mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 368e5fbdfc
			
		
	
	
		368e5fbdfc
		
	
	
	
	
		
			
			Convert to devm_ioremap_resource() which provides more consistent error handling. Note that devm_ioremap_resource() provides its own error messages. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Tejun Heo <tj@kernel.org>
		
			
				
	
	
		
			4536 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4536 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * sata_mv.c - Marvell SATA support
 | |
|  *
 | |
|  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
 | |
|  * Copyright 2005: EMC Corporation, all rights reserved.
 | |
|  * Copyright 2005 Red Hat, Inc.  All rights reserved.
 | |
|  *
 | |
|  * Originally written by Brett Russ.
 | |
|  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
 | |
|  *
 | |
|  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; version 2 of the License.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * sata_mv TODO list:
 | |
|  *
 | |
|  * --> Develop a low-power-consumption strategy, and implement it.
 | |
|  *
 | |
|  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
 | |
|  *
 | |
|  * --> [Experiment, Marvell value added] Is it possible to use target
 | |
|  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
 | |
|  *       creating LibATA target mode support would be very interesting.
 | |
|  *
 | |
|  *       Target mode, for those without docs, is the ability to directly
 | |
|  *       connect two SATA ports.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * 80x1-B2 errata PCI#11:
 | |
|  *
 | |
|  * Users of the 6041/6081 Rev.B2 chips (current is C0)
 | |
|  * should be careful to insert those cards only onto PCI-X bus #0,
 | |
|  * and only in device slots 0..7, not higher.  The chips may not
 | |
|  * work correctly otherwise  (note: this is a pretty rare condition).
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/phy/phy.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/ata_platform.h>
 | |
| #include <linux/mbus.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <scsi/scsi_host.h>
 | |
| #include <scsi/scsi_cmnd.h>
 | |
| #include <scsi/scsi_device.h>
 | |
| #include <linux/libata.h>
 | |
| 
 | |
| #define DRV_NAME	"sata_mv"
 | |
| #define DRV_VERSION	"1.28"
 | |
| 
 | |
| /*
 | |
|  * module options
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| static int msi;
 | |
| module_param(msi, int, S_IRUGO);
 | |
| MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
 | |
| #endif
 | |
| 
 | |
| static int irq_coalescing_io_count;
 | |
| module_param(irq_coalescing_io_count, int, S_IRUGO);
 | |
| MODULE_PARM_DESC(irq_coalescing_io_count,
 | |
| 		 "IRQ coalescing I/O count threshold (0..255)");
 | |
| 
 | |
| static int irq_coalescing_usecs;
 | |
| module_param(irq_coalescing_usecs, int, S_IRUGO);
 | |
| MODULE_PARM_DESC(irq_coalescing_usecs,
 | |
| 		 "IRQ coalescing time threshold in usecs");
 | |
| 
 | |
| enum {
 | |
| 	/* BAR's are enumerated in terms of pci_resource_start() terms */
 | |
| 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
 | |
| 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
 | |
| 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
 | |
| 
 | |
| 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
 | |
| 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
 | |
| 
 | |
| 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
 | |
| 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
 | |
| 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
 | |
| 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
 | |
| 
 | |
| 	MV_PCI_REG_BASE		= 0,
 | |
| 
 | |
| 	/*
 | |
| 	 * Per-chip ("all ports") interrupt coalescing feature.
 | |
| 	 * This is only for GEN_II / GEN_IIE hardware.
 | |
| 	 *
 | |
| 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
 | |
| 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 | |
| 	 */
 | |
| 	COAL_REG_BASE		= 0x18000,
 | |
| 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
 | |
| 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
 | |
| 
 | |
| 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
 | |
| 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
 | |
| 
 | |
| 	/*
 | |
| 	 * Registers for the (unused here) transaction coalescing feature:
 | |
| 	 */
 | |
| 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
 | |
| 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
 | |
| 
 | |
| 	SATAHC0_REG_BASE	= 0x20000,
 | |
| 	FLASH_CTL		= 0x1046c,
 | |
| 	GPIO_PORT_CTL		= 0x104f0,
 | |
| 	RESET_CFG		= 0x180d8,
 | |
| 
 | |
| 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
 | |
| 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
 | |
| 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
 | |
| 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
 | |
| 
 | |
| 	MV_MAX_Q_DEPTH		= 32,
 | |
| 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
 | |
| 
 | |
| 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
 | |
| 	 * CRPB needs alignment on a 256B boundary. Size == 256B
 | |
| 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
 | |
| 	 */
 | |
| 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
 | |
| 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
 | |
| 	MV_MAX_SG_CT		= 256,
 | |
| 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
 | |
| 
 | |
| 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
 | |
| 	MV_PORT_HC_SHIFT	= 2,
 | |
| 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
 | |
| 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
 | |
| 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
 | |
| 
 | |
| 	/* Host Flags */
 | |
| 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
 | |
| 
 | |
| 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
 | |
| 
 | |
| 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
 | |
| 
 | |
| 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
 | |
| 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
 | |
| 
 | |
| 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
 | |
| 
 | |
| 	CRQB_FLAG_READ		= (1 << 0),
 | |
| 	CRQB_TAG_SHIFT		= 1,
 | |
| 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
 | |
| 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
 | |
| 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
 | |
| 	CRQB_CMD_ADDR_SHIFT	= 8,
 | |
| 	CRQB_CMD_CS		= (0x2 << 11),
 | |
| 	CRQB_CMD_LAST		= (1 << 15),
 | |
| 
 | |
| 	CRPB_FLAG_STATUS_SHIFT	= 8,
 | |
| 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
 | |
| 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
 | |
| 
 | |
| 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
 | |
| 
 | |
| 	/* PCI interface registers */
 | |
| 
 | |
| 	MV_PCI_COMMAND		= 0xc00,
 | |
| 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
 | |
| 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
 | |
| 
 | |
| 	PCI_MAIN_CMD_STS	= 0xd30,
 | |
| 	STOP_PCI_MASTER		= (1 << 2),
 | |
| 	PCI_MASTER_EMPTY	= (1 << 3),
 | |
| 	GLOB_SFT_RST		= (1 << 4),
 | |
| 
 | |
| 	MV_PCI_MODE		= 0xd00,
 | |
| 	MV_PCI_MODE_MASK	= 0x30,
 | |
| 
 | |
| 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
 | |
| 	MV_PCI_DISC_TIMER	= 0xd04,
 | |
| 	MV_PCI_MSI_TRIGGER	= 0xc38,
 | |
| 	MV_PCI_SERR_MASK	= 0xc28,
 | |
| 	MV_PCI_XBAR_TMOUT	= 0x1d04,
 | |
| 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
 | |
| 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
 | |
| 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
 | |
| 	MV_PCI_ERR_COMMAND	= 0x1d50,
 | |
| 
 | |
| 	PCI_IRQ_CAUSE		= 0x1d58,
 | |
| 	PCI_IRQ_MASK		= 0x1d5c,
 | |
| 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
 | |
| 
 | |
| 	PCIE_IRQ_CAUSE		= 0x1900,
 | |
| 	PCIE_IRQ_MASK		= 0x1910,
 | |
| 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
 | |
| 
 | |
| 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
 | |
| 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
 | |
| 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
 | |
| 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
 | |
| 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
 | |
| 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
 | |
| 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
 | |
| 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
 | |
| 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
 | |
| 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
 | |
| 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
 | |
| 	PCI_ERR			= (1 << 18),
 | |
| 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
 | |
| 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
 | |
| 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
 | |
| 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
 | |
| 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
 | |
| 	GPIO_INT		= (1 << 22),
 | |
| 	SELF_INT		= (1 << 23),
 | |
| 	TWSI_INT		= (1 << 24),
 | |
| 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
 | |
| 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
 | |
| 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
 | |
| 
 | |
| 	/* SATAHC registers */
 | |
| 	HC_CFG			= 0x00,
 | |
| 
 | |
| 	HC_IRQ_CAUSE		= 0x14,
 | |
| 	DMA_IRQ			= (1 << 0),	/* shift by port # */
 | |
| 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
 | |
| 	DEV_IRQ			= (1 << 8),	/* shift by port # */
 | |
| 
 | |
| 	/*
 | |
| 	 * Per-HC (Host-Controller) interrupt coalescing feature.
 | |
| 	 * This is present on all chip generations.
 | |
| 	 *
 | |
| 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
 | |
| 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 | |
| 	 */
 | |
| 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
 | |
| 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
 | |
| 
 | |
| 	SOC_LED_CTRL		= 0x2c,
 | |
| 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
 | |
| 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
 | |
| 						/*  with dev activity LED */
 | |
| 
 | |
| 	/* Shadow block registers */
 | |
| 	SHD_BLK			= 0x100,
 | |
| 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
 | |
| 
 | |
| 	/* SATA registers */
 | |
| 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
 | |
| 	SATA_ACTIVE		= 0x350,
 | |
| 	FIS_IRQ_CAUSE		= 0x364,
 | |
| 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
 | |
| 
 | |
| 	LTMODE			= 0x30c,	/* requires read-after-write */
 | |
| 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
 | |
| 
 | |
| 	PHY_MODE2		= 0x330,
 | |
| 	PHY_MODE3		= 0x310,
 | |
| 
 | |
| 	PHY_MODE4		= 0x314,	/* requires read-after-write */
 | |
| 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
 | |
| 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
 | |
| 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
 | |
| 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
 | |
| 
 | |
| 	SATA_IFCTL		= 0x344,
 | |
| 	SATA_TESTCTL		= 0x348,
 | |
| 	SATA_IFSTAT		= 0x34c,
 | |
| 	VENDOR_UNIQUE_FIS	= 0x35c,
 | |
| 
 | |
| 	FISCFG			= 0x360,
 | |
| 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
 | |
| 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
 | |
| 
 | |
| 	PHY_MODE9_GEN2		= 0x398,
 | |
| 	PHY_MODE9_GEN1		= 0x39c,
 | |
| 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
 | |
| 
 | |
| 	MV5_PHY_MODE		= 0x74,
 | |
| 	MV5_LTMODE		= 0x30,
 | |
| 	MV5_PHY_CTL		= 0x0C,
 | |
| 	SATA_IFCFG		= 0x050,
 | |
| 	LP_PHY_CTL		= 0x058,
 | |
| 	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
 | |
| 	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
 | |
| 	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
 | |
| 	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
 | |
| 	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
 | |
| 
 | |
| 	MV_M2_PREAMP_MASK	= 0x7e0,
 | |
| 
 | |
| 	/* Port registers */
 | |
| 	EDMA_CFG		= 0,
 | |
| 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
 | |
| 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
 | |
| 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
 | |
| 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
 | |
| 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
 | |
| 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
 | |
| 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
 | |
| 
 | |
| 	EDMA_ERR_IRQ_CAUSE	= 0x8,
 | |
| 	EDMA_ERR_IRQ_MASK	= 0xc,
 | |
| 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
 | |
| 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
 | |
| 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
 | |
| 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
 | |
| 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
 | |
| 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
 | |
| 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
 | |
| 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
 | |
| 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
 | |
| 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
 | |
| 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
 | |
| 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
 | |
| 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
 | |
| 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
 | |
| 
 | |
| 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
 | |
| 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
 | |
| 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
 | |
| 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
 | |
| 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
 | |
| 
 | |
| 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
 | |
| 
 | |
| 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
 | |
| 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
 | |
| 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
 | |
| 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
 | |
| 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
 | |
| 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
 | |
| 
 | |
| 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
 | |
| 
 | |
| 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
 | |
| 	EDMA_ERR_OVERRUN_5	= (1 << 5),
 | |
| 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
 | |
| 
 | |
| 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
 | |
| 				  EDMA_ERR_LNK_CTRL_RX_1 |
 | |
| 				  EDMA_ERR_LNK_CTRL_RX_3 |
 | |
| 				  EDMA_ERR_LNK_CTRL_TX,
 | |
| 
 | |
| 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
 | |
| 				  EDMA_ERR_PRD_PAR |
 | |
| 				  EDMA_ERR_DEV_DCON |
 | |
| 				  EDMA_ERR_DEV_CON |
 | |
| 				  EDMA_ERR_SERR |
 | |
| 				  EDMA_ERR_SELF_DIS |
 | |
| 				  EDMA_ERR_CRQB_PAR |
 | |
| 				  EDMA_ERR_CRPB_PAR |
 | |
| 				  EDMA_ERR_INTRL_PAR |
 | |
| 				  EDMA_ERR_IORDY |
 | |
| 				  EDMA_ERR_LNK_CTRL_RX_2 |
 | |
| 				  EDMA_ERR_LNK_DATA_RX |
 | |
| 				  EDMA_ERR_LNK_DATA_TX |
 | |
| 				  EDMA_ERR_TRANS_PROTO,
 | |
| 
 | |
| 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
 | |
| 				  EDMA_ERR_PRD_PAR |
 | |
| 				  EDMA_ERR_DEV_DCON |
 | |
| 				  EDMA_ERR_DEV_CON |
 | |
| 				  EDMA_ERR_OVERRUN_5 |
 | |
| 				  EDMA_ERR_UNDERRUN_5 |
 | |
| 				  EDMA_ERR_SELF_DIS_5 |
 | |
| 				  EDMA_ERR_CRQB_PAR |
 | |
| 				  EDMA_ERR_CRPB_PAR |
 | |
| 				  EDMA_ERR_INTRL_PAR |
 | |
| 				  EDMA_ERR_IORDY,
 | |
| 
 | |
| 	EDMA_REQ_Q_BASE_HI	= 0x10,
 | |
| 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
 | |
| 
 | |
| 	EDMA_REQ_Q_OUT_PTR	= 0x18,
 | |
| 	EDMA_REQ_Q_PTR_SHIFT	= 5,
 | |
| 
 | |
| 	EDMA_RSP_Q_BASE_HI	= 0x1c,
 | |
| 	EDMA_RSP_Q_IN_PTR	= 0x20,
 | |
| 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
 | |
| 	EDMA_RSP_Q_PTR_SHIFT	= 3,
 | |
| 
 | |
| 	EDMA_CMD		= 0x28,		/* EDMA command register */
 | |
| 	EDMA_EN			= (1 << 0),	/* enable EDMA */
 | |
| 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
 | |
| 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
 | |
| 
 | |
| 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
 | |
| 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
 | |
| 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
 | |
| 
 | |
| 	EDMA_IORDY_TMOUT	= 0x34,
 | |
| 	EDMA_ARB_CFG		= 0x38,
 | |
| 
 | |
| 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
 | |
| 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
 | |
| 
 | |
| 	BMDMA_CMD		= 0x224,	/* bmdma command register */
 | |
| 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
 | |
| 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
 | |
| 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
 | |
| 
 | |
| 	/* Host private flags (hp_flags) */
 | |
| 	MV_HP_FLAG_MSI		= (1 << 0),
 | |
| 	MV_HP_ERRATA_50XXB0	= (1 << 1),
 | |
| 	MV_HP_ERRATA_50XXB2	= (1 << 2),
 | |
| 	MV_HP_ERRATA_60X1B2	= (1 << 3),
 | |
| 	MV_HP_ERRATA_60X1C0	= (1 << 4),
 | |
| 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
 | |
| 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
 | |
| 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
 | |
| 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
 | |
| 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
 | |
| 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
 | |
| 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
 | |
| 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
 | |
| 
 | |
| 	/* Port private flags (pp_flags) */
 | |
| 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
 | |
| 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
 | |
| 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
 | |
| 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
 | |
| 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
 | |
| };
 | |
| 
 | |
| #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
 | |
| #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
 | |
| #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
 | |
| #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
 | |
| #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
 | |
| 
 | |
| #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
 | |
| #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
 | |
| 
 | |
| enum {
 | |
| 	/* DMA boundary 0xffff is required by the s/g splitting
 | |
| 	 * we need on /length/ in mv_fill-sg().
 | |
| 	 */
 | |
| 	MV_DMA_BOUNDARY		= 0xffffU,
 | |
| 
 | |
| 	/* mask of register bits containing lower 32 bits
 | |
| 	 * of EDMA request queue DMA address
 | |
| 	 */
 | |
| 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
 | |
| 
 | |
| 	/* ditto, for response queue */
 | |
| 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
 | |
| };
 | |
| 
 | |
| enum chip_type {
 | |
| 	chip_504x,
 | |
| 	chip_508x,
 | |
| 	chip_5080,
 | |
| 	chip_604x,
 | |
| 	chip_608x,
 | |
| 	chip_6042,
 | |
| 	chip_7042,
 | |
| 	chip_soc,
 | |
| };
 | |
| 
 | |
| /* Command ReQuest Block: 32B */
 | |
| struct mv_crqb {
 | |
| 	__le32			sg_addr;
 | |
| 	__le32			sg_addr_hi;
 | |
| 	__le16			ctrl_flags;
 | |
| 	__le16			ata_cmd[11];
 | |
| };
 | |
| 
 | |
| struct mv_crqb_iie {
 | |
| 	__le32			addr;
 | |
| 	__le32			addr_hi;
 | |
| 	__le32			flags;
 | |
| 	__le32			len;
 | |
| 	__le32			ata_cmd[4];
 | |
| };
 | |
| 
 | |
| /* Command ResPonse Block: 8B */
 | |
| struct mv_crpb {
 | |
| 	__le16			id;
 | |
| 	__le16			flags;
 | |
| 	__le32			tmstmp;
 | |
| };
 | |
| 
 | |
| /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
 | |
| struct mv_sg {
 | |
| 	__le32			addr;
 | |
| 	__le32			flags_size;
 | |
| 	__le32			addr_hi;
 | |
| 	__le32			reserved;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * We keep a local cache of a few frequently accessed port
 | |
|  * registers here, to avoid having to read them (very slow)
 | |
|  * when switching between EDMA and non-EDMA modes.
 | |
|  */
 | |
| struct mv_cached_regs {
 | |
| 	u32			fiscfg;
 | |
| 	u32			ltmode;
 | |
| 	u32			haltcond;
 | |
| 	u32			unknown_rsvd;
 | |
| };
 | |
| 
 | |
| struct mv_port_priv {
 | |
| 	struct mv_crqb		*crqb;
 | |
| 	dma_addr_t		crqb_dma;
 | |
| 	struct mv_crpb		*crpb;
 | |
| 	dma_addr_t		crpb_dma;
 | |
| 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
 | |
| 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
 | |
| 
 | |
| 	unsigned int		req_idx;
 | |
| 	unsigned int		resp_idx;
 | |
| 
 | |
| 	u32			pp_flags;
 | |
| 	struct mv_cached_regs	cached;
 | |
| 	unsigned int		delayed_eh_pmp_map;
 | |
| };
 | |
| 
 | |
| struct mv_port_signal {
 | |
| 	u32			amps;
 | |
| 	u32			pre;
 | |
| };
 | |
| 
 | |
| struct mv_host_priv {
 | |
| 	u32			hp_flags;
 | |
| 	unsigned int 		board_idx;
 | |
| 	u32			main_irq_mask;
 | |
| 	struct mv_port_signal	signal[8];
 | |
| 	const struct mv_hw_ops	*ops;
 | |
| 	int			n_ports;
 | |
| 	void __iomem		*base;
 | |
| 	void __iomem		*main_irq_cause_addr;
 | |
| 	void __iomem		*main_irq_mask_addr;
 | |
| 	u32			irq_cause_offset;
 | |
| 	u32			irq_mask_offset;
 | |
| 	u32			unmask_all_irqs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Needed on some devices that require their clocks to be enabled.
