
 | |
|  * Bio-based DM's mempools' reserved IOs set by the user.
 | |
|  */
 | |
| #define RESERVED_BIO_BASED_IOS		16
 | |
| static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 | |
| 
 | |
| static int __dm_get_module_param_int(int *module_param, int min, int max)
 | |
| {
 | |
| 	int param = READ_ONCE(*module_param);
 | |
| 	int modified_param = 0;
 | |
| 	bool modified = true;
 | |
| 
 | |
| 	if (param < min)
 | |
| 		modified_param = min;
 | |
| 	else if (param > max)
 | |
| 		modified_param = max;
 | |
| 	else
 | |
| 		modified = false;
 | |
| 
 | |
| 	if (modified) {
 | |
| 		(void)cmpxchg(module_param, param, modified_param);
 | |
| 		param = modified_param;
 | |
| 	}
 | |
| 
 | |
| 	return param;
 | |
| }
 | |
| 
 | |
| unsigned __dm_get_module_param(unsigned *module_param,
 | |
| 			       unsigned def, unsigned max)
 | |
| {
 | |
| 	unsigned param = READ_ONCE(*module_param);
 | |
| 	unsigned modified_param = 0;
 | |
| 
 | |
| 	if (!param)
 | |
| 		modified_param = def;
 | |
| 	else if (param > max)
 | |
| 		modified_param = max;
 | |
| 
 | |
| 	if (modified_param) {
 | |
| 		(void)cmpxchg(module_param, param, modified_param);
 | |
| 		param = modified_param;
 | |
| 	}
 | |
| 
 | |
| 	return param;
 | |
| }
 | |
| 
 | |
| unsigned dm_get_reserved_bio_based_ios(void)
 | |
| {
 | |
| 	return __dm_get_module_param(&reserved_bio_based_ios,
 | |
| 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 | |
| 
 | |
| static unsigned dm_get_numa_node(void)
 | |
| {
 | |
| 	return __dm_get_module_param_int(&dm_numa_node,
 | |
| 					 DM_NUMA_NODE, num_online_nodes() - 1);
 | |
| }
 | |
| 
 | |
| static int __init local_init(void)
 | |
| {
 | |
| 	int r = -ENOMEM;
 | |
| 
 | |
| 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 | |
| 	if (!_rq_tio_cache)
 | |
| 		return r;
 | |
| 
 | |
| 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 | |
| 				      __alignof__(struct request), 0, NULL);
 | |
| 	if (!_rq_cache)
 | |
| 		goto out_free_rq_tio_cache;
 | |
| 
 | |
| 	r = dm_uevent_init();
 | |
| 	if (r)
 | |
| 		goto out_free_rq_cache;
 | |
| 
 | |
| 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 | |
| 	if (!deferred_remove_workqueue) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto out_uevent_exit;
 | |
| 	}
 | |
| 
 | |
| 	_major = major;
 | |
| 	r = register_blkdev(_major, _name);
 | |
| 	if (r < 0)
 | |
| 		goto out_free_workqueue;
 | |
| 
 | |
| 	if (!_major)
 | |
| 		_major = r;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_workqueue:
 | |
| 	destroy_workqueue(deferred_remove_workqueue);
 | |
| out_uevent_exit:
 | |
| 	dm_uevent_exit();
 | |
| out_free_rq_cache:
 | |
| 	kmem_cache_destroy(_rq_cache);
 | |
| out_free_rq_tio_cache:
 | |
| 	kmem_cache_destroy(_rq_tio_cache);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void local_exit(void)
 | |
| {
 | |
| 	flush_scheduled_work();
 | |
| 	destroy_workqueue(deferred_remove_workqueue);
 | |
| 
 | |
| 	kmem_cache_destroy(_rq_cache);
 | |
| 	kmem_cache_destroy(_rq_tio_cache);
 | |
| 	unregister_blkdev(_major, _name);
 | |
| 	dm_uevent_exit();
 | |
| 
 | |
| 	_major = 0;
 | |
| 
 | |
| 	DMINFO("cleaned up");
 | |
| }
 | |
| 
 | |
| static int (*_inits[])(void) __initdata = {
 | |
| 	local_init,
 | |
| 	dm_target_init,
 | |
| 	dm_linear_init,
 | |
| 	dm_stripe_init,
 | |
| 	dm_io_init,
 | |
| 	dm_kcopyd_init,
 | |
| 	dm_interface_init,
 | |
| 	dm_statistics_init,
 | |
| };
 | |
| 
 | |
| static void (*_exits[])(void) = {
 | |
| 	local_exit,
 | |
| 	dm_target_exit,
 | |
| 	dm_linear_exit,
 | |
| 	dm_stripe_exit,
 | |
| 	dm_io_exit,
 | |
| 	dm_kcopyd_exit,
 | |
| 	dm_interface_exit,
 | |
| 	dm_statistics_exit,
 | |
| };
 | |
| 
 | |
| static int __init dm_init(void)
 | |
| {
 | |
| 	const int count = ARRAY_SIZE(_inits);
 | |
| 
 | |
| 	int r, i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		r = _inits[i]();
 | |
| 		if (r)
 | |
| 			goto bad;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|       bad:
 | |
| 	while (i--)
 | |
| 		_exits[i]();
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void __exit dm_exit(void)
 | |
| {
 | |
| 	int i = ARRAY_SIZE(_exits);
 | |
| 
 | |
| 	while (i--)
 | |
| 		_exits[i]();
 | |
| 
 | |
| 	/*
 | |
| 	 * Should be empty by this point.
 | |
| 	 */
 | |
| 	idr_destroy(&_minor_idr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Block device functions
 | |
|  */
 | |
| int dm_deleting_md(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_DELETING, &md->flags);
 | |
| }
 | |
| 
 | |
| static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	md = bdev->bd_disk->private_data;
 | |
| 	if (!md)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (test_bit(DMF_FREEING, &md->flags) ||
 | |
| 	    dm_deleting_md(md)) {
 | |
| 		md = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dm_get(md);
 | |
| 	atomic_inc(&md->open_count);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return md ? 0 : -ENXIO;
 | |
| }
 | |
| 
 | |
| static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	md = disk->private_data;
 | |
| 	if (WARN_ON(!md))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&md->open_count) &&
 | |
| 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 | |
| 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 | |
| 
 | |
| 	dm_put(md);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| }
 | |
| 
 | |
| int dm_open_count(struct mapped_device *md)
 | |
| {
 | |
| 	return atomic_read(&md->open_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Guarantees nothing is using the device before it's deleted.
 | |
|  */
 | |
| int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	if (dm_open_count(md)) {
 | |
| 		r = -EBUSY;
 | |
| 		if (mark_deferred)
 | |
| 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 | |
| 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 | |
| 		r = -EEXIST;
 | |
| 	else
 | |
| 		set_bit(DMF_DELETING, &md->flags);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_cancel_deferred_remove(struct mapped_device *md)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	if (test_bit(DMF_DELETING, &md->flags))
 | |
| 		r = -EBUSY;
 | |
| 	else
 | |
| 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void do_deferred_remove(struct work_struct *w)
 | |
| {
 | |
| 	dm_deferred_remove();
 | |
| }
 | |
| 
 | |
| sector_t dm_get_size(struct mapped_device *md)
 | |
| {
 | |
| 	return get_capacity(md->disk);
 | |
| }
 | |
| 
 | |
| struct request_queue *dm_get_md_queue(struct mapped_device *md)
 | |
| {
 | |
| 	return md->queue;
 | |
| }
 | |
| 
 | |
| struct dm_stats *dm_get_stats(struct mapped_device *md)
 | |
| {
 | |
| 	return &md->stats;
 | |
| }
 | |
| 
 | |
| static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 
 | |
| 	return dm_get_geometry(md, geo);
 | |
| }
 | |
| 
 | |
| static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 | |
| 			    struct block_device **bdev)
 | |
| 	__acquires(md->io_barrier)
 | |
| {
 | |
| 	struct dm_target *tgt;
 | |
| 	struct dm_table *map;
 | |
| 	int r;
 | |
| 
 | |
| retry:
 | |
| 	r = -ENOTTY;
 | |
| 	map = dm_get_live_table(md, srcu_idx);
 | |
| 	if (!map || !dm_table_get_size(map))
 | |
| 		return r;
 | |
| 
 | |
| 	/* We only support devices that have a single target */
 | |
| 	if (dm_table_get_num_targets(map) != 1)
 | |
| 		return r;
 | |
| 
 | |
| 	tgt = dm_table_get_target(map, 0);
 | |
| 	if (!tgt->type->prepare_ioctl)
 | |
| 		return r;
 | |
| 
 | |
| 	if (dm_suspended_md(md))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	r = tgt->type->prepare_ioctl(tgt, bdev);
 | |
| 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 | |
| 		dm_put_live_table(md, *srcu_idx);
 | |
| 		msleep(10);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 | |
| 	__releases(md->io_barrier)
 | |
| {
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| }
 | |
| 
 | |
| static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 | |
| 			unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	int r, srcu_idx;
 | |
| 
 | |
| 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (r > 0) {
 | |
| 		/*
 | |
| 		 * Target determined this ioctl is being issued against a
 | |
| 		 * subset of the parent bdev; require extra privileges.
