mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 cec4e9b28f
			
		
	
	
		cec4e9b28f
		
	
	
	
	
		
			
			kernel parameter disable_radix takes different options
disable_radix=yes|no|1|0 or just disable_radix. When using the later
format we get below error.
 `Malformed early option 'disable_radix'`
Fixes: 1fd6c02207 ("powerpc/mm: Add a CONFIG option to choose if radix is used by default")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
		
	
			
		
			
				
	
	
		
			449 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			449 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  PowerPC version
 | |
|  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 | |
|  *
 | |
|  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 | |
|  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 | |
|  *    Copyright (C) 1996 Paul Mackerras
 | |
|  *
 | |
|  *  Derived from "arch/i386/mm/init.c"
 | |
|  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *
 | |
|  *  Dave Engebretsen <engebret@us.ibm.com>
 | |
|  *      Rework for PPC64 port.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or
 | |
|  *  modify it under the terms of the GNU General Public License
 | |
|  *  as published by the Free Software Foundation; either version
 | |
|  *  2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #undef DEBUG
 | |
| 
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/of_fdt.h>
 | |
| #include <linux/libfdt.h>
 | |
| #include <linux/memremap.h>
 | |
| 
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/eeh.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/mmzone.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/iommu.h>
 | |
| #include <asm/vdso.h>
 | |
| 
 | |
| #include "mmu_decl.h"
 | |
| 
 | |
| phys_addr_t memstart_addr = ~0;
 | |
| EXPORT_SYMBOL_GPL(memstart_addr);
 | |
| phys_addr_t kernstart_addr;
 | |
| EXPORT_SYMBOL_GPL(kernstart_addr);
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| /*
 | |
|  * Given an address within the vmemmap, determine the pfn of the page that
 | |
|  * represents the start of the section it is within.  Note that we have to
 | |
|  * do this by hand as the proffered address may not be correctly aligned.
 | |
|  * Subtraction of non-aligned pointers produces undefined results.
 | |
|  */
 | |
| static unsigned long __meminit vmemmap_section_start(unsigned long page)
 | |
| {
 | |
| 	unsigned long offset = page - ((unsigned long)(vmemmap));
 | |
| 
 | |
| 	/* Return the pfn of the start of the section. */
 | |
| 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if this vmemmap page is already initialised.  If any section
 | |
|  * which overlaps this vmemmap page is initialised then this page is
 | |
|  * initialised already.
 | |
|  */
 | |
| static int __meminit vmemmap_populated(unsigned long start, int page_size)
 | |
| {
 | |
| 	unsigned long end = start + page_size;
 | |
| 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
 | |
| 
 | |
| 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
 | |
| 		if (pfn_valid(page_to_pfn((struct page *)start)))
 | |
| 			return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vmemmap virtual address space management does not have a traditonal page
 | |
|  * table to track which virtual struct pages are backed by physical mapping.
 | |
|  * The virtual to physical mappings are tracked in a simple linked list
 | |
|  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
 | |
|  * all times where as the 'next' list maintains the available
 | |
|  * vmemmap_backing structures which have been deleted from the
 | |
|  * 'vmemmap_global' list during system runtime (memory hotplug remove
 | |
|  * operation). The freed 'vmemmap_backing' structures are reused later when
 | |
|  * new requests come in without allocating fresh memory. This pointer also
 | |
|  * tracks the allocated 'vmemmap_backing' structures as we allocate one
 | |
|  * full page memory at a time when we dont have any.
 | |
|  */
 | |
| struct vmemmap_backing *vmemmap_list;
 | |
| static struct vmemmap_backing *next;
 | |
| 
 | |
| /*
 | |
|  * The same pointer 'next' tracks individual chunks inside the allocated
 | |
|  * full page during the boot time and again tracks the freeed nodes during
 | |
|  * runtime. It is racy but it does not happen as they are separated by the
 | |
|  * boot process. Will create problem if some how we have memory hotplug
 | |
|  * operation during boot !!
 | |
|  */
 | |
| static int num_left;
 | |
| static int num_freed;
 | |
| 
 | |
| static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
 | |
| {
 | |
| 	struct vmemmap_backing *vmem_back;
 | |
| 	/* get from freed entries first */
 | |