 | |
| 	 * These are optional: if the platform device does not have any
 | |
| 	 * clocks, they won't be used.  Also, if the underlying hardware
 | |
| 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
 | |
| 	 * all the clock operations become no-ops (see clk.h).
 | |
| 	 */
 | |
| 	struct clk		*clk;
 | |
| 	struct clk              **port_clks;
 | |
| 	/*
 | |
| 	 * Some devices have a SATA PHY which can be enabled/disabled
 | |
| 	 * in order to save power. These are optional: if the platform
 | |
| 	 * devices does not have any phy, they won't be used.
 | |
| 	 */
 | |
| 	struct phy		**port_phys;
 | |
| 	/*
 | |
| 	 * These consistent DMA memory pools give us guaranteed
 | |
| 	 * alignment for hardware-accessed data structures,
 | |
| 	 * and less memory waste in accomplishing the alignment.
 | |
| 	 */
 | |
| 	struct dma_pool		*crqb_pool;
 | |
| 	struct dma_pool		*crpb_pool;
 | |
| 	struct dma_pool		*sg_tbl_pool;
 | |
| };
 | |
| 
 | |
| struct mv_hw_ops {
 | |
| 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			   unsigned int port);
 | |
| 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
 | |
| 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
 | |
| 			   void __iomem *mmio);
 | |
| 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			unsigned int n_hc);
 | |
| 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
 | |
| 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
 | |
| };
 | |
| 
 | |
| static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 | |
| static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 | |
| static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 | |
| static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 | |
| static int mv_port_start(struct ata_port *ap);
 | |
| static void mv_port_stop(struct ata_port *ap);
 | |
| static int mv_qc_defer(struct ata_queued_cmd *qc);
 | |
| static void mv_qc_prep(struct ata_queued_cmd *qc);
 | |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
 | |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
 | |
| static int mv_hardreset(struct ata_link *link, unsigned int *class,
 | |
| 			unsigned long deadline);
 | |
| static void mv_eh_freeze(struct ata_port *ap);
 | |
| static void mv_eh_thaw(struct ata_port *ap);
 | |
| static void mv6_dev_config(struct ata_device *dev);
 | |
| 
 | |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			   unsigned int port);
 | |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 | |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 | |
| 			   void __iomem *mmio);
 | |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			unsigned int n_hc);
 | |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 | |
| static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
 | |
| 
 | |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			   unsigned int port);
 | |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 | |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 | |
| 			   void __iomem *mmio);
 | |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			unsigned int n_hc);
 | |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 | |
| static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 | |
| 				      void __iomem *mmio);
 | |
| static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 | |
| 				      void __iomem *mmio);
 | |
| static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 | |
| 				  void __iomem *mmio, unsigned int n_hc);
 | |
| static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 | |
| 				      void __iomem *mmio);
 | |
| static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
 | |
| static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
 | |
| 				  void __iomem *mmio, unsigned int port);
 | |
| static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
 | |
| static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			     unsigned int port_no);
 | |
| static int mv_stop_edma(struct ata_port *ap);
 | |
| static int mv_stop_edma_engine(void __iomem *port_mmio);
 | |
| static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
 | |
| 
 | |
| static void mv_pmp_select(struct ata_port *ap, int pmp);
 | |
| static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 | |
| 				unsigned long deadline);
 | |
| static int  mv_softreset(struct ata_link *link, unsigned int *class,
 | |
| 				unsigned long deadline);
 | |
| static void mv_pmp_error_handler(struct ata_port *ap);
 | |
| static void mv_process_crpb_entries(struct ata_port *ap,
 | |
| 					struct mv_port_priv *pp);
 | |
| 
 | |
| static void mv_sff_irq_clear(struct ata_port *ap);
 | |
| static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
 | |
| static void mv_bmdma_setup(struct ata_queued_cmd *qc);
 | |
| static void mv_bmdma_start(struct ata_queued_cmd *qc);
 | |
| static void mv_bmdma_stop(struct ata_queued_cmd *qc);
 | |
| static u8   mv_bmdma_status(struct ata_port *ap);
 | |
| static u8 mv_sff_check_status(struct ata_port *ap);
 | |
| 
 | |
| /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
 | |
|  * because we have to allow room for worst case splitting of
 | |
|  * PRDs for 64K boundaries in mv_fill_sg().
 | |
|  */
 | |
| #ifdef CONFIG_PCI
 | |
| static struct scsi_host_template mv5_sht = {
 | |
| 	ATA_BASE_SHT(DRV_NAME),
 | |
| 	.sg_tablesize		= MV_MAX_SG_CT / 2,
 | |
| 	.dma_boundary		= MV_DMA_BOUNDARY,
 | |
| };
 | |
| #endif
 | |
| static struct scsi_host_template mv6_sht = {
 | |
| 	ATA_NCQ_SHT(DRV_NAME),
 | |
| 	.can_queue		= MV_MAX_Q_DEPTH - 1,
 | |
| 	.sg_tablesize		= MV_MAX_SG_CT / 2,
 | |
| 	.dma_boundary		= MV_DMA_BOUNDARY,
 | |
| };
 | |
| 
 | |
| static struct ata_port_operations mv5_ops = {
 | |
| 	.inherits		= &ata_sff_port_ops,
 | |
| 
 | |
| 	.lost_interrupt		= ATA_OP_NULL,
 | |
| 
 | |
| 	.qc_defer		= mv_qc_defer,
 | |
| 	.qc_prep		= mv_qc_prep,
 | |
| 	.qc_issue		= mv_qc_issue,
 | |
| 
 | |
| 	.freeze			= mv_eh_freeze,
 | |
| 	.thaw			= mv_eh_thaw,
 | |
| 	.hardreset		= mv_hardreset,
 | |
| 
 | |
| 	.scr_read		= mv5_scr_read,
 | |
| 	.scr_write		= mv5_scr_write,
 | |
| 
 | |
| 	.port_start		= mv_port_start,
 | |
| 	.port_stop		= mv_port_stop,
 | |
| };
 | |
| 
 | |
| static struct ata_port_operations mv6_ops = {
 | |
| 	.inherits		= &ata_bmdma_port_ops,
 | |
| 
 | |
| 	.lost_interrupt		= ATA_OP_NULL,
 | |
| 
 | |
| 	.qc_defer		= mv_qc_defer,
 | |
| 	.qc_prep		= mv_qc_prep,
 | |
| 	.qc_issue		= mv_qc_issue,
 | |
| 
 | |
| 	.dev_config             = mv6_dev_config,
 | |
| 
 | |
| 	.freeze			= mv_eh_freeze,
 | |
| 	.thaw			= mv_eh_thaw,
 | |
| 	.hardreset		= mv_hardreset,
 | |
| 	.softreset		= mv_softreset,
 | |
| 	.pmp_hardreset		= mv_pmp_hardreset,
 | |
| 	.pmp_softreset		= mv_softreset,
 | |
| 	.error_handler		= mv_pmp_error_handler,
 | |
| 
 | |
| 	.scr_read		= mv_scr_read,
 | |
| 	.scr_write		= mv_scr_write,
 | |
| 
 | |
| 	.sff_check_status	= mv_sff_check_status,
 | |
| 	.sff_irq_clear		= mv_sff_irq_clear,
 | |
| 	.check_atapi_dma	= mv_check_atapi_dma,
 | |
| 	.bmdma_setup		= mv_bmdma_setup,
 | |
| 	.bmdma_start		= mv_bmdma_start,
 | |
| 	.bmdma_stop		= mv_bmdma_stop,
 | |
| 	.bmdma_status		= mv_bmdma_status,
 | |
| 
 | |
| 	.port_start		= mv_port_start,
 | |
| 	.port_stop		= mv_port_stop,
 | |
| };
 | |
| 
 | |
| static struct ata_port_operations mv_iie_ops = {
 | |
| 	.inherits		= &mv6_ops,
 | |
| 	.dev_config		= ATA_OP_NULL,
 | |
| 	.qc_prep		= mv_qc_prep_iie,
 | |
| };
 | |
| 
 | |
| static const struct ata_port_info mv_port_info[] = {
 | |
| 	{  /* chip_504x */
 | |
| 		.flags		= MV_GEN_I_FLAGS,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv5_ops,
 | |
| 	},
 | |
| 	{  /* chip_508x */
 | |
| 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv5_ops,
 | |
| 	},
 | |
| 	{  /* chip_5080 */
 | |
| 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv5_ops,
 | |
| 	},
 | |
| 	{  /* chip_604x */
 | |
| 		.flags		= MV_GEN_II_FLAGS,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv6_ops,
 | |
| 	},
 | |
| 	{  /* chip_608x */
 | |
| 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv6_ops,
 | |
| 	},
 | |
| 	{  /* chip_6042 */
 | |
| 		.flags		= MV_GEN_IIE_FLAGS,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv_iie_ops,
 | |
| 	},
 | |
| 	{  /* chip_7042 */
 | |
| 		.flags		= MV_GEN_IIE_FLAGS,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv_iie_ops,
 | |
| 	},
 | |
| 	{  /* chip_soc */
 | |
| 		.flags		= MV_GEN_IIE_FLAGS,
 | |
| 		.pio_mask	= ATA_PIO4,
 | |
| 		.udma_mask	= ATA_UDMA6,
 | |
| 		.port_ops	= &mv_iie_ops,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static const struct pci_device_id mv_pci_tbl[] = {
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
 | |
| 	/* RocketRAID 1720/174x have different identifiers */
 | |
| 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
 | |
| 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
 | |
| 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
 | |
| 
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
 | |
| 
 | |
| 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
 | |
| 
 | |
| 	/* Adaptec 1430SA */
 | |
| 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
 | |
| 
 | |
| 	/* Marvell 7042 support */
 | |
| 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
 | |
| 
 | |
| 	/* Highpoint RocketRAID PCIe series */
 | |
| 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
 | |
| 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
 | |
| 
 | |
| 	{ }			/* terminate list */
 | |
| };
 | |
| 
 | |
| static const struct mv_hw_ops mv5xxx_ops = {
 | |
| 	.phy_errata		= mv5_phy_errata,
 | |
| 	.enable_leds		= mv5_enable_leds,
 | |
| 	.read_preamp		= mv5_read_preamp,
 | |
| 	.reset_hc		= mv5_reset_hc,
 | |
| 	.reset_flash		= mv5_reset_flash,
 | |
| 	.reset_bus		= mv5_reset_bus,
 | |
| };
 | |
| 
 | |
| static const struct mv_hw_ops mv6xxx_ops = {
 | |
| 	.phy_errata		= mv6_phy_errata,
 | |
| 	.enable_leds		= mv6_enable_leds,
 | |
| 	.read_preamp		= mv6_read_preamp,
 | |
| 	.reset_hc		= mv6_reset_hc,
 | |
| 	.reset_flash		= mv6_reset_flash,
 | |
| 	.reset_bus		= mv_reset_pci_bus,
 | |
| };
 | |
| 
 | |
| static const struct mv_hw_ops mv_soc_ops = {
 | |
| 	.phy_errata		= mv6_phy_errata,
 | |
| 	.enable_leds		= mv_soc_enable_leds,
 | |
| 	.read_preamp		= mv_soc_read_preamp,
 | |
| 	.reset_hc		= mv_soc_reset_hc,
 | |
| 	.reset_flash		= mv_soc_reset_flash,
 | |
| 	.reset_bus		= mv_soc_reset_bus,
 | |
| };
 | |
| 
 | |
| static const struct mv_hw_ops mv_soc_65n_ops = {
 | |
| 	.phy_errata		= mv_soc_65n_phy_errata,
 | |
| 	.enable_leds		= mv_soc_enable_leds,
 | |
| 	.reset_hc		= mv_soc_reset_hc,
 | |
| 	.reset_flash		= mv_soc_reset_flash,
 | |
| 	.reset_bus		= mv_soc_reset_bus,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Functions
 | |
|  */
 | |
| 
 | |
| static inline void writelfl(unsigned long data, void __iomem *addr)
 | |
| {
 | |
| 	writel(data, addr);
 | |
| 	(void) readl(addr);	/* flush to avoid PCI posted write */
 | |
| }
 | |
| 
 | |
| static inline unsigned int mv_hc_from_port(unsigned int port)
 | |
| {
 | |
| 	return port >> MV_PORT_HC_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned int mv_hardport_from_port(unsigned int port)
 | |
| {
 | |
| 	return port & MV_PORT_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Consolidate some rather tricky bit shift calculations.
 | |
|  * This is hot-path stuff, so not a function.
 | |
|  * Simple code, with two return values, so macro rather than inline.
 | |
|  *
 | |
|  * port is the sole input, in range 0..7.
 | |
|  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
 | |
|  * hardport is the other output, in range 0..3.
 | |
|  *
 | |
|  * Note that port and hardport may be the same variable in some cases.
 | |
|  */
 | |
| #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
 | |
| {								\
 | |
| 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
 | |
| 	hardport = mv_hardport_from_port(port);			\
 | |
| 	shift   += hardport * 2;				\
 | |
| }
 | |
| 
 | |
| static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
 | |
| {
 | |
| 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
 | |
| }
 | |
| 
 | |
| static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
 | |
| 						 unsigned int port)
 | |
| {
 | |
| 	return mv_hc_base(base, mv_hc_from_port(port));
 | |
| }
 | |
| 
 | |
| static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
 | |
| {
 | |
| 	return  mv_hc_base_from_port(base, port) +
 | |
| 		MV_SATAHC_ARBTR_REG_SZ +
 | |
| 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
 | |
| }
 | |
| 
 | |
| static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
 | |
| {
 | |
| 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
 | |
| 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
 | |
| 
 | |
| 	return hc_mmio + ofs;
 | |
| }
 | |
| 
 | |
| static inline void __iomem *mv_host_base(struct ata_host *host)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	return hpriv->base;
 | |
| }
 | |
| 
 | |
| static inline void __iomem *mv_ap_base(struct ata_port *ap)
 | |
| {
 | |
| 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
 | |
| }
 | |
| 
 | |
| static inline int mv_get_hc_count(unsigned long port_flags)
 | |
| {
 | |
| 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_save_cached_regs - (re-)initialize cached port registers
 | |
|  *      @ap: the port whose registers we are caching
 | |
|  *
 | |
|  *	Initialize the local cache of port registers,
 | |
|  *	so that reading them over and over again can
 | |
|  *	be avoided on the hotter paths of this driver.
 | |
|  *	This saves a few microseconds each time we switch
 | |
|  *	to/from EDMA mode to perform (eg.) a drive cache flush.
 | |
|  */
 | |
| static void mv_save_cached_regs(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 
 | |
| 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
 | |
| 	pp->cached.ltmode = readl(port_mmio + LTMODE);
 | |
| 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
 | |
| 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_write_cached_reg - write to a cached port register
 | |
|  *      @addr: hardware address of the register
 | |
|  *      @old: pointer to cached value of the register
 | |
|  *      @new: new value for the register
 | |
|  *
 | |
|  *	Write a new value to a cached register,
 | |
|  *	but only if the value is different from before.
 | |
|  */
 | |
| static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
 | |
| {
 | |
| 	if (new != *old) {
 | |
| 		unsigned long laddr;
 | |
| 		*old = new;
 | |
| 		/*
 | |
| 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
 | |
| 		 * Read-after-write is needed to prevent generating 64-bit
 | |
| 		 * write cycles on the PCI bus for SATA interface registers
 | |
| 		 * at offsets ending in 0x4 or 0xc.
 | |
| 		 *
 | |
| 		 * Looks like a lot of fuss, but it avoids an unnecessary
 | |
| 		 * +1 usec read-after-write delay for unaffected registers.
 | |
| 		 */
 | |
| 		laddr = (unsigned long)addr & 0xffff;
 | |
| 		if (laddr >= 0x300 && laddr <= 0x33c) {
 | |
| 			laddr &= 0x000f;
 | |
| 			if (laddr == 0x4 || laddr == 0xc) {
 | |
| 				writelfl(new, addr); /* read after write */
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 		writel(new, addr); /* unaffected by the errata */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mv_set_edma_ptrs(void __iomem *port_mmio,
 | |
| 			     struct mv_host_priv *hpriv,
 | |
| 			     struct mv_port_priv *pp)
 | |
| {
 | |
| 	u32 index;
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize request queue
 | |
| 	 */
 | |
| 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
 | |
| 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
 | |
| 
 | |
| 	WARN_ON(pp->crqb_dma & 0x3ff);
 | |
| 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
 | |
| 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
 | |
| 		 port_mmio + EDMA_REQ_Q_IN_PTR);
 | |
| 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize response queue
 | |
| 	 */
 | |
| 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
 | |
| 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
 | |
| 
 | |
| 	WARN_ON(pp->crpb_dma & 0xff);
 | |
| 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
 | |
| 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
 | |
| 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
 | |
| 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
 | |
| }
 | |
| 
 | |
| static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
 | |
| {
 | |
| 	/*
 | |
| 	 * When writing to the main_irq_mask in hardware,
 | |
| 	 * we must ensure exclusivity between the interrupt coalescing bits
 | |
| 	 * and the corresponding individual port DONE_IRQ bits.
 | |
| 	 *
 | |
| 	 * Note that this register is really an "IRQ enable" register,
 | |
| 	 * not an "IRQ mask" register as Marvell's naming might suggest.