 | |
| 		 */
 | |
| 		if (!capable(CAP_SYS_RAWIO)) {
 | |
| 			DMWARN_LIMIT(
 | |
| 	"%s: sending ioctl %x to DM device without required privilege.",
 | |
| 				current->comm, cmd);
 | |
| 			r = -ENOIOCTLCMD;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 | |
| out:
 | |
| 	dm_unprepare_ioctl(md, srcu_idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void start_io_acct(struct dm_io *io);
 | |
| 
 | |
| static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 | |
| {
 | |
| 	struct dm_io *io;
 | |
| 	struct dm_target_io *tio;
 | |
| 	struct bio *clone;
 | |
| 
 | |
| 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 | |
| 	if (!clone)
 | |
| 		return NULL;
 | |
| 
 | |
| 	tio = container_of(clone, struct dm_target_io, clone);
 | |
| 	tio->inside_dm_io = true;
 | |
| 	tio->io = NULL;
 | |
| 
 | |
| 	io = container_of(tio, struct dm_io, tio);
 | |
| 	io->magic = DM_IO_MAGIC;
 | |
| 	io->status = 0;
 | |
| 	atomic_set(&io->io_count, 1);
 | |
| 	io->orig_bio = bio;
 | |
| 	io->md = md;
 | |
| 	spin_lock_init(&io->endio_lock);
 | |
| 
 | |
| 	start_io_acct(io);
 | |
| 
 | |
| 	return io;
 | |
| }
 | |
| 
 | |
| static void free_io(struct mapped_device *md, struct dm_io *io)
 | |
| {
 | |
| 	bio_put(&io->tio.clone);
 | |
| }
 | |
| 
 | |
| static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 | |
| 				      unsigned target_bio_nr, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct dm_target_io *tio;
 | |
| 
 | |
| 	if (!ci->io->tio.io) {
 | |
| 		/* the dm_target_io embedded in ci->io is available */
 | |
| 		tio = &ci->io->tio;
 | |
| 	} else {
 | |
| 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 | |
| 		if (!clone)
 | |
| 			return NULL;
 | |
| 
 | |
| 		tio = container_of(clone, struct dm_target_io, clone);
 | |
| 		tio->inside_dm_io = false;
 | |
| 	}
 | |
| 
 | |
| 	tio->magic = DM_TIO_MAGIC;
 | |
| 	tio->io = ci->io;
 | |
| 	tio->ti = ti;
 | |
| 	tio->target_bio_nr = target_bio_nr;
 | |
| 
 | |
| 	return tio;
 | |
| }
 | |
| 
 | |
| static void free_tio(struct dm_target_io *tio)
 | |
| {
 | |
| 	if (tio->inside_dm_io)
 | |
| 		return;
 | |
| 	bio_put(&tio->clone);
 | |
| }
 | |
| 
 | |
| int md_in_flight(struct mapped_device *md)
 | |
| {
 | |
| 	return atomic_read(&md->pending[READ]) +
 | |
| 	       atomic_read(&md->pending[WRITE]);
 | |
| }
 | |
| 
 | |
| static void start_io_acct(struct dm_io *io)
 | |
| {
 | |
| 	struct mapped_device *md = io->md;
 | |
| 	struct bio *bio = io->orig_bio;
 | |
| 	int rw = bio_data_dir(bio);
 | |
| 
 | |
| 	io->start_time = jiffies;
 | |
| 
 | |
| 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
 | |
| 
 | |
| 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 | |
| 		   atomic_inc_return(&md->pending[rw]));
 | |
| 
 | |
| 	if (unlikely(dm_stats_used(&md->stats)))
 | |
| 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 | |
| 				    bio->bi_iter.bi_sector, bio_sectors(bio),
 | |
| 				    false, 0, &io->stats_aux);
 | |
| }
 | |
| 
 | |
| static void end_io_acct(struct dm_io *io)
 | |
| {
 | |
| 	struct mapped_device *md = io->md;
 | |
| 	struct bio *bio = io->orig_bio;
 | |
| 	unsigned long duration = jiffies - io->start_time;
 | |
| 	int pending;
 | |
| 	int rw = bio_data_dir(bio);
 | |
| 
 | |
| 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
 | |
| 
 | |
| 	if (unlikely(dm_stats_used(&md->stats)))
 | |
| 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 | |
| 				    bio->bi_iter.bi_sector, bio_sectors(bio),
 | |
| 				    true, duration, &io->stats_aux);
 | |
| 
 | |
| 	/*
 | |
| 	 * After this is decremented the bio must not be touched if it is
 | |
| 	 * a flush.
 | |
| 	 */
 | |
| 	pending = atomic_dec_return(&md->pending[rw]);
 | |
| 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 | |
| 	pending += atomic_read(&md->pending[rw^0x1]);
 | |
| 
 | |
| 	/* nudge anyone waiting on suspend queue */
 | |
| 	if (!pending)
 | |
| 		wake_up(&md->wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the bio to the list of deferred io.
 | |
|  */
 | |
| static void queue_io(struct mapped_device *md, struct bio *bio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&md->deferred_lock, flags);
 | |
| 	bio_list_add(&md->deferred, bio);
 | |
| 	spin_unlock_irqrestore(&md->deferred_lock, flags);
 | |
| 	queue_work(md->wq, &md->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Everyone (including functions in this file), should use this
 | |
|  * function to access the md->map field, and make sure they call
 | |
|  * dm_put_live_table() when finished.
 | |
|  */
 | |
| struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 | |
| {
 | |
| 	*srcu_idx = srcu_read_lock(&md->io_barrier);
 | |
| 
 | |
| 	return srcu_dereference(md->map, &md->io_barrier);
 | |
| }
 | |
| 
 | |
| void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 | |
| {
 | |
| 	srcu_read_unlock(&md->io_barrier, srcu_idx);
 | |
| }
 | |
| 
 | |
| void dm_sync_table(struct mapped_device *md)
 | |
| {
 | |
| 	synchronize_srcu(&md->io_barrier);
 | |
| 	synchronize_rcu_expedited();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A fast alternative to dm_get_live_table/dm_put_live_table.
 | |
|  * The caller must not block between these two functions.
 | |
|  */
 | |
| static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 | |
| {
 | |
| 	rcu_read_lock();
 | |
| 	return rcu_dereference(md->map);
 | |
| }
 | |
| 
 | |
| static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 | |
| {
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static char *_dm_claim_ptr = "I belong to device-mapper";
 | |
| 
 | |
| /*
 | |
|  * Open a table device so we can use it as a map destination.
 | |
|  */
 | |
| static int open_table_device(struct table_device *td, dev_t dev,
 | |
| 			     struct mapped_device *md)
 | |
| {
 | |
| 	struct block_device *bdev;
 | |
| 
 | |
| 	int r;
 | |
| 
 | |
| 	BUG_ON(td->dm_dev.bdev);
 | |
| 
 | |
| 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 | |
| 	if (IS_ERR(bdev))
 | |
| 		return PTR_ERR(bdev);
 | |
| 
 | |
| 	r = bd_link_disk_holder(bdev, dm_disk(md));
 | |
| 	if (r) {
 | |
| 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	td->dm_dev.bdev = bdev;
 | |
| 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Close a table device that we've been using.
 | |
|  */
 | |
| static void close_table_device(struct table_device *td, struct mapped_device *md)
 | |
| {
 | |
| 	if (!td->dm_dev.bdev)
 | |
| 		return;
 | |
| 
 | |
| 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 | |
| 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 | |
| 	put_dax(td->dm_dev.dax_dev);
 | |
| 	td->dm_dev.bdev = NULL;
 | |
| 	td->dm_dev.dax_dev = NULL;
 | |
| }
 | |
| 
 | |
| static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 | |
| 					      fmode_t mode) {
 | |
| 	struct table_device *td;
 | |
| 
 | |
| 	list_for_each_entry(td, l, list)
 | |
| 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 | |
| 			return td;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 | |
| 			struct dm_dev **result) {
 | |
| 	int r;
 | |
| 	struct table_device *td;
 | |
| 
 | |
| 	mutex_lock(&md->table_devices_lock);
 | |
| 	td = find_table_device(&md->table_devices, dev, mode);
 | |
| 	if (!td) {
 | |
| 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 | |
| 		if (!td) {
 | |
| 			mutex_unlock(&md->table_devices_lock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		td->dm_dev.mode = mode;
 | |
| 		td->dm_dev.bdev = NULL;
 | |
| 
 | |
| 		if ((r = open_table_device(td, dev, md))) {
 | |
| 			mutex_unlock(&md->table_devices_lock);
 | |
| 			kfree(td);
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		format_dev_t(td->dm_dev.name, dev);
 | |
| 
 | |
| 		refcount_set(&td->count, 1);
 | |
| 		list_add(&td->list, &md->table_devices);
 | |
| 	} else {
 | |
| 		refcount_inc(&td->count);
 | |
| 	}
 | |
| 	mutex_unlock(&md->table_devices_lock);
 | |
| 
 | |
| 	*result = &td->dm_dev;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_get_table_device);
 | |
| 
 | |
| void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 | |
| {
 | |
| 	struct table_device *td = container_of(d, struct table_device, dm_dev);
 | |
| 
 | |
| 	mutex_lock(&md->table_devices_lock);
 | |
| 	if (refcount_dec_and_test(&td->count)) {
 | |
| 		close_table_device(td, md);
 | |
| 		list_del(&td->list);
 | |
| 		kfree(td);
 | |
| 	}
 | |
| 	mutex_unlock(&md->table_devices_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_put_table_device);
 | |
| 
 | |
| static void free_table_devices(struct list_head *devices)
 | |
| {
 | |
| 	struct list_head *tmp, *next;
 | |
| 
 | |
| 	list_for_each_safe(tmp, next, devices) {
 | |
| 		struct table_device *td = list_entry(tmp, struct table_device, list);
 | |
| 
 | |
| 		DMWARN("dm_destroy: %s still exists with %d references",
 | |
| 		       td->dm_dev.name, refcount_read(&td->count));
 | |
| 		kfree(td);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the geometry associated with a dm device
 | |
|  */
 | |
| int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 | |
| {
 | |
| 	*geo = md->geometry;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the geometry of a device.
 | |
|  */
 | |
| int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 | |
| {
 | |
| 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 | |
| 
 | |
| 	if (geo->start > sz) {
 | |
| 		DMWARN("Start sector is beyond the geometry limits.");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	md->geometry = *geo;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __noflush_suspending(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrements the number of outstanding ios that a bio has been
 | |
|  * cloned into, completing the original io if necc.
 | |
|  */
 | |
| static void dec_pending(struct dm_io *io, blk_status_t error)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	blk_status_t io_error;
 | |
| 	struct bio *bio;
 | |
| 	struct mapped_device *md = io->md;
 | |
| 
 | |
| 	/* Push-back supersedes any I/O errors */
 | |
| 	if (unlikely(error)) {
 | |
| 		spin_lock_irqsave(&io->endio_lock, flags);
 | |
| 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 | |
| 			io->status = error;
 | |
| 		spin_unlock_irqrestore(&io->endio_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_dec_and_test(&io->io_count)) {
 | |
| 		if (io->status == BLK_STS_DM_REQUEUE) {
 | |
| 			/*
 | |
| 			 * Target requested pushing back the I/O.
 | |
| 			 */
 | |
| 			spin_lock_irqsave(&md->deferred_lock, flags);
 | |
| 			if (__noflush_suspending(md))
 | |
| 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 | |
| 				bio_list_add_head(&md->deferred, io->orig_bio);
 | |
| 			else
 | |
| 				/* noflush suspend was interrupted. */
 | |
| 				io->status = BLK_STS_IOERR;
 | |
| 			spin_unlock_irqrestore(&md->deferred_lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		io_error = io->status;
 | |
| 		bio = io->orig_bio;
 | |
| 		end_io_acct(io);
 | |
| 		free_io(md, io);
 | |
| 
 | |
| 		if (io_error == BLK_STS_DM_REQUEUE)
 | |
| 			return;
 | |
| 
 | |
| 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 | |
| 			/*
 | |
| 			 * Preflush done for flush with data, reissue
 | |
| 			 * without REQ_PREFLUSH.
