mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 f5b55fa1f8
			
		
	
	
		f5b55fa1f8
		
	
	
	
	
		
			
			The XC instruction can be used to improve the speed of the raid6 recovery. The loops now operate on blocks of 256 bytes. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
		
			
				
	
	
		
			117 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * RAID-6 data recovery in dual failure mode based on the XC instruction.
 | |
|  *
 | |
|  * Copyright IBM Corp. 2016
 | |
|  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/raid/pq.h>
 | |
| 
 | |
| static inline void xor_block(u8 *p1, u8 *p2)
 | |
| {
 | |
| 	typedef struct { u8 _[256]; } addrtype;
 | |
| 
 | |
| 	asm volatile(
 | |
| 		"	xc	0(256,%[p1]),0(%[p2])\n"
 | |
| 		: "+m" (*(addrtype *) p1) : "m" (*(addrtype *) p2),
 | |
| 		  [p1] "a" (p1), [p2] "a" (p2) : "cc");
 | |
| }
 | |
| 
 | |
| /* Recover two failed data blocks. */
 | |
| static void raid6_2data_recov_s390xc(int disks, size_t bytes, int faila,
 | |
| 		int failb, void **ptrs)
 | |
| {
 | |
| 	u8 *p, *q, *dp, *dq;
 | |
| 	const u8 *pbmul;	/* P multiplier table for B data */
 | |
| 	const u8 *qmul;		/* Q multiplier table (for both) */
 | |
| 	int i;
 | |
| 
 | |
| 	p = (u8 *)ptrs[disks-2];
 | |
| 	q = (u8 *)ptrs[disks-1];
 | |
| 
 | |
| 	/* Compute syndrome with zero for the missing data pages
 | |
| 	   Use the dead data pages as temporary storage for
 | |
| 	   delta p and delta q */
 | |
| 	dp = (u8 *)ptrs[faila];
 | |
| 	ptrs[faila] = (void *)raid6_empty_zero_page;
 | |
| 	ptrs[disks-2] = dp;
 | |
| 	dq = (u8 *)ptrs[failb];
 | |
| 	ptrs[failb] = (void *)raid6_empty_zero_page;
 | |
| 	ptrs[disks-1] = dq;
 | |
| 
 | |
| 	raid6_call.gen_syndrome(disks, bytes, ptrs);
 | |
| 
 | |
| 	/* Restore pointer table */
 | |
| 	ptrs[faila]   = dp;
 | |
| 	ptrs[failb]   = dq;
 | |
| 	ptrs[disks-2] = p;
 | |
| 	ptrs[disks-1] = q;
 | |
| 
 | |
| 	/* Now, pick the proper data tables */
 | |
| 	pbmul = raid6_gfmul[raid6_gfexi[failb-faila]];
 | |
| 	qmul  = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]];
 | |
| 
 | |
| 	/* Now do it... */
 | |
| 	while (bytes) {
 | |
| 		xor_block(dp, p);
 | |
| 		xor_block(dq, q);
 | |
| 		for (i = 0; i < 256; i++)
 | |
| 			dq[i] = pbmul[dp[i]] ^ qmul[dq[i]];
 | |
| 		xor_block(dp, dq);
 | |
| 		p += 256;
 | |
| 		q += 256;
 | |
| 		dp += 256;
 | |
| 		dq += 256;
 | |
| 		bytes -= 256;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Recover failure of one data block plus the P block */
 | |
| static void raid6_datap_recov_s390xc(int disks, size_t bytes, int faila,
 | |
| 		void **ptrs)
 | |
| {
 | |
| 	u8 *p, *q, *dq;
 | |
| 	const u8 *qmul;		/* Q multiplier table */
 | |
| 	int i;
 | |
| 
 | |
| 	p = (u8 *)ptrs[disks-2];
 | |
| 	q = (u8 *)ptrs[disks-1];
 | |
| 
 | |
| 	/* Compute syndrome with zero for the missing data page
 | |
| 	   Use the dead data page as temporary storage for delta q */
 | |
| 	dq = (u8 *)ptrs[faila];
 | |
| 	ptrs[faila] = (void *)raid6_empty_zero_page;
 | |
| 	ptrs[disks-1] = dq;
 | |
| 
 | |
| 	raid6_call.gen_syndrome(disks, bytes, ptrs);
 | |
| 
 | |
| 	/* Restore pointer table */
 | |
| 	ptrs[faila]   = dq;
 | |
| 	ptrs[disks-1] = q;
 | |
| 
 | |
| 	/* Now, pick the proper data tables */
 | |
| 	qmul  = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]]];
 | |
| 
 | |
| 	/* Now do it... */
 | |
| 	while (bytes) {
 | |
| 		xor_block(dq, q);
 | |
| 		for (i = 0; i < 256; i++)
 | |
| 			dq[i] = qmul[dq[i]];
 | |
| 		xor_block(p, dq);
 | |
| 		p += 256;
 | |
| 		q += 256;
 | |
| 		dq += 256;
 | |
| 		bytes -= 256;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| const struct raid6_recov_calls raid6_recov_s390xc = {
 | |
| 	.data2 = raid6_2data_recov_s390xc,
 | |
| 	.datap = raid6_datap_recov_s390xc,
 | |
| 	.valid = NULL,
 | |
| 	.name = "s390xc",
 | |
| 	.priority = 1,
 | |
| };
 |