 | |
| 	 */
 | |
| 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
 | |
| 		mask &= ~DONE_IRQ_0_3;
 | |
| 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
 | |
| 		mask &= ~DONE_IRQ_4_7;
 | |
| 	writelfl(mask, hpriv->main_irq_mask_addr);
 | |
| }
 | |
| 
 | |
| static void mv_set_main_irq_mask(struct ata_host *host,
 | |
| 				 u32 disable_bits, u32 enable_bits)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	u32 old_mask, new_mask;
 | |
| 
 | |
| 	old_mask = hpriv->main_irq_mask;
 | |
| 	new_mask = (old_mask & ~disable_bits) | enable_bits;
 | |
| 	if (new_mask != old_mask) {
 | |
| 		hpriv->main_irq_mask = new_mask;
 | |
| 		mv_write_main_irq_mask(new_mask, hpriv);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mv_enable_port_irqs(struct ata_port *ap,
 | |
| 				     unsigned int port_bits)
 | |
| {
 | |
| 	unsigned int shift, hardport, port = ap->port_no;
 | |
| 	u32 disable_bits, enable_bits;
 | |
| 
 | |
| 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
 | |
| 
 | |
| 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
 | |
| 	enable_bits  = port_bits << shift;
 | |
| 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
 | |
| }
 | |
| 
 | |
| static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
 | |
| 					  void __iomem *port_mmio,
 | |
| 					  unsigned int port_irqs)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	int hardport = mv_hardport_from_port(ap->port_no);
 | |
| 	void __iomem *hc_mmio = mv_hc_base_from_port(
 | |
| 				mv_host_base(ap->host), ap->port_no);
 | |
| 	u32 hc_irq_cause;
 | |
| 
 | |
| 	/* clear EDMA event indicators, if any */
 | |
| 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
 | |
| 
 | |
| 	/* clear pending irq events */
 | |
| 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
 | |
| 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
 | |
| 
 | |
| 	/* clear FIS IRQ Cause */
 | |
| 	if (IS_GEN_IIE(hpriv))
 | |
| 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
 | |
| 
 | |
| 	mv_enable_port_irqs(ap, port_irqs);
 | |
| }
 | |
| 
 | |
| static void mv_set_irq_coalescing(struct ata_host *host,
 | |
| 				  unsigned int count, unsigned int usecs)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base, *hc_mmio;
 | |
| 	u32 coal_enable = 0;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
 | |
| 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
 | |
| 							ALL_PORTS_COAL_DONE;
 | |
| 
 | |
| 	/* Disable IRQ coalescing if either threshold is zero */
 | |
| 	if (!usecs || !count) {
 | |
| 		clks = count = 0;
 | |
| 	} else {
 | |
| 		/* Respect maximum limits of the hardware */
 | |
| 		clks = usecs * COAL_CLOCKS_PER_USEC;
 | |
| 		if (clks > MAX_COAL_TIME_THRESHOLD)
 | |
| 			clks = MAX_COAL_TIME_THRESHOLD;
 | |
| 		if (count > MAX_COAL_IO_COUNT)
 | |
| 			count = MAX_COAL_IO_COUNT;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&host->lock, flags);
 | |
| 	mv_set_main_irq_mask(host, coal_disable, 0);
 | |
| 
 | |
| 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
 | |
| 		/*
 | |
| 		 * GEN_II/GEN_IIE with dual host controllers:
 | |
| 		 * one set of global thresholds for the entire chip.
 | |
| 		 */
 | |
| 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
 | |
| 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
 | |
| 		/* clear leftover coal IRQ bit */
 | |
| 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
 | |
| 		if (count)
 | |
| 			coal_enable = ALL_PORTS_COAL_DONE;
 | |
| 		clks = count = 0; /* force clearing of regular regs below */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All chips: independent thresholds for each HC on the chip.
 | |
| 	 */
 | |
| 	hc_mmio = mv_hc_base_from_port(mmio, 0);
 | |
| 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
 | |
| 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
 | |
| 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
 | |
| 	if (count)
 | |
| 		coal_enable |= PORTS_0_3_COAL_DONE;
 | |
| 	if (is_dual_hc) {
 | |
| 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
 | |
| 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
 | |
| 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
 | |
| 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
 | |
| 		if (count)
 | |
| 			coal_enable |= PORTS_4_7_COAL_DONE;
 | |
| 	}
 | |
| 
 | |
| 	mv_set_main_irq_mask(host, 0, coal_enable);
 | |
| 	spin_unlock_irqrestore(&host->lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_start_edma - Enable eDMA engine
 | |
|  *      @base: port base address
 | |
|  *      @pp: port private data
 | |
|  *
 | |
|  *      Verify the local cache of the eDMA state is accurate with a
 | |
|  *      WARN_ON.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
 | |
| 			 struct mv_port_priv *pp, u8 protocol)
 | |
| {
 | |
| 	int want_ncq = (protocol == ATA_PROT_NCQ);
 | |
| 
 | |
| 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
 | |
| 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
 | |
| 		if (want_ncq != using_ncq)
 | |
| 			mv_stop_edma(ap);
 | |
| 	}
 | |
| 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
 | |
| 		struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 
 | |
| 		mv_edma_cfg(ap, want_ncq, 1);
 | |
| 
 | |
| 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
 | |
| 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
 | |
| 
 | |
| 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
 | |
| 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
 | |
| 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the EDMA engine to finish transactions in progress.
 | |
| 	 * No idea what a good "timeout" value might be, but measurements
 | |
| 	 * indicate that it often requires hundreds of microseconds
 | |
| 	 * with two drives in-use.  So we use the 15msec value above
 | |
| 	 * as a rough guess at what even more drives might require.
 | |
| 	 */
 | |
| 	for (i = 0; i < timeout; ++i) {
 | |
| 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
 | |
| 		if ((edma_stat & empty_idle) == empty_idle)
 | |
| 			break;
 | |
| 		udelay(per_loop);
 | |
| 	}
 | |
| 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_stop_edma_engine - Disable eDMA engine
 | |
|  *      @port_mmio: io base address
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static int mv_stop_edma_engine(void __iomem *port_mmio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Disable eDMA.  The disable bit auto clears. */
 | |
| 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
 | |
| 
 | |
| 	/* Wait for the chip to confirm eDMA is off. */
 | |
| 	for (i = 10000; i > 0; i--) {
 | |
| 		u32 reg = readl(port_mmio + EDMA_CMD);
 | |
| 		if (!(reg & EDMA_EN))
 | |
| 			return 0;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static int mv_stop_edma(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
 | |
| 		return 0;
 | |
| 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
 | |
| 	mv_wait_for_edma_empty_idle(ap);
 | |
| 	if (mv_stop_edma_engine(port_mmio)) {
 | |
| 		ata_port_err(ap, "Unable to stop eDMA\n");
 | |
| 		err = -EIO;
 | |
| 	}
 | |
| 	mv_edma_cfg(ap, 0, 0);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef ATA_DEBUG
 | |
| static void mv_dump_mem(void __iomem *start, unsigned bytes)
 | |
| {
 | |
| 	int b, w;
 | |
| 	for (b = 0; b < bytes; ) {
 | |
| 		DPRINTK("%p: ", start + b);
 | |
| 		for (w = 0; b < bytes && w < 4; w++) {
 | |
| 			printk("%08x ", readl(start + b));
 | |
| 			b += sizeof(u32);
 | |
| 		}
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
 | |
| static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
 | |
| {
 | |
| #ifdef ATA_DEBUG
 | |
| 	int b, w;
 | |
| 	u32 dw;
 | |
| 	for (b = 0; b < bytes; ) {
 | |
| 		DPRINTK("%02x: ", b);
 | |
| 		for (w = 0; b < bytes && w < 4; w++) {
 | |
| 			(void) pci_read_config_dword(pdev, b, &dw);
 | |
| 			printk("%08x ", dw);
 | |
| 			b += sizeof(u32);
 | |
| 		}
 | |
| 		printk("\n");
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| static void mv_dump_all_regs(void __iomem *mmio_base, int port,
 | |
| 			     struct pci_dev *pdev)
 | |
| {
 | |
| #ifdef ATA_DEBUG
 | |
| 	void __iomem *hc_base = mv_hc_base(mmio_base,
 | |
| 					   port >> MV_PORT_HC_SHIFT);
 | |
| 	void __iomem *port_base;
 | |
| 	int start_port, num_ports, p, start_hc, num_hcs, hc;
 | |
| 
 | |
| 	if (0 > port) {
 | |
| 		start_hc = start_port = 0;
 | |
| 		num_ports = 8;		/* shld be benign for 4 port devs */
 | |
| 		num_hcs = 2;
 | |
| 	} else {
 | |
| 		start_hc = port >> MV_PORT_HC_SHIFT;
 | |
| 		start_port = port;
 | |
| 		num_ports = num_hcs = 1;
 | |
| 	}
 | |
| 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
 | |
| 		num_ports > 1 ? num_ports - 1 : start_port);
 | |
| 
 | |
| 	if (NULL != pdev) {
 | |
| 		DPRINTK("PCI config space regs:\n");
 | |
| 		mv_dump_pci_cfg(pdev, 0x68);
 | |
| 	}
 | |
| 	DPRINTK("PCI regs:\n");
 | |
| 	mv_dump_mem(mmio_base+0xc00, 0x3c);
 | |
| 	mv_dump_mem(mmio_base+0xd00, 0x34);
 | |
| 	mv_dump_mem(mmio_base+0xf00, 0x4);
 | |
| 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
 | |
| 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
 | |
| 		hc_base = mv_hc_base(mmio_base, hc);
 | |
| 		DPRINTK("HC regs (HC %i):\n", hc);
 | |
| 		mv_dump_mem(hc_base, 0x1c);
 | |
| 	}
 | |
| 	for (p = start_port; p < start_port + num_ports; p++) {
 | |
| 		port_base = mv_port_base(mmio_base, p);
 | |
| 		DPRINTK("EDMA regs (port %i):\n", p);
 | |
| 		mv_dump_mem(port_base, 0x54);
 | |
| 		DPRINTK("SATA regs (port %i):\n", p);
 | |
| 		mv_dump_mem(port_base+0x300, 0x60);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static unsigned int mv_scr_offset(unsigned int sc_reg_in)
 | |
| {
 | |
| 	unsigned int ofs;
 | |
| 
 | |
| 	switch (sc_reg_in) {
 | |
| 	case SCR_STATUS:
 | |
| 	case SCR_CONTROL:
 | |
| 	case SCR_ERROR:
 | |
| 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
 | |
| 		break;
 | |
| 	case SCR_ACTIVE:
 | |
| 		ofs = SATA_ACTIVE;   /* active is not with the others */
 | |
| 		break;
 | |
| 	default:
 | |
| 		ofs = 0xffffffffU;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ofs;
 | |
| }
 | |
| 
 | |
| static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
 | |
| {
 | |
| 	unsigned int ofs = mv_scr_offset(sc_reg_in);
 | |
| 
 | |
| 	if (ofs != 0xffffffffU) {
 | |
| 		*val = readl(mv_ap_base(link->ap) + ofs);
 | |
| 		return 0;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
 | |
| {
 | |
| 	unsigned int ofs = mv_scr_offset(sc_reg_in);
 | |
| 
 | |
| 	if (ofs != 0xffffffffU) {
 | |
| 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
 | |
| 		struct mv_host_priv *hpriv = link->ap->host->private_data;
 | |
| 		if (sc_reg_in == SCR_CONTROL) {
 | |
| 			/*
 | |
| 			 * Workaround for 88SX60x1 FEr SATA#26:
 | |
| 			 *
 | |
| 			 * COMRESETs have to take care not to accidentally
 | |
| 			 * put the drive to sleep when writing SCR_CONTROL.
 | |
| 			 * Setting bits 12..15 prevents this problem.
 | |
| 			 *
 | |
| 			 * So if we see an outbound COMMRESET, set those bits.
 | |
| 			 * Ditto for the followup write that clears the reset.
 | |
| 			 *
 | |
| 			 * The proprietary driver does this for
 | |
| 			 * all chip versions, and so do we.
 | |
| 			 */
 | |
| 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
 | |
| 				val |= 0xf000;
 | |
| 
 | |
| 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
 | |
| 				void __iomem *lp_phy_addr =
 | |
| 					mv_ap_base(link->ap) + LP_PHY_CTL;
 | |
| 				/*
 | |
| 				 * Set PHY speed according to SControl speed.
 | |
| 				 */
 | |
| 				u32 lp_phy_val =
 | |
| 					LP_PHY_CTL_PIN_PU_PLL |
 | |
| 					LP_PHY_CTL_PIN_PU_RX  |
 | |
| 					LP_PHY_CTL_PIN_PU_TX;
 | |
| 
 | |
| 				if ((val & 0xf0) != 0x10)
 | |
| 					lp_phy_val |=
 | |
| 						LP_PHY_CTL_GEN_TX_3G |
 | |
| 						LP_PHY_CTL_GEN_RX_3G;
 | |
| 
 | |
| 				writelfl(lp_phy_val, lp_phy_addr);
 | |
| 			}
 | |
| 		}
 | |
| 		writelfl(val, addr);
 | |
| 		return 0;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void mv6_dev_config(struct ata_device *adev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
 | |
| 	 *
 | |
| 	 * Gen-II does not support NCQ over a port multiplier
 | |
| 	 *  (no FIS-based switching).
 | |
| 	 */
 | |
| 	if (adev->flags & ATA_DFLAG_NCQ) {
 | |
| 		if (sata_pmp_attached(adev->link->ap)) {
 | |
| 			adev->flags &= ~ATA_DFLAG_NCQ;
 | |
| 			ata_dev_info(adev,
 | |
| 				"NCQ disabled for command-based switching\n");
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mv_qc_defer(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_link *link = qc->dev->link;
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow new commands if we're in a delayed EH state
 | |
| 	 * for NCQ and/or FIS-based switching.
 | |
| 	 */
 | |
| 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
 | |
| 		return ATA_DEFER_PORT;
 | |
| 
 | |
| 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
 | |
| 	 * can run concurrently.
 | |
| 	 * set excl_link when we want to send a PIO command in DMA mode
 | |
| 	 * or a non-NCQ command in NCQ mode.
 | |
| 	 * When we receive a command from that link, and there are no
 | |
| 	 * outstanding commands, mark a flag to clear excl_link and let
 | |
| 	 * the command go through.
 | |
| 	 */
 | |
| 	if (unlikely(ap->excl_link)) {
 | |
| 		if (link == ap->excl_link) {
 | |
| 			if (ap->nr_active_links)
 | |
| 				return ATA_DEFER_PORT;
 | |
| 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
 | |
| 			return 0;
 | |
| 		} else
 | |
| 			return ATA_DEFER_PORT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the port is completely idle, then allow the new qc.
 | |
| 	 */
 | |
| 	if (ap->nr_active_links == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The port is operating in host queuing mode (EDMA) with NCQ
 | |
| 	 * enabled, allow multiple NCQ commands.  EDMA also allows
 | |
| 	 * queueing multiple DMA commands but libata core currently
 | |
| 	 * doesn't allow it.
 | |
| 	 */
 | |
| 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
 | |
| 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
 | |
| 		if (ata_is_ncq(qc->tf.protocol))
 | |
| 			return 0;
 | |
| 		else {
 | |
| 			ap->excl_link = link;
 | |
| 			return ATA_DEFER_PORT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ATA_DEFER_PORT;
 | |
| }
 | |
| 
 | |
| static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
 | |
| {
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	void __iomem *port_mmio;
 | |
| 
 | |
| 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
 | |
| 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
 | |
| 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
 | |
| 
 | |
| 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
 | |
| 	haltcond = *old_haltcond | EDMA_ERR_DEV;
 | |
| 
 | |
| 	if (want_fbs) {
 | |
| 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
 | |
| 		ltmode = *old_ltmode | LTMODE_BIT8;
 | |
| 		if (want_ncq)
 | |
| 			haltcond &= ~EDMA_ERR_DEV;
 | |
| 		else
 | |
| 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
 | |
| 	} else {
 | |
| 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
 | |
| 	}
 | |
| 
 | |
| 	port_mmio = mv_ap_base(ap);
 | |
| 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
 | |
| 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
 | |
| 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
 | |
| }
 | |
| 
 | |
| static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	u32 old, new;
 | |
| 
 | |
| 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
 | |
| 	old = readl(hpriv->base + GPIO_PORT_CTL);
 | |
| 	if (want_ncq)
 | |
| 		new = old | (1 << 22);
 | |
| 	else
 | |
| 		new = old & ~(1 << 22);
 | |
| 	if (new != old)
 | |
| 		writel(new, hpriv->base + GPIO_PORT_CTL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
 | |
|  *	@ap: Port being initialized
 | |
|  *
 | |
|  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
 | |
|  *
 | |
|  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
 | |
|  *	of basic DMA on the GEN_IIE versions of the chips.
 | |
|  *
 | |
|  *	This bit survives EDMA resets, and must be set for basic DMA
 | |
|  *	to function, and should be cleared when EDMA is active.
 | |
|  */
 | |
| static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
 | |
| {
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	u32 new, *old = &pp->cached.unknown_rsvd;
 | |
| 
 | |
| 	if (enable_bmdma)
 | |
| 		new = *old | 1;
 | |
| 	else
 | |
| 		new = *old & ~1;
 | |
| 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SOC chips have an issue whereby the HDD LEDs don't always blink
 | |
|  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
 | |
|  * of the SOC takes care of it, generating a steady blink rate when
 | |
|  * any drive on the chip is active.
 | |
|  *
 | |
|  * Unfortunately, the blink mode is a global hardware setting for the SOC,
 | |
|  * so we must use it whenever at least one port on the SOC has NCQ enabled.
 | |
|  *
 | |
|  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
 | |
|  * LED operation works then, and provides better (more accurate) feedback.
 | |
|  *
 | |
|  * Note that this code assumes that an SOC never has more than one HC onboard.
 | |
|  */
 | |
| static void mv_soc_led_blink_enable(struct ata_port *ap)
 | |
| {
 | |
| 	struct ata_host *host = ap->host;
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *hc_mmio;
 | |
| 	u32 led_ctrl;
 | |
| 
 | |
| 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
 | |
| 		return;
 | |
| 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
 | |
| 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
 | |
| 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
 | |
| 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
 | |
| }
 | |
| 
 | |
| static void mv_soc_led_blink_disable(struct ata_port *ap)
 | |
| {
 | |
| 	struct ata_host *host = ap->host;
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *hc_mmio;
 | |
| 	u32 led_ctrl;
 | |
| 	unsigned int port;
 | |
| 
 | |
| 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
 | |
| 		return;
 | |
| 
 | |
| 	/* disable led-blink only if no ports are using NCQ */
 | |
| 	for (port = 0; port < hpriv->n_ports; port++) {
 | |
| 		struct ata_port *this_ap = host->ports[port];
 | |
| 		struct mv_port_priv *pp = this_ap->private_data;
 | |
| 
 | |
| 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
 | |
| 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
 | |
| 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
 | |
| 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
 | |
| }
 | |
| 
 | |
| static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
 | |
| {
 | |
| 	u32 cfg;
 | |
| 	struct mv_port_priv *pp    = ap->private_data;
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	void __iomem *port_mmio    = mv_ap_base(ap);
 | |
| 
 | |
| 	/* set up non-NCQ EDMA configuration */
 | |
| 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
 | |
| 	pp->pp_flags &=
 | |
| 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
 | |
| 
 | |
| 	if (IS_GEN_I(hpriv))
 | |
| 		cfg |= (1 << 8);	/* enab config burst size mask */
 | |
| 
 | |
| 	else if (IS_GEN_II(hpriv)) {
 | |
| 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
 | |
| 		mv_60x1_errata_sata25(ap, want_ncq);
 | |
| 
 | |
| 	} else if (IS_GEN_IIE(hpriv)) {
 | |
| 		int want_fbs = sata_pmp_attached(ap);
 | |
| 		/*
 | |
| 		 * Possible future enhancement:
 | |
| 		 *
 | |
| 		 * The chip can use FBS with non-NCQ, if we allow it,
 | |
| 		 * But first we need to have the error handling in place
 | |
| 		 * for this mode (datasheet section 7.3.15.4.2.3).