 | |
| 			 */
 | |
| 			bio->bi_opf &= ~REQ_PREFLUSH;
 | |
| 			queue_io(md, bio);
 | |
| 		} else {
 | |
| 			/* done with normal IO or empty flush */
 | |
| 			if (io_error)
 | |
| 				bio->bi_status = io_error;
 | |
| 			bio_endio(bio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void disable_write_same(struct mapped_device *md)
 | |
| {
 | |
| 	struct queue_limits *limits = dm_get_queue_limits(md);
 | |
| 
 | |
| 	/* device doesn't really support WRITE SAME, disable it */
 | |
| 	limits->max_write_same_sectors = 0;
 | |
| }
 | |
| 
 | |
| void disable_write_zeroes(struct mapped_device *md)
 | |
| {
 | |
| 	struct queue_limits *limits = dm_get_queue_limits(md);
 | |
| 
 | |
| 	/* device doesn't really support WRITE ZEROES, disable it */
 | |
| 	limits->max_write_zeroes_sectors = 0;
 | |
| }
 | |
| 
 | |
| static void clone_endio(struct bio *bio)
 | |
| {
 | |
| 	blk_status_t error = bio->bi_status;
 | |
| 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 | |
| 	struct dm_io *io = tio->io;
 | |
| 	struct mapped_device *md = tio->io->md;
 | |
| 	dm_endio_fn endio = tio->ti->type->end_io;
 | |
| 
 | |
| 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 | |
| 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 | |
| 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
 | |
| 			disable_write_same(md);
 | |
| 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 | |
| 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 | |
| 			disable_write_zeroes(md);
 | |
| 	}
 | |
| 
 | |
| 	if (endio) {
 | |
| 		int r = endio(tio->ti, bio, &error);
 | |
| 		switch (r) {
 | |
| 		case DM_ENDIO_REQUEUE:
 | |
| 			error = BLK_STS_DM_REQUEUE;
 | |
| 			/*FALLTHRU*/
 | |
| 		case DM_ENDIO_DONE:
 | |
| 			break;
 | |
| 		case DM_ENDIO_INCOMPLETE:
 | |
| 			/* The target will handle the io */
 | |
| 			return;
 | |
| 		default:
 | |
| 			DMWARN("unimplemented target endio return value: %d", r);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_tio(tio);
 | |
| 	dec_pending(io, error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return maximum size of I/O possible at the supplied sector up to the current
 | |
|  * target boundary.
 | |
|  */
 | |
| static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 | |
| {
 | |
| 	sector_t target_offset = dm_target_offset(ti, sector);
 | |
| 
 | |
| 	return ti->len - target_offset;
 | |
| }
 | |
| 
 | |
| static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 | |
| {
 | |
| 	sector_t len = max_io_len_target_boundary(sector, ti);
 | |
| 	sector_t offset, max_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Does the target need to split even further?
 | |
| 	 */
 | |
| 	if (ti->max_io_len) {
 | |
| 		offset = dm_target_offset(ti, sector);
 | |
| 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 | |
| 			max_len = sector_div(offset, ti->max_io_len);
 | |
| 		else
 | |
| 			max_len = offset & (ti->max_io_len - 1);
 | |
| 		max_len = ti->max_io_len - max_len;
 | |
| 
 | |
| 		if (len > max_len)
 | |
| 			len = max_len;
 | |
| 	}
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 | |
| {
 | |
| 	if (len > UINT_MAX) {
 | |
| 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 | |
| 		      (unsigned long long)len, UINT_MAX);
 | |
| 		ti->error = "Maximum size of target IO is too large";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * BIO based queue uses its own splitting. When multipage bvecs
 | |
| 	 * is switched on, size of the incoming bio may be too big to
 | |
| 	 * be handled in some targets, such as crypt.
 | |
| 	 *
 | |
| 	 * When these targets are ready for the big bio, we can remove
 | |
| 	 * the limit.
 | |
| 	 */
 | |
| 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 | |
| 
 | |
| static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 | |
| 						sector_t sector, int *srcu_idx)
 | |
| 	__acquires(md->io_barrier)
 | |
| {
 | |
| 	struct dm_table *map;
 | |
| 	struct dm_target *ti;
 | |
| 
 | |
| 	map = dm_get_live_table(md, srcu_idx);
 | |
| 	if (!map)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ti = dm_table_find_target(map, sector);
 | |
| 	if (!dm_target_is_valid(ti))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return ti;
 | |
| }
 | |
| 
 | |
| static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
 | |
| 				 long nr_pages, void **kaddr, pfn_t *pfn)
 | |
| {
 | |
| 	struct mapped_device *md = dax_get_private(dax_dev);
 | |
| 	sector_t sector = pgoff * PAGE_SECTORS;
 | |
| 	struct dm_target *ti;
 | |
| 	long len, ret = -EIO;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 | |
| 
 | |
| 	if (!ti)
 | |
| 		goto out;
 | |
| 	if (!ti->type->direct_access)
 | |
| 		goto out;
 | |
| 	len = max_io_len(sector, ti) / PAGE_SECTORS;
 | |
| 	if (len < 1)
 | |
| 		goto out;
 | |
| 	nr_pages = min(len, nr_pages);
 | |
| 	if (ti->type->direct_access)
 | |
| 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
 | |
| 
 | |
|  out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 | |
| 				    void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	struct mapped_device *md = dax_get_private(dax_dev);
 | |
| 	sector_t sector = pgoff * PAGE_SECTORS;
 | |
| 	struct dm_target *ti;
 | |
| 	long ret = 0;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 | |
| 
 | |
| 	if (!ti)
 | |
| 		goto out;
 | |
| 	if (!ti->type->dax_copy_from_iter) {
 | |
| 		ret = copy_from_iter(addr, bytes, i);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
 | |
|  out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 | |
| 		void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	struct mapped_device *md = dax_get_private(dax_dev);
 | |
| 	sector_t sector = pgoff * PAGE_SECTORS;
 | |
| 	struct dm_target *ti;
 | |
| 	long ret = 0;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 | |
| 
 | |
| 	if (!ti)
 | |
| 		goto out;
 | |
| 	if (!ti->type->dax_copy_to_iter) {
 | |
| 		ret = copy_to_iter(addr, bytes, i);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
 | |
|  out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A target may call dm_accept_partial_bio only from the map routine.  It is
 | |
|  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
 | |
|  *
 | |
|  * dm_accept_partial_bio informs the dm that the target only wants to process
 | |
|  * additional n_sectors sectors of the bio and the rest of the data should be
 | |
|  * sent in a next bio.
 | |
|  *
 | |
|  * A diagram that explains the arithmetics:
 | |
|  * +--------------------+---------------+-------+
 | |
|  * |         1          |       2       |   3   |
 | |
|  * +--------------------+---------------+-------+
 | |
|  *
 | |
|  * <-------------- *tio->len_ptr --------------->
 | |
|  *                      <------- bi_size ------->
 | |
|  *                      <-- n_sectors -->
 | |
|  *
 | |
|  * Region 1 was already iterated over with bio_advance or similar function.
 | |
|  *	(it may be empty if the target doesn't use bio_advance)
 | |
|  * Region 2 is the remaining bio size that the target wants to process.
 | |
|  *	(it may be empty if region 1 is non-empty, although there is no reason
 | |
|  *	 to make it empty)
 | |
|  * The target requires that region 3 is to be sent in the next bio.
 | |
|  *
 | |
|  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
 | |
|  * the partially processed part (the sum of regions 1+2) must be the same for all
 | |
|  * copies of the bio.
 | |
|  */
 | |
| void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
 | |
| {
 | |
| 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 | |
| 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
 | |
| 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
 | |
| 	BUG_ON(bi_size > *tio->len_ptr);
 | |
| 	BUG_ON(n_sectors > bi_size);
 | |
| 	*tio->len_ptr -= bi_size - n_sectors;
 | |
| 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
 | |
| 
 | |
| /*
 | |
|  * The zone descriptors obtained with a zone report indicate
 | |
|  * zone positions within the target device. The zone descriptors
 | |
|  * must be remapped to match their position within the dm device.
 | |
|  * A target may call dm_remap_zone_report after completion of a
 | |
|  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
 | |
|  * from the target device mapping to the dm device.
 | |
|  */
 | |
| void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_ZONED
 | |
| 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 | |
| 	struct bio *report_bio = tio->io->orig_bio;
 | |
| 	struct blk_zone_report_hdr *hdr = NULL;
 | |
| 	struct blk_zone *zone;
 | |
| 	unsigned int nr_rep = 0;
 | |
| 	unsigned int ofst;
 | |
| 	struct bio_vec bvec;
 | |
| 	struct bvec_iter iter;
 | |
| 	void *addr;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remap the start sector of the reported zones. For sequential zones,
 | |
| 	 * also remap the write pointer position.
 | |
| 	 */
 | |
| 	bio_for_each_segment(bvec, report_bio, iter) {
 | |
| 		addr = kmap_atomic(bvec.bv_page);
 | |
| 
 | |
| 		/* Remember the report header in the first page */
 | |
| 		if (!hdr) {
 | |
| 			hdr = addr;
 | |
| 			ofst = sizeof(struct blk_zone_report_hdr);
 | |
| 		} else
 | |
| 			ofst = 0;
 | |
| 
 | |
| 		/* Set zones start sector */
 | |
| 		while (hdr->nr_zones && ofst < bvec.bv_len) {
 | |
| 			zone = addr + ofst;
 | |
| 			if (zone->start >= start + ti->len) {
 | |
| 				hdr->nr_zones = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			zone->start = zone->start + ti->begin - start;
 | |
| 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 | |
| 				if (zone->cond == BLK_ZONE_COND_FULL)
 | |
| 					zone->wp = zone->start + zone->len;
 | |
| 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
 | |
| 					zone->wp = zone->start;
 | |
| 				else
 | |
| 					zone->wp = zone->wp + ti->begin - start;
 | |
| 			}
 | |
| 			ofst += sizeof(struct blk_zone);
 | |
| 			hdr->nr_zones--;
 | |
| 			nr_rep++;
 | |
| 		}
 | |
| 
 | |
| 		if (addr != hdr)
 | |
| 			kunmap_atomic(addr);
 | |
| 
 | |
| 		if (!hdr->nr_zones)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (hdr) {
 | |
| 		hdr->nr_zones = nr_rep;
 | |
| 		kunmap_atomic(hdr);
 | |
| 	}
 | |
| 
 | |
| 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
 | |
| 
 | |
| #else /* !CONFIG_BLK_DEV_ZONED */
 | |
| 	bio->bi_status = BLK_STS_NOTSUPP;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_remap_zone_report);
 | |
| 
 | |
| static blk_qc_t __map_bio(struct dm_target_io *tio)
 | |
| {
 | |
| 	int r;
 | |
| 	sector_t sector;
 | |
| 	struct bio *clone = &tio->clone;
 | |
| 	struct dm_io *io = tio->io;
 | |
| 	struct mapped_device *md = io->md;
 | |
| 	struct dm_target *ti = tio->ti;
 | |
| 	blk_qc_t ret = BLK_QC_T_NONE;
 | |
| 
 | |
| 	clone->bi_end_io = clone_endio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the clone.  If r == 0 we don't need to do
 | |
| 	 * anything, the target has assumed ownership of
 | |
| 	 * this io.
