mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 720037f939
			
		
	
	
		720037f939
		
	
	
	
	
		
			
			This patch fixes that SSR can overwrite previous warm node block consisting of
a node chain since the last checkpoint.
Fixes: 5b6c6be2d8 ("f2fs: use SSR for warm node as well")
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
		
	
			
		
			
				
	
	
		
			3040 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3040 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/f2fs/segment.c
 | |
|  *
 | |
|  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | |
|  *             http://www.samsung.com/
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/fs.h>
 | |
| #include <linux/f2fs_fs.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/timer.h>
 | |
| 
 | |
| #include "f2fs.h"
 | |
| #include "segment.h"
 | |
| #include "node.h"
 | |
| #include "trace.h"
 | |
| #include <trace/events/f2fs.h>
 | |
| 
 | |
| #define __reverse_ffz(x) __reverse_ffs(~(x))
 | |
| 
 | |
| static struct kmem_cache *discard_entry_slab;
 | |
| static struct kmem_cache *discard_cmd_slab;
 | |
| static struct kmem_cache *sit_entry_set_slab;
 | |
| static struct kmem_cache *inmem_entry_slab;
 | |
| 
 | |
| static unsigned long __reverse_ulong(unsigned char *str)
 | |
| {
 | |
| 	unsigned long tmp = 0;
 | |
| 	int shift = 24, idx = 0;
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| 	shift = 56;
 | |
| #endif
 | |
| 	while (shift >= 0) {
 | |
| 		tmp |= (unsigned long)str[idx++] << shift;
 | |
| 		shift -= BITS_PER_BYTE;
 | |
| 	}
 | |
| 	return tmp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
 | |
|  * MSB and LSB are reversed in a byte by f2fs_set_bit.
 | |
|  */
 | |
| static inline unsigned long __reverse_ffs(unsigned long word)
 | |
| {
 | |
| 	int num = 0;
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| 	if ((word & 0xffffffff00000000UL) == 0)
 | |
| 		num += 32;
 | |
| 	else
 | |
| 		word >>= 32;
 | |
| #endif
 | |
| 	if ((word & 0xffff0000) == 0)
 | |
| 		num += 16;
 | |
| 	else
 | |
| 		word >>= 16;
 | |
| 
 | |
| 	if ((word & 0xff00) == 0)
 | |
| 		num += 8;
 | |
| 	else
 | |
| 		word >>= 8;
 | |
| 
 | |
| 	if ((word & 0xf0) == 0)
 | |
| 		num += 4;
 | |
| 	else
 | |
| 		word >>= 4;
 | |
| 
 | |
| 	if ((word & 0xc) == 0)
 | |
| 		num += 2;
 | |
| 	else
 | |
| 		word >>= 2;
 | |
| 
 | |
| 	if ((word & 0x2) == 0)
 | |
| 		num += 1;
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
 | |
|  * f2fs_set_bit makes MSB and LSB reversed in a byte.
 | |
|  * @size must be integral times of unsigned long.
 | |
|  * Example:
 | |
|  *                             MSB <--> LSB
 | |
|  *   f2fs_set_bit(0, bitmap) => 1000 0000
 | |
|  *   f2fs_set_bit(7, bitmap) => 0000 0001
 | |
|  */
 | |
| static unsigned long __find_rev_next_bit(const unsigned long *addr,
 | |
| 			unsigned long size, unsigned long offset)
 | |
| {
 | |
| 	const unsigned long *p = addr + BIT_WORD(offset);
 | |
| 	unsigned long result = size;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	if (offset >= size)
 | |
| 		return size;
 | |
| 
 | |
| 	size -= (offset & ~(BITS_PER_LONG - 1));
 | |
| 	offset %= BITS_PER_LONG;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (*p == 0)
 | |
| 			goto pass;
 | |
| 
 | |
| 		tmp = __reverse_ulong((unsigned char *)p);
 | |
| 
 | |
| 		tmp &= ~0UL >> offset;
 | |
| 		if (size < BITS_PER_LONG)
 | |
| 			tmp &= (~0UL << (BITS_PER_LONG - size));
 | |
| 		if (tmp)
 | |
| 			goto found;
 | |
| pass:
 | |
| 		if (size <= BITS_PER_LONG)
 | |
| 			break;
 | |
| 		size -= BITS_PER_LONG;
 | |
| 		offset = 0;
 | |
| 		p++;
 | |
| 	}
 | |
| 	return result;
 | |
| found:
 | |
| 	return result - size + __reverse_ffs(tmp);
 | |
| }
 | |
| 
 | |
| static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 | |
| 			unsigned long size, unsigned long offset)
 | |
| {
 | |
| 	const unsigned long *p = addr + BIT_WORD(offset);
 | |
| 	unsigned long result = size;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	if (offset >= size)
 | |
| 		return size;
 | |
| 
 | |
| 	size -= (offset & ~(BITS_PER_LONG - 1));
 | |
| 	offset %= BITS_PER_LONG;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (*p == ~0UL)
 | |
| 			goto pass;
 | |
| 
 | |
| 		tmp = __reverse_ulong((unsigned char *)p);
 | |
| 
 | |
| 		if (offset)
 | |
| 			tmp |= ~0UL << (BITS_PER_LONG - offset);
 | |
| 		if (size < BITS_PER_LONG)
 | |
| 			tmp |= ~0UL >> size;
 | |
| 		if (tmp != ~0UL)
 | |
| 			goto found;
 | |
| pass:
 | |
| 		if (size <= BITS_PER_LONG)
 | |
| 			break;
 | |
| 		size -= BITS_PER_LONG;
 | |
| 		offset = 0;
 | |
| 		p++;
 | |
| 	}
 | |
| 	return result;
 | |
| found:
 | |
| 	return result - size + __reverse_ffz(tmp);
 | |
| }
 | |
| 
 | |
| void register_inmem_page(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 	struct inmem_pages *new;
 | |
| 
 | |
| 	f2fs_trace_pid(page);
 | |
| 
 | |
| 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 | |
| 	SetPagePrivate(page);
 | |
| 
 | |
| 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 | |
| 
 | |
| 	/* add atomic page indices to the list */
 | |
| 	new->page = page;
 | |
| 	INIT_LIST_HEAD(&new->list);
 | |
| 
 | |
| 	/* increase reference count with clean state */
 | |
| 	mutex_lock(&fi->inmem_lock);
 | |
| 	get_page(page);
 | |
| 	list_add_tail(&new->list, &fi->inmem_pages);
 | |
| 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 | |
| 	mutex_unlock(&fi->inmem_lock);
 | |
| 
 | |
| 	trace_f2fs_register_inmem_page(page, INMEM);
 | |
| }
 | |
| 
 | |
| static int __revoke_inmem_pages(struct inode *inode,
 | |
| 				struct list_head *head, bool drop, bool recover)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct inmem_pages *cur, *tmp;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(cur, tmp, head, list) {
 | |
| 		struct page *page = cur->page;
 | |
| 
 | |
| 		if (drop)
 | |
| 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 | |
| 
 | |
| 		lock_page(page);
 | |
| 
 | |
| 		if (recover) {
 | |
| 			struct dnode_of_data dn;
 | |
| 			struct node_info ni;
 | |
| 
 | |
| 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 | |
| 
 | |
| 			set_new_dnode(&dn, inode, NULL, NULL, 0);
 | |
| 			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 | |
| 				err = -EAGAIN;
 | |
| 				goto next;
 | |
| 			}
 | |
| 			get_node_info(sbi, dn.nid, &ni);
 | |
| 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 | |
| 					cur->old_addr, ni.version, true, true);
 | |
| 			f2fs_put_dnode(&dn);
 | |
| 		}
 | |
| next:
 | |
| 		/* we don't need to invalidate this in the sccessful status */
 | |
| 		if (drop || recover)
 | |
| 			ClearPageUptodate(page);
 | |
| 		set_page_private(page, 0);
 | |
| 		ClearPagePrivate(page);
 | |
| 		f2fs_put_page(page, 1);
 | |
| 
 | |
| 		list_del(&cur->list);
 | |
| 		kmem_cache_free(inmem_entry_slab, cur);
 | |
| 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void drop_inmem_pages(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 
 | |
| 	mutex_lock(&fi->inmem_lock);
 | |
| 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 | |
| 	mutex_unlock(&fi->inmem_lock);
 | |
| 
 | |
| 	clear_inode_flag(inode, FI_ATOMIC_FILE);
 | |
| 	stat_dec_atomic_write(inode);
 | |
| }
 | |
| 
 | |
| static int __commit_inmem_pages(struct inode *inode,
 | |
| 					struct list_head *revoke_list)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 	struct inmem_pages *cur, *tmp;
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.sbi = sbi,
 | |
| 		.type = DATA,
 | |
| 		.op = REQ_OP_WRITE,
 | |
| 		.op_flags = REQ_SYNC | REQ_PRIO,
 | |
| 		.encrypted_page = NULL,
 | |
| 	};
 | |
| 	pgoff_t last_idx = ULONG_MAX;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 | |
| 		struct page *page = cur->page;
 | |
| 
 | |
| 		lock_page(page);
 | |
| 		if (page->mapping == inode->i_mapping) {
 | |
| 			trace_f2fs_commit_inmem_page(page, INMEM);
 | |
| 
 | |
| 			set_page_dirty(page);
 | |
| 			f2fs_wait_on_page_writeback(page, DATA, true);
 | |
| 			if (clear_page_dirty_for_io(page)) {
 | |
| 				inode_dec_dirty_pages(inode);
 | |
| 				remove_dirty_inode(inode);
 | |
| 			}
 | |
| 
 | |
| 			fio.page = page;
 | |
| 			err = do_write_data_page(&fio);
 | |
| 			if (err) {
 | |
| 				unlock_page(page);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* record old blkaddr for revoking */
 | |
| 			cur->old_addr = fio.old_blkaddr;
 | |
| 			last_idx = page->index;
 | |
| 		}
 | |
| 		unlock_page(page);
 | |
| 		list_move_tail(&cur->list, revoke_list);
 | |
| 	}
 | |
| 
 | |
| 	if (last_idx != ULONG_MAX)
 | |
| 		f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
 | |
| 							DATA, WRITE);
 | |
| 
 | |
| 	if (!err)
 | |
| 		__revoke_inmem_pages(inode, revoke_list, false, false);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int commit_inmem_pages(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 | |
| 	struct f2fs_inode_info *fi = F2FS_I(inode);
 | |
| 	struct list_head revoke_list;
 | |
| 	int err;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&revoke_list);
 | |
| 	f2fs_balance_fs(sbi, true);
 | |
| 	f2fs_lock_op(sbi);
 | |
| 
 | |
| 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
 | |
| 
 | |
| 	mutex_lock(&fi->inmem_lock);
 | |
| 	err = __commit_inmem_pages(inode, &revoke_list);
 | |
| 	if (err) {
 | |
| 		int ret;
 | |
| 		/*
 | |
| 		 * try to revoke all committed pages, but still we could fail
 | |
| 		 * due to no memory or other reason, if that happened, EAGAIN
 | |
| 		 * will be returned, which means in such case, transaction is
 | |
| 		 * already not integrity, caller should use journal to do the
 | |
| 		 * recovery or rewrite & commit last transaction. For other
 | |
| 		 * error number, revoking was done by filesystem itself.
 | |
| 		 */
 | |
| 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 | |
| 		if (ret)
 | |
| 			err = ret;
 | |
| 
 | |
| 		/* drop all uncommitted pages */
 | |
| 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 | |
| 	}
 | |
| 	mutex_unlock(&fi->inmem_lock);
 | |
| 
 | |
| 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 | |
| 
 | |
| 	f2fs_unlock_op(sbi);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function balances dirty node and dentry pages.
 | |
|  * In addition, it controls garbage collection.