 | |
| 		 * So disallow non-NCQ FBS for now.
 | |
| 		 */
 | |
| 		want_fbs &= want_ncq;
 | |
| 
 | |
| 		mv_config_fbs(ap, want_ncq, want_fbs);
 | |
| 
 | |
| 		if (want_fbs) {
 | |
| 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
 | |
| 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
 | |
| 		}
 | |
| 
 | |
| 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
 | |
| 		if (want_edma) {
 | |
| 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
 | |
| 			if (!IS_SOC(hpriv))
 | |
| 				cfg |= (1 << 18); /* enab early completion */
 | |
| 		}
 | |
| 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
 | |
| 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
 | |
| 		mv_bmdma_enable_iie(ap, !want_edma);
 | |
| 
 | |
| 		if (IS_SOC(hpriv)) {
 | |
| 			if (want_ncq)
 | |
| 				mv_soc_led_blink_enable(ap);
 | |
| 			else
 | |
| 				mv_soc_led_blink_disable(ap);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (want_ncq) {
 | |
| 		cfg |= EDMA_CFG_NCQ;
 | |
| 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
 | |
| 	}
 | |
| 
 | |
| 	writelfl(cfg, port_mmio + EDMA_CFG);
 | |
| }
 | |
| 
 | |
| static void mv_port_free_dma_mem(struct ata_port *ap)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	int tag;
 | |
| 
 | |
| 	if (pp->crqb) {
 | |
| 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
 | |
| 		pp->crqb = NULL;
 | |
| 	}
 | |
| 	if (pp->crpb) {
 | |
| 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
 | |
| 		pp->crpb = NULL;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
 | |
| 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
 | |
| 	 */
 | |
| 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
 | |
| 		if (pp->sg_tbl[tag]) {
 | |
| 			if (tag == 0 || !IS_GEN_I(hpriv))
 | |
| 				dma_pool_free(hpriv->sg_tbl_pool,
 | |
| 					      pp->sg_tbl[tag],
 | |
| 					      pp->sg_tbl_dma[tag]);
 | |
| 			pp->sg_tbl[tag] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_port_start - Port specific init/start routine.
 | |
|  *      @ap: ATA channel to manipulate
 | |
|  *
 | |
|  *      Allocate and point to DMA memory, init port private memory,
 | |
|  *      zero indices.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static int mv_port_start(struct ata_port *ap)
 | |
| {
 | |
| 	struct device *dev = ap->host->dev;
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	struct mv_port_priv *pp;
 | |
| 	unsigned long flags;
 | |
| 	int tag;
 | |
| 
 | |
| 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
 | |
| 	if (!pp)
 | |
| 		return -ENOMEM;
 | |
| 	ap->private_data = pp;
 | |
| 
 | |
| 	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
 | |
| 	if (!pp->crqb)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
 | |
| 	if (!pp->crpb)
 | |
| 		goto out_port_free_dma_mem;
 | |
| 
 | |
| 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
 | |
| 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
 | |
| 		ap->flags |= ATA_FLAG_AN;
 | |
| 	/*
 | |
| 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
 | |
| 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
 | |
| 	 */
 | |
| 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
 | |
| 		if (tag == 0 || !IS_GEN_I(hpriv)) {
 | |
| 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
 | |
| 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
 | |
| 			if (!pp->sg_tbl[tag])
 | |
| 				goto out_port_free_dma_mem;
 | |
| 		} else {
 | |
| 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
 | |
| 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 	mv_save_cached_regs(ap);
 | |
| 	mv_edma_cfg(ap, 0, 0);
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_port_free_dma_mem:
 | |
| 	mv_port_free_dma_mem(ap);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_port_stop - Port specific cleanup/stop routine.
 | |
|  *      @ap: ATA channel to manipulate
 | |
|  *
 | |
|  *      Stop DMA, cleanup port memory.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      This routine uses the host lock to protect the DMA stop.
 | |
|  */
 | |
| static void mv_port_stop(struct ata_port *ap)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 	mv_stop_edma(ap);
 | |
| 	mv_enable_port_irqs(ap, 0);
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 	mv_port_free_dma_mem(ap);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
 | |
|  *      @qc: queued command whose SG list to source from
 | |
|  *
 | |
|  *      Populate the SG list and mark the last entry.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static void mv_fill_sg(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct mv_port_priv *pp = qc->ap->private_data;
 | |
| 	struct scatterlist *sg;
 | |
| 	struct mv_sg *mv_sg, *last_sg = NULL;
 | |
| 	unsigned int si;
 | |
| 
 | |
| 	mv_sg = pp->sg_tbl[qc->tag];
 | |
| 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
 | |
| 		dma_addr_t addr = sg_dma_address(sg);
 | |
| 		u32 sg_len = sg_dma_len(sg);
 | |
| 
 | |
| 		while (sg_len) {
 | |
| 			u32 offset = addr & 0xffff;
 | |
| 			u32 len = sg_len;
 | |
| 
 | |
| 			if (offset + len > 0x10000)
 | |
| 				len = 0x10000 - offset;
 | |
| 
 | |
| 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
 | |
| 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
 | |
| 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
 | |
| 			mv_sg->reserved = 0;
 | |
| 
 | |
| 			sg_len -= len;
 | |
| 			addr += len;
 | |
| 
 | |
| 			last_sg = mv_sg;
 | |
| 			mv_sg++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (likely(last_sg))
 | |
| 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
 | |
| 	mb(); /* ensure data structure is visible to the chipset */
 | |
| }
 | |
| 
 | |
| static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
 | |
| {
 | |
| 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
 | |
| 		(last ? CRQB_CMD_LAST : 0);
 | |
| 	*cmdw = cpu_to_le16(tmp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
 | |
|  *	@ap: Port associated with this ATA transaction.
 | |
|  *
 | |
|  *	We need this only for ATAPI bmdma transactions,
 | |
|  *	as otherwise we experience spurious interrupts
 | |
|  *	after libata-sff handles the bmdma interrupts.
 | |
|  */
 | |
| static void mv_sff_irq_clear(struct ata_port *ap)
 | |
| {
 | |
| 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
 | |
|  *	@qc: queued command to check for chipset/DMA compatibility.
 | |
|  *
 | |
|  *	The bmdma engines cannot handle speculative data sizes
 | |
|  *	(bytecount under/over flow).  So only allow DMA for
 | |
|  *	data transfer commands with known data sizes.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct scsi_cmnd *scmd = qc->scsicmd;
 | |
| 
 | |
| 	if (scmd) {
 | |
| 		switch (scmd->cmnd[0]) {
 | |
| 		case READ_6:
 | |
| 		case READ_10:
 | |
| 		case READ_12:
 | |
| 		case WRITE_6:
 | |
| 		case WRITE_10:
 | |
| 		case WRITE_12:
 | |
| 		case GPCMD_READ_CD:
 | |
| 		case GPCMD_SEND_DVD_STRUCTURE:
 | |
| 		case GPCMD_SEND_CUE_SHEET:
 | |
| 			return 0; /* DMA is safe */
 | |
| 		}
 | |
| 	}
 | |
| 	return -EOPNOTSUPP; /* use PIO instead */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_bmdma_setup - Set up BMDMA transaction
 | |
|  *	@qc: queued command to prepare DMA for.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static void mv_bmdma_setup(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 
 | |
| 	mv_fill_sg(qc);
 | |
| 
 | |
| 	/* clear all DMA cmd bits */
 | |
| 	writel(0, port_mmio + BMDMA_CMD);
 | |
| 
 | |
| 	/* load PRD table addr. */
 | |
| 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
 | |
| 		port_mmio + BMDMA_PRD_HIGH);
 | |
| 	writelfl(pp->sg_tbl_dma[qc->tag],
 | |
| 		port_mmio + BMDMA_PRD_LOW);
 | |
| 
 | |
| 	/* issue r/w command */
 | |
| 	ap->ops->sff_exec_command(ap, &qc->tf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_bmdma_start - Start a BMDMA transaction
 | |
|  *	@qc: queued command to start DMA on.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static void mv_bmdma_start(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
 | |
| 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
 | |
| 
 | |
| 	/* start host DMA transaction */
 | |
| 	writelfl(cmd, port_mmio + BMDMA_CMD);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_bmdma_stop - Stop BMDMA transfer
 | |
|  *	@qc: queued command to stop DMA on.
 | |
|  *
 | |
|  *	Clears the ATA_DMA_START flag in the bmdma control register
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static void mv_bmdma_stop_ap(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	u32 cmd;
 | |
| 
 | |
| 	/* clear start/stop bit */
 | |
| 	cmd = readl(port_mmio + BMDMA_CMD);
 | |
| 	if (cmd & ATA_DMA_START) {
 | |
| 		cmd &= ~ATA_DMA_START;
 | |
| 		writelfl(cmd, port_mmio + BMDMA_CMD);
 | |
| 
 | |
| 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
 | |
| 		ata_sff_dma_pause(ap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mv_bmdma_stop(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	mv_bmdma_stop_ap(qc->ap);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_bmdma_status - Read BMDMA status
 | |
|  *	@ap: port for which to retrieve DMA status.
 | |
|  *
 | |
|  *	Read and return equivalent of the sff BMDMA status register.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static u8 mv_bmdma_status(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	u32 reg, status;
 | |
| 
 | |
| 	/*
 | |
| 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
 | |
| 	 * and the ATA_DMA_INTR bit doesn't exist.
 | |
| 	 */
 | |
| 	reg = readl(port_mmio + BMDMA_STATUS);
 | |
| 	if (reg & ATA_DMA_ACTIVE)
 | |
| 		status = ATA_DMA_ACTIVE;
 | |
| 	else if (reg & ATA_DMA_ERR)
 | |
| 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Just because DMA_ACTIVE is 0 (DMA completed),
 | |
| 		 * this does _not_ mean the device is "done".
 | |
| 		 * So we should not yet be signalling ATA_DMA_INTR
 | |
| 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
 | |
| 		 */
 | |
| 		mv_bmdma_stop_ap(ap);
 | |
| 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
 | |
| 			status = 0;
 | |
| 		else
 | |
| 			status = ATA_DMA_INTR;
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_taskfile *tf = &qc->tf;
 | |
| 	/*
 | |
| 	 * Workaround for 88SX60x1 FEr SATA#24.
 | |
| 	 *
 | |
| 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
 | |
| 	 * Note that READs are unaffected.
 | |
| 	 *
 | |
| 	 * It's not clear if this errata really means "4K bytes",
 | |
| 	 * or if it always happens for multi_count > 7
 | |
| 	 * regardless of device sector_size.
 | |
| 	 *
 | |
| 	 * So, for safety, any write with multi_count > 7
 | |
| 	 * gets converted here into a regular PIO write instead:
 | |
| 	 */
 | |
| 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
 | |
| 		if (qc->dev->multi_count > 7) {
 | |
| 			switch (tf->command) {
 | |
| 			case ATA_CMD_WRITE_MULTI:
 | |
| 				tf->command = ATA_CMD_PIO_WRITE;
 | |
| 				break;
 | |
| 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
 | |
| 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
 | |
| 				/* fall through */
 | |
| 			case ATA_CMD_WRITE_MULTI_EXT:
 | |
| 				tf->command = ATA_CMD_PIO_WRITE_EXT;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_qc_prep - Host specific command preparation.
 | |
|  *      @qc: queued command to prepare
 | |
|  *
 | |
|  *      This routine simply redirects to the general purpose routine
 | |
|  *      if command is not DMA.  Else, it handles prep of the CRQB
 | |
|  *      (command request block), does some sanity checking, and calls
 | |
|  *      the SG load routine.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static void mv_qc_prep(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	__le16 *cw;
 | |
| 	struct ata_taskfile *tf = &qc->tf;
 | |
| 	u16 flags = 0;
 | |
| 	unsigned in_index;
 | |
| 
 | |
| 	switch (tf->protocol) {
 | |
| 	case ATA_PROT_DMA:
 | |
| 		if (tf->command == ATA_CMD_DSM)
 | |
| 			return;
 | |
| 		/* fall-thru */
 | |
| 	case ATA_PROT_NCQ:
 | |
| 		break;	/* continue below */
 | |
| 	case ATA_PROT_PIO:
 | |
| 		mv_rw_multi_errata_sata24(qc);
 | |
| 		return;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill in command request block
 | |
| 	 */
 | |
| 	if (!(tf->flags & ATA_TFLAG_WRITE))
 | |
| 		flags |= CRQB_FLAG_READ;
 | |
| 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
 | |
| 	flags |= qc->tag << CRQB_TAG_SHIFT;
 | |
| 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
 | |
| 
 | |
| 	/* get current queue index from software */
 | |
| 	in_index = pp->req_idx;
 | |
| 
 | |
| 	pp->crqb[in_index].sg_addr =
 | |
| 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
 | |
| 	pp->crqb[in_index].sg_addr_hi =
 | |
| 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
 | |
| 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
 | |
| 
 | |
| 	cw = &pp->crqb[in_index].ata_cmd[0];
 | |
| 
 | |
| 	/* Sadly, the CRQB cannot accommodate all registers--there are
 | |
| 	 * only 11 bytes...so we must pick and choose required
 | |
| 	 * registers based on the command.  So, we drop feature and
 | |
| 	 * hob_feature for [RW] DMA commands, but they are needed for
 | |
| 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
 | |
| 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
 | |
| 	 */
 | |
| 	switch (tf->command) {
 | |
| 	case ATA_CMD_READ:
 | |
| 	case ATA_CMD_READ_EXT:
 | |
| 	case ATA_CMD_WRITE:
 | |
| 	case ATA_CMD_WRITE_EXT:
 | |
| 	case ATA_CMD_WRITE_FUA_EXT:
 | |
| 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
 | |
| 		break;
 | |
| 	case ATA_CMD_FPDMA_READ:
 | |
| 	case ATA_CMD_FPDMA_WRITE:
 | |
| 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
 | |
| 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* The only other commands EDMA supports in non-queued and
 | |
| 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
 | |
| 		 * of which are defined/used by Linux.  If we get here, this
 | |
| 		 * driver needs work.
 | |
| 		 *
 | |
| 		 * FIXME: modify libata to give qc_prep a return value and
 | |
| 		 * return error here.
 | |
| 		 */
 | |
| 		BUG_ON(tf->command);
 | |
| 		break;
 | |
| 	}
 | |
| 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
 | |
| 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
 | |
| 
 | |
| 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
 | |
| 		return;
 | |
| 	mv_fill_sg(qc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_qc_prep_iie - Host specific command preparation.
 | |
|  *      @qc: queued command to prepare
 | |
|  *
 | |
|  *      This routine simply redirects to the general purpose routine
 | |
|  *      if command is not DMA.  Else, it handles prep of the CRQB
 | |
|  *      (command request block), does some sanity checking, and calls
 | |
|  *      the SG load routine.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	struct mv_crqb_iie *crqb;
 | |
| 	struct ata_taskfile *tf = &qc->tf;
 | |
| 	unsigned in_index;
 | |
| 	u32 flags = 0;
 | |
| 
 | |
| 	if ((tf->protocol != ATA_PROT_DMA) &&
 | |
| 	    (tf->protocol != ATA_PROT_NCQ))
 | |
| 		return;
 | |
| 	if (tf->command == ATA_CMD_DSM)
 | |
| 		return;  /* use bmdma for this */
 | |
| 
 | |
| 	/* Fill in Gen IIE command request block */
 | |
| 	if (!(tf->flags & ATA_TFLAG_WRITE))
 | |
| 		flags |= CRQB_FLAG_READ;
 | |
| 
 | |
| 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
 | |
| 	flags |= qc->tag << CRQB_TAG_SHIFT;
 | |
| 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
 | |
| 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
 | |
| 
 | |
| 	/* get current queue index from software */
 | |
| 	in_index = pp->req_idx;
 | |
| 
 | |
| 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
 | |
| 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
 | |
| 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
 | |
| 	crqb->flags = cpu_to_le32(flags);
 | |
| 
 | |
| 	crqb->ata_cmd[0] = cpu_to_le32(
 | |
| 			(tf->command << 16) |
 | |
| 			(tf->feature << 24)
 | |
| 		);
 | |
| 	crqb->ata_cmd[1] = cpu_to_le32(
 | |
| 			(tf->lbal << 0) |
 | |
| 			(tf->lbam << 8) |
 | |
| 			(tf->lbah << 16) |
 | |
| 			(tf->device << 24)
 | |
| 		);
 | |
| 	crqb->ata_cmd[2] = cpu_to_le32(
 | |
| 			(tf->hob_lbal << 0) |
 | |
| 			(tf->hob_lbam << 8) |
 | |
| 			(tf->hob_lbah << 16) |
 | |
| 			(tf->hob_feature << 24)
 | |
| 		);
 | |
| 	crqb->ata_cmd[3] = cpu_to_le32(
 | |
| 			(tf->nsect << 0) |
 | |
| 			(tf->hob_nsect << 8)
 | |
| 		);
 | |
| 
 | |
| 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
 | |
| 		return;
 | |
| 	mv_fill_sg(qc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_sff_check_status - fetch device status, if valid
 | |
|  *	@ap: ATA port to fetch status from
 | |
|  *
 | |
|  *	When using command issue via mv_qc_issue_fis(),
 | |
|  *	the initial ATA_BUSY state does not show up in the
 | |
|  *	ATA status (shadow) register.  This can confuse libata!
 | |
|  *
 | |
|  *	So we have a hook here to fake ATA_BUSY for that situation,
 | |
|  *	until the first time a BUSY, DRQ, or ERR bit is seen.
 | |
|  *
 | |
|  *	The rest of the time, it simply returns the ATA status register.