 | |
| 	 */
 | |
| 	atomic_inc(&io->io_count);
 | |
| 	sector = clone->bi_iter.bi_sector;
 | |
| 
 | |
| 	r = ti->type->map(ti, clone);
 | |
| 	switch (r) {
 | |
| 	case DM_MAPIO_SUBMITTED:
 | |
| 		break;
 | |
| 	case DM_MAPIO_REMAPPED:
 | |
| 		/* the bio has been remapped so dispatch it */
 | |
| 		trace_block_bio_remap(clone->bi_disk->queue, clone,
 | |
| 				      bio_dev(io->orig_bio), sector);
 | |
| 		if (md->type == DM_TYPE_NVME_BIO_BASED)
 | |
| 			ret = direct_make_request(clone);
 | |
| 		else
 | |
| 			ret = generic_make_request(clone);
 | |
| 		break;
 | |
| 	case DM_MAPIO_KILL:
 | |
| 		free_tio(tio);
 | |
| 		dec_pending(io, BLK_STS_IOERR);
 | |
| 		break;
 | |
| 	case DM_MAPIO_REQUEUE:
 | |
| 		free_tio(tio);
 | |
| 		dec_pending(io, BLK_STS_DM_REQUEUE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DMWARN("unimplemented target map return value: %d", r);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
 | |
| {
 | |
| 	bio->bi_iter.bi_sector = sector;
 | |
| 	bio->bi_iter.bi_size = to_bytes(len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Creates a bio that consists of range of complete bvecs.
 | |
|  */
 | |
| static int clone_bio(struct dm_target_io *tio, struct bio *bio,
 | |
| 		     sector_t sector, unsigned len)
 | |
| {
 | |
| 	struct bio *clone = &tio->clone;
 | |
| 
 | |
| 	__bio_clone_fast(clone, bio);
 | |
| 
 | |
| 	if (unlikely(bio_integrity(bio) != NULL)) {
 | |
| 		int r;
 | |
| 
 | |
| 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
 | |
| 			     !dm_target_passes_integrity(tio->ti->type))) {
 | |
| 			DMWARN("%s: the target %s doesn't support integrity data.",
 | |
| 				dm_device_name(tio->io->md),
 | |
| 				tio->ti->type->name);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
 | |
| 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
 | |
| 	clone->bi_iter.bi_size = to_bytes(len);
 | |
| 
 | |
| 	if (unlikely(bio_integrity(bio) != NULL))
 | |
| 		bio_integrity_trim(clone);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
 | |
| 				struct dm_target *ti, unsigned num_bios)
 | |
| {
 | |
| 	struct dm_target_io *tio;
 | |
| 	int try;
 | |
| 
 | |
| 	if (!num_bios)
 | |
| 		return;
 | |
| 
 | |
| 	if (num_bios == 1) {
 | |
| 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
 | |
| 		bio_list_add(blist, &tio->clone);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (try = 0; try < 2; try++) {
 | |
| 		int bio_nr;
 | |
| 		struct bio *bio;
 | |
| 
 | |
| 		if (try)
 | |
| 			mutex_lock(&ci->io->md->table_devices_lock);
 | |
| 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
 | |
| 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
 | |
| 			if (!tio)
 | |
| 				break;
 | |
| 
 | |
| 			bio_list_add(blist, &tio->clone);
 | |
| 		}
 | |
| 		if (try)
 | |
| 			mutex_unlock(&ci->io->md->table_devices_lock);
 | |
| 		if (bio_nr == num_bios)
 | |
| 			return;
 | |
| 
 | |
| 		while ((bio = bio_list_pop(blist))) {
 | |
| 			tio = container_of(bio, struct dm_target_io, clone);
 | |
| 			free_tio(tio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
 | |
| 					   struct dm_target_io *tio, unsigned *len)
 | |
| {
 | |
| 	struct bio *clone = &tio->clone;
 | |
| 
 | |
| 	tio->len_ptr = len;
 | |
| 
 | |
| 	__bio_clone_fast(clone, ci->bio);
 | |
| 	if (len)
 | |
| 		bio_setup_sector(clone, ci->sector, *len);
 | |
| 
 | |
| 	return __map_bio(tio);
 | |
| }
 | |
| 
 | |
| static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
 | |
| 				  unsigned num_bios, unsigned *len)
 | |
| {
 | |
| 	struct bio_list blist = BIO_EMPTY_LIST;
 | |
| 	struct bio *bio;
 | |
| 	struct dm_target_io *tio;
 | |
| 
 | |
| 	alloc_multiple_bios(&blist, ci, ti, num_bios);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(&blist))) {
 | |
| 		tio = container_of(bio, struct dm_target_io, clone);
 | |
| 		(void) __clone_and_map_simple_bio(ci, tio, len);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __send_empty_flush(struct clone_info *ci)
 | |
| {
 | |
| 	unsigned target_nr = 0;
 | |
| 	struct dm_target *ti;
 | |
| 
 | |
| 	BUG_ON(bio_has_data(ci->bio));
 | |
| 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
 | |
| 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
 | |
| 				    sector_t sector, unsigned *len)
 | |
| {
 | |
| 	struct bio *bio = ci->bio;
 | |
| 	struct dm_target_io *tio;
 | |
| 	int r;
 | |
| 
 | |
| 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
 | |
| 	tio->len_ptr = len;
 | |
| 	r = clone_bio(tio, bio, sector, *len);
 | |
| 	if (r < 0) {
 | |
| 		free_tio(tio);
 | |
| 		return r;
 | |
| 	}
 | |
| 	(void) __map_bio(tio);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 | |
| 
 | |
| static unsigned get_num_discard_bios(struct dm_target *ti)
 | |
| {
 | |
| 	return ti->num_discard_bios;
 | |
| }
 | |
| 
 | |
| static unsigned get_num_secure_erase_bios(struct dm_target *ti)
 | |
| {
 | |
| 	return ti->num_secure_erase_bios;
 | |
| }
 | |
| 
 | |
| static unsigned get_num_write_same_bios(struct dm_target *ti)
 | |
| {
 | |
| 	return ti->num_write_same_bios;
 | |
| }
 | |
| 
 | |
| static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
 | |
| {
 | |
| 	return ti->num_write_zeroes_bios;
 | |
| }
 | |
| 
 | |
| typedef bool (*is_split_required_fn)(struct dm_target *ti);
 | |
| 
 | |
| static bool is_split_required_for_discard(struct dm_target *ti)
 | |
| {
 | |
| 	return ti->split_discard_bios;
 | |
| }
 | |
| 
 | |
| static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
 | |
| 				       get_num_bios_fn get_num_bios,
 | |
| 				       is_split_required_fn is_split_required)
 | |
| {
 | |
| 	unsigned len;
 | |
| 	unsigned num_bios;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though the device advertised support for this type of
 | |
| 	 * request, that does not mean every target supports it, and
 | |
| 	 * reconfiguration might also have changed that since the
 | |
| 	 * check was performed.
 | |
| 	 */
 | |
| 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
 | |
| 	if (!num_bios)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (is_split_required && !is_split_required(ti))
 | |
| 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 | |
| 	else
 | |
| 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
 | |
| 
 | |
| 	__send_duplicate_bios(ci, ti, num_bios, &len);
 | |
| 
 | |
| 	ci->sector += len;
 | |
| 	ci->sector_count -= len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __send_discard(struct clone_info *ci, struct dm_target *ti)
 | |
| {
 | |
| 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
 | |
| 					   is_split_required_for_discard);
 | |
| }
 | |
| 
 | |
| static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
 | |
| {
 | |
| 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
 | |
| }
 | |
| 
 | |
| static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
 | |
| {
 | |
| 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
 | |
| }
 | |
| 
 | |
| static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
 | |
| {
 | |
| 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
 | |
| }
 | |
| 
 | |
| static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
 | |
| 				  int *result)
 | |
| {
 | |
| 	struct bio *bio = ci->bio;
 | |
| 
 | |
| 	if (bio_op(bio) == REQ_OP_DISCARD)
 | |
| 		*result = __send_discard(ci, ti);
 | |
| 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
 | |
| 		*result = __send_secure_erase(ci, ti);
 | |
| 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
 | |
| 		*result = __send_write_same(ci, ti);
 | |
| 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
 | |
| 		*result = __send_write_zeroes(ci, ti);
 | |
| 	else
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select the correct strategy for processing a non-flush bio.
 | |
|  */
 | |
| static int __split_and_process_non_flush(struct clone_info *ci)
 | |
| {
 | |
| 	struct bio *bio = ci->bio;
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned len;
 | |
| 	int r;
 | |
| 
 | |
| 	ti = dm_table_find_target(ci->map, ci->sector);
 | |
| 	if (!dm_target_is_valid(ti))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
 | |
| 		return r;
 | |
| 
 | |
| 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
 | |
| 		len = ci->sector_count;
 | |
| 	else
 | |
| 		len = min_t(sector_t, max_io_len(ci->sector, ti),
 | |
| 			    ci->sector_count);
 | |
| 
 | |
| 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	ci->sector += len;
 | |
| 	ci->sector_count -= len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
 | |
| 			    struct dm_table *map, struct bio *bio)
 | |
| {
 | |
| 	ci->map = map;
 | |
| 	ci->io = alloc_io(md, bio);
 | |
| 	ci->sector = bio->bi_iter.bi_sector;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Entry point to split a bio into clones and submit them to the targets.
 | |
|  */
 | |
| static blk_qc_t __split_and_process_bio(struct mapped_device *md,
 | |
| 					struct dm_table *map, struct bio *bio)
 | |
| {
 | |
| 	struct clone_info ci;
 | |
| 	blk_qc_t ret = BLK_QC_T_NONE;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (unlikely(!map)) {
 | |
| 		bio_io_error(bio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	init_clone_info(&ci, md, map, bio);
 | |
| 
 | |
| 	if (bio->bi_opf & REQ_PREFLUSH) {
 | |
| 		ci.bio = &ci.io->md->flush_bio;
 | |
| 		ci.sector_count = 0;
 | |
| 		error = __send_empty_flush(&ci);
 | |
| 		/* dec_pending submits any data associated with flush */
 | |
| 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
 | |
| 		ci.bio = bio;
 | |
| 		ci.sector_count = 0;
 | |
| 		error = __split_and_process_non_flush(&ci);
 | |
| 	} else {
 | |
| 		ci.bio = bio;
 | |
| 		ci.sector_count = bio_sectors(bio);
 | |
| 		while (ci.sector_count && !error) {
 | |
| 			error = __split_and_process_non_flush(&ci);
 | |
| 			if (current->bio_list && ci.sector_count && !error) {
 | |
| 				/*
 | |
| 				 * Remainder must be passed to generic_make_request()
 | |
| 				 * so that it gets handled *after* bios already submitted
 | |
| 				 * have been completely processed.
 | |
| 				 * We take a clone of the original to store in
 | |
| 				 * ci.io->orig_bio to be used by end_io_acct() and
 | |
| 				 * for dec_pending to use for completion handling.
 | |
| 				 * As this path is not used for REQ_OP_ZONE_REPORT,
 | |
| 				 * the usage of io->orig_bio in dm_remap_zone_report()
 | |
| 				 * won't be affected by this reassignment.
 | |
| 				 */
 | |
| 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
 | |
| 								 &md->queue->bio_split);
 | |
| 				ci.io->orig_bio = b;
 | |
| 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
 | |
| 				bio_chain(b, bio);
 | |
| 				ret = generic_make_request(bio);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* drop the extra reference count */
 | |
| 	dec_pending(ci.io, errno_to_blk_status(error));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Optimized variant of __split_and_process_bio that leverages the
 | |
|  * fact that targets that use it do _not_ have a need to split bios.