 | |
|  */
 | |
| void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 | |
| {
 | |
| #ifdef CONFIG_F2FS_FAULT_INJECTION
 | |
| 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 | |
| 		f2fs_show_injection_info(FAULT_CHECKPOINT);
 | |
| 		f2fs_stop_checkpoint(sbi, false);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (!need)
 | |
| 		return;
 | |
| 
 | |
| 	/* balance_fs_bg is able to be pending */
 | |
| 	if (excess_cached_nats(sbi))
 | |
| 		f2fs_balance_fs_bg(sbi);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should do GC or end up with checkpoint, if there are so many dirty
 | |
| 	 * dir/node pages without enough free segments.
 | |
| 	 */
 | |
| 	if (has_not_enough_free_secs(sbi, 0, 0)) {
 | |
| 		mutex_lock(&sbi->gc_mutex);
 | |
| 		f2fs_gc(sbi, false, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	/* try to shrink extent cache when there is no enough memory */
 | |
| 	if (!available_free_memory(sbi, EXTENT_CACHE))
 | |
| 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 | |
| 
 | |
| 	/* check the # of cached NAT entries */
 | |
| 	if (!available_free_memory(sbi, NAT_ENTRIES))
 | |
| 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 | |
| 
 | |
| 	if (!available_free_memory(sbi, FREE_NIDS))
 | |
| 		try_to_free_nids(sbi, MAX_FREE_NIDS);
 | |
| 	else
 | |
| 		build_free_nids(sbi, false, false);
 | |
| 
 | |
| 	if (!is_idle(sbi))
 | |
| 		return;
 | |
| 
 | |
| 	/* checkpoint is the only way to shrink partial cached entries */
 | |
| 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
 | |
| 			!available_free_memory(sbi, INO_ENTRIES) ||
 | |
| 			excess_prefree_segs(sbi) ||
 | |
| 			excess_dirty_nats(sbi) ||
 | |
| 			f2fs_time_over(sbi, CP_TIME)) {
 | |
| 		if (test_opt(sbi, DATA_FLUSH)) {
 | |
| 			struct blk_plug plug;
 | |
| 
 | |
| 			blk_start_plug(&plug);
 | |
| 			sync_dirty_inodes(sbi, FILE_INODE);
 | |
| 			blk_finish_plug(&plug);
 | |
| 		}
 | |
| 		f2fs_sync_fs(sbi->sb, true);
 | |
| 		stat_inc_bg_cp_count(sbi->stat_info);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __submit_flush_wait(struct block_device *bdev)
 | |
| {
 | |
| 	struct bio *bio = f2fs_bio_alloc(0);
 | |
| 	int ret;
 | |
| 
 | |
| 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 | |
| 	bio->bi_bdev = bdev;
 | |
| 	ret = submit_bio_wait(bio);
 | |
| 	bio_put(bio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int submit_flush_wait(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int ret = __submit_flush_wait(sbi->sb->s_bdev);
 | |
| 	int i;
 | |
| 
 | |
| 	if (sbi->s_ndevs && !ret) {
 | |
| 		for (i = 1; i < sbi->s_ndevs; i++) {
 | |
| 			trace_f2fs_issue_flush(FDEV(i).bdev,
 | |
| 					test_opt(sbi, NOBARRIER),
 | |
| 					test_opt(sbi, FLUSH_MERGE));
 | |
| 			ret = __submit_flush_wait(FDEV(i).bdev);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int issue_flush_thread(void *data)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = data;
 | |
| 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 | |
| 	wait_queue_head_t *q = &fcc->flush_wait_queue;
 | |
| repeat:
 | |
| 	if (kthread_should_stop())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!llist_empty(&fcc->issue_list)) {
 | |
| 		struct flush_cmd *cmd, *next;
 | |
| 		int ret;
 | |
| 
 | |
| 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 | |
| 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 | |
| 
 | |
| 		ret = submit_flush_wait(sbi);
 | |
| 		llist_for_each_entry_safe(cmd, next,
 | |
| 					  fcc->dispatch_list, llnode) {
 | |
| 			cmd->ret = ret;
 | |
| 			complete(&cmd->wait);
 | |
| 		}
 | |
| 		fcc->dispatch_list = NULL;
 | |
| 	}
 | |
| 
 | |
| 	wait_event_interruptible(*q,
 | |
| 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 | |
| 	goto repeat;
 | |
| }
 | |
| 
 | |
| int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 | |
| 	struct flush_cmd cmd;
 | |
| 
 | |
| 	if (test_opt(sbi, NOBARRIER))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!test_opt(sbi, FLUSH_MERGE))
 | |
| 		return submit_flush_wait(sbi);
 | |
| 
 | |
| 	if (!atomic_read(&fcc->submit_flush)) {
 | |
| 		int ret;
 | |
| 
 | |
| 		atomic_inc(&fcc->submit_flush);
 | |
| 		ret = submit_flush_wait(sbi);
 | |
| 		atomic_dec(&fcc->submit_flush);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	init_completion(&cmd.wait);
 | |
| 
 | |
| 	atomic_inc(&fcc->submit_flush);
 | |
| 	llist_add(&cmd.llnode, &fcc->issue_list);
 | |
| 
 | |
| 	if (!fcc->dispatch_list)
 | |
| 		wake_up(&fcc->flush_wait_queue);
 | |
| 
 | |
| 	if (fcc->f2fs_issue_flush) {
 | |
| 		wait_for_completion(&cmd.wait);
 | |
| 		atomic_dec(&fcc->submit_flush);
 | |
| 	} else {
 | |
| 		llist_del_all(&fcc->issue_list);
 | |
| 		atomic_set(&fcc->submit_flush, 0);
 | |
| 	}
 | |
| 
 | |
| 	return cmd.ret;
 | |
| }
 | |
| 
 | |
| int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	dev_t dev = sbi->sb->s_bdev->bd_dev;
 | |
| 	struct flush_cmd_control *fcc;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (SM_I(sbi)->fcc_info) {
 | |
| 		fcc = SM_I(sbi)->fcc_info;
 | |
| 		goto init_thread;
 | |
| 	}
 | |
| 
 | |
| 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 | |
| 	if (!fcc)
 | |
| 		return -ENOMEM;
 | |
| 	atomic_set(&fcc->submit_flush, 0);
 | |
| 	init_waitqueue_head(&fcc->flush_wait_queue);
 | |
| 	init_llist_head(&fcc->issue_list);
 | |
| 	SM_I(sbi)->fcc_info = fcc;
 | |
| init_thread:
 | |
| 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 | |
| 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 | |
| 	if (IS_ERR(fcc->f2fs_issue_flush)) {
 | |
| 		err = PTR_ERR(fcc->f2fs_issue_flush);
 | |
| 		kfree(fcc);
 | |
| 		SM_I(sbi)->fcc_info = NULL;
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 | |
| {
 | |
| 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 | |
| 
 | |
| 	if (fcc && fcc->f2fs_issue_flush) {
 | |
| 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 | |
| 
 | |
| 		fcc->f2fs_issue_flush = NULL;
 | |
| 		kthread_stop(flush_thread);
 | |
| 	}
 | |
| 	if (free) {
 | |
| 		kfree(fcc);
 | |
| 		SM_I(sbi)->fcc_info = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	/* need not be added */
 | |
| 	if (IS_CURSEG(sbi, segno))
 | |
| 		return;
 | |
| 
 | |
| 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 | |
| 		dirty_i->nr_dirty[dirty_type]++;
 | |
| 
 | |
| 	if (dirty_type == DIRTY) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 | |
| 		enum dirty_type t = sentry->type;
 | |
| 
 | |
| 		if (unlikely(t >= DIRTY)) {
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 | |
| 			dirty_i->nr_dirty[t]++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 | |
| 		dirty_i->nr_dirty[dirty_type]--;
 | |
| 
 | |
| 	if (dirty_type == DIRTY) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 | |
| 		enum dirty_type t = sentry->type;
 | |
| 
 | |
| 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 | |
| 			dirty_i->nr_dirty[t]--;
 | |
| 
 | |
| 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 | |
| 			clear_bit(GET_SECNO(sbi, segno),
 | |
| 						dirty_i->victim_secmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should not occur error such as -ENOMEM.
 | |
|  * Adding dirty entry into seglist is not critical operation.
 | |
|  * If a given segment is one of current working segments, it won't be added.
 | |
|  */
 | |
| static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned short valid_blocks;
 | |
| 
 | |
| 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	valid_blocks = get_valid_blocks(sbi, segno, 0);
 | |
| 
 | |
| 	if (valid_blocks == 0) {
 | |
| 		__locate_dirty_segment(sbi, segno, PRE);
 | |
| 		__remove_dirty_segment(sbi, segno, DIRTY);
 | |
| 	} else if (valid_blocks < sbi->blocks_per_seg) {
 | |
| 		__locate_dirty_segment(sbi, segno, DIRTY);
 | |
| 	} else {
 | |
| 		/* Recovery routine with SSR needs this */
 | |
| 		__remove_dirty_segment(sbi, segno, DIRTY);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| static void __add_discard_cmd(struct f2fs_sb_info *sbi,
 | |
| 			struct bio *bio, block_t lstart, block_t len)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *cmd_list = &(dcc->discard_cmd_list);
 | |
| 	struct discard_cmd *dc;
 | |
| 
 | |
| 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 | |
| 	INIT_LIST_HEAD(&dc->list);
 | |
| 	dc->bio = bio;
 | |
| 	bio->bi_private = dc;
 | |
| 	dc->lstart = lstart;
 | |
| 	dc->len = len;
 | |
| 	dc->state = D_PREP;
 | |
| 	init_completion(&dc->wait);
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	list_add_tail(&dc->list, cmd_list);
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| }
 | |
| 
 | |
| static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc)
 | |
| {
 | |
| 	int err = dc->bio->bi_error;
 | |
| 
 | |
| 	if (dc->state == D_DONE)
 | |
| 		atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard));
 | |
| 
 | |
| 	if (err == -EOPNOTSUPP)
 | |
| 		err = 0;
 | |
| 
 | |
| 	if (err)
 | |
| 		f2fs_msg(sbi->sb, KERN_INFO,
 | |
| 				"Issue discard failed, ret: %d", err);
 | |
| 	bio_put(dc->bio);
 | |
| 	list_del(&dc->list);
 | |
| 	kmem_cache_free(discard_cmd_slab, dc);
 | |
| }
 | |
| 
 | |
| /* This should be covered by global mutex, &sit_i->sentry_lock */
 | |
| void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	struct list_head *wait_list = &(dcc->discard_cmd_list);
 | |
| 	struct discard_cmd *dc, *tmp;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
 | |
| 
 | |
| 		if (blkaddr == NULL_ADDR) {
 | |
| 			if (dc->state == D_PREP) {
 | |
| 				dc->state = D_SUBMIT;
 | |
| 				submit_bio(dc->bio);
 | |
| 				atomic_inc(&dcc->submit_discard);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) {
 | |
| 			if (dc->state == D_SUBMIT)
 | |
| 				wait_for_completion_io(&dc->wait);
 | |
| 			else
 | |
| 				__remove_discard_cmd(sbi, dc);
 | |
| 		}
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	/* this comes from f2fs_put_super */
 | |
| 	if (blkaddr == NULL_ADDR) {
 | |
| 		list_for_each_entry_safe(dc, tmp, wait_list, list) {
 | |
| 			wait_for_completion_io(&dc->wait);
 | |
| 			__remove_discard_cmd(sbi, dc);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| }
 | |
| 
 | |
| static void f2fs_submit_discard_endio(struct bio *bio)
 | |
| {
 | |
| 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
 | |
| 
 | |
| 	complete(&dc->wait);
 | |
| 	dc->state = D_DONE;
 | |
| }
 | |
| 
 | |
| static int issue_discard_thread(void *data)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = data;
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 	wait_queue_head_t *q = &dcc->discard_wait_queue;
 | |
| 	struct list_head *cmd_list = &dcc->discard_cmd_list;
 | |
| 	struct discard_cmd *dc, *tmp;
 | |
| 	struct blk_plug plug;
 | |
| 	int iter = 0;
 | |
| repeat:
 | |
| 	if (kthread_should_stop())
 | |
| 		return 0;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	mutex_lock(&dcc->cmd_lock);
 | |
| 	list_for_each_entry_safe(dc, tmp, cmd_list, list) {
 | |
| 		if (dc->state == D_PREP) {
 | |
| 			dc->state = D_SUBMIT;
 | |
| 			submit_bio(dc->bio);
 | |
| 			atomic_inc(&dcc->submit_discard);
 | |
| 			if (iter++ > DISCARD_ISSUE_RATE)
 | |
| 				break;
 | |
| 		} else if (dc->state == D_DONE) {
 | |
| 			__remove_discard_cmd(sbi, dc);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&dcc->cmd_lock);
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	iter = 0;
 | |
| 	congestion_wait(BLK_RW_SYNC, HZ/50);
 | |
| 
 | |
| 	wait_event_interruptible(*q,
 | |
| 		kthread_should_stop() || !list_empty(&dcc->discard_cmd_list));
 | |
| 	goto repeat;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
 | |
| static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
 | |
| 		struct block_device *bdev, block_t blkstart, block_t blklen)
 | |
| {
 | |
| 	struct bio *bio = NULL;
 | |
| 	block_t lblkstart = blkstart;
 | |
| 	int err;
 | |
| 
 | |
| 	trace_f2fs_issue_discard(bdev, blkstart, blklen);
 | |
| 
 | |
| 	if (sbi->s_ndevs) {
 | |
| 		int devi = f2fs_target_device_index(sbi, blkstart);
 | |
| 
 | |
| 		blkstart -= FDEV(devi).start_blk;
 | |
| 	}
 | |
| 	err = __blkdev_issue_discard(bdev,
 | |
| 				SECTOR_FROM_BLOCK(blkstart),
 | |
| 				SECTOR_FROM_BLOCK(blklen),
 | |
| 				GFP_NOFS, 0, &bio);
 | |
| 	if (!err && bio) {
 | |
| 		bio->bi_end_io = f2fs_submit_discard_endio;
 | |
| 		bio->bi_opf |= REQ_SYNC;
 | |
| 
 | |
| 		__add_discard_cmd(sbi, bio, lblkstart, blklen);
 | |
| 		wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_ZONED
 | |
| static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
 | |
| 		struct block_device *bdev, block_t blkstart, block_t blklen)
 | |
| {
 | |
| 	sector_t sector, nr_sects;
 | |
| 	int devi = 0;
 | |
| 
 | |
| 	if (sbi->s_ndevs) {
 | |
| 		devi = f2fs_target_device_index(sbi, blkstart);
 | |
| 		blkstart -= FDEV(devi).start_blk;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to know the type of the zone: for conventional zones,
 | |
| 	 * use regular discard if the drive supports it. For sequential
 | |
| 	 * zones, reset the zone write pointer.