 | |
|  */
 | |
| static u8 mv_sff_check_status(struct ata_port *ap)
 | |
| {
 | |
| 	u8 stat = ioread8(ap->ioaddr.status_addr);
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 
 | |
| 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
 | |
| 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
 | |
| 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
 | |
| 		else
 | |
| 			stat = ATA_BUSY;
 | |
| 	}
 | |
| 	return stat;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
 | |
|  *	@fis: fis to be sent
 | |
|  *	@nwords: number of 32-bit words in the fis
 | |
|  */
 | |
| static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	u32 ifctl, old_ifctl, ifstat;
 | |
| 	int i, timeout = 200, final_word = nwords - 1;
 | |
| 
 | |
| 	/* Initiate FIS transmission mode */
 | |
| 	old_ifctl = readl(port_mmio + SATA_IFCTL);
 | |
| 	ifctl = 0x100 | (old_ifctl & 0xf);
 | |
| 	writelfl(ifctl, port_mmio + SATA_IFCTL);
 | |
| 
 | |
| 	/* Send all words of the FIS except for the final word */
 | |
| 	for (i = 0; i < final_word; ++i)
 | |
| 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
 | |
| 
 | |
| 	/* Flag end-of-transmission, and then send the final word */
 | |
| 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
 | |
| 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for FIS transmission to complete.
 | |
| 	 * This typically takes just a single iteration.
 | |
| 	 */
 | |
| 	do {
 | |
| 		ifstat = readl(port_mmio + SATA_IFSTAT);
 | |
| 	} while (!(ifstat & 0x1000) && --timeout);
 | |
| 
 | |
| 	/* Restore original port configuration */
 | |
| 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
 | |
| 
 | |
| 	/* See if it worked */
 | |
| 	if ((ifstat & 0x3000) != 0x1000) {
 | |
| 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
 | |
| 			      __func__, ifstat);
 | |
| 		return AC_ERR_OTHER;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mv_qc_issue_fis - Issue a command directly as a FIS
 | |
|  *	@qc: queued command to start
 | |
|  *
 | |
|  *	Note that the ATA shadow registers are not updated
 | |
|  *	after command issue, so the device will appear "READY"
 | |
|  *	if polled, even while it is BUSY processing the command.
 | |
|  *
 | |
|  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
 | |
|  *
 | |
|  *	Note: we don't get updated shadow regs on *completion*
 | |
|  *	of non-data commands. So avoid sending them via this function,
 | |
|  *	as they will appear to have completed immediately.
 | |
|  *
 | |
|  *	GEN_IIE has special registers that we could get the result tf from,
 | |
|  *	but earlier chipsets do not.  For now, we ignore those registers.
 | |
|  */
 | |
| static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	struct ata_link *link = qc->dev->link;
 | |
| 	u32 fis[5];
 | |
| 	int err = 0;
 | |
| 
 | |
| 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
 | |
| 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	switch (qc->tf.protocol) {
 | |
| 	case ATAPI_PROT_PIO:
 | |
| 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
 | |
| 		/* fall through */
 | |
| 	case ATAPI_PROT_NODATA:
 | |
| 		ap->hsm_task_state = HSM_ST_FIRST;
 | |
| 		break;
 | |
| 	case ATA_PROT_PIO:
 | |
| 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
 | |
| 		if (qc->tf.flags & ATA_TFLAG_WRITE)
 | |
| 			ap->hsm_task_state = HSM_ST_FIRST;
 | |
| 		else
 | |
| 			ap->hsm_task_state = HSM_ST;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ap->hsm_task_state = HSM_ST_LAST;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 		ata_sff_queue_pio_task(link, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_qc_issue - Initiate a command to the host
 | |
|  *      @qc: queued command to start
 | |
|  *
 | |
|  *      This routine simply redirects to the general purpose routine
 | |
|  *      if command is not DMA.  Else, it sanity checks our local
 | |
|  *      caches of the request producer/consumer indices then enables
 | |
|  *      DMA and bumps the request producer index.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	static int limit_warnings = 10;
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	u32 in_index;
 | |
| 	unsigned int port_irqs;
 | |
| 
 | |
| 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
 | |
| 
 | |
| 	switch (qc->tf.protocol) {
 | |
| 	case ATA_PROT_DMA:
 | |
| 		if (qc->tf.command == ATA_CMD_DSM) {
 | |
| 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
 | |
| 				return AC_ERR_OTHER;
 | |
| 			break;  /* use bmdma for this */
 | |
| 		}
 | |
| 		/* fall thru */
 | |
| 	case ATA_PROT_NCQ:
 | |
| 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
 | |
| 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
 | |
| 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
 | |
| 
 | |
| 		/* Write the request in pointer to kick the EDMA to life */
 | |
| 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
 | |
| 					port_mmio + EDMA_REQ_Q_IN_PTR);
 | |
| 		return 0;
 | |
| 
 | |
| 	case ATA_PROT_PIO:
 | |
| 		/*
 | |
| 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
 | |
| 		 *
 | |
| 		 * Someday, we might implement special polling workarounds
 | |
| 		 * for these, but it all seems rather unnecessary since we
 | |
| 		 * normally use only DMA for commands which transfer more
 | |
| 		 * than a single block of data.
 | |
| 		 *
 | |
| 		 * Much of the time, this could just work regardless.
 | |
| 		 * So for now, just log the incident, and allow the attempt.
 | |
| 		 */
 | |
| 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
 | |
| 			--limit_warnings;
 | |
| 			ata_link_warn(qc->dev->link, DRV_NAME
 | |
| 				      ": attempting PIO w/multiple DRQ: "
 | |
| 				      "this may fail due to h/w errata\n");
 | |
| 		}
 | |
| 		/* drop through */
 | |
| 	case ATA_PROT_NODATA:
 | |
| 	case ATAPI_PROT_PIO:
 | |
| 	case ATAPI_PROT_NODATA:
 | |
| 		if (ap->flags & ATA_FLAG_PIO_POLLING)
 | |
| 			qc->tf.flags |= ATA_TFLAG_POLLING;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
 | |
| 	else
 | |
| 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
 | |
| 
 | |
| 	/*
 | |
| 	 * We're about to send a non-EDMA capable command to the
 | |
| 	 * port.  Turn off EDMA so there won't be problems accessing
 | |
| 	 * shadow block, etc registers.
 | |
| 	 */
 | |
| 	mv_stop_edma(ap);
 | |
| 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
 | |
| 	mv_pmp_select(ap, qc->dev->link->pmp);
 | |
| 
 | |
| 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
 | |
| 		struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 		/*
 | |
| 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
 | |
| 		 *
 | |
| 		 * After any NCQ error, the READ_LOG_EXT command
 | |
| 		 * from libata-eh *must* use mv_qc_issue_fis().
 | |
| 		 * Otherwise it might fail, due to chip errata.
 | |
| 		 *
 | |
| 		 * Rather than special-case it, we'll just *always*
 | |
| 		 * use this method here for READ_LOG_EXT, making for
 | |
| 		 * easier testing.
 | |
| 		 */
 | |
| 		if (IS_GEN_II(hpriv))
 | |
| 			return mv_qc_issue_fis(qc);
 | |
| 	}
 | |
| 	return ata_bmdma_qc_issue(qc);
 | |
| }
 | |
| 
 | |
| static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
 | |
| {
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 
 | |
| 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
 | |
| 		return NULL;
 | |
| 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
 | |
| 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
 | |
| 		return qc;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void mv_pmp_error_handler(struct ata_port *ap)
 | |
| {
 | |
| 	unsigned int pmp, pmp_map;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 
 | |
| 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
 | |
| 		/*
 | |
| 		 * Perform NCQ error analysis on failed PMPs
 | |
| 		 * before we freeze the port entirely.
 | |
| 		 *
 | |
| 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
 | |
| 		 */
 | |
| 		pmp_map = pp->delayed_eh_pmp_map;
 | |
| 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
 | |
| 		for (pmp = 0; pmp_map != 0; pmp++) {
 | |
| 			unsigned int this_pmp = (1 << pmp);
 | |
| 			if (pmp_map & this_pmp) {
 | |
| 				struct ata_link *link = &ap->pmp_link[pmp];
 | |
| 				pmp_map &= ~this_pmp;
 | |
| 				ata_eh_analyze_ncq_error(link);
 | |
| 			}
 | |
| 		}
 | |
| 		ata_port_freeze(ap);
 | |
| 	}
 | |
| 	sata_pmp_error_handler(ap);
 | |
| }
 | |
| 
 | |
| static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 
 | |
| 	return readl(port_mmio + SATA_TESTCTL) >> 16;
 | |
| }
 | |
| 
 | |
| static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
 | |
| {
 | |
| 	struct ata_eh_info *ehi;
 | |
| 	unsigned int pmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize EH info for PMPs which saw device errors
 | |
| 	 */
 | |
| 	ehi = &ap->link.eh_info;
 | |
| 	for (pmp = 0; pmp_map != 0; pmp++) {
 | |
| 		unsigned int this_pmp = (1 << pmp);
 | |
| 		if (pmp_map & this_pmp) {
 | |
| 			struct ata_link *link = &ap->pmp_link[pmp];
 | |
| 
 | |
| 			pmp_map &= ~this_pmp;
 | |
| 			ehi = &link->eh_info;
 | |
| 			ata_ehi_clear_desc(ehi);
 | |
| 			ata_ehi_push_desc(ehi, "dev err");
 | |
| 			ehi->err_mask |= AC_ERR_DEV;
 | |
| 			ehi->action |= ATA_EH_RESET;
 | |
| 			ata_link_abort(link);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mv_req_q_empty(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	u32 in_ptr, out_ptr;
 | |
| 
 | |
| 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
 | |
| 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
 | |
| 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
 | |
| 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
 | |
| 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
 | |
| }
 | |
| 
 | |
| static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
 | |
| {
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	int failed_links;
 | |
| 	unsigned int old_map, new_map;
 | |
| 
 | |
| 	/*
 | |
| 	 * Device error during FBS+NCQ operation:
 | |
| 	 *
 | |
| 	 * Set a port flag to prevent further I/O being enqueued.
 | |
| 	 * Leave the EDMA running to drain outstanding commands from this port.
 | |
| 	 * Perform the post-mortem/EH only when all responses are complete.
 | |
| 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
 | |
| 	 */
 | |
| 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
 | |
| 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
 | |
| 		pp->delayed_eh_pmp_map = 0;
 | |
| 	}
 | |
| 	old_map = pp->delayed_eh_pmp_map;
 | |
| 	new_map = old_map | mv_get_err_pmp_map(ap);
 | |
| 
 | |
| 	if (old_map != new_map) {
 | |
| 		pp->delayed_eh_pmp_map = new_map;
 | |
| 		mv_pmp_eh_prep(ap, new_map & ~old_map);
 | |
| 	}
 | |
| 	failed_links = hweight16(new_map);
 | |
| 
 | |
| 	ata_port_info(ap,
 | |
| 		      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
 | |
| 		      __func__, pp->delayed_eh_pmp_map,
 | |
| 		      ap->qc_active, failed_links,
 | |
| 		      ap->nr_active_links);
 | |
| 
 | |
| 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
 | |
| 		mv_process_crpb_entries(ap, pp);
 | |
| 		mv_stop_edma(ap);
 | |
| 		mv_eh_freeze(ap);
 | |
| 		ata_port_info(ap, "%s: done\n", __func__);
 | |
| 		return 1;	/* handled */
 | |
| 	}
 | |
| 	ata_port_info(ap, "%s: waiting\n", __func__);
 | |
| 	return 1;	/* handled */
 | |
| }
 | |
| 
 | |
| static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
 | |
| {
 | |
| 	/*
 | |
| 	 * Possible future enhancement:
 | |
| 	 *
 | |
| 	 * FBS+non-NCQ operation is not yet implemented.
 | |
| 	 * See related notes in mv_edma_cfg().
 | |
| 	 *
 | |
| 	 * Device error during FBS+non-NCQ operation:
 | |
| 	 *
 | |
| 	 * We need to snapshot the shadow registers for each failed command.
 | |
| 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
 | |
| 	 */
 | |
| 	return 0;	/* not handled */
 | |
| }
 | |
| 
 | |
| static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
 | |
| {
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 
 | |
| 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
 | |
| 		return 0;	/* EDMA was not active: not handled */
 | |
| 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
 | |
| 		return 0;	/* FBS was not active: not handled */
 | |
| 
 | |
| 	if (!(edma_err_cause & EDMA_ERR_DEV))
 | |
| 		return 0;	/* non DEV error: not handled */
 | |
| 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
 | |
| 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
 | |
| 		return 0;	/* other problems: not handled */
 | |
| 
 | |
| 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
 | |
| 		/*
 | |
| 		 * EDMA should NOT have self-disabled for this case.
 | |
| 		 * If it did, then something is wrong elsewhere,
 | |
| 		 * and we cannot handle it here.
 | |
| 		 */
 | |
| 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
 | |
| 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
 | |
| 				      __func__, edma_err_cause, pp->pp_flags);
 | |
| 			return 0; /* not handled */
 | |
| 		}
 | |
| 		return mv_handle_fbs_ncq_dev_err(ap);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * EDMA should have self-disabled for this case.
 | |
| 		 * If it did not, then something is wrong elsewhere,
 | |
| 		 * and we cannot handle it here.
 | |
| 		 */
 | |
| 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
 | |
| 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
 | |
| 				      __func__, edma_err_cause, pp->pp_flags);
 | |
| 			return 0; /* not handled */
 | |
| 		}
 | |
| 		return mv_handle_fbs_non_ncq_dev_err(ap);
 | |
| 	}
 | |
| 	return 0;	/* not handled */
 | |
| }
 | |
| 
 | |
| static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
 | |
| {
 | |
| 	struct ata_eh_info *ehi = &ap->link.eh_info;
 | |
| 	char *when = "idle";
 | |
| 
 | |
| 	ata_ehi_clear_desc(ehi);
 | |
| 	if (edma_was_enabled) {
 | |
| 		when = "EDMA enabled";
 | |
| 	} else {
 | |
| 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
 | |
| 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
 | |
| 			when = "polling";
 | |
| 	}
 | |
| 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
 | |
| 	ehi->err_mask |= AC_ERR_OTHER;
 | |
| 	ehi->action   |= ATA_EH_RESET;
 | |
| 	ata_port_freeze(ap);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_err_intr - Handle error interrupts on the port
 | |
|  *      @ap: ATA channel to manipulate
 | |
|  *
 | |
|  *      Most cases require a full reset of the chip's state machine,
 | |
|  *      which also performs a COMRESET.
 | |
|  *      Also, if the port disabled DMA, update our cached copy to match.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static void mv_err_intr(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
 | |
| 	u32 fis_cause = 0;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	unsigned int action = 0, err_mask = 0;
 | |
| 	struct ata_eh_info *ehi = &ap->link.eh_info;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 	int abort = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read and clear the SError and err_cause bits.
 | |
| 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
 | |
| 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
 | |
| 	 */
 | |
| 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
 | |
| 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
 | |
| 
 | |
| 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
 | |
| 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
 | |
| 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
 | |
| 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
 | |
| 	}
 | |
| 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
 | |
| 
 | |
| 	if (edma_err_cause & EDMA_ERR_DEV) {
 | |
| 		/*
 | |
| 		 * Device errors during FIS-based switching operation
 | |
| 		 * require special handling.
 | |
| 		 */
 | |
| 		if (mv_handle_dev_err(ap, edma_err_cause))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	qc = mv_get_active_qc(ap);
 | |
| 	ata_ehi_clear_desc(ehi);
 | |
| 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
 | |
| 			  edma_err_cause, pp->pp_flags);
 | |
| 
 | |
| 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
 | |
| 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
 | |
| 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
 | |
| 			u32 ec = edma_err_cause &
 | |
| 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
 | |
| 			sata_async_notification(ap);
 | |
| 			if (!ec)
 | |
| 				return; /* Just an AN; no need for the nukes */
 | |
| 			ata_ehi_push_desc(ehi, "SDB notify");
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * All generations share these EDMA error cause bits:
 | |
| 	 */
 | |
| 	if (edma_err_cause & EDMA_ERR_DEV) {
 | |
| 		err_mask |= AC_ERR_DEV;
 | |
| 		action |= ATA_EH_RESET;
 | |
| 		ata_ehi_push_desc(ehi, "dev error");
 | |
| 	}
 | |
| 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
 | |
| 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
 | |
| 			EDMA_ERR_INTRL_PAR)) {
 | |
| 		err_mask |= AC_ERR_ATA_BUS;
 | |
| 		action |= ATA_EH_RESET;
 | |
| 		ata_ehi_push_desc(ehi, "parity error");
 | |
| 	}
 | |
| 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
 | |
| 		ata_ehi_hotplugged(ehi);
 | |
| 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
 | |
| 			"dev disconnect" : "dev connect");
 | |
| 		action |= ATA_EH_RESET;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Gen-I has a different SELF_DIS bit,
 | |
| 	 * different FREEZE bits, and no SERR bit:
 | |
| 	 */
 | |
| 	if (IS_GEN_I(hpriv)) {
 | |
| 		eh_freeze_mask = EDMA_EH_FREEZE_5;
 | |
| 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
 | |
| 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
 | |
| 			ata_ehi_push_desc(ehi, "EDMA self-disable");
 | |
| 		}
 | |
| 	} else {
 | |
| 		eh_freeze_mask = EDMA_EH_FREEZE;
 | |
| 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
 | |
| 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
 | |
| 			ata_ehi_push_desc(ehi, "EDMA self-disable");
 | |
| 		}
 | |
| 		if (edma_err_cause & EDMA_ERR_SERR) {
 | |
| 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
 | |
| 			err_mask |= AC_ERR_ATA_BUS;
 | |
| 			action |= ATA_EH_RESET;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!err_mask) {
 | |
| 		err_mask = AC_ERR_OTHER;
 | |
| 		action |= ATA_EH_RESET;
 | |
| 	}
 | |
| 
 | |
| 	ehi->serror |= serr;
 | |
| 	ehi->action |= action;
 | |
| 
 | |
| 	if (qc)
 | |
| 		qc->err_mask |= err_mask;
 | |
| 	else
 | |
| 		ehi->err_mask |= err_mask;
 | |
| 
 | |
| 	if (err_mask == AC_ERR_DEV) {
 | |
| 		/*
 | |
| 		 * Cannot do ata_port_freeze() here,
 | |
| 		 * because it would kill PIO access,
 | |
| 		 * which is needed for further diagnosis.