 | |
|  */
 | |
| static blk_qc_t __process_bio(struct mapped_device *md,
 | |
| 			      struct dm_table *map, struct bio *bio)
 | |
| {
 | |
| 	struct clone_info ci;
 | |
| 	blk_qc_t ret = BLK_QC_T_NONE;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (unlikely(!map)) {
 | |
| 		bio_io_error(bio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	init_clone_info(&ci, md, map, bio);
 | |
| 
 | |
| 	if (bio->bi_opf & REQ_PREFLUSH) {
 | |
| 		ci.bio = &ci.io->md->flush_bio;
 | |
| 		ci.sector_count = 0;
 | |
| 		error = __send_empty_flush(&ci);
 | |
| 		/* dec_pending submits any data associated with flush */
 | |
| 	} else {
 | |
| 		struct dm_target *ti = md->immutable_target;
 | |
| 		struct dm_target_io *tio;
 | |
| 
 | |
| 		/*
 | |
| 		 * Defend against IO still getting in during teardown
 | |
| 		 * - as was seen for a time with nvme-fcloop
 | |
| 		 */
 | |
| 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
 | |
| 			error = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ci.bio = bio;
 | |
| 		ci.sector_count = bio_sectors(bio);
 | |
| 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
 | |
| 			goto out;
 | |
| 
 | |
| 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
 | |
| 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
 | |
| 	}
 | |
| out:
 | |
| 	/* drop the extra reference count */
 | |
| 	dec_pending(ci.io, errno_to_blk_status(error));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
 | |
| 
 | |
| static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
 | |
| 				  process_bio_fn process_bio)
 | |
| {
 | |
| 	struct mapped_device *md = q->queuedata;
 | |
| 	blk_qc_t ret = BLK_QC_T_NONE;
 | |
| 	int srcu_idx;
 | |
| 	struct dm_table *map;
 | |
| 
 | |
| 	map = dm_get_live_table(md, &srcu_idx);
 | |
| 
 | |
| 	/* if we're suspended, we have to queue this io for later */
 | |
| 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
 | |
| 		dm_put_live_table(md, srcu_idx);
 | |
| 
 | |
| 		if (!(bio->bi_opf & REQ_RAHEAD))
 | |
| 			queue_io(md, bio);
 | |
| 		else
 | |
| 			bio_io_error(bio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = process_bio(md, map, bio);
 | |
| 
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The request function that remaps the bio to one target and
 | |
|  * splits off any remainder.
 | |
|  */
 | |
| static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
 | |
| {
 | |
| 	return __dm_make_request(q, bio, __split_and_process_bio);
 | |
| }
 | |
| 
 | |
| static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
 | |
| {
 | |
| 	return __dm_make_request(q, bio, __process_bio);
 | |
| }
 | |
| 
 | |
| static int dm_any_congested(void *congested_data, int bdi_bits)
 | |
| {
 | |
| 	int r = bdi_bits;
 | |
| 	struct mapped_device *md = congested_data;
 | |
| 	struct dm_table *map;
 | |
| 
 | |
| 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
 | |
| 		if (dm_request_based(md)) {
 | |
| 			/*
 | |
| 			 * With request-based DM we only need to check the
 | |
| 			 * top-level queue for congestion.
 | |
| 			 */
 | |
| 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
 | |
| 		} else {
 | |
| 			map = dm_get_live_table_fast(md);
 | |
| 			if (map)
 | |
| 				r = dm_table_any_congested(map, bdi_bits);
 | |
| 			dm_put_live_table_fast(md);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*-----------------------------------------------------------------
 | |
|  * An IDR is used to keep track of allocated minor numbers.
 | |
|  *---------------------------------------------------------------*/
 | |
| static void free_minor(int minor)
 | |
| {
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	idr_remove(&_minor_idr, minor);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if the device with a specific minor # is free.
 | |
|  */
 | |
| static int specific_minor(int minor)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if (minor >= (1 << MINORBITS))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	idr_preload(GFP_KERNEL);
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 	idr_preload_end();
 | |
| 	if (r < 0)
 | |
| 		return r == -ENOSPC ? -EBUSY : r;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int next_free_minor(int *minor)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	idr_preload(GFP_KERNEL);
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 	idr_preload_end();
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 	*minor = r;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct block_device_operations dm_blk_dops;
 | |
| static const struct dax_operations dm_dax_ops;
 | |
| 
 | |
| static void dm_wq_work(struct work_struct *work);
 | |
| 
 | |
| static void dm_init_normal_md_queue(struct mapped_device *md)
 | |
| {
 | |
| 	md->use_blk_mq = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize aspects of queue that aren't relevant for blk-mq
 | |
| 	 */
 | |
| 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
 | |
| }
 | |
| 
 | |
| static void cleanup_mapped_device(struct mapped_device *md)
 | |
| {
 | |
| 	if (md->wq)
 | |
| 		destroy_workqueue(md->wq);
 | |
| 	if (md->kworker_task)
 | |
| 		kthread_stop(md->kworker_task);
 | |
| 	bioset_exit(&md->bs);
 | |
| 	bioset_exit(&md->io_bs);
 | |
| 
 | |
| 	if (md->dax_dev) {
 | |
| 		kill_dax(md->dax_dev);
 | |
| 		put_dax(md->dax_dev);
 | |
| 		md->dax_dev = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (md->disk) {
 | |
| 		spin_lock(&_minor_lock);
 | |
| 		md->disk->private_data = NULL;
 | |
| 		spin_unlock(&_minor_lock);
 | |
| 		del_gendisk(md->disk);
 | |
| 		put_disk(md->disk);
 | |
| 	}
 | |
| 
 | |
| 	if (md->queue)
 | |
| 		blk_cleanup_queue(md->queue);
 | |
| 
 | |
| 	cleanup_srcu_struct(&md->io_barrier);
 | |
| 
 | |
| 	if (md->bdev) {
 | |
| 		bdput(md->bdev);
 | |
| 		md->bdev = NULL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_destroy(&md->suspend_lock);
 | |
| 	mutex_destroy(&md->type_lock);
 | |
| 	mutex_destroy(&md->table_devices_lock);
 | |
| 
 | |
| 	dm_mq_cleanup_mapped_device(md);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialise a blank device with a given minor.
 | |
|  */
 | |
| static struct mapped_device *alloc_dev(int minor)
 | |
| {
 | |
| 	int r, numa_node_id = dm_get_numa_node();
 | |
| 	struct dax_device *dax_dev = NULL;
 | |
| 	struct mapped_device *md;
 | |
| 	void *old_md;
 | |
| 
 | |
| 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
 | |
| 	if (!md) {
 | |
| 		DMWARN("unable to allocate device, out of memory.");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!try_module_get(THIS_MODULE))
 | |
| 		goto bad_module_get;
 | |
| 
 | |
| 	/* get a minor number for the dev */
 | |
| 	if (minor == DM_ANY_MINOR)
 | |
| 		r = next_free_minor(&minor);
 | |
| 	else
 | |
| 		r = specific_minor(minor);
 | |
| 	if (r < 0)
 | |
| 		goto bad_minor;
 | |
| 
 | |
| 	r = init_srcu_struct(&md->io_barrier);
 | |
| 	if (r < 0)
 | |
| 		goto bad_io_barrier;
 | |
| 
 | |
| 	md->numa_node_id = numa_node_id;
 | |
| 	md->use_blk_mq = dm_use_blk_mq_default();
 | |
| 	md->init_tio_pdu = false;
 | |
| 	md->type = DM_TYPE_NONE;
 | |
| 	mutex_init(&md->suspend_lock);
 | |
| 	mutex_init(&md->type_lock);
 | |
| 	mutex_init(&md->table_devices_lock);
 | |
| 	spin_lock_init(&md->deferred_lock);
 | |
| 	atomic_set(&md->holders, 1);
 | |
| 	atomic_set(&md->open_count, 0);
 | |
| 	atomic_set(&md->event_nr, 0);
 | |
| 	atomic_set(&md->uevent_seq, 0);
 | |
| 	INIT_LIST_HEAD(&md->uevent_list);
 | |
| 	INIT_LIST_HEAD(&md->table_devices);
 | |
| 	spin_lock_init(&md->uevent_lock);
 | |
| 
 | |
| 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
 | |
| 	if (!md->queue)
 | |
| 		goto bad;
 | |
| 	md->queue->queuedata = md;
 | |
| 	md->queue->backing_dev_info->congested_data = md;
 | |
| 
 | |
| 	md->disk = alloc_disk_node(1, md->numa_node_id);
 | |
| 	if (!md->disk)
 | |
| 		goto bad;
 | |
| 
 | |
| 	atomic_set(&md->pending[0], 0);
 | |
| 	atomic_set(&md->pending[1], 0);
 | |
| 	init_waitqueue_head(&md->wait);
 | |
| 	INIT_WORK(&md->work, dm_wq_work);
 | |
| 	init_waitqueue_head(&md->eventq);
 | |
| 	init_completion(&md->kobj_holder.completion);
 | |
| 	md->kworker_task = NULL;
 | |
| 
 | |
| 	md->disk->major = _major;
 | |
| 	md->disk->first_minor = minor;
 | |
| 	md->disk->fops = &dm_blk_dops;
 | |
| 	md->disk->queue = md->queue;
 | |
| 	md->disk->private_data = md;
 | |
| 	sprintf(md->disk->disk_name, "dm-%d", minor);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
 | |
| 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
 | |
| 		if (!dax_dev)
 | |
| 			goto bad;
 | |
| 	}
 | |
| 	md->dax_dev = dax_dev;
 | |
| 
 | |
| 	add_disk_no_queue_reg(md->disk);
 | |
| 	format_dev_t(md->name, MKDEV(_major, minor));
 | |
| 
 | |
| 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
 | |
| 	if (!md->wq)
 | |
| 		goto bad;
 | |
| 
 | |
| 	md->bdev = bdget_disk(md->disk, 0);
 | |
| 	if (!md->bdev)
 | |
| 		goto bad;
 | |
| 
 | |
| 	bio_init(&md->flush_bio, NULL, 0);
 | |
| 	bio_set_dev(&md->flush_bio, md->bdev);
 | |
| 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
 | |
| 
 | |
| 	dm_stats_init(&md->stats);
 | |
| 
 | |
| 	/* Populate the mapping, nobody knows we exist yet */
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	old_md = idr_replace(&_minor_idr, md, minor);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	BUG_ON(old_md != MINOR_ALLOCED);
 | |
| 
 | |
| 	return md;
 | |
| 
 | |
| bad:
 | |
| 	cleanup_mapped_device(md);
 | |
| bad_io_barrier:
 | |
| 	free_minor(minor);
 | |
| bad_minor:
 | |
| 	module_put(THIS_MODULE);
 | |
| bad_module_get:
 | |
| 	kvfree(md);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void unlock_fs(struct mapped_device *md);
 | |
| 
 | |
| static void free_dev(struct mapped_device *md)
 | |
| {
 | |
| 	int minor = MINOR(disk_devt(md->disk));
 | |
| 
 | |
| 	unlock_fs(md);
 | |
| 
 | |
| 	cleanup_mapped_device(md);
 | |
| 
 | |
| 	free_table_devices(&md->table_devices);
 | |
| 	dm_stats_cleanup(&md->stats);
 | |
| 	free_minor(minor);
 | |
| 
 | |
| 	module_put(THIS_MODULE);
 | |
| 	kvfree(md);
 | |
| }
 | |
| 
 | |
| static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
 | |
| {
 | |
| 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (dm_table_bio_based(t)) {
 | |
| 		/*
 | |
| 		 * The md may already have mempools that need changing.