 | |
| 	 */
 | |
| 	switch (get_blkz_type(sbi, bdev, blkstart)) {
 | |
| 
 | |
| 	case BLK_ZONE_TYPE_CONVENTIONAL:
 | |
| 		if (!blk_queue_discard(bdev_get_queue(bdev)))
 | |
| 			return 0;
 | |
| 		return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
 | |
| 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
 | |
| 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
 | |
| 		sector = SECTOR_FROM_BLOCK(blkstart);
 | |
| 		nr_sects = SECTOR_FROM_BLOCK(blklen);
 | |
| 
 | |
| 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
 | |
| 				nr_sects != bdev_zone_sectors(bdev)) {
 | |
| 			f2fs_msg(sbi->sb, KERN_INFO,
 | |
| 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
 | |
| 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
 | |
| 				blkstart, blklen);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		trace_f2fs_issue_reset_zone(bdev, blkstart);
 | |
| 		return blkdev_reset_zones(bdev, sector,
 | |
| 					  nr_sects, GFP_NOFS);
 | |
| 	default:
 | |
| 		/* Unknown zone type: broken device ? */
 | |
| 		return -EIO;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __issue_discard_async(struct f2fs_sb_info *sbi,
 | |
| 		struct block_device *bdev, block_t blkstart, block_t blklen)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_ZONED
 | |
| 	if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
 | |
| 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
 | |
| 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
 | |
| #endif
 | |
| 	return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
 | |
| }
 | |
| 
 | |
| static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 | |
| 				block_t blkstart, block_t blklen)
 | |
| {
 | |
| 	sector_t start = blkstart, len = 0;
 | |
| 	struct block_device *bdev;
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int offset;
 | |
| 	block_t i;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	bdev = f2fs_target_device(sbi, blkstart, NULL);
 | |
| 
 | |
| 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
 | |
| 		if (i != start) {
 | |
| 			struct block_device *bdev2 =
 | |
| 				f2fs_target_device(sbi, i, NULL);
 | |
| 
 | |
| 			if (bdev2 != bdev) {
 | |
| 				err = __issue_discard_async(sbi, bdev,
 | |
| 						start, len);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				bdev = bdev2;
 | |
| 				start = i;
 | |
| 				len = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 | |
| 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 | |
| 
 | |
| 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 | |
| 			sbi->discard_blks--;
 | |
| 	}
 | |
| 
 | |
| 	if (len)
 | |
| 		err = __issue_discard_async(sbi, bdev, start, len);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __add_discard_entry(struct f2fs_sb_info *sbi,
 | |
| 		struct cp_control *cpc, struct seg_entry *se,
 | |
| 		unsigned int start, unsigned int end)
 | |
| {
 | |
| 	struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list;
 | |
| 	struct discard_entry *new, *last;
 | |
| 
 | |
| 	if (!list_empty(head)) {
 | |
| 		last = list_last_entry(head, struct discard_entry, list);
 | |
| 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
 | |
| 				last->blkaddr + last->len &&
 | |
| 				last->len < MAX_DISCARD_BLOCKS(sbi)) {
 | |
| 			last->len += end - start;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 | |
| 	INIT_LIST_HEAD(&new->list);
 | |
| 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 | |
| 	new->len = end - start;
 | |
| 	list_add_tail(&new->list, head);
 | |
| done:
 | |
| 	SM_I(sbi)->dcc_info->nr_discards += end - start;
 | |
| }
 | |
| 
 | |
| static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
 | |
| 							bool check_only)
 | |
| {
 | |
| 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 | |
| 	int max_blocks = sbi->blocks_per_seg;
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 | |
| 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 | |
| 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 | |
| 	unsigned long *discard_map = (unsigned long *)se->discard_map;
 | |
| 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
 | |
| 	unsigned int start = 0, end = -1;
 | |
| 	bool force = (cpc->reason == CP_DISCARD);
 | |
| 	int i;
 | |
| 
 | |
| 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!force) {
 | |
| 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 | |
| 			SM_I(sbi)->dcc_info->nr_discards >=
 | |
| 				SM_I(sbi)->dcc_info->max_discards)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 | |
| 	for (i = 0; i < entries; i++)
 | |
| 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 | |
| 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 | |
| 
 | |
| 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
 | |
| 				SM_I(sbi)->dcc_info->max_discards) {
 | |
| 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 | |
| 		if (start >= max_blocks)
 | |
| 			break;
 | |
| 
 | |
| 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 | |
| 		if (force && start && end != max_blocks
 | |
| 					&& (end - start) < cpc->trim_minlen)
 | |
| 			continue;
 | |
| 
 | |
| 		if (check_only)
 | |
| 			return true;
 | |
| 
 | |
| 		__add_discard_entry(sbi, cpc, se, start, end);
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void release_discard_addrs(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
 | |
| 	struct discard_entry *entry, *this;
 | |
| 
 | |
| 	/* drop caches */
 | |
| 	list_for_each_entry_safe(entry, this, head, list) {
 | |
| 		list_del(&entry->list);
 | |
| 		kmem_cache_free(discard_entry_slab, entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should call clear_prefree_segments after checkpoint is done.
 | |
|  */
 | |
| static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 | |
| 		__set_test_and_free(sbi, segno);
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 | |
| {
 | |
| 	struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
 | |
| 	struct discard_entry *entry, *this;
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 | |
| 	unsigned int start = 0, end = -1;
 | |
| 	unsigned int secno, start_segno;
 | |
| 	bool force = (cpc->reason == CP_DISCARD);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	while (1) {
 | |
| 		int i;
 | |
| 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 | |
| 		if (start >= MAIN_SEGS(sbi))
 | |
| 			break;
 | |
| 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 | |
| 								start + 1);
 | |
| 
 | |
| 		for (i = start; i < end; i++)
 | |
| 			clear_bit(i, prefree_map);
 | |
| 
 | |
| 		dirty_i->nr_dirty[PRE] -= end - start;
 | |
| 
 | |
| 		if (!test_opt(sbi, DISCARD))
 | |
| 			continue;
 | |
| 
 | |
| 		if (force && start >= cpc->trim_start &&
 | |
| 					(end - 1) <= cpc->trim_end)
 | |
| 				continue;
 | |
| 
 | |
| 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
 | |
| 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 | |
| 				(end - start) << sbi->log_blocks_per_seg);
 | |
| 			continue;
 | |
| 		}
 | |
| next:
 | |
| 		secno = GET_SECNO(sbi, start);
 | |
| 		start_segno = secno * sbi->segs_per_sec;
 | |
| 		if (!IS_CURSEC(sbi, secno) &&
 | |
| 			!get_valid_blocks(sbi, start, sbi->segs_per_sec))
 | |
| 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
 | |
| 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
 | |
| 
 | |
| 		start = start_segno + sbi->segs_per_sec;
 | |
| 		if (start < end)
 | |
| 			goto next;
 | |
| 		else
 | |
| 			end = start - 1;
 | |
| 	}
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	/* send small discards */
 | |
| 	list_for_each_entry_safe(entry, this, head, list) {
 | |
| 		if (force && entry->len < cpc->trim_minlen)
 | |
| 			goto skip;
 | |
| 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 | |
| 		cpc->trimmed += entry->len;
 | |
| skip:
 | |
| 		list_del(&entry->list);
 | |
| 		SM_I(sbi)->dcc_info->nr_discards -= entry->len;
 | |
| 		kmem_cache_free(discard_entry_slab, entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	dev_t dev = sbi->sb->s_bdev->bd_dev;
 | |
| 	struct discard_cmd_control *dcc;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (SM_I(sbi)->dcc_info) {
 | |
| 		dcc = SM_I(sbi)->dcc_info;
 | |
| 		goto init_thread;
 | |
| 	}
 | |
| 
 | |
| 	dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
 | |
| 	if (!dcc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&dcc->discard_entry_list);
 | |
| 	INIT_LIST_HEAD(&dcc->discard_cmd_list);
 | |
| 	mutex_init(&dcc->cmd_lock);
 | |
| 	atomic_set(&dcc->submit_discard, 0);
 | |
| 	dcc->nr_discards = 0;
 | |
| 	dcc->max_discards = 0;
 | |
| 
 | |
| 	init_waitqueue_head(&dcc->discard_wait_queue);
 | |
| 	SM_I(sbi)->dcc_info = dcc;
 | |
| init_thread:
 | |
| 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
 | |
| 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
 | |
| 	if (IS_ERR(dcc->f2fs_issue_discard)) {
 | |
| 		err = PTR_ERR(dcc->f2fs_issue_discard);
 | |
| 		kfree(dcc);
 | |
| 		SM_I(sbi)->dcc_info = NULL;
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free)
 | |
| {
 | |
| 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | |
| 
 | |
| 	if (dcc && dcc->f2fs_issue_discard) {
 | |
| 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
 | |
| 
 | |
| 		dcc->f2fs_issue_discard = NULL;
 | |
| 		kthread_stop(discard_thread);
 | |
| 	}
 | |
| 	if (free) {
 | |
| 		kfree(dcc);
 | |
| 		SM_I(sbi)->dcc_info = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 
 | |
| 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 | |
| 		sit_i->dirty_sentries++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 | |
| 					unsigned int segno, int modified)
 | |
| {
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, segno);
 | |
| 	se->type = type;
 | |
| 	if (modified)
 | |
| 		__mark_sit_entry_dirty(sbi, segno);
 | |
| }
 | |
| 
 | |
| static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 | |
| {
 | |
| 	struct seg_entry *se;
 | |
| 	unsigned int segno, offset;
 | |
| 	long int new_vblocks;
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, blkaddr);
 | |
| 