 | |
| 		 */
 | |
| 		mv_eh_freeze(ap);
 | |
| 		abort = 1;
 | |
| 	} else if (edma_err_cause & eh_freeze_mask) {
 | |
| 		/*
 | |
| 		 * Note to self: ata_port_freeze() calls ata_port_abort()
 | |
| 		 */
 | |
| 		ata_port_freeze(ap);
 | |
| 	} else {
 | |
| 		abort = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (abort) {
 | |
| 		if (qc)
 | |
| 			ata_link_abort(qc->dev->link);
 | |
| 		else
 | |
| 			ata_port_abort(ap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool mv_process_crpb_response(struct ata_port *ap,
 | |
| 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
 | |
| {
 | |
| 	u8 ata_status;
 | |
| 	u16 edma_status = le16_to_cpu(response->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * edma_status from a response queue entry:
 | |
| 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
 | |
| 	 *   MSB is saved ATA status from command completion.
 | |
| 	 */
 | |
| 	if (!ncq_enabled) {
 | |
| 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
 | |
| 		if (err_cause) {
 | |
| 			/*
 | |
| 			 * Error will be seen/handled by
 | |
| 			 * mv_err_intr().  So do nothing at all here.
 | |
| 			 */
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
 | |
| 	if (!ac_err_mask(ata_status))
 | |
| 		return true;
 | |
| 	/* else: leave it for mv_err_intr() */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	u32 in_index;
 | |
| 	bool work_done = false;
 | |
| 	u32 done_mask = 0;
 | |
| 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
 | |
| 
 | |
| 	/* Get the hardware queue position index */
 | |
| 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
 | |
| 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
 | |
| 
 | |
| 	/* Process new responses from since the last time we looked */
 | |
| 	while (in_index != pp->resp_idx) {
 | |
| 		unsigned int tag;
 | |
| 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
 | |
| 
 | |
| 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
 | |
| 
 | |
| 		if (IS_GEN_I(hpriv)) {
 | |
| 			/* 50xx: no NCQ, only one command active at a time */
 | |
| 			tag = ap->link.active_tag;
 | |
| 		} else {
 | |
| 			/* Gen II/IIE: get command tag from CRPB entry */
 | |
| 			tag = le16_to_cpu(response->id) & 0x1f;
 | |
| 		}
 | |
| 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
 | |
| 			done_mask |= 1 << tag;
 | |
| 		work_done = true;
 | |
| 	}
 | |
| 
 | |
| 	if (work_done) {
 | |
| 		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
 | |
| 
 | |
| 		/* Update the software queue position index in hardware */
 | |
| 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
 | |
| 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
 | |
| 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mv_port_intr(struct ata_port *ap, u32 port_cause)
 | |
| {
 | |
| 	struct mv_port_priv *pp;
 | |
| 	int edma_was_enabled;
 | |
| 
 | |
| 	/*
 | |
| 	 * Grab a snapshot of the EDMA_EN flag setting,
 | |
| 	 * so that we have a consistent view for this port,
 | |
| 	 * even if something we call of our routines changes it.
 | |
| 	 */
 | |
| 	pp = ap->private_data;
 | |
| 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
 | |
| 	/*
 | |
| 	 * Process completed CRPB response(s) before other events.
 | |
| 	 */
 | |
| 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
 | |
| 		mv_process_crpb_entries(ap, pp);
 | |
| 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
 | |
| 			mv_handle_fbs_ncq_dev_err(ap);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Handle chip-reported errors, or continue on to handle PIO.
 | |
| 	 */
 | |
| 	if (unlikely(port_cause & ERR_IRQ)) {
 | |
| 		mv_err_intr(ap);
 | |
| 	} else if (!edma_was_enabled) {
 | |
| 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
 | |
| 		if (qc)
 | |
| 			ata_bmdma_port_intr(ap, qc);
 | |
| 		else
 | |
| 			mv_unexpected_intr(ap, edma_was_enabled);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_host_intr - Handle all interrupts on the given host controller
 | |
|  *      @host: host specific structure
 | |
|  *      @main_irq_cause: Main interrupt cause register for the chip.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base, *hc_mmio;
 | |
| 	unsigned int handled = 0, port;
 | |
| 
 | |
| 	/* If asserted, clear the "all ports" IRQ coalescing bit */
 | |
| 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
 | |
| 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
 | |
| 
 | |
| 	for (port = 0; port < hpriv->n_ports; port++) {
 | |
| 		struct ata_port *ap = host->ports[port];
 | |
| 		unsigned int p, shift, hardport, port_cause;
 | |
| 
 | |
| 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
 | |
| 		/*
 | |
| 		 * Each hc within the host has its own hc_irq_cause register,
 | |
| 		 * where the interrupting ports bits get ack'd.
 | |
| 		 */
 | |
| 		if (hardport == 0) {	/* first port on this hc ? */
 | |
| 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
 | |
| 			u32 port_mask, ack_irqs;
 | |
| 			/*
 | |
| 			 * Skip this entire hc if nothing pending for any ports
 | |
| 			 */
 | |
| 			if (!hc_cause) {
 | |
| 				port += MV_PORTS_PER_HC - 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * We don't need/want to read the hc_irq_cause register,
 | |
| 			 * because doing so hurts performance, and
 | |
| 			 * main_irq_cause already gives us everything we need.
 | |
| 			 *
 | |
| 			 * But we do have to *write* to the hc_irq_cause to ack
 | |
| 			 * the ports that we are handling this time through.
 | |
| 			 *
 | |
| 			 * This requires that we create a bitmap for those
 | |
| 			 * ports which interrupted us, and use that bitmap
 | |
| 			 * to ack (only) those ports via hc_irq_cause.
 | |
| 			 */
 | |
| 			ack_irqs = 0;
 | |
| 			if (hc_cause & PORTS_0_3_COAL_DONE)
 | |
| 				ack_irqs = HC_COAL_IRQ;
 | |
| 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
 | |
| 				if ((port + p) >= hpriv->n_ports)
 | |
| 					break;
 | |
| 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
 | |
| 				if (hc_cause & port_mask)
 | |
| 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
 | |
| 			}
 | |
| 			hc_mmio = mv_hc_base_from_port(mmio, port);
 | |
| 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
 | |
| 			handled = 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Handle interrupts signalled for this port:
 | |
| 		 */
 | |
| 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
 | |
| 		if (port_cause)
 | |
| 			mv_port_intr(ap, port_cause);
 | |
| 	}
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	struct ata_port *ap;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 	struct ata_eh_info *ehi;
 | |
| 	unsigned int i, err_mask, printed = 0;
 | |
| 	u32 err_cause;
 | |
| 
 | |
| 	err_cause = readl(mmio + hpriv->irq_cause_offset);
 | |
| 
 | |
| 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
 | |
| 
 | |
| 	DPRINTK("All regs @ PCI error\n");
 | |
| 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
 | |
| 
 | |
| 	writelfl(0, mmio + hpriv->irq_cause_offset);
 | |
| 
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		ap = host->ports[i];
 | |
| 		if (!ata_link_offline(&ap->link)) {
 | |
| 			ehi = &ap->link.eh_info;
 | |
| 			ata_ehi_clear_desc(ehi);
 | |
| 			if (!printed++)
 | |
| 				ata_ehi_push_desc(ehi,
 | |
| 					"PCI err cause 0x%08x", err_cause);
 | |
| 			err_mask = AC_ERR_HOST_BUS;
 | |
| 			ehi->action = ATA_EH_RESET;
 | |
| 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
 | |
| 			if (qc)
 | |
| 				qc->err_mask |= err_mask;
 | |
| 			else
 | |
| 				ehi->err_mask |= err_mask;
 | |
| 
 | |
| 			ata_port_freeze(ap);
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;	/* handled */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_interrupt - Main interrupt event handler
 | |
|  *      @irq: unused
 | |
|  *      @dev_instance: private data; in this case the host structure
 | |
|  *
 | |
|  *      Read the read only register to determine if any host
 | |
|  *      controllers have pending interrupts.  If so, call lower level
 | |
|  *      routine to handle.  Also check for PCI errors which are only
 | |
|  *      reported here.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      This routine holds the host lock while processing pending
 | |
|  *      interrupts.
 | |
|  */
 | |
| static irqreturn_t mv_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct ata_host *host = dev_instance;
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	unsigned int handled = 0;
 | |
| 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
 | |
| 	u32 main_irq_cause, pending_irqs;
 | |
| 
 | |
| 	spin_lock(&host->lock);
 | |
| 
 | |
| 	/* for MSI:  block new interrupts while in here */
 | |
| 	if (using_msi)
 | |
| 		mv_write_main_irq_mask(0, hpriv);
 | |
| 
 | |
| 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
 | |
| 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
 | |
| 	/*
 | |
| 	 * Deal with cases where we either have nothing pending, or have read
 | |
| 	 * a bogus register value which can indicate HW removal or PCI fault.
 | |
| 	 */
 | |
| 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
 | |
| 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
 | |
| 			handled = mv_pci_error(host, hpriv->base);
 | |
| 		else
 | |
| 			handled = mv_host_intr(host, pending_irqs);
 | |
| 	}
 | |
| 
 | |
| 	/* for MSI: unmask; interrupt cause bits will retrigger now */
 | |
| 	if (using_msi)
 | |
| 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
 | |
| 
 | |
| 	spin_unlock(&host->lock);
 | |
| 
 | |
| 	return IRQ_RETVAL(handled);
 | |
| }
 | |
| 
 | |
| static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
 | |
| {
 | |
| 	unsigned int ofs;
 | |
| 
 | |
| 	switch (sc_reg_in) {
 | |
| 	case SCR_STATUS:
 | |
| 	case SCR_ERROR:
 | |
| 	case SCR_CONTROL:
 | |
| 		ofs = sc_reg_in * sizeof(u32);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ofs = 0xffffffffU;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ofs;
 | |
| }
 | |
| 
 | |
| static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = link->ap->host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base;
 | |
| 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
 | |
| 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
 | |
| 
 | |
| 	if (ofs != 0xffffffffU) {
 | |
| 		*val = readl(addr + ofs);
 | |
| 		return 0;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = link->ap->host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base;
 | |
| 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
 | |
| 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
 | |
| 
 | |
| 	if (ofs != 0xffffffffU) {
 | |
| 		writelfl(val, addr + ofs);
 | |
| 		return 0;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(host->dev);
 | |
| 	int early_5080;
 | |
| 
 | |
| 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
 | |
| 
 | |
| 	if (!early_5080) {
 | |
| 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
 | |
| 		tmp |= (1 << 0);
 | |
| 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
 | |
| 	}
 | |
| 
 | |
| 	mv_reset_pci_bus(host, mmio);
 | |
| }
 | |
| 
 | |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
 | |
| {
 | |
| 	writel(0x0fcfffff, mmio + FLASH_CTL);
 | |
| }
 | |
| 
 | |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 | |
| 			   void __iomem *mmio)
 | |
| {
 | |
| 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	tmp = readl(phy_mmio + MV5_PHY_MODE);
 | |
| 
 | |
| 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
 | |
| 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
 | |
| }
 | |
| 
 | |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	writel(0, mmio + GPIO_PORT_CTL);
 | |
| 
 | |
| 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
 | |
| 
 | |
| 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
 | |
| 	tmp |= ~(1 << 0);
 | |
| 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
 | |
| }
 | |
| 
 | |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			   unsigned int port)
 | |
| {
 | |
| 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
 | |
| 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
 | |
| 	u32 tmp;
 | |
| 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
 | |
| 
 | |
| 	if (fix_apm_sq) {
 | |
| 		tmp = readl(phy_mmio + MV5_LTMODE);
 | |
| 		tmp |= (1 << 19);
 | |
| 		writel(tmp, phy_mmio + MV5_LTMODE);
 | |
| 
 | |
| 		tmp = readl(phy_mmio + MV5_PHY_CTL);
 | |
| 		tmp &= ~0x3;
 | |
| 		tmp |= 0x1;
 | |
| 		writel(tmp, phy_mmio + MV5_PHY_CTL);
 | |
| 	}
 | |
| 
 | |
| 	tmp = readl(phy_mmio + MV5_PHY_MODE);
 | |
| 	tmp &= ~mask;
 | |
| 	tmp |= hpriv->signal[port].pre;
 | |
| 	tmp |= hpriv->signal[port].amps;
 | |
| 	writel(tmp, phy_mmio + MV5_PHY_MODE);
 | |
| }
 | |
| 
 | |
| 
 | |
| #undef ZERO
 | |
| #define ZERO(reg) writel(0, port_mmio + (reg))
 | |
| static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			     unsigned int port)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_port_base(mmio, port);
 | |
| 
 | |
| 	mv_reset_channel(hpriv, mmio, port);
 | |
| 
 | |
| 	ZERO(0x028);	/* command */
 | |
| 	writel(0x11f, port_mmio + EDMA_CFG);
 | |
| 	ZERO(0x004);	/* timer */
 | |
| 	ZERO(0x008);	/* irq err cause */
 | |
| 	ZERO(0x00c);	/* irq err mask */
 | |
| 	ZERO(0x010);	/* rq bah */
 | |
| 	ZERO(0x014);	/* rq inp */
 | |
| 	ZERO(0x018);	/* rq outp */
 | |
| 	ZERO(0x01c);	/* respq bah */
 | |
| 	ZERO(0x024);	/* respq outp */
 | |
| 	ZERO(0x020);	/* respq inp */
 | |
| 	ZERO(0x02c);	/* test control */
 | |
| 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
 | |
| }
 | |
| #undef ZERO
 | |
| 
 | |
| #define ZERO(reg) writel(0, hc_mmio + (reg))
 | |
| static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			unsigned int hc)
 | |
| {
 | |
| 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	ZERO(0x00c);
 | |
| 	ZERO(0x010);
 | |
| 	ZERO(0x014);
 | |
| 	ZERO(0x018);
 | |
| 
 | |
| 	tmp = readl(hc_mmio + 0x20);
 | |
| 	tmp &= 0x1c1c1c1c;
 | |
| 	tmp |= 0x03030303;
 | |
| 	writel(tmp, hc_mmio + 0x20);
 | |
| }
 | |
| #undef ZERO
 | |
| 
 | |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			unsigned int n_hc)
 | |
| {
 | |
| 	unsigned int hc, port;
 | |
| 
 | |
| 	for (hc = 0; hc < n_hc; hc++) {
 | |
| 		for (port = 0; port < MV_PORTS_PER_HC; port++)
 | |
| 			mv5_reset_hc_port(hpriv, mmio,
 | |
| 					  (hc * MV_PORTS_PER_HC) + port);
 | |
| 
 | |
| 		mv5_reset_one_hc(hpriv, mmio, hc);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #undef ZERO
 | |
| #define ZERO(reg) writel(0, mmio + (reg))
 | |
| static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	tmp = readl(mmio + MV_PCI_MODE);
 | |
| 	tmp &= 0xff00ffff;
 | |
| 	writel(tmp, mmio + MV_PCI_MODE);
 | |
| 
 | |
| 	ZERO(MV_PCI_DISC_TIMER);
 | |
| 	ZERO(MV_PCI_MSI_TRIGGER);
 | |
| 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
 | |
| 	ZERO(MV_PCI_SERR_MASK);
 | |
| 	ZERO(hpriv->irq_cause_offset);
 | |
| 	ZERO(hpriv->irq_mask_offset);
 | |
| 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
 | |
| 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
 | |
| 	ZERO(MV_PCI_ERR_ATTRIBUTE);
 | |
| 	ZERO(MV_PCI_ERR_COMMAND);
 | |
| }
 | |
| #undef ZERO
 | |
| 
 | |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	mv5_reset_flash(hpriv, mmio);
 | |
| 
 | |
| 	tmp = readl(mmio + GPIO_PORT_CTL);
 | |
| 	tmp &= 0x3;
 | |
| 	tmp |= (1 << 5) | (1 << 6);
 | |
| 	writel(tmp, mmio + GPIO_PORT_CTL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv6_reset_hc - Perform the 6xxx global soft reset
 | |
|  *      @mmio: base address of the HBA
 | |
|  *
 | |
|  *      This routine only applies to 6xxx parts.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			unsigned int n_hc)
 | |
| {
 | |
| 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
 | |
| 	int i, rc = 0;
 | |
| 	u32 t;
 | |
| 
 | |
| 	/* Following procedure defined in PCI "main command and status
 | |
| 	 * register" table.
 | |
| 	 */
 | |
| 	t = readl(reg);
 | |
| 	writel(t | STOP_PCI_MASTER, reg);
 | |
| 
 | |
| 	for (i = 0; i < 1000; i++) {
 | |
| 		udelay(1);
 | |
| 		t = readl(reg);
 | |
| 		if (PCI_MASTER_EMPTY & t)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!(PCI_MASTER_EMPTY & t)) {
 | |
| 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
 | |
| 		rc = 1;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* set reset */
 | |
| 	i = 5;
 | |
| 	do {
 | |
| 		writel(t | GLOB_SFT_RST, reg);
 | |
| 		t = readl(reg);
 | |
| 		udelay(1);
 | |
| 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
 | |
| 
 | |
| 	if (!(GLOB_SFT_RST & t)) {
 | |
| 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
 | |
| 		rc = 1;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
 | |
| 	i = 5;
 | |
| 	do {
 | |
| 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
 | |
| 		t = readl(reg);
 | |
| 		udelay(1);
 | |
| 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
 | |
| 
 | |
| 	if (GLOB_SFT_RST & t) {
 | |
| 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
 | |
| 		rc = 1;
 | |
| 	}
 | |
| done:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 | |
| 			   void __iomem *mmio)
 | |
| {
 | |
| 	void __iomem *port_mmio;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	tmp = readl(mmio + RESET_CFG);
 | |
| 	if ((tmp & (1 << 0)) == 0) {
 | |
| 		hpriv->signal[idx].amps = 0x7 << 8;
 | |
| 		hpriv->signal[idx].pre = 0x1 << 5;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	port_mmio = mv_port_base(mmio, idx);
 | |
| 	tmp = readl(port_mmio + PHY_MODE2);
 | |
| 
 | |
| 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
 | |
| 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
 | |
| }
 | |
| 
 | |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
 | |
| {
 | |
| 	writel(0x00000060, mmio + GPIO_PORT_CTL);
 | |
| }
 | |
| 
 | |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			   unsigned int port)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_port_base(mmio, port);
 | |
| 
 | |
| 	u32 hp_flags = hpriv->hp_flags;
 | |
| 	int fix_phy_mode2 =
 | |
| 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
 | |
| 	int fix_phy_mode4 =
 | |
| 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
 | |
| 	u32 m2, m3;
 | |
| 
 | |
| 	if (fix_phy_mode2) {
 | |
| 		m2 = readl(port_mmio + PHY_MODE2);
 | |
| 		m2 &= ~(1 << 16);
 | |
| 		m2 |= (1 << 31);
 | |
| 		writel(m2, port_mmio + PHY_MODE2);
 | |
| 
 | |
| 		udelay(200);
 | |
| 
 | |
| 		m2 = readl(port_mmio + PHY_MODE2);
 | |
| 		m2 &= ~((1 << 16) | (1 << 31));
 | |
| 		writel(m2, port_mmio + PHY_MODE2);
 | |
| 
 | |
| 		udelay(200);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
 | |
| 	 * Achieves better receiver noise performance than the h/w default:
 | |
| 	 */
 | |
| 	m3 = readl(port_mmio + PHY_MODE3);
 | |
| 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
 | |
| 
 | |
| 	/* Guideline 88F5182 (GL# SATA-S11) */
 | |
| 	if (IS_SOC(hpriv))
 | |
| 		m3 &= ~0x1c;
 | |
| 
 | |
| 	if (fix_phy_mode4) {
 | |
| 		u32 m4 = readl(port_mmio + PHY_MODE4);
 | |
| 		/*
 | |
| 		 * Enforce reserved-bit restrictions on GenIIe devices only.