 | |
| 		 * If so, reload bioset because front_pad may have changed
 | |
| 		 * because a different table was loaded.
 | |
| 		 */
 | |
| 		bioset_exit(&md->bs);
 | |
| 		bioset_exit(&md->io_bs);
 | |
| 
 | |
| 	} else if (bioset_initialized(&md->bs)) {
 | |
| 		/*
 | |
| 		 * There's no need to reload with request-based dm
 | |
| 		 * because the size of front_pad doesn't change.
 | |
| 		 * Note for future: If you are to reload bioset,
 | |
| 		 * prep-ed requests in the queue may refer
 | |
| 		 * to bio from the old bioset, so you must walk
 | |
| 		 * through the queue to unprep.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!p ||
 | |
| 	       bioset_initialized(&md->bs) ||
 | |
| 	       bioset_initialized(&md->io_bs));
 | |
| 
 | |
| 	ret = bioset_init_from_src(&md->bs, &p->bs);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
 | |
| 	if (ret)
 | |
| 		bioset_exit(&md->bs);
 | |
| out:
 | |
| 	/* mempool bind completed, no longer need any mempools in the table */
 | |
| 	dm_table_free_md_mempools(t);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bind a table to the device.
 | |
|  */
 | |
| static void event_callback(void *context)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(uevents);
 | |
| 	struct mapped_device *md = (struct mapped_device *) context;
 | |
| 
 | |
| 	spin_lock_irqsave(&md->uevent_lock, flags);
 | |
| 	list_splice_init(&md->uevent_list, &uevents);
 | |
| 	spin_unlock_irqrestore(&md->uevent_lock, flags);
 | |
| 
 | |
| 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
 | |
| 
 | |
| 	atomic_inc(&md->event_nr);
 | |
| 	wake_up(&md->eventq);
 | |
| 	dm_issue_global_event();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Protected by md->suspend_lock obtained by dm_swap_table().
 | |
|  */
 | |
| static void __set_size(struct mapped_device *md, sector_t size)
 | |
| {
 | |
| 	lockdep_assert_held(&md->suspend_lock);
 | |
| 
 | |
| 	set_capacity(md->disk, size);
 | |
| 
 | |
| 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns old map, which caller must destroy.
 | |
|  */
 | |
| static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
 | |
| 			       struct queue_limits *limits)
 | |
| {
 | |
| 	struct dm_table *old_map;
 | |
| 	struct request_queue *q = md->queue;
 | |
| 	bool request_based = dm_table_request_based(t);
 | |
| 	sector_t size;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&md->suspend_lock);
 | |
| 
 | |
| 	size = dm_table_get_size(t);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wipe any geometry if the size of the table changed.
 | |
| 	 */
 | |
| 	if (size != dm_get_size(md))
 | |
| 		memset(&md->geometry, 0, sizeof(md->geometry));
 | |
| 
 | |
| 	__set_size(md, size);
 | |
| 
 | |
| 	dm_table_event_callback(t, event_callback, md);
 | |
| 
 | |
| 	/*
 | |
| 	 * The queue hasn't been stopped yet, if the old table type wasn't
 | |
| 	 * for request-based during suspension.  So stop it to prevent
 | |
| 	 * I/O mapping before resume.
 | |
| 	 * This must be done before setting the queue restrictions,
 | |
| 	 * because request-based dm may be run just after the setting.
 | |
| 	 */
 | |
| 	if (request_based)
 | |
| 		dm_stop_queue(q);
 | |
| 
 | |
| 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
 | |
| 		/*
 | |
| 		 * Leverage the fact that request-based DM targets and
 | |
| 		 * NVMe bio based targets are immutable singletons
 | |
| 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
 | |
| 		 *   and __process_bio.
 | |
| 		 */
 | |
| 		md->immutable_target = dm_table_get_immutable_target(t);
 | |
| 	}
 | |
| 
 | |
| 	ret = __bind_mempools(md, t);
 | |
| 	if (ret) {
 | |
| 		old_map = ERR_PTR(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 	rcu_assign_pointer(md->map, (void *)t);
 | |
| 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
 | |
| 
 | |
| 	dm_table_set_restrictions(t, q, limits);
 | |
| 	if (old_map)
 | |
| 		dm_sync_table(md);
 | |
| 
 | |
| out:
 | |
| 	return old_map;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns unbound table for the caller to free.
 | |
|  */
 | |
| static struct dm_table *__unbind(struct mapped_device *md)
 | |
| {
 | |
| 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 | |
| 
 | |
| 	if (!map)
 | |
| 		return NULL;
 | |
| 
 | |
| 	dm_table_event_callback(map, NULL, NULL);
 | |
| 	RCU_INIT_POINTER(md->map, NULL);
 | |
| 	dm_sync_table(md);
 | |
| 
 | |
| 	return map;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructor for a new device.
 | |
|  */
 | |
| int dm_create(int minor, struct mapped_device **result)
 | |
| {
 | |
| 	int r;
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	md = alloc_dev(minor);
 | |
| 	if (!md)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	r = dm_sysfs_init(md);
 | |
| 	if (r) {
 | |
| 		free_dev(md);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	*result = md;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions to manage md->type.
 | |
|  * All are required to hold md->type_lock.
 | |
|  */
 | |
| void dm_lock_md_type(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->type_lock);
 | |
| }
 | |
| 
 | |
| void dm_unlock_md_type(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_unlock(&md->type_lock);
 | |
| }
 | |
| 
 | |
| void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&md->type_lock));
 | |
| 	md->type = type;
 | |
| }
 | |
| 
 | |
| enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
 | |
| {
 | |
| 	return md->type;
 | |
| }
 | |
| 
 | |
| struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
 | |
| {
 | |
| 	return md->immutable_target_type;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The queue_limits are only valid as long as you have a reference
 | |
|  * count on 'md'.
 | |
|  */
 | |
| struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
 | |
| {
 | |
| 	BUG_ON(!atomic_read(&md->holders));
 | |
| 	return &md->queue->limits;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_get_queue_limits);
 | |
| 
 | |
| /*
 | |
|  * Setup the DM device's queue based on md's type
 | |
|  */
 | |
| int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
 | |
| {
 | |
| 	int r;
 | |
| 	struct queue_limits limits;
 | |
| 	enum dm_queue_mode type = dm_get_md_type(md);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case DM_TYPE_REQUEST_BASED:
 | |
| 		dm_init_normal_md_queue(md);
 | |
| 		r = dm_old_init_request_queue(md, t);
 | |
| 		if (r) {
 | |
| 			DMERR("Cannot initialize queue for request-based mapped device");
 | |
| 			return r;
 | |
| 		}
 | |
| 		break;
 | |
| 	case DM_TYPE_MQ_REQUEST_BASED:
 | |
| 		r = dm_mq_init_request_queue(md, t);
 | |
| 		if (r) {
 | |
| 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
 | |
| 			return r;
 | |
| 		}
 | |
| 		break;
 | |
| 	case DM_TYPE_BIO_BASED:
 | |
| 	case DM_TYPE_DAX_BIO_BASED:
 | |
| 		dm_init_normal_md_queue(md);
 | |
| 		blk_queue_make_request(md->queue, dm_make_request);
 | |
| 		break;
 | |
| 	case DM_TYPE_NVME_BIO_BASED:
 | |
| 		dm_init_normal_md_queue(md);
 | |
| 		blk_queue_make_request(md->queue, dm_make_request_nvme);
 | |
| 		break;
 | |
| 	case DM_TYPE_NONE:
 | |
| 		WARN_ON_ONCE(true);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_calculate_queue_limits(t, &limits);
 | |
| 	if (r) {
 | |
| 		DMERR("Cannot calculate initial queue limits");
 | |
| 		return r;
 | |
| 	}
 | |
| 	dm_table_set_restrictions(t, md->queue, &limits);
 | |
| 	blk_register_queue(md->disk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct mapped_device *dm_get_md(dev_t dev)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 	unsigned minor = MINOR(dev);
 | |
| 
 | |
| 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	md = idr_find(&_minor_idr, minor);
 | |
| 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
 | |
| 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 | |
| 		md = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	dm_get(md);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return md;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_get_md);
 | |
| 
 | |
| void *dm_get_mdptr(struct mapped_device *md)
 | |
| {
 | |
| 	return md->interface_ptr;
 | |
| }
 | |
| 
 | |
| void dm_set_mdptr(struct mapped_device *md, void *ptr)
 | |
| {
 | |
| 	md->interface_ptr = ptr;
 | |
| }
 | |
| 
 | |
| void dm_get(struct mapped_device *md)
 | |
| {
 | |
| 	atomic_inc(&md->holders);
 | |
| 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
 | |
| }
 | |
| 
 | |
| int dm_hold(struct mapped_device *md)
 | |
| {
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	if (test_bit(DMF_FREEING, &md->flags)) {
 | |
| 		spin_unlock(&_minor_lock);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	dm_get(md);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_hold);
 | |
| 
 | |
| const char *dm_device_name(struct mapped_device *md)
 | |
| {
 | |
| 	return md->name;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_device_name);
 | |
| 
 | |
| static void __dm_destroy(struct mapped_device *md, bool wait)
 | |
| {
 | |
| 	struct dm_table *map;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
 | |
| 	set_bit(DMF_FREEING, &md->flags);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	blk_set_queue_dying(md->queue);
 | |
| 
 | |
| 	if (dm_request_based(md) && md->kworker_task)
 | |
| 		kthread_flush_worker(&md->kworker);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take suspend_lock so that presuspend and postsuspend methods
 | |
| 	 * do not race with internal suspend.
 | |
| 	 */
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	map = dm_get_live_table(md, &srcu_idx);
 | |
| 	if (!dm_suspended_md(md)) {
 | |
| 		dm_table_presuspend_targets(map);
 | |
| 		dm_table_postsuspend_targets(map);
 | |
| 	}
 | |
| 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Rare, but there may be I/O requests still going to complete,
 | |
| 	 * for example.  Wait for all references to disappear.
 | |
| 	 * No one should increment the reference count of the mapped_device,
 | |
| 	 * after the mapped_device state becomes DMF_FREEING.