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	new_vblocks = se->valid_blocks + del;
 | |
| 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 | |
| 				(new_vblocks > sbi->blocks_per_seg)));
 | |
| 
 | |
| 	se->valid_blocks = new_vblocks;
 | |
| 	se->mtime = get_mtime(sbi);
 | |
| 	SIT_I(sbi)->max_mtime = se->mtime;
 | |
| 
 | |
| 	/* Update valid block bitmap */
 | |
| 	if (del > 0) {
 | |
| 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 			if (f2fs_test_and_set_bit(offset,
 | |
| 						se->cur_valid_map_mir))
 | |
| 				f2fs_bug_on(sbi, 1);
 | |
| 			else
 | |
| 				WARN_ON(1);
 | |
| #else
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| #endif
 | |
| 		}
 | |
| 		if (f2fs_discard_en(sbi) &&
 | |
| 			!f2fs_test_and_set_bit(offset, se->discard_map))
 | |
| 			sbi->discard_blks--;
 | |
| 
 | |
| 		/* don't overwrite by SSR to keep node chain */
 | |
| 		if (se->type == CURSEG_WARM_NODE) {
 | |
| 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
 | |
| 				se->ckpt_valid_blocks++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 			if (!f2fs_test_and_clear_bit(offset,
 | |
| 						se->cur_valid_map_mir))
 | |
| 				f2fs_bug_on(sbi, 1);
 | |
| 			else
 | |
| 				WARN_ON(1);
 | |
| #else
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| #endif
 | |
| 		}
 | |
| 		if (f2fs_discard_en(sbi) &&
 | |
| 			f2fs_test_and_clear_bit(offset, se->discard_map))
 | |
| 			sbi->discard_blks++;
 | |
| 	}
 | |
| 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 | |
| 		se->ckpt_valid_blocks += del;
 | |
| 
 | |
| 	__mark_sit_entry_dirty(sbi, segno);
 | |
| 
 | |
| 	/* update total number of valid blocks to be written in ckpt area */
 | |
| 	SIT_I(sbi)->written_valid_blocks += del;
 | |
| 
 | |
| 	if (sbi->segs_per_sec > 1)
 | |
| 		get_sec_entry(sbi, segno)->valid_blocks += del;
 | |
| }
 | |
| 
 | |
| void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 | |
| {
 | |
| 	update_sit_entry(sbi, new, 1);
 | |
| 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 | |
| 		update_sit_entry(sbi, old, -1);
 | |
| 
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 | |
| }
 | |
| 
 | |
| void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 | |
| {
 | |
| 	unsigned int segno = GET_SEGNO(sbi, addr);
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 
 | |
| 	f2fs_bug_on(sbi, addr == NULL_ADDR);
 | |
| 	if (addr == NEW_ADDR)
 | |
| 		return;
 | |
| 
 | |
| 	/* add it into sit main buffer */
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	update_sit_entry(sbi, addr, -1);
 | |
| 
 | |
| 	/* add it into dirty seglist */
 | |
| 	locate_dirty_segment(sbi, segno);
 | |
| 
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| }
 | |
| 
 | |
| bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int segno, offset;
 | |
| 	struct seg_entry *se;
 | |
| 	bool is_cp = false;
 | |
| 
 | |
| 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 | |
| 		return true;
 | |
| 
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, blkaddr);
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 | |
| 
 | |
| 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
 | |
| 		is_cp = true;
 | |
| 
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	return is_cp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function should be resided under the curseg_mutex lock
 | |
|  */
 | |
| static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 | |
| 					struct f2fs_summary *sum)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	void *addr = curseg->sum_blk;
 | |
| 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 | |
| 	memcpy(addr, sum, sizeof(struct f2fs_summary));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of current summary pages for writing
 | |
|  */
 | |
| int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 | |
| {
 | |
| 	int valid_sum_count = 0;
 | |
| 	int i, sum_in_page;
 | |
| 
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		if (sbi->ckpt->alloc_type[i] == SSR)
 | |
| 			valid_sum_count += sbi->blocks_per_seg;
 | |
| 		else {
 | |
| 			if (for_ra)
 | |
| 				valid_sum_count += le16_to_cpu(
 | |
| 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 | |
| 			else
 | |
| 				valid_sum_count += curseg_blkoff(sbi, i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 | |
| 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 | |
| 	if (valid_sum_count <= sum_in_page)
 | |
| 		return 1;
 | |
| 	else if ((valid_sum_count - sum_in_page) <=
 | |
| 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 | |
| 		return 2;
 | |
| 	return 3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller should put this summary page
 | |
|  */
 | |
| struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 | |
| {
 | |
| 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 | |
| }
 | |
| 
 | |
| void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
 | |
| {
 | |
| 	struct page *page = grab_meta_page(sbi, blk_addr);
 | |
| 	void *dst = page_address(page);
 | |
| 
 | |
| 	if (src)
 | |
| 		memcpy(dst, src, PAGE_SIZE);
 | |
| 	else
 | |
| 		memset(dst, 0, PAGE_SIZE);
 | |
| 	set_page_dirty(page);
 | |
| 	f2fs_put_page(page, 1);
 | |
| }
 | |
| 
 | |
| static void write_sum_page(struct f2fs_sb_info *sbi,
 | |
| 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
 | |
| {
 | |
| 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
 | |
| }
 | |
| 
 | |
| static void write_current_sum_page(struct f2fs_sb_info *sbi,
 | |
| 						int type, block_t blk_addr)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	struct page *page = grab_meta_page(sbi, blk_addr);
 | |
| 	struct f2fs_summary_block *src = curseg->sum_blk;
 | |
| 	struct f2fs_summary_block *dst;
 | |
| 
 | |
| 	dst = (struct f2fs_summary_block *)page_address(page);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	down_read(&curseg->journal_rwsem);
 | |
| 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
 | |
| 	up_read(&curseg->journal_rwsem);
 | |
| 
 | |
| 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
 | |
| 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
 | |
| 
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	set_page_dirty(page);
 | |
| 	f2fs_put_page(page, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a new segment from the free segments bitmap to right order
 | |
|  * This function should be returned with success, otherwise BUG
 | |
|  */
 | |
| static void get_new_segment(struct f2fs_sb_info *sbi,
 | |
| 			unsigned int *newseg, bool new_sec, int dir)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int segno, secno, zoneno;
 | |
| 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
 | |
| 	unsigned int hint = *newseg / sbi->segs_per_sec;
 | |
| 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
 | |
| 	unsigned int left_start = hint;
 | |
| 	bool init = true;
 | |
| 	int go_left = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&free_i->segmap_lock);
 | |
| 
 | |
| 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 | |
| 		segno = find_next_zero_bit(free_i->free_segmap,
 | |
| 				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
 | |
| 		if (segno < (hint + 1) * sbi->segs_per_sec)
 | |
| 			goto got_it;
 | |
| 	}
 | |
| find_other_zone:
 | |
| 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
 | |
| 	if (secno >= MAIN_SECS(sbi)) {
 | |
| 		if (dir == ALLOC_RIGHT) {
 | |
| 			secno = find_next_zero_bit(free_i->free_secmap,
 | |
| 							MAIN_SECS(sbi), 0);
 | |
| 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
 | |
| 		} else {
 | |
| 			go_left = 1;
 | |
| 			left_start = hint - 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (go_left == 0)
 | |
| 		goto skip_left;
 | |
| 
 | |
| 	while (test_bit(left_start, free_i->free_secmap)) {
 | |
| 		if (left_start > 0) {
 | |
| 			left_start--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		left_start = find_next_zero_bit(free_i->free_secmap,
 | |
| 							MAIN_SECS(sbi), 0);
 | |
| 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
 | |
| 		break;
 | |
| 	}
 | |
| 	secno = left_start;
 | |
| skip_left:
 | |
| 	hint = secno;
 | |
| 	segno = secno * sbi->segs_per_sec;
 | |
| 	zoneno = secno / sbi->secs_per_zone;
 | |
| 
 | |
| 	/* give up on finding another zone */
 | |
| 	if (!init)
 | |
| 		goto got_it;
 | |
| 	if (sbi->secs_per_zone == 1)
 | |
| 		goto got_it;
 | |
| 	if (zoneno == old_zoneno)
 | |
| 		goto got_it;
 | |
| 	if (dir == ALLOC_LEFT) {
 | |
| 		if (!go_left && zoneno + 1 >= total_zones)
 | |
| 			goto got_it;
 | |
| 		if (go_left && zoneno == 0)
 | |
| 			goto got_it;
 | |
| 	}
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++)
 | |
| 		if (CURSEG_I(sbi, i)->zone == zoneno)
 | |
| 			break;
 | |
| 
 | |
| 	if (i < NR_CURSEG_TYPE) {
 | |
| 		/* zone is in user, try another */
 | |
| 		if (go_left)
 | |
| 			hint = zoneno * sbi->secs_per_zone - 1;
 | |
| 		else if (zoneno + 1 >= total_zones)
 | |
| 			hint = 0;
 | |
| 		else
 | |
| 			hint = (zoneno + 1) * sbi->secs_per_zone;
 | |
| 		init = false;
 | |
| 		goto find_other_zone;
 | |
| 	}
 | |
| got_it:
 | |
| 	/* set it as dirty segment in free segmap */
 | |
| 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
 | |
| 	__set_inuse(sbi, segno);
 | |
| 	*newseg = segno;
 | |
| 	spin_unlock(&free_i->segmap_lock);
 | |
| }
 | |
| 
 | |
| static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	struct summary_footer *sum_footer;
 | |
| 
 | |
| 	curseg->segno = curseg->next_segno;
 | |
| 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
 | |
| 	curseg->next_blkoff = 0;
 | |
| 	curseg->next_segno = NULL_SEGNO;
 | |
| 
 | |
| 	sum_footer = &(curseg->sum_blk->footer);
 | |
| 	memset(sum_footer, 0, sizeof(struct summary_footer));
 | |
| 	if (IS_DATASEG(type))
 | |
| 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
 | |
| 	if (IS_NODESEG(type))
 | |
| 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
 | |
| 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a current working segment.
 | |
|  * This function always allocates a free segment in LFS manner.