 | |
| 		 * For earlier chipsets, force only the internal config field
 | |
| 		 *  (workaround for errata FEr SATA#10 part 1).
 | |
| 		 */
 | |
| 		if (IS_GEN_IIE(hpriv))
 | |
| 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
 | |
| 		else
 | |
| 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
 | |
| 		writel(m4, port_mmio + PHY_MODE4);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Workaround for 60x1-B2 errata SATA#13:
 | |
| 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
 | |
| 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
 | |
| 	 * Or ensure we use writelfl() when writing PHY_MODE4.
 | |
| 	 */
 | |
| 	writel(m3, port_mmio + PHY_MODE3);
 | |
| 
 | |
| 	/* Revert values of pre-emphasis and signal amps to the saved ones */
 | |
| 	m2 = readl(port_mmio + PHY_MODE2);
 | |
| 
 | |
| 	m2 &= ~MV_M2_PREAMP_MASK;
 | |
| 	m2 |= hpriv->signal[port].amps;
 | |
| 	m2 |= hpriv->signal[port].pre;
 | |
| 	m2 &= ~(1 << 16);
 | |
| 
 | |
| 	/* according to mvSata 3.6.1, some IIE values are fixed */
 | |
| 	if (IS_GEN_IIE(hpriv)) {
 | |
| 		m2 &= ~0xC30FF01F;
 | |
| 		m2 |= 0x0000900F;
 | |
| 	}
 | |
| 
 | |
| 	writel(m2, port_mmio + PHY_MODE2);
 | |
| }
 | |
| 
 | |
| /* TODO: use the generic LED interface to configure the SATA Presence */
 | |
| /* & Acitivy LEDs on the board */
 | |
| static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 | |
| 				      void __iomem *mmio)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 | |
| 			   void __iomem *mmio)
 | |
| {
 | |
| 	void __iomem *port_mmio;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	port_mmio = mv_port_base(mmio, idx);
 | |
| 	tmp = readl(port_mmio + PHY_MODE2);
 | |
| 
 | |
| 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
 | |
| 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
 | |
| }
 | |
| 
 | |
| #undef ZERO
 | |
| #define ZERO(reg) writel(0, port_mmio + (reg))
 | |
| static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
 | |
| 					void __iomem *mmio, unsigned int port)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_port_base(mmio, port);
 | |
| 
 | |
| 	mv_reset_channel(hpriv, mmio, port);
 | |
| 
 | |
| 	ZERO(0x028);		/* command */
 | |
| 	writel(0x101f, port_mmio + EDMA_CFG);
 | |
| 	ZERO(0x004);		/* timer */
 | |
| 	ZERO(0x008);		/* irq err cause */
 | |
| 	ZERO(0x00c);		/* irq err mask */
 | |
| 	ZERO(0x010);		/* rq bah */
 | |
| 	ZERO(0x014);		/* rq inp */
 | |
| 	ZERO(0x018);		/* rq outp */
 | |
| 	ZERO(0x01c);		/* respq bah */
 | |
| 	ZERO(0x024);		/* respq outp */
 | |
| 	ZERO(0x020);		/* respq inp */
 | |
| 	ZERO(0x02c);		/* test control */
 | |
| 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
 | |
| }
 | |
| 
 | |
| #undef ZERO
 | |
| 
 | |
| #define ZERO(reg) writel(0, hc_mmio + (reg))
 | |
| static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
 | |
| 				       void __iomem *mmio)
 | |
| {
 | |
| 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
 | |
| 
 | |
| 	ZERO(0x00c);
 | |
| 	ZERO(0x010);
 | |
| 	ZERO(0x014);
 | |
| 
 | |
| }
 | |
| 
 | |
| #undef ZERO
 | |
| 
 | |
| static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 | |
| 				  void __iomem *mmio, unsigned int n_hc)
 | |
| {
 | |
| 	unsigned int port;
 | |
| 
 | |
| 	for (port = 0; port < hpriv->n_ports; port++)
 | |
| 		mv_soc_reset_hc_port(hpriv, mmio, port);
 | |
| 
 | |
| 	mv_soc_reset_one_hc(hpriv, mmio);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 | |
| 				      void __iomem *mmio)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
 | |
| 				  void __iomem *mmio, unsigned int port)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_port_base(mmio, port);
 | |
| 	u32	reg;
 | |
| 
 | |
| 	reg = readl(port_mmio + PHY_MODE3);
 | |
| 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
 | |
| 	reg |= (0x1 << 27);
 | |
| 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
 | |
| 	reg |= (0x1 << 29);
 | |
| 	writel(reg, port_mmio + PHY_MODE3);
 | |
| 
 | |
| 	reg = readl(port_mmio + PHY_MODE4);
 | |
| 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
 | |
| 	reg |= (0x1 << 16);
 | |
| 	writel(reg, port_mmio + PHY_MODE4);
 | |
| 
 | |
| 	reg = readl(port_mmio + PHY_MODE9_GEN2);
 | |
| 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
 | |
| 	reg |= 0x8;
 | |
| 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
 | |
| 	writel(reg, port_mmio + PHY_MODE9_GEN2);
 | |
| 
 | |
| 	reg = readl(port_mmio + PHY_MODE9_GEN1);
 | |
| 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
 | |
| 	reg |= 0x8;
 | |
| 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
 | |
| 	writel(reg, port_mmio + PHY_MODE9_GEN1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	soc_is_65 - check if the soc is 65 nano device
 | |
|  *
 | |
|  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
 | |
|  *	register, this register should contain non-zero value and it exists only
 | |
|  *	in the 65 nano devices, when reading it from older devices we get 0.
 | |
|  */
 | |
| static bool soc_is_65n(struct mv_host_priv *hpriv)
 | |
| {
 | |
| 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
 | |
| 
 | |
| 	if (readl(port0_mmio + PHYCFG_OFS))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
 | |
| {
 | |
| 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
 | |
| 
 | |
| 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
 | |
| 	if (want_gen2i)
 | |
| 		ifcfg |= (1 << 7);		/* enable gen2i speed */
 | |
| 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
 | |
| }
 | |
| 
 | |
| static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 | |
| 			     unsigned int port_no)
 | |
| {
 | |
| 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
 | |
| 
 | |
| 	/*
 | |
| 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
 | |
| 	 * (but doesn't say what the problem might be).  So we first try
 | |
| 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
 | |
| 	 */
 | |
| 	mv_stop_edma_engine(port_mmio);
 | |
| 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
 | |
| 
 | |
| 	if (!IS_GEN_I(hpriv)) {
 | |
| 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
 | |
| 		mv_setup_ifcfg(port_mmio, 1);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
 | |
| 	 * link, and physical layers.  It resets all SATA interface registers
 | |
| 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
 | |
| 	 */
 | |
| 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
 | |
| 	udelay(25);	/* allow reset propagation */
 | |
| 	writelfl(0, port_mmio + EDMA_CMD);
 | |
| 
 | |
| 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
 | |
| 
 | |
| 	if (IS_GEN_I(hpriv))
 | |
| 		mdelay(1);
 | |
| }
 | |
| 
 | |
| static void mv_pmp_select(struct ata_port *ap, int pmp)
 | |
| {
 | |
| 	if (sata_pmp_supported(ap)) {
 | |
| 		void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 		u32 reg = readl(port_mmio + SATA_IFCTL);
 | |
| 		int old = reg & 0xf;
 | |
| 
 | |
| 		if (old != pmp) {
 | |
| 			reg = (reg & ~0xf) | pmp;
 | |
| 			writelfl(reg, port_mmio + SATA_IFCTL);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 | |
| 				unsigned long deadline)
 | |
| {
 | |
| 	mv_pmp_select(link->ap, sata_srst_pmp(link));
 | |
| 	return sata_std_hardreset(link, class, deadline);
 | |
| }
 | |
| 
 | |
| static int mv_softreset(struct ata_link *link, unsigned int *class,
 | |
| 				unsigned long deadline)
 | |
| {
 | |
| 	mv_pmp_select(link->ap, sata_srst_pmp(link));
 | |
| 	return ata_sff_softreset(link, class, deadline);
 | |
| }
 | |
| 
 | |
| static int mv_hardreset(struct ata_link *link, unsigned int *class,
 | |
| 			unsigned long deadline)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	struct mv_port_priv *pp = ap->private_data;
 | |
| 	void __iomem *mmio = hpriv->base;
 | |
| 	int rc, attempts = 0, extra = 0;
 | |
| 	u32 sstatus;
 | |
| 	bool online;
 | |
| 
 | |
| 	mv_reset_channel(hpriv, mmio, ap->port_no);
 | |
| 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
 | |
| 	pp->pp_flags &=
 | |
| 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
 | |
| 
 | |
| 	/* Workaround for errata FEr SATA#10 (part 2) */
 | |
| 	do {
 | |
| 		const unsigned long *timing =
 | |
| 				sata_ehc_deb_timing(&link->eh_context);
 | |
| 
 | |
| 		rc = sata_link_hardreset(link, timing, deadline + extra,
 | |
| 					 &online, NULL);
 | |
| 		rc = online ? -EAGAIN : rc;
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 		sata_scr_read(link, SCR_STATUS, &sstatus);
 | |
| 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
 | |
| 			/* Force 1.5gb/s link speed and try again */
 | |
| 			mv_setup_ifcfg(mv_ap_base(ap), 0);
 | |
| 			if (time_after(jiffies + HZ, deadline))
 | |
| 				extra = HZ; /* only extend it once, max */
 | |
| 		}
 | |
| 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
 | |
| 	mv_save_cached_regs(ap);
 | |
| 	mv_edma_cfg(ap, 0, 0);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void mv_eh_freeze(struct ata_port *ap)
 | |
| {
 | |
| 	mv_stop_edma(ap);
 | |
| 	mv_enable_port_irqs(ap, 0);
 | |
| }
 | |
| 
 | |
| static void mv_eh_thaw(struct ata_port *ap)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = ap->host->private_data;
 | |
| 	unsigned int port = ap->port_no;
 | |
| 	unsigned int hardport = mv_hardport_from_port(port);
 | |
| 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
 | |
| 	void __iomem *port_mmio = mv_ap_base(ap);
 | |
| 	u32 hc_irq_cause;
 | |
| 
 | |
| 	/* clear EDMA errors on this port */
 | |
| 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
 | |
| 
 | |
| 	/* clear pending irq events */
 | |
| 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
 | |
| 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
 | |
| 
 | |
| 	mv_enable_port_irqs(ap, ERR_IRQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_port_init - Perform some early initialization on a single port.
 | |
|  *      @port: libata data structure storing shadow register addresses
 | |
|  *      @port_mmio: base address of the port
 | |
|  *
 | |
|  *      Initialize shadow register mmio addresses, clear outstanding
 | |
|  *      interrupts on the port, and unmask interrupts for the future
 | |
|  *      start of the port.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
 | |
| {
 | |
| 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
 | |
| 
 | |
| 	/* PIO related setup
 | |
| 	 */
 | |
| 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
 | |
| 	port->error_addr =
 | |
| 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
 | |
| 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
 | |
| 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
 | |
| 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
 | |
| 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
 | |
| 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
 | |
| 	port->status_addr =
 | |
| 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
 | |
| 	/* special case: control/altstatus doesn't have ATA_REG_ address */
 | |
| 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
 | |
| 
 | |
| 	/* Clear any currently outstanding port interrupt conditions */
 | |
| 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
 | |
| 	writelfl(readl(serr), serr);
 | |
| 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
 | |
| 
 | |
| 	/* unmask all non-transient EDMA error interrupts */
 | |
| 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
 | |
| 
 | |
| 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
 | |
| 		readl(port_mmio + EDMA_CFG),
 | |
| 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
 | |
| 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
 | |
| }
 | |
| 
 | |
| static unsigned int mv_in_pcix_mode(struct ata_host *host)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
 | |
| 		return 0;	/* not PCI-X capable */
 | |
| 	reg = readl(mmio + MV_PCI_MODE);
 | |
| 	if ((reg & MV_PCI_MODE_MASK) == 0)
 | |
| 		return 0;	/* conventional PCI mode */
 | |
| 	return 1;	/* chip is in PCI-X mode */
 | |
| }
 | |
| 
 | |
| static int mv_pci_cut_through_okay(struct ata_host *host)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (!mv_in_pcix_mode(host)) {
 | |
| 		reg = readl(mmio + MV_PCI_COMMAND);
 | |
| 		if (reg & MV_PCI_COMMAND_MRDTRIG)
 | |
| 			return 0; /* not okay */
 | |
| 	}
 | |
| 	return 1; /* okay */
 | |
| }
 | |
| 
 | |
| static void mv_60x1b2_errata_pci7(struct ata_host *host)
 | |
| {
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base;
 | |
| 
 | |
| 	/* workaround for 60x1-B2 errata PCI#7 */
 | |
| 	if (mv_in_pcix_mode(host)) {
 | |
| 		u32 reg = readl(mmio + MV_PCI_COMMAND);
 | |
| 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(host->dev);
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	u32 hp_flags = hpriv->hp_flags;
 | |
| 
 | |
| 	switch (board_idx) {
 | |
| 	case chip_5080:
 | |
| 		hpriv->ops = &mv5xxx_ops;
 | |
| 		hp_flags |= MV_HP_GEN_I;
 | |
| 
 | |
| 		switch (pdev->revision) {
 | |
| 		case 0x1:
 | |
| 			hp_flags |= MV_HP_ERRATA_50XXB0;
 | |
| 			break;
 | |
| 		case 0x3:
 | |
| 			hp_flags |= MV_HP_ERRATA_50XXB2;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Applying 50XXB2 workarounds to unknown rev\n");
 | |
| 			hp_flags |= MV_HP_ERRATA_50XXB2;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case chip_504x:
 | |
| 	case chip_508x:
 | |
| 		hpriv->ops = &mv5xxx_ops;
 | |
| 		hp_flags |= MV_HP_GEN_I;
 | |
| 
 | |
| 		switch (pdev->revision) {
 | |
| 		case 0x0:
 | |
| 			hp_flags |= MV_HP_ERRATA_50XXB0;
 | |
| 			break;
 | |
| 		case 0x3:
 | |
| 			hp_flags |= MV_HP_ERRATA_50XXB2;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Applying B2 workarounds to unknown rev\n");
 | |
| 			hp_flags |= MV_HP_ERRATA_50XXB2;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case chip_604x:
 | |
| 	case chip_608x:
 | |
| 		hpriv->ops = &mv6xxx_ops;
 | |
| 		hp_flags |= MV_HP_GEN_II;
 | |
| 
 | |
| 		switch (pdev->revision) {
 | |
| 		case 0x7:
 | |
| 			mv_60x1b2_errata_pci7(host);
 | |
| 			hp_flags |= MV_HP_ERRATA_60X1B2;
 | |
| 			break;
 | |
| 		case 0x9:
 | |
| 			hp_flags |= MV_HP_ERRATA_60X1C0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Applying B2 workarounds to unknown rev\n");
 | |
| 			hp_flags |= MV_HP_ERRATA_60X1B2;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case chip_7042:
 | |
| 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
 | |
| 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
 | |
| 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
 | |
| 		{
 | |
| 			/*
 | |
| 			 * Highpoint RocketRAID PCIe 23xx series cards:
 | |
| 			 *
 | |
| 			 * Unconfigured drives are treated as "Legacy"
 | |
| 			 * by the BIOS, and it overwrites sector 8 with
 | |
| 			 * a "Lgcy" metadata block prior to Linux boot.
 | |
| 			 *
 | |
| 			 * Configured drives (RAID or JBOD) leave sector 8
 | |
| 			 * alone, but instead overwrite a high numbered
 | |
| 			 * sector for the RAID metadata.  This sector can
 | |
| 			 * be determined exactly, by truncating the physical
 | |
| 			 * drive capacity to a nice even GB value.
 | |
| 			 *
 | |
| 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
 | |
| 			 *
 | |
| 			 * Warn the user, lest they think we're just buggy.
 | |
| 			 */
 | |
| 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
 | |
| 				" BIOS CORRUPTS DATA on all attached drives,"
 | |
| 				" regardless of if/how they are configured."
 | |
| 				" BEWARE!\n");
 | |
| 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
 | |
| 				" use sectors 8-9 on \"Legacy\" drives,"
 | |
| 				" and avoid the final two gigabytes on"
 | |
| 				" all RocketRAID BIOS initialized drives.\n");
 | |
| 		}
 | |
| 		/* drop through */
 | |
| 	case chip_6042:
 | |
| 		hpriv->ops = &mv6xxx_ops;
 | |
| 		hp_flags |= MV_HP_GEN_IIE;
 | |
| 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
 | |
| 			hp_flags |= MV_HP_CUT_THROUGH;
 | |
| 
 | |
| 		switch (pdev->revision) {
 | |
| 		case 0x2: /* Rev.B0: the first/only public release */
 | |
| 			hp_flags |= MV_HP_ERRATA_60X1C0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Applying 60X1C0 workarounds to unknown rev\n");
 | |
| 			hp_flags |= MV_HP_ERRATA_60X1C0;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case chip_soc:
 | |
| 		if (soc_is_65n(hpriv))
 | |
| 			hpriv->ops = &mv_soc_65n_ops;
 | |
| 		else
 | |
| 			hpriv->ops = &mv_soc_ops;
 | |
| 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
 | |
| 			MV_HP_ERRATA_60X1C0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	hpriv->hp_flags = hp_flags;
 | |
| 	if (hp_flags & MV_HP_PCIE) {
 | |
| 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
 | |
| 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
 | |
| 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
 | |
| 	} else {
 | |
| 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
 | |
| 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
 | |
| 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_init_host - Perform some early initialization of the host.