| 	if (num_freed) {
 | |
| 		num_freed--;
 | |
| 		vmem_back = next;
 | |
| 		next = next->list;
 | |
| 
 | |
| 		return vmem_back;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate a page when required and hand out chunks */
 | |
| 	if (!num_left) {
 | |
| 		next = vmemmap_alloc_block(PAGE_SIZE, node);
 | |
| 		if (unlikely(!next)) {
 | |
| 			WARN_ON(1);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
 | |
| 	}
 | |
| 
 | |
| 	num_left--;
 | |
| 
 | |
| 	return next++;
 | |
| }
 | |
| 
 | |
| static __meminit void vmemmap_list_populate(unsigned long phys,
 | |
| 					    unsigned long start,
 | |
| 					    int node)
 | |
| {
 | |
| 	struct vmemmap_backing *vmem_back;
 | |
| 
 | |
| 	vmem_back = vmemmap_list_alloc(node);
 | |
| 	if (unlikely(!vmem_back)) {
 | |
| 		WARN_ON(1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vmem_back->phys = phys;
 | |
| 	vmem_back->virt_addr = start;
 | |
| 	vmem_back->list = vmemmap_list;
 | |
| 
 | |
| 	vmemmap_list = vmem_back;
 | |
| }
 | |
| 
 | |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 | |
| 
 | |
| 	/* Align to the page size of the linear mapping. */
 | |
| 	start = _ALIGN_DOWN(start, page_size);
 | |
| 
 | |
| 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
 | |
| 
 | |
| 	for (; start < end; start += page_size) {
 | |
| 		void *p;
 | |
| 		int rc;
 | |
| 
 | |
| 		if (vmemmap_populated(start, page_size))
 | |
| 			continue;
 | |
| 
 | |
| 		if (altmap)
 | |
| 			p = altmap_alloc_block_buf(page_size, altmap);
 | |
| 		else
 | |
| 			p = vmemmap_alloc_block_buf(page_size, node);
 | |
| 		if (!p)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		vmemmap_list_populate(__pa(p), start, node);
 | |
| 
 | |
| 		pr_debug("      * %016lx..%016lx allocated at %p\n",
 | |
| 			 start, start + page_size, p);
 | |
| 
 | |
| 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
 | |
| 		if (rc < 0) {
 | |
| 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
 | |
| 				__func__, rc);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static unsigned long vmemmap_list_free(unsigned long start)
 | |
| {
 | |
| 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
 | |
| 
 | |
| 	vmem_back_prev = vmem_back = vmemmap_list;
 | |
| 
 | |
| 	/* look for it with prev pointer recorded */
 | |
| 	for (; vmem_back; vmem_back = vmem_back->list) {
 | |
| 		if (vmem_back->virt_addr == start)
 | |
| 			break;
 | |
| 		vmem_back_prev = vmem_back;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!vmem_back)) {
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* remove it from vmemmap_list */
 | |
| 	if (vmem_back == vmemmap_list) /* remove head */
 | |
| 		vmemmap_list = vmem_back->list;
 | |
| 	else
 | |
| 		vmem_back_prev->list = vmem_back->list;
 | |
| 
 | |
| 	/* next point to this freed entry */
 | |
| 	vmem_back->list = next;
 | |
| 	next = vmem_back;
 | |
| 	num_freed++;
 | |
| 
 | |
| 	return vmem_back->phys;
 | |
| }
 | |
| 
 | |
| void __ref vmemmap_free(unsigned long start, unsigned long end,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 | |
| 	unsigned long page_order = get_order(page_size);
 | |
| 
 | |
| 	start = _ALIGN_DOWN(start, page_size);
 | |
| 
 | |
| 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
 | |
| 
 | |
| 	for (; start < end; start += page_size) {
 | |
| 		unsigned long nr_pages, addr;
 | |
| 		struct page *section_base;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		/*
 | |
| 		 * the section has already be marked as invalid, so
 | |
| 		 * vmemmap_populated() true means some other sections still
 | |
| 		 * in this page, so skip it.
 | |
| 		 */
 | |
| 		if (vmemmap_populated(start, page_size))
 | |
| 			continue;
 | |
| 
 | |
| 		addr = vmemmap_list_free(start);
 | |
| 		if (!addr)
 | |
| 			continue;
 | |
| 
 | |
| 		page = pfn_to_page(addr >> PAGE_SHIFT);
 | |
| 		section_base = pfn_to_page(vmemmap_section_start(start));
 | |
| 		nr_pages = 1 << page_order;
 | |
| 
 | |
| 		if (altmap) {
 | |
| 			vmem_altmap_free(altmap, nr_pages);
 | |
| 		} else if (PageReserved(page)) {
 | |
| 			/* allocated from bootmem */
 | |
| 			if (page_size < PAGE_SIZE) {
 | |
| 				/*
 | |
| 				 * this shouldn't happen, but if it is
 | |
| 				 * the case, leave the memory there
 | |
| 				 */
 | |
| 				WARN_ON_ONCE(1);
 | |
| 			} else {
 | |
| 				while (nr_pages--)
 | |
| 					free_reserved_page(page++);
 | |
| 			}
 | |
| 		} else {
 | |
| 			free_pages((unsigned long)(__va(addr)), page_order);
 | |
| 		}
 | |
| 
 | |
| 		vmemmap_remove_mapping(start, page_size);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| void register_page_bootmem_memmap(unsigned long section_nr,
 | |