 | |
|  */
 | |
| static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int segno = curseg->segno;
 | |
| 	int dir = ALLOC_LEFT;
 | |
| 
 | |
| 	write_sum_page(sbi, curseg->sum_blk,
 | |
| 				GET_SUM_BLOCK(sbi, segno));
 | |
| 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
 | |
| 		dir = ALLOC_RIGHT;
 | |
| 
 | |
| 	if (test_opt(sbi, NOHEAP))
 | |
| 		dir = ALLOC_RIGHT;
 | |
| 
 | |
| 	get_new_segment(sbi, &segno, new_sec, dir);
 | |
| 	curseg->next_segno = segno;
 | |
| 	reset_curseg(sbi, type, 1);
 | |
| 	curseg->alloc_type = LFS;
 | |
| }
 | |
| 
 | |
| static void __next_free_blkoff(struct f2fs_sb_info *sbi,
 | |
| 			struct curseg_info *seg, block_t start)
 | |
| {
 | |
| 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
 | |
| 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 | |
| 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
 | |
| 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 | |
| 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 | |
| 	int i, pos;
 | |
| 
 | |
| 	for (i = 0; i < entries; i++)
 | |
| 		target_map[i] = ckpt_map[i] | cur_map[i];
 | |
| 
 | |
| 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
 | |
| 
 | |
| 	seg->next_blkoff = pos;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a segment is written by LFS manner, next block offset is just obtained
 | |
|  * by increasing the current block offset. However, if a segment is written by
 | |
|  * SSR manner, next block offset obtained by calling __next_free_blkoff
 | |
|  */
 | |
| static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
 | |
| 				struct curseg_info *seg)
 | |
| {
 | |
| 	if (seg->alloc_type == SSR)
 | |
| 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
 | |
| 	else
 | |
| 		seg->next_blkoff++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function always allocates a used segment(from dirty seglist) by SSR
 | |
|  * manner, so it should recover the existing segment information of valid blocks
 | |
|  */
 | |
| static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	unsigned int new_segno = curseg->next_segno;
 | |
| 	struct f2fs_summary_block *sum_node;
 | |
| 	struct page *sum_page;
 | |
| 
 | |
| 	write_sum_page(sbi, curseg->sum_blk,
 | |
| 				GET_SUM_BLOCK(sbi, curseg->segno));
 | |
| 	__set_test_and_inuse(sbi, new_segno);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	__remove_dirty_segment(sbi, new_segno, PRE);
 | |
| 	__remove_dirty_segment(sbi, new_segno, DIRTY);
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	reset_curseg(sbi, type, 1);
 | |
| 	curseg->alloc_type = SSR;
 | |
| 	__next_free_blkoff(sbi, curseg, 0);
 | |
| 
 | |
| 	if (reuse) {
 | |
| 		sum_page = get_sum_page(sbi, new_segno);
 | |
| 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
 | |
| 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
 | |
| 		f2fs_put_page(sum_page, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
 | |
| 	int i, cnt;
 | |
| 	bool reversed = false;
 | |
| 
 | |
| 	/* need_SSR() already forces to do this */
 | |
| 	if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* For node segments, let's do SSR more intensively */
 | |
| 	if (IS_NODESEG(type)) {
 | |
| 		if (type >= CURSEG_WARM_NODE) {
 | |
| 			reversed = true;
 | |
| 			i = CURSEG_COLD_NODE;
 | |
| 		} else {
 | |
| 			i = CURSEG_HOT_NODE;
 | |
| 		}
 | |
| 		cnt = NR_CURSEG_NODE_TYPE;
 | |
| 	} else {
 | |
| 		if (type >= CURSEG_WARM_DATA) {
 | |
| 			reversed = true;
 | |
| 			i = CURSEG_COLD_DATA;
 | |
| 		} else {
 | |
| 			i = CURSEG_HOT_DATA;
 | |
| 		}
 | |
| 		cnt = NR_CURSEG_DATA_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	for (; cnt-- > 0; reversed ? i-- : i++) {
 | |
| 		if (i == type)
 | |
| 			continue;
 | |
| 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
 | |
| 						BG_GC, i, SSR))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * flush out current segment and replace it with new segment
 | |
|  * This function should be returned with success, otherwise BUG
 | |
|  */
 | |
| static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
 | |
| 						int type, bool force)
 | |
| {
 | |
| 	if (force)
 | |
| 		new_curseg(sbi, type, true);
 | |
| 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
 | |
| 					type == CURSEG_WARM_NODE)
 | |
| 		new_curseg(sbi, type, false);
 | |
| 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	else
 | |
| 		new_curseg(sbi, type, false);
 | |
| 
 | |
| 	stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
 | |
| }
 | |
| 
 | |
| void allocate_new_segments(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *curseg;
 | |
| 	unsigned int old_segno;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		curseg = CURSEG_I(sbi, i);
 | |
| 		old_segno = curseg->segno;
 | |
| 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
 | |
| 		locate_dirty_segment(sbi, old_segno);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct segment_allocation default_salloc_ops = {
 | |
| 	.allocate_segment = allocate_segment_by_default,
 | |
| };
 | |
| 
 | |
| bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 | |
| {
 | |
| 	__u64 trim_start = cpc->trim_start;
 | |
| 	bool has_candidate = false;
 | |
| 
 | |
| 	mutex_lock(&SIT_I(sbi)->sentry_lock);
 | |
| 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
 | |
| 		if (add_discard_addrs(sbi, cpc, true)) {
 | |
| 			has_candidate = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&SIT_I(sbi)->sentry_lock);
 | |
| 
 | |
| 	cpc->trim_start = trim_start;
 | |
| 	return has_candidate;
 | |
| }
 | |
| 
 | |
| int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
 | |
| {
 | |
| 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
 | |
| 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
 | |
| 	unsigned int start_segno, end_segno;
 | |
| 	struct cp_control cpc;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpc.trimmed = 0;
 | |
| 	if (end <= MAIN_BLKADDR(sbi))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
 | |
| 		f2fs_msg(sbi->sb, KERN_WARNING,
 | |
| 			"Found FS corruption, run fsck to fix.");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* start/end segment number in main_area */
 | |
| 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
 | |
| 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
 | |
| 						GET_SEGNO(sbi, end);
 | |
| 	cpc.reason = CP_DISCARD;
 | |
| 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
 | |
| 
 | |
| 	/* do checkpoint to issue discard commands safely */
 | |
| 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
 | |
| 		cpc.trim_start = start_segno;
 | |
| 
 | |
| 		if (sbi->discard_blks == 0)
 | |
| 			break;
 | |
| 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
 | |
| 			cpc.trim_end = end_segno;
 | |
| 		else
 | |
| 			cpc.trim_end = min_t(unsigned int,
 | |
| 				rounddown(start_segno +
 | |
| 				BATCHED_TRIM_SEGMENTS(sbi),
 | |
| 				sbi->segs_per_sec) - 1, end_segno);
 | |
| 
 | |
| 		mutex_lock(&sbi->gc_mutex);
 | |
| 		err = write_checkpoint(sbi, &cpc);
 | |
| 		mutex_unlock(&sbi->gc_mutex);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		schedule();
 | |
| 	}
 | |
| out:
 | |
| 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 	if (curseg->next_blkoff < sbi->blocks_per_seg)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_2(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	if (p_type == DATA)
 | |
| 		return CURSEG_HOT_DATA;
 | |
| 	else
 | |
| 		return CURSEG_HOT_NODE;
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_4(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	if (p_type == DATA) {
 | |
| 		struct inode *inode = page->mapping->host;
 | |
| 
 | |
| 		if (S_ISDIR(inode->i_mode))
 | |
| 			return CURSEG_HOT_DATA;
 | |
| 		else
 | |
| 			return CURSEG_COLD_DATA;
 | |
| 	} else {
 | |
| 		if (IS_DNODE(page) && is_cold_node(page))
 | |
| 			return CURSEG_WARM_NODE;
 | |
| 		else
 | |
| 			return CURSEG_COLD_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __get_segment_type_6(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	if (p_type == DATA) {
 | |
| 		struct inode *inode = page->mapping->host;
 | |
| 
 | |
| 		if (S_ISDIR(inode->i_mode))
 | |
| 			return CURSEG_HOT_DATA;
 | |
| 		else if (is_cold_data(page) || file_is_cold(inode))
 | |
| 			return CURSEG_COLD_DATA;
 | |
| 		else
 | |
| 			return CURSEG_WARM_DATA;
 | |
| 	} else {
 | |
| 		if (IS_DNODE(page))
 | |
| 			return is_cold_node(page) ? CURSEG_WARM_NODE :
 | |
| 						CURSEG_HOT_NODE;
 | |
| 		else
 | |
| 			return CURSEG_COLD_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __get_segment_type(struct page *page, enum page_type p_type)
 | |
| {
 | |
| 	switch (F2FS_P_SB(page)->active_logs) {
 | |
| 	case 2:
 | |
| 		return __get_segment_type_2(page, p_type);
 | |
| 	case 4:
 | |
| 		return __get_segment_type_4(page, p_type);
 | |
| 	}
 | |
| 	/* NR_CURSEG_TYPE(6) logs by default */
 | |
| 	f2fs_bug_on(F2FS_P_SB(page),
 | |
| 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
 | |
| 	return __get_segment_type_6(page, p_type);
 | |
| }
 | |
| 
 | |
| void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
 | |
| 		block_t old_blkaddr, block_t *new_blkaddr,
 | |
| 		struct f2fs_summary *sum, int type)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
 | |
| 
 | |
| 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
 | |
| 
 | |
| 	/*
 | |
| 	 * __add_sum_entry should be resided under the curseg_mutex
 | |
| 	 * because, this function updates a summary entry in the
 | |
| 	 * current summary block.
 | |
| 	 */
 | |
| 	__add_sum_entry(sbi, type, sum);
 | |
| 
 | |
| 	__refresh_next_blkoff(sbi, curseg);
 | |
| 
 | |
| 	stat_inc_block_count(sbi, curseg);
 | |
| 
 | |
| 	/*
 | |
| 	 * SIT information should be updated before segment allocation,
 | |
| 	 * since SSR needs latest valid block information.
 | |
| 	 */
 | |
| 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
 | |
| 
 | |
| 	if (!__has_curseg_space(sbi, type))
 | |
| 		sit_i->s_ops->allocate_segment(sbi, type, false);
 | |
| 
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	if (page && IS_NODESEG(type))
 | |
| 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
 | |
| 
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
 | |
| {
 | |
| 	int type = __get_segment_type(fio->page, fio->type);
 | |
| 	int err;
 | |
| 
 | |
| 	if (fio->type == NODE || fio->type == DATA)
 | |
| 		mutex_lock(&fio->sbi->wio_mutex[fio->type]);
 | |
| reallocate:
 | |
| 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
 | |
| 					&fio->new_blkaddr, sum, type);
 | |
| 
 | |
| 	/* writeout dirty page into bdev */
 | |
| 	err = f2fs_submit_page_mbio(fio);
 | |
| 	if (err == -EAGAIN) {
 | |
| 		fio->old_blkaddr = fio->new_blkaddr;
 | |
| 		goto reallocate;
 | |
| 	}
 | |
| 
 | |
| 	if (fio->type == NODE || fio->type == DATA)
 | |
| 		mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
 | |
| }
 | |
| 
 | |
| void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
 | |
| {
 | |
| 	struct f2fs_io_info fio = {
 | |
| 		.sbi = sbi,
 | |
| 		.type = META,
 | |
| 		.op = REQ_OP_WRITE,
 | |
| 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
 | |
| 		.old_blkaddr = page->index,
 | |
| 		.new_blkaddr = page->index,
 | |
| 		.page = page,
 | |
| 		.encrypted_page = NULL,
 | |
| 	};
 | |
| 
 | |
| 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
 | |
| 		fio.op_flags &= ~REQ_META;
 | |
| 
 | |
| 	set_page_writeback(page);
 | |
| 	f2fs_submit_page_mbio(&fio);
 | |
| }
 | |
| 
 | |
| void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
 | |
| {
 | |
| 	struct f2fs_summary sum;
 | |
| 
 | |
| 	set_summary(&sum, nid, 0, 0);
 | |
| 	do_write_page(&sum, fio);
 | |
| }
 | |
| 
 | |
| void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = fio->sbi;
 | |
| 	struct f2fs_summary sum;
 | |
| 	struct node_info ni;
 | |
| 
 | |
| 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
 | |
| 	get_node_info(sbi, dn->nid, &ni);
 | |
| 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
 | |
| 	do_write_page(&sum, fio);
 | |
| 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
 | |
| }
 | |
| 
 | |
| void rewrite_data_page(struct f2fs_io_info *fio)
 | |
| {
 | |
| 	fio->new_blkaddr = fio->old_blkaddr;
 | |
| 	stat_inc_inplace_blocks(fio->sbi);
 | |
| 	f2fs_submit_page_mbio(fio);
 | |
| }
 | |
| 
 | |
| void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
 | |
| 				block_t old_blkaddr, block_t new_blkaddr,
 | |
| 				bool recover_curseg, bool recover_newaddr)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg;
 | |
| 	unsigned int segno, old_cursegno;
 | |
| 	struct seg_entry *se;
 | |
| 	int type;
 | |
| 	unsigned short old_blkoff;
 | |
| 
 | |
| 	segno = GET_SEGNO(sbi, new_blkaddr);
 | |
| 	se = get_seg_entry(sbi, segno);
 | |
| 	type = se->type;
 | |
| 
 | |
| 	if (!recover_curseg) {
 | |
| 		/* for recovery flow */
 | |
| 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
 | |
| 			if (old_blkaddr == NULL_ADDR)
 | |
| 				type = CURSEG_COLD_DATA;
 | |
| 			else
 | |
| 				type = CURSEG_WARM_DATA;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!IS_CURSEG(sbi, segno))
 | |
| 			type = CURSEG_WARM_DATA;
 | |
| 	}
 | |
| 
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	old_cursegno = curseg->segno;
 | |
| 	old_blkoff = curseg->next_blkoff;
 | |
| 
 | |
| 	/* change the current segment */
 | |
| 	if (segno != curseg->segno) {
 | |
| 		curseg->next_segno = segno;
 | |
| 		change_curseg(sbi, type, true);
 | |
| 	}
 | |
| 
 | |
| 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
 | |
| 	__add_sum_entry(sbi, type, sum);