 | |
| 	 */
 | |
| 	if (wait)
 | |
| 		while (atomic_read(&md->holders))
 | |
| 			msleep(1);
 | |
| 	else if (atomic_read(&md->holders))
 | |
| 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
 | |
| 		       dm_device_name(md), atomic_read(&md->holders));
 | |
| 
 | |
| 	dm_sysfs_exit(md);
 | |
| 	dm_table_destroy(__unbind(md));
 | |
| 	free_dev(md);
 | |
| }
 | |
| 
 | |
| void dm_destroy(struct mapped_device *md)
 | |
| {
 | |
| 	__dm_destroy(md, true);
 | |
| }
 | |
| 
 | |
| void dm_destroy_immediate(struct mapped_device *md)
 | |
| {
 | |
| 	__dm_destroy(md, false);
 | |
| }
 | |
| 
 | |
| void dm_put(struct mapped_device *md)
 | |
| {
 | |
| 	atomic_dec(&md->holders);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_put);
 | |
| 
 | |
| static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 | |
| {
 | |
| 	int r = 0;
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	while (1) {
 | |
| 		prepare_to_wait(&md->wait, &wait, task_state);
 | |
| 
 | |
| 		if (!md_in_flight(md))
 | |
| 			break;
 | |
| 
 | |
| 		if (signal_pending_state(task_state, current)) {
 | |
| 			r = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		io_schedule();
 | |
| 	}
 | |
| 	finish_wait(&md->wait, &wait);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process the deferred bios
 | |
|  */
 | |
| static void dm_wq_work(struct work_struct *work)
 | |
| {
 | |
| 	struct mapped_device *md = container_of(work, struct mapped_device,
 | |
| 						work);
 | |
| 	struct bio *c;
 | |
| 	int srcu_idx;
 | |
| 	struct dm_table *map;
 | |
| 
 | |
| 	map = dm_get_live_table(md, &srcu_idx);
 | |
| 
 | |
| 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
 | |
| 		spin_lock_irq(&md->deferred_lock);
 | |
| 		c = bio_list_pop(&md->deferred);
 | |
| 		spin_unlock_irq(&md->deferred_lock);
 | |
| 
 | |
| 		if (!c)
 | |
| 			break;
 | |
| 
 | |
| 		if (dm_request_based(md))
 | |
| 			generic_make_request(c);
 | |
| 		else
 | |
| 			__split_and_process_bio(md, map, c);
 | |
| 	}
 | |
| 
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| }
 | |
| 
 | |
| static void dm_queue_flush(struct mapped_device *md)
 | |
| {
 | |
| 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	queue_work(md->wq, &md->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap in a new table, returning the old one for the caller to destroy.
 | |
|  */
 | |
| struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
 | |
| {
 | |
| 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
 | |
| 	struct queue_limits limits;
 | |
| 	int r;
 | |
| 
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 
 | |
| 	/* device must be suspended */
 | |
| 	if (!dm_suspended_md(md))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new table has no data devices, retain the existing limits.
 | |
| 	 * This helps multipath with queue_if_no_path if all paths disappear,
 | |
| 	 * then new I/O is queued based on these limits, and then some paths
 | |
| 	 * reappear.
 | |
| 	 */
 | |
| 	if (dm_table_has_no_data_devices(table)) {
 | |
| 		live_map = dm_get_live_table_fast(md);
 | |
| 		if (live_map)
 | |
| 			limits = md->queue->limits;
 | |
| 		dm_put_live_table_fast(md);
 | |
| 	}
 | |
| 
 | |
| 	if (!live_map) {
 | |
| 		r = dm_calculate_queue_limits(table, &limits);
 | |
| 		if (r) {
 | |
| 			map = ERR_PTR(r);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	map = __bind(md, table, &limits);
 | |
| 	dm_issue_global_event();
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 	return map;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions to lock and unlock any filesystem running on the
 | |
|  * device.
 | |
|  */
 | |
| static int lock_fs(struct mapped_device *md)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	WARN_ON(md->frozen_sb);
 | |
| 
 | |
| 	md->frozen_sb = freeze_bdev(md->bdev);
 | |
| 	if (IS_ERR(md->frozen_sb)) {
 | |
| 		r = PTR_ERR(md->frozen_sb);
 | |
| 		md->frozen_sb = NULL;
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	set_bit(DMF_FROZEN, &md->flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void unlock_fs(struct mapped_device *md)
 | |
| {
 | |
| 	if (!test_bit(DMF_FROZEN, &md->flags))
 | |
| 		return;
 | |
| 
 | |
| 	thaw_bdev(md->bdev, md->frozen_sb);
 | |
| 	md->frozen_sb = NULL;
 | |
| 	clear_bit(DMF_FROZEN, &md->flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
 | |
|  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
 | |
|  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 | |
|  *
 | |
|  * If __dm_suspend returns 0, the device is completely quiescent
 | |
|  * now. There is no request-processing activity. All new requests
 | |
|  * are being added to md->deferred list.
 | |
|  */
 | |
| static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
 | |
| 			unsigned suspend_flags, long task_state,
 | |
| 			int dmf_suspended_flag)
 | |
| {
 | |
| 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
 | |
| 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
 | |
| 	int r;
 | |
| 
 | |
| 	lockdep_assert_held(&md->suspend_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
 | |
| 	 * This flag is cleared before dm_suspend returns.
 | |
| 	 */
 | |
| 	if (noflush)
 | |
| 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 | |
| 	else
 | |
| 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
 | |
| 
 | |
| 	/*
 | |
| 	 * This gets reverted if there's an error later and the targets
 | |
| 	 * provide the .presuspend_undo hook.
 | |
| 	 */
 | |
| 	dm_table_presuspend_targets(map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush I/O to the device.
 | |
| 	 * Any I/O submitted after lock_fs() may not be flushed.
 | |
| 	 * noflush takes precedence over do_lockfs.
 | |
| 	 * (lock_fs() flushes I/Os and waits for them to complete.)
 | |
| 	 */
 | |
| 	if (!noflush && do_lockfs) {
 | |
| 		r = lock_fs(md);
 | |
| 		if (r) {
 | |
| 			dm_table_presuspend_undo_targets(map);
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we must make sure that no processes are submitting requests
 | |
| 	 * to target drivers i.e. no one may be executing
 | |
| 	 * __split_and_process_bio. This is called from dm_request and
 | |
| 	 * dm_wq_work.
 | |
| 	 *
 | |
| 	 * To get all processes out of __split_and_process_bio in dm_request,
 | |
| 	 * we take the write lock. To prevent any process from reentering
 | |
| 	 * __split_and_process_bio from dm_request and quiesce the thread
 | |
| 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
 | |
| 	 * flush_workqueue(md->wq).
 | |
| 	 */
 | |
| 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
 | |
| 	if (map)
 | |
| 		synchronize_srcu(&md->io_barrier);
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop md->queue before flushing md->wq in case request-based
 | |
| 	 * dm defers requests to md->wq from md->queue.
 | |
| 	 */
 | |
| 	if (dm_request_based(md)) {
 | |
| 		dm_stop_queue(md->queue);
 | |
| 		if (md->kworker_task)
 | |
| 			kthread_flush_worker(&md->kworker);
 | |
| 	}
 | |
| 
 | |
| 	flush_workqueue(md->wq);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point no more requests are entering target request routines.
 | |
| 	 * We call dm_wait_for_completion to wait for all existing requests
 | |
| 	 * to finish.
 | |
| 	 */
 | |
| 	r = dm_wait_for_completion(md, task_state);
 | |
| 	if (!r)
 | |
| 		set_bit(dmf_suspended_flag, &md->flags);
 | |
| 
 | |
| 	if (noflush)
 | |
| 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 | |
| 	if (map)
 | |
| 		synchronize_srcu(&md->io_barrier);
 | |
| 
 | |
| 	/* were we interrupted ? */
 | |
| 	if (r < 0) {
 | |
| 		dm_queue_flush(md);
 | |
| 
 | |
| 		if (dm_request_based(md))
 | |
| 			dm_start_queue(md->queue);
 | |
| 
 | |
| 		unlock_fs(md);
 | |
| 		dm_table_presuspend_undo_targets(map);
 | |
| 		/* pushback list is already flushed, so skip flush */
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to be able to change a mapping table under a mounted
 | |
|  * filesystem.  For example we might want to move some data in
 | |
|  * the background.  Before the table can be swapped with
 | |
|  * dm_bind_table, dm_suspend must be called to flush any in
 | |
|  * flight bios and ensure that any further io gets deferred.
 | |
|  */
 | |
| /*
 | |
|  * Suspend mechanism in request-based dm.
 | |
|  *
 | |
|  * 1. Flush all I/Os by lock_fs() if needed.
 | |
|  * 2. Stop dispatching any I/O by stopping the request_queue.
 | |
|  * 3. Wait for all in-flight I/Os to be completed or requeued.
 | |
|  *
 | |
|  * To abort suspend, start the request_queue.
 | |
|  */
 | |
| int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
 | |
| {
 | |
| 	struct dm_table *map = NULL;
 | |
| 	int r = 0;
 | |
| 
 | |
| retry:
 | |
| 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	if (dm_suspended_md(md)) {
 | |
| 		r = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_suspended_internally_md(md)) {
 | |
| 		/* already internally suspended, wait for internal resume */
 | |
| 		mutex_unlock(&md->suspend_lock);
 | |
| 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 
 | |
| 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
 | |
| 	if (r)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	dm_table_postsuspend_targets(map);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int __dm_resume(struct mapped_device *md, struct dm_table *map)
 | |
| {
 | |
| 	if (map) {
 | |
| 		int r = dm_table_resume_targets(map);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	dm_queue_flush(md);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flushing deferred I/Os must be done after targets are resumed
 | |
| 	 * so that mapping of targets can work correctly.
 | |
| 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 | |
| 	 */
 | |
| 	if (dm_request_based(md))
 | |
| 		dm_start_queue(md->queue);
 | |
| 
 | |
| 	unlock_fs(md);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_resume(struct mapped_device *md)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_table *map = NULL;
 | |
| 
 | |
| retry:
 | |
| 	r = -EINVAL;
 | |
| 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	if (!dm_suspended_md(md))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (dm_suspended_internally_md(md)) {
 | |
| 		/* already internally suspended, wait for internal resume */
 | |
| 		mutex_unlock(&md->suspend_lock);
 | |
| 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 	if (!map || !dm_table_get_size(map))
 | |
| 		goto out;
 | |
| 
 | |
| 	r = __dm_resume(md, map);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	clear_bit(DMF_SUSPENDED, &md->flags);
 | |
| out:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Internal suspend/resume works like userspace-driven suspend. It waits
 | |
|  * until all bios finish and prevents issuing new bios to the target drivers.
 | |
|  * It may be used only from the kernel.
 | |
|  */
 | |
| 
 | |
| static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
 | |
| {
 | |
| 	struct dm_table *map = NULL;
 | |
| 
 | |
| 	lockdep_assert_held(&md->suspend_lock);
 | |
| 
 | |
| 	if (md->internal_suspend_count++)
 | |
| 		return; /* nested internal suspend */
 | |
| 
 | |
| 	if (dm_suspended_md(md)) {
 | |
| 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
 | |
| 		return; /* nest suspend */
 | |
| 	}
 | |
| 
 | |
| 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
 | |
| 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
 | |
| 	 * would require changing .presuspend to return an error -- avoid this
 | |
| 	 * until there is a need for more elaborate variants of internal suspend.