 | |
|  *	@host: ATA host to initialize
 | |
|  *
 | |
|  *      If possible, do an early global reset of the host.  Then do
 | |
|  *      our port init and clear/unmask all/relevant host interrupts.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static int mv_init_host(struct ata_host *host)
 | |
| {
 | |
| 	int rc = 0, n_hc, port, hc;
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	void __iomem *mmio = hpriv->base;
 | |
| 
 | |
| 	rc = mv_chip_id(host, hpriv->board_idx);
 | |
| 	if (rc)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (IS_SOC(hpriv)) {
 | |
| 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
 | |
| 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
 | |
| 	} else {
 | |
| 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
 | |
| 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize shadow irq mask with register's value */
 | |
| 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
 | |
| 
 | |
| 	/* global interrupt mask: 0 == mask everything */
 | |
| 	mv_set_main_irq_mask(host, ~0, 0);
 | |
| 
 | |
| 	n_hc = mv_get_hc_count(host->ports[0]->flags);
 | |
| 
 | |
| 	for (port = 0; port < host->n_ports; port++)
 | |
| 		if (hpriv->ops->read_preamp)
 | |
| 			hpriv->ops->read_preamp(hpriv, port, mmio);
 | |
| 
 | |
| 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
 | |
| 	if (rc)
 | |
| 		goto done;
 | |
| 
 | |
| 	hpriv->ops->reset_flash(hpriv, mmio);
 | |
| 	hpriv->ops->reset_bus(host, mmio);
 | |
| 	hpriv->ops->enable_leds(hpriv, mmio);
 | |
| 
 | |
| 	for (port = 0; port < host->n_ports; port++) {
 | |
| 		struct ata_port *ap = host->ports[port];
 | |
| 		void __iomem *port_mmio = mv_port_base(mmio, port);
 | |
| 
 | |
| 		mv_port_init(&ap->ioaddr, port_mmio);
 | |
| 	}
 | |
| 
 | |
| 	for (hc = 0; hc < n_hc; hc++) {
 | |
| 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
 | |
| 
 | |
| 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
 | |
| 			"(before clear)=0x%08x\n", hc,
 | |
| 			readl(hc_mmio + HC_CFG),
 | |
| 			readl(hc_mmio + HC_IRQ_CAUSE));
 | |
| 
 | |
| 		/* Clear any currently outstanding hc interrupt conditions */
 | |
| 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_SOC(hpriv)) {
 | |
| 		/* Clear any currently outstanding host interrupt conditions */
 | |
| 		writelfl(0, mmio + hpriv->irq_cause_offset);
 | |
| 
 | |
| 		/* and unmask interrupt generation for host regs */
 | |
| 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * enable only global host interrupts for now.
 | |
| 	 * The per-port interrupts get done later as ports are set up.
 | |
| 	 */
 | |
| 	mv_set_main_irq_mask(host, 0, PCI_ERR);
 | |
| 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
 | |
| 				    irq_coalescing_usecs);
 | |
| done:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
 | |
| {
 | |
| 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
 | |
| 							     MV_CRQB_Q_SZ, 0);
 | |
| 	if (!hpriv->crqb_pool)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
 | |
| 							     MV_CRPB_Q_SZ, 0);
 | |
| 	if (!hpriv->crpb_pool)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
 | |
| 							     MV_SG_TBL_SZ, 0);
 | |
| 	if (!hpriv->sg_tbl_pool)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
 | |
| 				 const struct mbus_dram_target_info *dram)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		writel(0, hpriv->base + WINDOW_CTRL(i));
 | |
| 		writel(0, hpriv->base + WINDOW_BASE(i));
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < dram->num_cs; i++) {
 | |
| 		const struct mbus_dram_window *cs = dram->cs + i;
 | |
| 
 | |
| 		writel(((cs->size - 1) & 0xffff0000) |
 | |
| 			(cs->mbus_attr << 8) |
 | |
| 			(dram->mbus_dram_target_id << 4) | 1,
 | |
| 			hpriv->base + WINDOW_CTRL(i));
 | |
| 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_platform_probe - handle a positive probe of an soc Marvell
 | |
|  *      host
 | |
|  *      @pdev: platform device found
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static int mv_platform_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	const struct mv_sata_platform_data *mv_platform_data;
 | |
| 	const struct mbus_dram_target_info *dram;
 | |
| 	const struct ata_port_info *ppi[] =
 | |
| 	    { &mv_port_info[chip_soc], NULL };
 | |
| 	struct ata_host *host;
 | |
| 	struct mv_host_priv *hpriv;
 | |
| 	struct resource *res;
 | |
| 	void __iomem *mmio;
 | |
| 	int n_ports = 0, irq = 0;
 | |
| 	int rc;
 | |
| 	int port;
 | |
| 
 | |
| 	ata_print_version_once(&pdev->dev, DRV_VERSION);
 | |
| 
 | |
| 	/*
 | |
| 	 * Simple resource validation ..
 | |
| 	 */
 | |
| 	if (unlikely(pdev->num_resources != 2)) {
 | |
| 		dev_err(&pdev->dev, "invalid number of resources\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the register base first
 | |
| 	 */
 | |
| 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	mmio = devm_ioremap_resource(&pdev->dev, res);
 | |
| 	if (IS_ERR(mmio))
 | |
| 		return PTR_ERR(mmio);
 | |
| 
 | |
| 	/* allocate host */
 | |
| 	if (pdev->dev.of_node) {
 | |
| 		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
 | |
| 					   &n_ports);
 | |
| 		if (rc) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"error parsing nr-ports property: %d\n", rc);
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		if (n_ports <= 0) {
 | |
| 			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
 | |
| 				n_ports);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
 | |
| 	} else {
 | |
| 		mv_platform_data = dev_get_platdata(&pdev->dev);
 | |
| 		n_ports = mv_platform_data->n_ports;
 | |
| 		irq = platform_get_irq(pdev, 0);
 | |
| 	}
 | |
| 
 | |
| 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
 | |
| 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
 | |
| 
 | |
| 	if (!host || !hpriv)
 | |
| 		return -ENOMEM;
 | |
| 	hpriv->port_clks = devm_kzalloc(&pdev->dev,
 | |
| 					sizeof(struct clk *) * n_ports,
 | |
| 					GFP_KERNEL);
 | |
| 	if (!hpriv->port_clks)
 | |
| 		return -ENOMEM;
 | |
| 	hpriv->port_phys = devm_kzalloc(&pdev->dev,
 | |
| 					sizeof(struct phy *) * n_ports,
 | |
| 					GFP_KERNEL);
 | |
| 	if (!hpriv->port_phys)
 | |
| 		return -ENOMEM;
 | |
| 	host->private_data = hpriv;
 | |
| 	hpriv->board_idx = chip_soc;
 | |
| 
 | |
| 	host->iomap = NULL;
 | |
| 	hpriv->base = mmio - SATAHC0_REG_BASE;
 | |
| 
 | |
| 	hpriv->clk = clk_get(&pdev->dev, NULL);
 | |
| 	if (IS_ERR(hpriv->clk))
 | |
| 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
 | |
| 	else
 | |
| 		clk_prepare_enable(hpriv->clk);
 | |
| 
 | |
| 	for (port = 0; port < n_ports; port++) {
 | |
| 		char port_number[16];
 | |
| 		sprintf(port_number, "%d", port);
 | |
| 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
 | |
| 		if (!IS_ERR(hpriv->port_clks[port]))
 | |
| 			clk_prepare_enable(hpriv->port_clks[port]);
 | |
| 
 | |
| 		sprintf(port_number, "port%d", port);
 | |
| 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
 | |
| 							       port_number);
 | |
| 		if (IS_ERR(hpriv->port_phys[port])) {
 | |
| 			rc = PTR_ERR(hpriv->port_phys[port]);
 | |
| 			hpriv->port_phys[port] = NULL;
 | |
| 			if (rc != -EPROBE_DEFER)
 | |
| 				dev_warn(&pdev->dev, "error getting phy %d", rc);
 | |
| 
 | |
| 			/* Cleanup only the initialized ports */
 | |
| 			hpriv->n_ports = port;
 | |
| 			goto err;
 | |
| 		} else
 | |
| 			phy_power_on(hpriv->port_phys[port]);
 | |
| 	}
 | |
| 
 | |
| 	/* All the ports have been initialized */
 | |
| 	hpriv->n_ports = n_ports;
 | |
| 
 | |
| 	/*
 | |
| 	 * (Re-)program MBUS remapping windows if we are asked to.
 | |
| 	 */
 | |
| 	dram = mv_mbus_dram_info();
 | |
| 	if (dram)
 | |
| 		mv_conf_mbus_windows(hpriv, dram);
 | |
| 
 | |
| 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
 | |
| 	 * updated in the LP_PHY_CTL register.
 | |
| 	 */
 | |
| 	if (pdev->dev.of_node &&
 | |
| 		of_device_is_compatible(pdev->dev.of_node,
 | |
| 					"marvell,armada-370-sata"))
 | |
| 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
 | |
| 
 | |
| 	/* initialize adapter */
 | |
| 	rc = mv_init_host(host);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 
 | |
| 	dev_info(&pdev->dev, "slots %u ports %d\n",
 | |
| 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
 | |
| 
 | |
| 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
 | |
| 	if (!rc)
 | |
| 		return 0;
 | |
| 
 | |
| err:
 | |
| 	if (!IS_ERR(hpriv->clk)) {
 | |
| 		clk_disable_unprepare(hpriv->clk);
 | |
| 		clk_put(hpriv->clk);
 | |
| 	}
 | |
| 	for (port = 0; port < hpriv->n_ports; port++) {
 | |
| 		if (!IS_ERR(hpriv->port_clks[port])) {
 | |
| 			clk_disable_unprepare(hpriv->port_clks[port]);
 | |
| 			clk_put(hpriv->port_clks[port]);
 | |
| 		}
 | |
| 		phy_power_off(hpriv->port_phys[port]);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  *      mv_platform_remove    -       unplug a platform interface
 | |
|  *      @pdev: platform device
 | |
|  *
 | |
|  *      A platform bus SATA device has been unplugged. Perform the needed
 | |
|  *      cleanup. Also called on module unload for any active devices.
 | |
|  */
 | |
| static int mv_platform_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct ata_host *host = platform_get_drvdata(pdev);
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	int port;
 | |
| 	ata_host_detach(host);
 | |
| 
 | |
| 	if (!IS_ERR(hpriv->clk)) {
 | |
| 		clk_disable_unprepare(hpriv->clk);
 | |
| 		clk_put(hpriv->clk);
 | |
| 	}
 | |
| 	for (port = 0; port < host->n_ports; port++) {
 | |
| 		if (!IS_ERR(hpriv->port_clks[port])) {
 | |
| 			clk_disable_unprepare(hpriv->port_clks[port]);
 | |
| 			clk_put(hpriv->port_clks[port]);
 | |
| 		}
 | |
| 		phy_power_off(hpriv->port_phys[port]);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
 | |
| {
 | |
| 	struct ata_host *host = platform_get_drvdata(pdev);
 | |
| 	if (host)
 | |
| 		return ata_host_suspend(host, state);
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int mv_platform_resume(struct platform_device *pdev)
 | |
| {
 | |
| 	struct ata_host *host = platform_get_drvdata(pdev);
 | |
| 	const struct mbus_dram_target_info *dram;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (host) {
 | |
| 		struct mv_host_priv *hpriv = host->private_data;
 | |
| 
 | |
| 		/*
 | |
| 		 * (Re-)program MBUS remapping windows if we are asked to.
 | |
| 		 */
 | |
| 		dram = mv_mbus_dram_info();
 | |
| 		if (dram)
 | |
| 			mv_conf_mbus_windows(hpriv, dram);
 | |
| 
 | |
| 		/* initialize adapter */
 | |
| 		ret = mv_init_host(host);
 | |
| 		if (ret) {
 | |
| 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 		ata_host_resume(host);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define mv_platform_suspend NULL
 | |
| #define mv_platform_resume NULL
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| static struct of_device_id mv_sata_dt_ids[] = {
 | |
| 	{ .compatible = "marvell,armada-370-sata", },
 | |
| 	{ .compatible = "marvell,orion-sata", },
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
 | |
| #endif
 | |
| 
 | |
| static struct platform_driver mv_platform_driver = {
 | |
| 	.probe		= mv_platform_probe,
 | |
| 	.remove		= mv_platform_remove,
 | |
| 	.suspend	= mv_platform_suspend,
 | |
| 	.resume		= mv_platform_resume,
 | |
| 	.driver		= {
 | |
| 		.name = DRV_NAME,
 | |
| 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
 | |
| 	},
 | |
| };
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| static int mv_pci_init_one(struct pci_dev *pdev,
 | |
| 			   const struct pci_device_id *ent);
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int mv_pci_device_resume(struct pci_dev *pdev);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static struct pci_driver mv_pci_driver = {
 | |
| 	.name			= DRV_NAME,
 | |
| 	.id_table		= mv_pci_tbl,
 | |
| 	.probe			= mv_pci_init_one,
 | |
| 	.remove			= ata_pci_remove_one,
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| 	.suspend		= ata_pci_device_suspend,
 | |
| 	.resume			= mv_pci_device_resume,
 | |
| #endif
 | |
| 
 | |
| };
 | |
| 
 | |
| /* move to PCI layer or libata core? */
 | |
| static int pci_go_64(struct pci_dev *pdev)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
 | |
| 		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
 | |
| 		if (rc) {
 | |
| 			rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 | |
| 			if (rc) {
 | |
| 				dev_err(&pdev->dev,
 | |
| 					"64-bit DMA enable failed\n");
 | |
| 				return rc;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
 | |
| 		if (rc) {
 | |
| 			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
 | |
| 			return rc;
 | |
| 		}
 | |
| 		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 | |
| 		if (rc) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"32-bit consistent DMA enable failed\n");
 | |
| 			return rc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_print_info - Dump key info to kernel log for perusal.
 | |
|  *      @host: ATA host to print info about
 | |
|  *
 | |
|  *      FIXME: complete this.
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static void mv_print_info(struct ata_host *host)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(host->dev);
 | |
| 	struct mv_host_priv *hpriv = host->private_data;
 | |
| 	u8 scc;
 | |
| 	const char *scc_s, *gen;
 | |
| 
 | |
| 	/* Use this to determine the HW stepping of the chip so we know
 | |
| 	 * what errata to workaround
 | |
| 	 */
 | |
| 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
 | |
| 	if (scc == 0)
 | |
| 		scc_s = "SCSI";
 | |
| 	else if (scc == 0x01)
 | |
| 		scc_s = "RAID";
 | |
| 	else
 | |
| 		scc_s = "?";
 | |
| 
 | |
| 	if (IS_GEN_I(hpriv))
 | |
| 		gen = "I";
 | |
| 	else if (IS_GEN_II(hpriv))
 | |
| 		gen = "II";
 | |
| 	else if (IS_GEN_IIE(hpriv))
 | |
| 		gen = "IIE";
 | |
| 	else
 | |
| 		gen = "?";
 | |
| 
 | |
| 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
 | |
| 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
 | |
| 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
 | |
|  *      @pdev: PCI device found
 | |
|  *      @ent: PCI device ID entry for the matched host
 | |
|  *
 | |
|  *      LOCKING:
 | |
|  *      Inherited from caller.
 | |
|  */
 | |
| static int mv_pci_init_one(struct pci_dev *pdev,
 | |
| 			   const struct pci_device_id *ent)
 | |
| {
 | |
| 	unsigned int board_idx = (unsigned int)ent->driver_data;
 | |
| 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
 | |
| 	struct ata_host *host;
 | |
| 	struct mv_host_priv *hpriv;
 | |
| 	int n_ports, port, rc;
 | |
| 
 | |
| 	ata_print_version_once(&pdev->dev, DRV_VERSION);
 | |
| 
 | |
| 	/* allocate host */
 | |
| 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
 | |
| 
 | |
| 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
 | |
| 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
 | |
| 	if (!host || !hpriv)
 | |
| 		return -ENOMEM;
 | |
| 	host->private_data = hpriv;
 | |
| 	hpriv->n_ports = n_ports;
 | |
| 	hpriv->board_idx = board_idx;
 | |
| 
 | |
| 	/* acquire resources */
 | |
| 	rc = pcim_enable_device(pdev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
 | |
| 	if (rc == -EBUSY)
 | |
| 		pcim_pin_device(pdev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	host->iomap = pcim_iomap_table(pdev);
 | |
| 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
 | |
| 
 | |
| 	rc = pci_go_64(pdev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for (port = 0; port < host->n_ports; port++) {
 | |
| 		struct ata_port *ap = host->ports[port];
 | |
| 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
 | |
| 		unsigned int offset = port_mmio - hpriv->base;
 | |
| 
 | |
| 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
 | |
| 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
 | |
| 	}
 | |
| 
 | |
| 	/* initialize adapter */
 | |
| 	rc = mv_init_host(host);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Enable message-switched interrupts, if requested */
 | |
| 	if (msi && pci_enable_msi(pdev) == 0)
 | |
| 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
 | |
| 
 | |
| 	mv_dump_pci_cfg(pdev, 0x68);
 | |
| 	mv_print_info(host);
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	pci_try_set_mwi(pdev);
 | |
| 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
 | |
| 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int mv_pci_device_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct ata_host *host = pci_get_drvdata(pdev);
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ata_pci_device_do_resume(pdev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* initialize adapter */
 | |
| 	rc = mv_init_host(host);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	ata_host_resume(host);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static int __init mv_init(void)
 | |
| {
 | |
| 	int rc = -ENODEV;
 | |
| #ifdef CONFIG_PCI
 | |
| 	rc = pci_register_driver(&mv_pci_driver);
 | |
| 	if (rc < 0)
 | |
| 		return rc;
 | |
| #endif
 | |
| 	rc = platform_driver_register(&mv_platform_driver);
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 	if (rc < 0)
 | |
| 		pci_unregister_driver(&mv_pci_driver);
 | |
| #endif
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void __exit mv_exit(void)
 | |
| {
 | |
| #ifdef CONFIG_PCI
 | |
| 	pci_unregister_driver(&mv_pci_driver);
 | |
| #endif
 | |
| 	platform_driver_unregister(&mv_platform_driver);
 | |
| }
 | |
| 
 | |
| MODULE_AUTHOR("Brett Russ");
 | |
| MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_ALIAS("platform:" DRV_NAME);
 | |
| 
 | |
| module_init(mv_init);
 | |
| module_exit(mv_exit);
 |