 | |
| 
 | |
| 	if (!recover_curseg || recover_newaddr)
 | |
| 		update_sit_entry(sbi, new_blkaddr, 1);
 | |
| 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
 | |
| 		update_sit_entry(sbi, old_blkaddr, -1);
 | |
| 
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
 | |
| 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
 | |
| 
 | |
| 	locate_dirty_segment(sbi, old_cursegno);
 | |
| 
 | |
| 	if (recover_curseg) {
 | |
| 		if (old_cursegno != curseg->segno) {
 | |
| 			curseg->next_segno = old_cursegno;
 | |
| 			change_curseg(sbi, type, true);
 | |
| 		}
 | |
| 		curseg->next_blkoff = old_blkoff;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| }
 | |
| 
 | |
| void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
 | |
| 				block_t old_addr, block_t new_addr,
 | |
| 				unsigned char version, bool recover_curseg,
 | |
| 				bool recover_newaddr)
 | |
| {
 | |
| 	struct f2fs_summary sum;
 | |
| 
 | |
| 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
 | |
| 
 | |
| 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
 | |
| 					recover_curseg, recover_newaddr);
 | |
| 
 | |
| 	f2fs_update_data_blkaddr(dn, new_addr);
 | |
| }
 | |
| 
 | |
| void f2fs_wait_on_page_writeback(struct page *page,
 | |
| 				enum page_type type, bool ordered)
 | |
| {
 | |
| 	if (PageWriteback(page)) {
 | |
| 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 | |
| 
 | |
| 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
 | |
| 						0, page->index, type, WRITE);
 | |
| 		if (ordered)
 | |
| 			wait_on_page_writeback(page);
 | |
| 		else
 | |
| 			wait_for_stable_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
 | |
| 							block_t blkaddr)
 | |
| {
 | |
| 	struct page *cpage;
 | |
| 
 | |
| 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 | |
| 		return;
 | |
| 
 | |
| 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
 | |
| 	if (cpage) {
 | |
| 		f2fs_wait_on_page_writeback(cpage, DATA, true);
 | |
| 		f2fs_put_page(cpage, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int read_compacted_summaries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct curseg_info *seg_i;
 | |
| 	unsigned char *kaddr;
 | |
| 	struct page *page;
 | |
| 	block_t start;
 | |
| 	int i, j, offset;
 | |
| 
 | |
| 	start = start_sum_block(sbi);
 | |
| 
 | |
| 	page = get_meta_page(sbi, start++);
 | |
| 	kaddr = (unsigned char *)page_address(page);
 | |
| 
 | |
| 	/* Step 1: restore nat cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
 | |
| 
 | |
| 	/* Step 2: restore sit cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
 | |
| 	offset = 2 * SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 3: restore summary entries */
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		unsigned short blk_off;
 | |
| 		unsigned int segno;
 | |
| 
 | |
| 		seg_i = CURSEG_I(sbi, i);
 | |
| 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
 | |
| 		seg_i->next_segno = segno;
 | |
| 		reset_curseg(sbi, i, 0);
 | |
| 		seg_i->alloc_type = ckpt->alloc_type[i];
 | |
| 		seg_i->next_blkoff = blk_off;
 | |
| 
 | |
| 		if (seg_i->alloc_type == SSR)
 | |
| 			blk_off = sbi->blocks_per_seg;
 | |
| 
 | |
| 		for (j = 0; j < blk_off; j++) {
 | |
| 			struct f2fs_summary *s;
 | |
| 			s = (struct f2fs_summary *)(kaddr + offset);
 | |
| 			seg_i->sum_blk->entries[j] = *s;
 | |
| 			offset += SUMMARY_SIZE;
 | |
| 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
 | |
| 						SUM_FOOTER_SIZE)
 | |
| 				continue;
 | |
| 
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			page = NULL;
 | |
| 
 | |
| 			page = get_meta_page(sbi, start++);
 | |
| 			kaddr = (unsigned char *)page_address(page);
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	f2fs_put_page(page, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_summary_block *sum;
 | |
| 	struct curseg_info *curseg;
 | |
| 	struct page *new;
 | |
| 	unsigned short blk_off;
 | |
| 	unsigned int segno = 0;
 | |
| 	block_t blk_addr = 0;
 | |
| 
 | |
| 	/* get segment number and block addr */
 | |
| 	if (IS_DATASEG(type)) {
 | |
| 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
 | |
| 							CURSEG_HOT_DATA]);
 | |
| 		if (__exist_node_summaries(sbi))
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
 | |
| 		else
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
 | |
| 	} else {
 | |
| 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
 | |
| 							CURSEG_HOT_NODE]);
 | |
| 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
 | |
| 							CURSEG_HOT_NODE]);
 | |
| 		if (__exist_node_summaries(sbi))
 | |
| 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
 | |
| 							type - CURSEG_HOT_NODE);
 | |
| 		else
 | |
| 			blk_addr = GET_SUM_BLOCK(sbi, segno);
 | |
| 	}
 | |
| 
 | |
| 	new = get_meta_page(sbi, blk_addr);
 | |
| 	sum = (struct f2fs_summary_block *)page_address(new);
 | |
| 
 | |
| 	if (IS_NODESEG(type)) {
 | |
| 		if (__exist_node_summaries(sbi)) {
 | |
| 			struct f2fs_summary *ns = &sum->entries[0];
 | |
| 			int i;
 | |
| 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
 | |
| 				ns->version = 0;
 | |
| 				ns->ofs_in_node = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			int err;
 | |
| 
 | |
| 			err = restore_node_summary(sbi, segno, sum);
 | |
| 			if (err) {
 | |
| 				f2fs_put_page(new, 1);
 | |
| 				return err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* set uncompleted segment to curseg */
 | |
| 	curseg = CURSEG_I(sbi, type);
 | |
| 	mutex_lock(&curseg->curseg_mutex);
 | |
| 
 | |
| 	/* update journal info */
 | |
| 	down_write(&curseg->journal_rwsem);
 | |
| 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
 | |
| 	up_write(&curseg->journal_rwsem);
 | |
| 
 | |
| 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
 | |
| 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
 | |
| 	curseg->next_segno = segno;
 | |
| 	reset_curseg(sbi, type, 0);
 | |
| 	curseg->alloc_type = ckpt->alloc_type[type];
 | |
| 	curseg->next_blkoff = blk_off;
 | |
| 	mutex_unlock(&curseg->curseg_mutex);
 | |
| 	f2fs_put_page(new, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	int type = CURSEG_HOT_DATA;
 | |
| 	int err;
 | |
| 
 | |
| 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
 | |
| 		int npages = npages_for_summary_flush(sbi, true);
 | |
| 
 | |
| 		if (npages >= 2)
 | |
| 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
 | |
| 							META_CP, true);
 | |
| 
 | |
| 		/* restore for compacted data summary */
 | |
| 		if (read_compacted_summaries(sbi))
 | |
| 			return -EINVAL;
 | |
| 		type = CURSEG_HOT_NODE;
 | |
| 	}
 | |
| 
 | |
| 	if (__exist_node_summaries(sbi))
 | |
| 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
 | |
| 					NR_CURSEG_TYPE - type, META_CP, true);
 | |
| 
 | |
| 	for (; type <= CURSEG_COLD_NODE; type++) {
 | |
| 		err = read_normal_summaries(sbi, type);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned char *kaddr;
 | |
| 	struct f2fs_summary *summary;
 | |
| 	struct curseg_info *seg_i;
 | |
| 	int written_size = 0;
 | |
| 	int i, j;
 | |
| 
 | |
| 	page = grab_meta_page(sbi, blkaddr++);
 | |
| 	kaddr = (unsigned char *)page_address(page);
 | |
| 
 | |
| 	/* Step 1: write nat cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
 | |
| 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
 | |
| 	written_size += SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 2: write sit cache */
 | |
| 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
 | |
| 	written_size += SUM_JOURNAL_SIZE;
 | |
| 
 | |
| 	/* Step 3: write summary entries */
 | |
| 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 | |
| 		unsigned short blkoff;
 | |
| 		seg_i = CURSEG_I(sbi, i);
 | |
| 		if (sbi->ckpt->alloc_type[i] == SSR)
 | |
| 			blkoff = sbi->blocks_per_seg;
 | |
| 		else
 | |
| 			blkoff = curseg_blkoff(sbi, i);
 | |
| 
 | |
| 		for (j = 0; j < blkoff; j++) {
 | |
| 			if (!page) {
 | |
| 				page = grab_meta_page(sbi, blkaddr++);
 | |
| 				kaddr = (unsigned char *)page_address(page);
 | |
| 				written_size = 0;
 | |
| 			}
 | |
| 			summary = (struct f2fs_summary *)(kaddr + written_size);
 | |
| 			*summary = seg_i->sum_blk->entries[j];
 | |
| 			written_size += SUMMARY_SIZE;
 | |
| 
 | |
| 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
 | |
| 							SUM_FOOTER_SIZE)
 | |
| 				continue;
 | |
| 
 | |
| 			set_page_dirty(page);
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			page = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (page) {
 | |
| 		set_page_dirty(page);
 | |
| 		f2fs_put_page(page, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void write_normal_summaries(struct f2fs_sb_info *sbi,
 | |
| 					block_t blkaddr, int type)
 | |
| {
 | |
| 	int i, end;
 | |
| 	if (IS_DATASEG(type))
 | |
| 		end = type + NR_CURSEG_DATA_TYPE;
 | |
| 	else
 | |
| 		end = type + NR_CURSEG_NODE_TYPE;
 | |
| 
 | |
| 	for (i = type; i < end; i++)
 | |
| 		write_current_sum_page(sbi, i, blkaddr + (i - type));
 | |
| }
 | |
| 
 | |
| void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
 | |
| 		write_compacted_summaries(sbi, start_blk);
 | |
| 	else
 | |
| 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
 | |
| }
 | |
| 
 | |
| void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
 | |
| }
 | |
| 
 | |
| int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
 | |
| 					unsigned int val, int alloc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (type == NAT_JOURNAL) {
 | |
| 		for (i = 0; i < nats_in_cursum(journal); i++) {
 | |
| 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
 | |
| 				return i;
 | |
| 		}
 | |
| 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
 | |
| 			return update_nats_in_cursum(journal, 1);
 | |
| 	} else if (type == SIT_JOURNAL) {
 | |
| 		for (i = 0; i < sits_in_cursum(journal); i++)
 | |
| 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
 | |
| 				return i;
 | |
| 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
 | |
| 			return update_sits_in_cursum(journal, 1);
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int segno)
 | |
| {
 | |
| 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
 | |
| }
 | |
| 
 | |
| static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
 | |
| 					unsigned int start)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct page *src_page, *dst_page;
 | |
| 	pgoff_t src_off, dst_off;
 | |
| 	void *src_addr, *dst_addr;
 | |
| 
 | |
| 	src_off = current_sit_addr(sbi, start);
 | |
| 	dst_off = next_sit_addr(sbi, src_off);
 | |
| 
 | |
| 	/* get current sit block page without lock */
 | |
| 	src_page = get_meta_page(sbi, src_off);
 | |
| 	dst_page = grab_meta_page(sbi, dst_off);
 | |
| 	f2fs_bug_on(sbi, PageDirty(src_page));
 | |
| 
 | |
| 	src_addr = page_address(src_page);
 | |
| 	dst_addr = page_address(dst_page);
 | |
| 	memcpy(dst_addr, src_addr, PAGE_SIZE);
 | |
| 
 | |
| 	set_page_dirty(dst_page);
 | |
| 	f2fs_put_page(src_page, 1);
 | |
| 
 | |
| 	set_to_next_sit(sit_i, start);
 | |
| 
 | |
| 	return dst_page;
 | |
| }
 | |
| 
 | |
| static struct sit_entry_set *grab_sit_entry_set(void)
 | |
| {
 | |
| 	struct sit_entry_set *ses =
 | |
| 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
 | |
| 
 | |
| 	ses->entry_cnt = 0;
 | |
| 	INIT_LIST_HEAD(&ses->set_list);
 | |
| 	return ses;
 | |
| }
 | |
| 
 | |
| static void release_sit_entry_set(struct sit_entry_set *ses)
 | |
| {
 | |
| 	list_del(&ses->set_list);
 | |
| 	kmem_cache_free(sit_entry_set_slab, ses);
 | |
| }
 | |
| 
 | |
| static void adjust_sit_entry_set(struct sit_entry_set *ses,
 | |
| 						struct list_head *head)
 | |
| {
 | |
| 	struct sit_entry_set *next = ses;
 | |
| 
 | |
| 	if (list_is_last(&ses->set_list, head))
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry_continue(next, head, set_list)
 | |
| 		if (ses->entry_cnt <= next->entry_cnt)
 | |
| 			break;
 | |
| 
 | |
| 	list_move_tail(&ses->set_list, &next->set_list);
 | |
| }
 | |
| 
 | |
| static void add_sit_entry(unsigned int segno, struct list_head *head)
 | |
| {
 | |
| 	struct sit_entry_set *ses;
 | |
| 	unsigned int start_segno = START_SEGNO(segno);
 | |
| 
 | |
| 	list_for_each_entry(ses, head, set_list) {
 | |
| 		if (ses->start_segno == start_segno) {
 | |
| 			ses->entry_cnt++;
 | |
| 			adjust_sit_entry_set(ses, head);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ses = grab_sit_entry_set();
 | |
| 
 | |
| 	ses->start_segno = start_segno;
 | |
| 	ses->entry_cnt++;
 | |
| 	list_add(&ses->set_list, head);
 | |
| }
 | |
| 
 | |
| static void add_sits_in_set(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_sm_info *sm_info = SM_I(sbi);
 | |
| 	struct list_head *set_list = &sm_info->sit_entry_set;
 | |
| 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
 | |
| 		add_sit_entry(segno, set_list);
 | |
| }
 | |
| 
 | |
| static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_journal *journal = curseg->journal;
 | |
| 	int i;
 | |
| 
 | |
| 	down_write(&curseg->journal_rwsem);
 | |
| 	for (i = 0; i < sits_in_cursum(journal); i++) {
 | |
| 		unsigned int segno;
 | |
| 		bool dirtied;
 | |
| 
 | |
| 		segno = le32_to_cpu(segno_in_journal(journal, i));
 | |
| 		dirtied = __mark_sit_entry_dirty(sbi, segno);
 | |
| 
 | |
| 		if (!dirtied)
 | |
| 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
 | |
| 	}
 | |
| 	update_sits_in_cursum(journal, -i);
 | |
| 	up_write(&curseg->journal_rwsem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CP calls this function, which flushes SIT entries including sit_journal,
 | |
|  * and moves prefree segs to free segs.