 | |
| 	 */
 | |
| 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
 | |
| 			    DMF_SUSPENDED_INTERNALLY);
 | |
| 
 | |
| 	dm_table_postsuspend_targets(map);
 | |
| }
 | |
| 
 | |
| static void __dm_internal_resume(struct mapped_device *md)
 | |
| {
 | |
| 	BUG_ON(!md->internal_suspend_count);
 | |
| 
 | |
| 	if (--md->internal_suspend_count)
 | |
| 		return; /* resume from nested internal suspend */
 | |
| 
 | |
| 	if (dm_suspended_md(md))
 | |
| 		goto done; /* resume from nested suspend */
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: existing callers don't need to call dm_table_resume_targets
 | |
| 	 * (which may fail -- so best to avoid it for now by passing NULL map)
 | |
| 	 */
 | |
| 	(void) __dm_resume(md, NULL);
 | |
| 
 | |
| done:
 | |
| 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
 | |
| }
 | |
| 
 | |
| void dm_internal_suspend_noflush(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
 | |
| 
 | |
| void dm_internal_resume(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	__dm_internal_resume(md);
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_resume);
 | |
| 
 | |
| /*
 | |
|  * Fast variants of internal suspend/resume hold md->suspend_lock,
 | |
|  * which prevents interaction with userspace-driven suspend.
 | |
|  */
 | |
| 
 | |
| void dm_internal_suspend_fast(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
 | |
| 		return;
 | |
| 
 | |
| 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
 | |
| 	synchronize_srcu(&md->io_barrier);
 | |
| 	flush_workqueue(md->wq);
 | |
| 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
 | |
| 
 | |
| void dm_internal_resume_fast(struct mapped_device *md)
 | |
| {
 | |
| 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
 | |
| 		goto done;
 | |
| 
 | |
| 	dm_queue_flush(md);
 | |
| 
 | |
| done:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
 | |
| 
 | |
| /*-----------------------------------------------------------------
 | |
|  * Event notification.
 | |
|  *---------------------------------------------------------------*/
 | |
| int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
 | |
| 		       unsigned cookie)
 | |
| {
 | |
| 	char udev_cookie[DM_COOKIE_LENGTH];
 | |
| 	char *envp[] = { udev_cookie, NULL };
 | |
| 
 | |
| 	if (!cookie)
 | |
| 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
 | |
| 	else {
 | |
| 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
 | |
| 			 DM_COOKIE_ENV_VAR_NAME, cookie);
 | |
| 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
 | |
| 					  action, envp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| uint32_t dm_next_uevent_seq(struct mapped_device *md)
 | |
| {
 | |
| 	return atomic_add_return(1, &md->uevent_seq);
 | |
| }
 | |
| 
 | |
| uint32_t dm_get_event_nr(struct mapped_device *md)
 | |
| {
 | |
| 	return atomic_read(&md->event_nr);
 | |
| }
 | |
| 
 | |
| int dm_wait_event(struct mapped_device *md, int event_nr)
 | |
| {
 | |
| 	return wait_event_interruptible(md->eventq,
 | |
| 			(event_nr != atomic_read(&md->event_nr)));
 | |
| }
 | |
| 
 | |
| void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&md->uevent_lock, flags);
 | |
| 	list_add(elist, &md->uevent_list);
 | |
| 	spin_unlock_irqrestore(&md->uevent_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The gendisk is only valid as long as you have a reference
 | |
|  * count on 'md'.
 | |
|  */
 | |
| struct gendisk *dm_disk(struct mapped_device *md)
 | |
| {
 | |
| 	return md->disk;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_disk);
 | |
| 
 | |
| struct kobject *dm_kobject(struct mapped_device *md)
 | |
| {
 | |
| 	return &md->kobj_holder.kobj;
 | |
| }
 | |
| 
 | |
| struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 | |
| 		md = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	dm_get(md);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return md;
 | |
| }
 | |
| 
 | |
| int dm_suspended_md(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_SUSPENDED, &md->flags);
 | |
| }
 | |
| 
 | |
| int dm_suspended_internally_md(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
 | |
| }
 | |
| 
 | |
| int dm_test_deferred_remove_flag(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
 | |
| }
 | |
| 
 | |
| int dm_suspended(struct dm_target *ti)
 | |
| {
 | |
| 	return dm_suspended_md(dm_table_get_md(ti->table));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_suspended);
 | |
| 
 | |
| int dm_noflush_suspending(struct dm_target *ti)
 | |
| {
 | |
| 	return __noflush_suspending(dm_table_get_md(ti->table));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_noflush_suspending);
 | |
| 
 | |
| struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
 | |
| 					    unsigned integrity, unsigned per_io_data_size,
 | |
| 					    unsigned min_pool_size)
 | |
| {
 | |
| 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
 | |
| 	unsigned int pool_size = 0;
 | |
| 	unsigned int front_pad, io_front_pad;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pools)
 | |
| 		return NULL;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case DM_TYPE_BIO_BASED:
 | |
| 	case DM_TYPE_DAX_BIO_BASED:
 | |
| 	case DM_TYPE_NVME_BIO_BASED:
 | |
| 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
 | |
| 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
 | |
| 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
 | |
| 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case DM_TYPE_REQUEST_BASED:
 | |
| 	case DM_TYPE_MQ_REQUEST_BASED:
 | |
| 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
 | |
| 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
 | |
| 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
 | |
| 		goto out;
 | |
| 
 | |
| 	return pools;
 | |
| 
 | |
| out:
 | |
| 	dm_free_md_mempools(pools);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void dm_free_md_mempools(struct dm_md_mempools *pools)
 | |
| {
 | |
| 	if (!pools)
 | |
| 		return;
 | |
| 
 | |
| 	bioset_exit(&pools->bs);
 | |
| 	bioset_exit(&pools->io_bs);
 | |
| 
 | |
| 	kfree(pools);
 | |
| }
 | |
| 
 | |
| struct dm_pr {
 | |
| 	u64	old_key;
 | |
| 	u64	new_key;
 | |
| 	u32	flags;
 | |
| 	bool	fail_early;
 | |
| };
 | |
| 
 | |
| static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
 | |
| 		      void *data)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	struct dm_table *table;
 | |
| 	struct dm_target *ti;
 | |
| 	int ret = -ENOTTY, srcu_idx;
 | |
| 
 | |
| 	table = dm_get_live_table(md, &srcu_idx);
 | |
| 	if (!table || !dm_table_get_size(table))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* We only support devices that have a single target */
 | |
| 	if (dm_table_get_num_targets(table) != 1)
 | |
| 		goto out;
 | |
| 	ti = dm_table_get_target(table, 0);
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (!ti->type->iterate_devices)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = ti->type->iterate_devices(ti, fn, data);
 | |
| out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For register / unregister we need to manually call out to every path.
 | |
|  */
 | |
| static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			    sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct dm_pr *pr = data;
 | |
| 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 | |
| 
 | |
| 	if (!ops || !ops->pr_register)
 | |
| 		return -EOPNOTSUPP;
 | |
| 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 | |
| }
 | |
| 
 | |
| static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
 | |
| 			  u32 flags)
 | |
| {
 | |
| 	struct dm_pr pr = {
 | |
| 		.old_key	= old_key,
 | |
| 		.new_key	= new_key,
 | |
| 		.flags		= flags,
 | |
| 		.fail_early	= true,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
 | |
| 	if (ret && new_key) {
 | |
| 		/* unregister all paths if we failed to register any path */
 | |
| 		pr.old_key = new_key;
 | |
| 		pr.new_key = 0;
 | |
| 		pr.flags = 0;
 | |
| 		pr.fail_early = false;
 | |
| 		dm_call_pr(bdev, __dm_pr_register, &pr);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
 | |
| 			 u32 flags)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	const struct pr_ops *ops;
 | |
| 	int r, srcu_idx;
 | |
| 
 | |
| 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ops = bdev->bd_disk->fops->pr_ops;
 | |
| 	if (ops && ops->pr_reserve)
 | |
| 		r = ops->pr_reserve(bdev, key, type, flags);
 | |
| 	else
 | |
| 		r = -EOPNOTSUPP;
 | |
| out:
 | |
| 	dm_unprepare_ioctl(md, srcu_idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	const struct pr_ops *ops;
 | |
| 	int r, srcu_idx;
 | |
| 
 | |
| 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ops = bdev->bd_disk->fops->pr_ops;
 | |
| 	if (ops && ops->pr_release)
 | |
| 		r = ops->pr_release(bdev, key, type);
 | |
| 	else
 | |
| 		r = -EOPNOTSUPP;
 | |
| out:
 | |
| 	dm_unprepare_ioctl(md, srcu_idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
 | |
| 			 enum pr_type type, bool abort)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	const struct pr_ops *ops;
 | |
| 	int r, srcu_idx;
 | |
| 
 | |
| 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ops = bdev->bd_disk->fops->pr_ops;
 | |
| 	if (ops && ops->pr_preempt)
 | |
| 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
 | |
| 	else
 | |
| 		r = -EOPNOTSUPP;
 | |
| out:
 | |
| 	dm_unprepare_ioctl(md, srcu_idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int dm_pr_clear(struct block_device *bdev, u64 key)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	const struct pr_ops *ops;
 | |
| 	int r, srcu_idx;
 | |
| 
 | |
| 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ops = bdev->bd_disk->fops->pr_ops;
 | |
| 	if (ops && ops->pr_clear)
 | |
| 		r = ops->pr_clear(bdev, key);
 | |
| 	else
 | |
| 		r = -EOPNOTSUPP;
 | |
| out:
 | |
| 	dm_unprepare_ioctl(md, srcu_idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static const struct pr_ops dm_pr_ops = {
 | |
| 	.pr_register	= dm_pr_register,
 | |
| 	.pr_reserve	= dm_pr_reserve,
 | |
| 	.pr_release	= dm_pr_release,
 | |
| 	.pr_preempt	= dm_pr_preempt,
 | |
| 	.pr_clear	= dm_pr_clear,
 | |
| };
 | |
| 
 | |
| static const struct block_device_operations dm_blk_dops = {
 | |
| 	.open = dm_blk_open,
 | |
| 	.release = dm_blk_close,
 | |
| 	.ioctl = dm_blk_ioctl,
 | |
| 	.getgeo = dm_blk_getgeo,
 | |
| 	.pr_ops = &dm_pr_ops,
 | |
| 	.owner = THIS_MODULE
 | |
| };
 | |
| 
 | |
| static const struct dax_operations dm_dax_ops = {
 | |
| 	.direct_access = dm_dax_direct_access,
 | |
| 	.copy_from_iter = dm_dax_copy_from_iter,
 | |
| 	.copy_to_iter = dm_dax_copy_to_iter,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * module hooks
 | |
|  */
 | |
| module_init(dm_init);
 | |
| module_exit(dm_exit);
 | |
| 
 | |
| module_param(major, uint, 0);
 | |
| MODULE_PARM_DESC(major, "The major number of the device mapper");
 | |
| 
 | |
| module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
 | |
| MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
 | |
| 
 | |
| module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
 | |
| MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 | |
| 
 | |
| MODULE_DESCRIPTION(DM_NAME " driver");
 | |
| MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
 | |
| MODULE_LICENSE("GPL");
 |