| 				  struct page *start_page, unsigned long size)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We do not have access to the sparsemem vmemmap, so we fallback to
 | |
|  * walking the list of sparsemem blocks which we already maintain for
 | |
|  * the sake of crashdump. In the long run, we might want to maintain
 | |
|  * a tree if performance of that linear walk becomes a problem.
 | |
|  *
 | |
|  * realmode_pfn_to_page functions can fail due to:
 | |
|  * 1) As real sparsemem blocks do not lay in RAM continously (they
 | |
|  * are in virtual address space which is not available in the real mode),
 | |
|  * the requested page struct can be split between blocks so get_page/put_page
 | |
|  * may fail.
 | |
|  * 2) When huge pages are used, the get_page/put_page API will fail
 | |
|  * in real mode as the linked addresses in the page struct are virtual
 | |
|  * too.
 | |
|  */
 | |
| struct page *realmode_pfn_to_page(unsigned long pfn)
 | |
| {
 | |
| 	struct vmemmap_backing *vmem_back;
 | |
| 	struct page *page;
 | |
| 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 | |
| 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
 | |
| 
 | |
| 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
 | |
| 		if (pg_va < vmem_back->virt_addr)
 | |
| 			continue;
 | |
| 
 | |
| 		/* After vmemmap_list entry free is possible, need check all */
 | |
| 		if ((pg_va + sizeof(struct page)) <=
 | |
| 				(vmem_back->virt_addr + page_size)) {
 | |
| 			page = (struct page *) (vmem_back->phys + pg_va -
 | |
| 				vmem_back->virt_addr);
 | |
| 			return page;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Probably that page struct is split between real pages */
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
 | |
| 
 | |
| #else
 | |
| 
 | |
| struct page *realmode_pfn_to_page(unsigned long pfn)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(pfn);
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
 | |
| 
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
 | |
| 
 | |
| static int __init parse_disable_radix(char *p)
 | |
| {
 | |
| 	bool val;
 | |
| 
 | |
| 	if (!p)
 | |
| 		val = true;
 | |
| 	else if (kstrtobool(p, &val))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	disable_radix = val;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("disable_radix", parse_disable_radix);
 | |
| 
 | |
| /*
 | |
|  * If we're running under a hypervisor, we need to check the contents of
 | |
|  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
 | |
|  * radix.  If not, we clear the radix feature bit so we fall back to hash.
 | |
|  */
 | |
| static void __init early_check_vec5(void)
 | |
| {
 | |
| 	unsigned long root, chosen;
 | |
| 	int size;
 | |
| 	const u8 *vec5;
 | |
| 	u8 mmu_supported;
 | |
| 
 | |
| 	root = of_get_flat_dt_root();
 | |
| 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
 | |
| 	if (chosen == -FDT_ERR_NOTFOUND) {
 | |
| 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 | |
| 		return;
 | |
| 	}
 | |
| 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
 | |
| 	if (!vec5) {
 | |
| 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
 | |
| 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for supported configuration */
 | |
| 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
 | |
| 			OV5_FEAT(OV5_MMU_SUPPORT);
 | |
| 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
 | |
| 		/* Hypervisor only supports radix - check enabled && GTSE */
 | |
| 		if (!early_radix_enabled()) {
 | |
| 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
 | |
| 		}
 | |
| 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
 | |
| 						OV5_FEAT(OV5_RADIX_GTSE))) {
 | |
| 			pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
 | |
| 		}
 | |
| 		/* Do radix anyway - the hypervisor said we had to */
 | |
| 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
 | |
| 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
 | |
| 		/* Hypervisor only supports hash - disable radix */
 | |
| 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init mmu_early_init_devtree(void)
 | |
| {
 | |
| 	/* Disable radix mode based on kernel command line. */
 | |
| 	if (disable_radix)
 | |
| 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
 | |
| 	 * When running bare-metal, we can use radix if we like
 | |
| 	 * even though the ibm,architecture-vec-5 property created by
 | |
| 	 * skiboot doesn't have the necessary bits set.
 | |
| 	 */
 | |
| 	if (!(mfmsr() & MSR_HV))
 | |
| 		early_check_vec5();
 | |
| 
 | |
| 	if (early_radix_enabled())
 | |
| 		radix__early_init_devtree();
 | |
| 	else
 | |
| 		hash__early_init_devtree();
 | |
| }
 | |
| #endif /* CONFIG_PPC_BOOK3S_64 */
 |