 | |
|  */
 | |
| void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_journal *journal = curseg->journal;
 | |
| 	struct sit_entry_set *ses, *tmp;
 | |
| 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
 | |
| 	bool to_journal = true;
 | |
| 	struct seg_entry *se;
 | |
| 
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	if (!sit_i->dirty_sentries)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * add and account sit entries of dirty bitmap in sit entry
 | |
| 	 * set temporarily
 | |
| 	 */
 | |
| 	add_sits_in_set(sbi);
 | |
| 
 | |
| 	/*
 | |
| 	 * if there are no enough space in journal to store dirty sit
 | |
| 	 * entries, remove all entries from journal and add and account
 | |
| 	 * them in sit entry set.
 | |
| 	 */
 | |
| 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
 | |
| 		remove_sits_in_journal(sbi);
 | |
| 
 | |
| 	/*
 | |
| 	 * there are two steps to flush sit entries:
 | |
| 	 * #1, flush sit entries to journal in current cold data summary block.
 | |
| 	 * #2, flush sit entries to sit page.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(ses, tmp, head, set_list) {
 | |
| 		struct page *page = NULL;
 | |
| 		struct f2fs_sit_block *raw_sit = NULL;
 | |
| 		unsigned int start_segno = ses->start_segno;
 | |
| 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
 | |
| 						(unsigned long)MAIN_SEGS(sbi));
 | |
| 		unsigned int segno = start_segno;
 | |
| 
 | |
| 		if (to_journal &&
 | |
| 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
 | |
| 			to_journal = false;
 | |
| 
 | |
| 		if (to_journal) {
 | |
| 			down_write(&curseg->journal_rwsem);
 | |
| 		} else {
 | |
| 			page = get_next_sit_page(sbi, start_segno);
 | |
| 			raw_sit = page_address(page);
 | |
| 		}
 | |
| 
 | |
| 		/* flush dirty sit entries in region of current sit set */
 | |
| 		for_each_set_bit_from(segno, bitmap, end) {
 | |
| 			int offset, sit_offset;
 | |
| 
 | |
| 			se = get_seg_entry(sbi, segno);
 | |
| 
 | |
| 			/* add discard candidates */
 | |
| 			if (cpc->reason != CP_DISCARD) {
 | |
| 				cpc->trim_start = segno;
 | |
| 				add_discard_addrs(sbi, cpc, false);
 | |
| 			}
 | |
| 
 | |
| 			if (to_journal) {
 | |
| 				offset = lookup_journal_in_cursum(journal,
 | |
| 							SIT_JOURNAL, segno, 1);
 | |
| 				f2fs_bug_on(sbi, offset < 0);
 | |
| 				segno_in_journal(journal, offset) =
 | |
| 							cpu_to_le32(segno);
 | |
| 				seg_info_to_raw_sit(se,
 | |
| 					&sit_in_journal(journal, offset));
 | |
| 			} else {
 | |
| 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
 | |
| 				seg_info_to_raw_sit(se,
 | |
| 						&raw_sit->entries[sit_offset]);
 | |
| 			}
 | |
| 
 | |
| 			__clear_bit(segno, bitmap);
 | |
| 			sit_i->dirty_sentries--;
 | |
| 			ses->entry_cnt--;
 | |
| 		}
 | |
| 
 | |
| 		if (to_journal)
 | |
| 			up_write(&curseg->journal_rwsem);
 | |
| 		else
 | |
| 			f2fs_put_page(page, 1);
 | |
| 
 | |
| 		f2fs_bug_on(sbi, ses->entry_cnt);
 | |
| 		release_sit_entry_set(ses);
 | |
| 	}
 | |
| 
 | |
| 	f2fs_bug_on(sbi, !list_empty(head));
 | |
| 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
 | |
| out:
 | |
| 	if (cpc->reason == CP_DISCARD) {
 | |
| 		__u64 trim_start = cpc->trim_start;
 | |
| 
 | |
| 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
 | |
| 			add_discard_addrs(sbi, cpc, false);
 | |
| 
 | |
| 		cpc->trim_start = trim_start;
 | |
| 	}
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	set_prefree_as_free_segments(sbi);
 | |
| }
 | |
| 
 | |
| static int build_sit_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 | |
| 	struct sit_info *sit_i;
 | |
| 	unsigned int sit_segs, start;
 | |
| 	char *src_bitmap;
 | |
| 	unsigned int bitmap_size;
 | |
| 
 | |
| 	/* allocate memory for SIT information */
 | |
| 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
 | |
| 	if (!sit_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->sit_info = sit_i;
 | |
| 
 | |
| 	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
 | |
| 					sizeof(struct seg_entry), GFP_KERNEL);
 | |
| 	if (!sit_i->sentries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
 | |
| 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->dirty_sentries_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
 | |
| 		sit_i->sentries[start].cur_valid_map
 | |
| 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 		sit_i->sentries[start].ckpt_valid_map
 | |
| 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 		if (!sit_i->sentries[start].cur_valid_map ||
 | |
| 				!sit_i->sentries[start].ckpt_valid_map)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 		sit_i->sentries[start].cur_valid_map_mir
 | |
| 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 		if (!sit_i->sentries[start].cur_valid_map_mir)
 | |
| 			return -ENOMEM;
 | |
| #endif
 | |
| 
 | |
| 		if (f2fs_discard_en(sbi)) {
 | |
| 			sit_i->sentries[start].discard_map
 | |
| 				= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 			if (!sit_i->sentries[start].discard_map)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
 | |
| 	if (!sit_i->tmp_map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (sbi->segs_per_sec > 1) {
 | |
| 		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
 | |
| 					sizeof(struct sec_entry), GFP_KERNEL);
 | |
| 		if (!sit_i->sec_entries)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* get information related with SIT */
 | |
| 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
 | |
| 
 | |
| 	/* setup SIT bitmap from ckeckpoint pack */
 | |
| 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
 | |
| 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
 | |
| 
 | |
| 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->sit_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
 | |
| 	if (!sit_i->sit_bitmap_mir)
 | |
| 		return -ENOMEM;
 | |
| #endif
 | |
| 
 | |
| 	/* init SIT information */
 | |
| 	sit_i->s_ops = &default_salloc_ops;
 | |
| 
 | |
| 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
 | |
| 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
 | |
| 	sit_i->written_valid_blocks = 0;
 | |
| 	sit_i->bitmap_size = bitmap_size;
 | |
| 	sit_i->dirty_sentries = 0;
 | |
| 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
 | |
| 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
 | |
| 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
 | |
| 	mutex_init(&sit_i->sentry_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct free_segmap_info *free_i;
 | |
| 	unsigned int bitmap_size, sec_bitmap_size;
 | |
| 
 | |
| 	/* allocate memory for free segmap information */
 | |
| 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
 | |
| 	if (!free_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->free_info = free_i;
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
 | |
| 	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!free_i->free_segmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
 | |
| 	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
 | |
| 	if (!free_i->free_secmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* set all segments as dirty temporarily */
 | |
| 	memset(free_i->free_segmap, 0xff, bitmap_size);
 | |
| 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
 | |
| 
 | |
| 	/* init free segmap information */
 | |
| 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
 | |
| 	free_i->free_segments = 0;
 | |
| 	free_i->free_sections = 0;
 | |
| 	spin_lock_init(&free_i->segmap_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *array;
 | |
| 	int i;
 | |
| 
 | |
| 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
 | |
| 	if (!array)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->curseg_array = array;
 | |
| 
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
 | |
| 		mutex_init(&array[i].curseg_mutex);
 | |
| 		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 		if (!array[i].sum_blk)
 | |
| 			return -ENOMEM;
 | |
| 		init_rwsem(&array[i].journal_rwsem);
 | |
| 		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
 | |
| 							GFP_KERNEL);
 | |
| 		if (!array[i].journal)
 | |
| 			return -ENOMEM;
 | |
| 		array[i].segno = NULL_SEGNO;
 | |
| 		array[i].next_blkoff = 0;
 | |
| 	}
 | |
| 	return restore_curseg_summaries(sbi);
 | |
| }
 | |
| 
 | |
| static void build_sit_entries(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
 | |
| 	struct f2fs_journal *journal = curseg->journal;
 | |
| 	struct seg_entry *se;
 | |
| 	struct f2fs_sit_entry sit;
 | |
| 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
 | |
| 	unsigned int i, start, end;
 | |
| 	unsigned int readed, start_blk = 0;
 | |
| 
 | |
| 	do {
 | |
| 		readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
 | |
| 							META_SIT, true);
 | |
| 
 | |
| 		start = start_blk * sit_i->sents_per_block;
 | |
| 		end = (start_blk + readed) * sit_i->sents_per_block;
 | |
| 
 | |
| 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
 | |
| 			struct f2fs_sit_block *sit_blk;
 | |
| 			struct page *page;
 | |
| 
 | |
| 			se = &sit_i->sentries[start];
 | |
| 			page = get_current_sit_page(sbi, start);
 | |
| 			sit_blk = (struct f2fs_sit_block *)page_address(page);
 | |
| 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
 | |
| 			f2fs_put_page(page, 1);
 | |
| 
 | |
| 			check_block_count(sbi, start, &sit);
 | |
| 			seg_info_from_raw_sit(se, &sit);
 | |
| 
 | |
| 			/* build discard map only one time */
 | |
| 			if (f2fs_discard_en(sbi)) {
 | |
| 				memcpy(se->discard_map, se->cur_valid_map,
 | |
| 							SIT_VBLOCK_MAP_SIZE);
 | |
| 				sbi->discard_blks += sbi->blocks_per_seg -
 | |
| 							se->valid_blocks;
 | |
| 			}
 | |
| 
 | |
| 			if (sbi->segs_per_sec > 1)
 | |
| 				get_sec_entry(sbi, start)->valid_blocks +=
 | |
| 							se->valid_blocks;
 | |
| 		}
 | |
| 		start_blk += readed;
 | |
| 	} while (start_blk < sit_blk_cnt);
 | |
| 
 | |
| 	down_read(&curseg->journal_rwsem);
 | |
| 	for (i = 0; i < sits_in_cursum(journal); i++) {
 | |
| 		unsigned int old_valid_blocks;
 | |
| 
 | |
| 		start = le32_to_cpu(segno_in_journal(journal, i));
 | |
| 		se = &sit_i->sentries[start];
 | |
| 		sit = sit_in_journal(journal, i);
 | |
| 
 | |
| 		old_valid_blocks = se->valid_blocks;
 | |
| 
 | |
| 		check_block_count(sbi, start, &sit);
 | |
| 		seg_info_from_raw_sit(se, &sit);
 | |
| 
 | |
| 		if (f2fs_discard_en(sbi)) {
 | |
| 			memcpy(se->discard_map, se->cur_valid_map,
 | |
| 						SIT_VBLOCK_MAP_SIZE);
 | |
| 			sbi->discard_blks += old_valid_blocks -
 | |
| 						se->valid_blocks;
 | |
| 		}
 | |
| 
 | |
| 		if (sbi->segs_per_sec > 1)
 | |
| 			get_sec_entry(sbi, start)->valid_blocks +=
 | |
| 				se->valid_blocks - old_valid_blocks;
 | |
| 	}
 | |
| 	up_read(&curseg->journal_rwsem);
 | |
| }
 | |
| 
 | |
| static void init_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	unsigned int start;
 | |
| 	int type;
 | |
| 
 | |
| 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
 | |
| 		struct seg_entry *sentry = get_seg_entry(sbi, start);
 | |
| 		if (!sentry->valid_blocks)
 | |
| 			__set_free(sbi, start);
 | |
| 		else
 | |
| 			SIT_I(sbi)->written_valid_blocks +=
 | |
| 						sentry->valid_blocks;
 | |
| 	}
 | |
| 
 | |
| 	/* set use the current segments */
 | |
| 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
 | |
| 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
 | |
| 		__set_test_and_inuse(sbi, curseg_t->segno);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	struct free_segmap_info *free_i = FREE_I(sbi);
 | |
| 	unsigned int segno = 0, offset = 0;
 | |
| 	unsigned short valid_blocks;
 | |
| 
 | |
| 	while (1) {
 | |
| 		/* find dirty segment based on free segmap */
 | |
| 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
 | |
| 		if (segno >= MAIN_SEGS(sbi))
 | |
| 			break;
 | |
| 		offset = segno + 1;
 | |
| 		valid_blocks = get_valid_blocks(sbi, segno, 0);
 | |
| 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
 | |
| 			continue;
 | |
| 		if (valid_blocks > sbi->blocks_per_seg) {
 | |
| 			f2fs_bug_on(sbi, 1);
 | |
| 			continue;
 | |
| 		}
 | |
| 		mutex_lock(&dirty_i->seglist_lock);
 | |
| 		__locate_dirty_segment(sbi, segno, DIRTY);
 | |
| 		mutex_unlock(&dirty_i->seglist_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int init_victim_secmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
 | |
| 
 | |
| 	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!dirty_i->victim_secmap)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i;
 | |
| 	unsigned int bitmap_size, i;
 | |
| 
 | |
| 	/* allocate memory for dirty segments list information */
 | |
| 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
 | |
| 	if (!dirty_i)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SM_I(sbi)->dirty_info = dirty_i;
 | |
| 	mutex_init(&dirty_i->seglist_lock);
 | |
| 
 | |
| 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
 | |
| 
 | |
| 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
 | |
| 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 | |
| 		if (!dirty_i->dirty_segmap[i])
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	init_dirty_segmap(sbi);
 | |
| 	return init_victim_secmap(sbi);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update min, max modified time for cost-benefit GC algorithm
 | |
|  */
 | |
| static void init_min_max_mtime(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int segno;
 | |
| 
 | |
| 	mutex_lock(&sit_i->sentry_lock);
 | |
| 
 | |
| 	sit_i->min_mtime = LLONG_MAX;
 | |
| 
 | |
| 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
 | |
| 		unsigned int i;
 | |
| 		unsigned long long mtime = 0;
 | |
| 
 | |
| 		for (i = 0; i < sbi->segs_per_sec; i++)
 | |
| 			mtime += get_seg_entry(sbi, segno + i)->mtime;
 | |
| 
 | |
| 		mtime = div_u64(mtime, sbi->segs_per_sec);
 | |
| 
 | |
| 		if (sit_i->min_mtime > mtime)
 | |
| 			sit_i->min_mtime = mtime;
 | |
| 	}
 | |
| 	sit_i->max_mtime = get_mtime(sbi);
 | |
| 	mutex_unlock(&sit_i->sentry_lock);
 | |
| }
 | |
| 
 | |
| int build_segment_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	struct f2fs_sm_info *sm_info;
 | |
| 	int err;
 | |
| 
 | |
| 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
 | |
| 	if (!sm_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* init sm info */
 | |
| 	sbi->sm_info = sm_info;
 | |
| 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
 | |
| 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
 | |
| 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
 | |
| 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
 | |
| 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
 | |
| 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
 | |
| 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
 | |
| 	sm_info->rec_prefree_segments = sm_info->main_segments *
 | |
| 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
 | |
| 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
 | |
| 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
 | |
| 
 | |
| 	if (!test_opt(sbi, LFS))
 | |
| 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
 | |
| 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
 | |
| 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
 | |
| 
 | |
| 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
 | |
| 
 | |
| 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
 | |
| 		err = create_flush_cmd_control(sbi);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = create_discard_cmd_control(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = build_sit_info(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = build_free_segmap(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = build_curseg(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* reinit free segmap based on SIT */
 | |
| 	build_sit_entries(sbi);
 | |
| 
 | |
| 	init_free_segmap(sbi);
 | |
| 	err = build_dirty_segmap(sbi);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	init_min_max_mtime(sbi);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
 | |
| 		enum dirty_type dirty_type)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 
 | |
| 	mutex_lock(&dirty_i->seglist_lock);
 | |
| 	kvfree(dirty_i->dirty_segmap[dirty_type]);
 | |
| 	dirty_i->nr_dirty[dirty_type] = 0;
 | |
| 	mutex_unlock(&dirty_i->seglist_lock);
 | |
| }
 | |
| 
 | |
| static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	kvfree(dirty_i->victim_secmap);
 | |
| }
 | |
| 
 | |
| static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!dirty_i)
 | |
| 		return;
 | |
| 
 | |
| 	/* discard pre-free/dirty segments list */
 | |
| 	for (i = 0; i < NR_DIRTY_TYPE; i++)
 | |
| 		discard_dirty_segmap(sbi, i);
 | |
| 
 | |
| 	destroy_victim_secmap(sbi);
 | |
| 	SM_I(sbi)->dirty_info = NULL;
 | |
| 	kfree(dirty_i);
 | |
| }
 | |
| 
 | |
| static void destroy_curseg(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct curseg_info *array = SM_I(sbi)->curseg_array;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!array)
 | |
| 		return;
 | |
| 	SM_I(sbi)->curseg_array = NULL;
 | |
| 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
 | |
| 		kfree(array[i].sum_blk);
 | |
| 		kfree(array[i].journal);
 | |
| 	}
 | |
| 	kfree(array);
 | |
| }
 | |
| 
 | |
| static void destroy_free_segmap(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
 | |
| 	if (!free_i)
 | |
| 		return;
 | |
| 	SM_I(sbi)->free_info = NULL;
 | |
| 	kvfree(free_i->free_segmap);
 | |
| 	kvfree(free_i->free_secmap);
 | |
| 	kfree(free_i);
 | |
| }
 | |
| 
 | |
| static void destroy_sit_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct sit_info *sit_i = SIT_I(sbi);
 | |
| 	unsigned int start;
 | |
| 
 | |
| 	if (!sit_i)
 | |
| 		return;
 | |
| 
 | |
| 	if (sit_i->sentries) {
 | |
| 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
 | |
| 			kfree(sit_i->sentries[start].cur_valid_map);
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 			kfree(sit_i->sentries[start].cur_valid_map_mir);
 | |
| #endif
 | |
| 			kfree(sit_i->sentries[start].ckpt_valid_map);
 | |
| 			kfree(sit_i->sentries[start].discard_map);
 | |
| 		}
 | |
| 	}
 | |
| 	kfree(sit_i->tmp_map);
 | |
| 
 | |
| 	kvfree(sit_i->sentries);
 | |
| 	kvfree(sit_i->sec_entries);
 | |
| 	kvfree(sit_i->dirty_sentries_bitmap);
 | |
| 
 | |
| 	SM_I(sbi)->sit_info = NULL;
 | |
| 	kfree(sit_i->sit_bitmap);
 | |
| #ifdef CONFIG_F2FS_CHECK_FS
 | |
| 	kfree(sit_i->sit_bitmap_mir);
 | |
| #endif
 | |
| 	kfree(sit_i);
 | |
| }
 | |
| 
 | |
| void destroy_segment_manager(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_sm_info *sm_info = SM_I(sbi);
 | |
| 
 | |
| 	if (!sm_info)
 | |
| 		return;
 | |
| 	destroy_flush_cmd_control(sbi, true);
 | |
| 	destroy_discard_cmd_control(sbi, true);
 | |
| 	destroy_dirty_segmap(sbi);
 | |
| 	destroy_curseg(sbi);
 | |
| 	destroy_free_segmap(sbi);
 | |
| 	destroy_sit_info(sbi);
 | |
| 	sbi->sm_info = NULL;
 | |
| 	kfree(sm_info);
 | |
| }
 | |
| 
 | |
| int __init create_segment_manager_caches(void)
 | |
| {
 | |
| 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
 | |
| 			sizeof(struct discard_entry));
 | |
| 	if (!discard_entry_slab)
 | |
| 		goto fail;
 | |
| 
 | |
| 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
 | |
| 			sizeof(struct discard_cmd));
 | |
| 	if (!discard_cmd_slab)
 | |
| 		goto destroy_discard_entry;
 | |
| 
 | |
| 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
 | |
| 			sizeof(struct sit_entry_set));
 | |
| 	if (!sit_entry_set_slab)
 | |
| 		goto destroy_discard_cmd;
 | |
| 
 | |
| 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
 | |
| 			sizeof(struct inmem_pages));
 | |
| 	if (!inmem_entry_slab)
 | |
| 		goto destroy_sit_entry_set;
 | |
| 	return 0;
 | |
| 
 | |
| destroy_sit_entry_set:
 | |
| 	kmem_cache_destroy(sit_entry_set_slab);
 | |
| destroy_discard_cmd:
 | |
| 	kmem_cache_destroy(discard_cmd_slab);
 | |
| destroy_discard_entry:
 | |
| 	kmem_cache_destroy(discard_entry_slab);
 | |
| fail:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void destroy_segment_manager_caches(void)
 | |
| {
 | |
| 	kmem_cache_destroy(sit_entry_set_slab);
 | |
| 	kmem_cache_destroy(discard_cmd_slab);
 | |
| 	kmem_cache_destroy(discard_entry_slab);
 | |
| 	kmem_cache_destroy(inmem_entry_slab);
 | |
| }
 |