mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 45d7b25574
			
		
	
	
		45d7b25574
		
	
	
	
	
		
			
			Use the entry-stack as a trampoline to enter the kernel. The entry-stack is already in the cpu_entry_area and will be mapped to userspace when PTI is enabled. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Pavel Machek <pavel@ucw.cz> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: linux-mm@kvack.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Waiman Long <llong@redhat.com> Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca> Cc: joro@8bytes.org Link: https://lkml.kernel.org/r/1531906876-13451-8-git-send-email-joro@8bytes.org
		
			
				
	
	
		
			796 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			796 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/idle.h>
 | |
| #include <linux/sched/debug.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/user-return-notifier.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/stackprotector.h>
 | |
| #include <linux/cpuidle.h>
 | |
| #include <trace/events/power.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/syscalls.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/mwait.h>
 | |
| #include <asm/fpu/internal.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/nmi.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/vm86.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/prctl.h>
 | |
| #include <asm/spec-ctrl.h>
 | |
| 
 | |
| /*
 | |
|  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 | |
|  * no more per-task TSS's. The TSS size is kept cacheline-aligned
 | |
|  * so they are allowed to end up in the .data..cacheline_aligned
 | |
|  * section. Since TSS's are completely CPU-local, we want them
 | |
|  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 | |
|  */
 | |
| __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 | |
| 	.x86_tss = {
 | |
| 		/*
 | |
| 		 * .sp0 is only used when entering ring 0 from a lower
 | |
| 		 * privilege level.  Since the init task never runs anything
 | |
| 		 * but ring 0 code, there is no need for a valid value here.
 | |
| 		 * Poison it.
 | |
| 		 */
 | |
| 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 | |
| 
 | |
| 		/*
 | |
| 		 * .sp1 is cpu_current_top_of_stack.  The init task never
 | |
| 		 * runs user code, but cpu_current_top_of_stack should still
 | |
| 		 * be well defined before the first context switch.
 | |
| 		 */
 | |
| 		.sp1 = TOP_OF_INIT_STACK,
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 		.ss0 = __KERNEL_DS,
 | |
| 		.ss1 = __KERNEL_CS,
 | |
| 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 | |
| #endif
 | |
| 	 },
 | |
| #ifdef CONFIG_X86_32
 | |
| 	 /*
 | |
| 	  * Note that the .io_bitmap member must be extra-big. This is because
 | |
| 	  * the CPU will access an additional byte beyond the end of the IO
 | |
| 	  * permission bitmap. The extra byte must be all 1 bits, and must
 | |
| 	  * be within the limit.
 | |
| 	  */
 | |
| 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 | |
| #endif
 | |
| };
 | |
| EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 | |
| 
 | |
| DEFINE_PER_CPU(bool, __tss_limit_invalid);
 | |
| EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 | |
| 
 | |
| /*
 | |
|  * this gets called so that we can store lazy state into memory and copy the
 | |
|  * current task into the new thread.
 | |
|  */
 | |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 | |
| {
 | |
| 	memcpy(dst, src, arch_task_struct_size);
 | |
| #ifdef CONFIG_VM86
 | |
| 	dst->thread.vm86 = NULL;
 | |
| #endif
 | |
| 
 | |
| 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free current thread data structures etc..
 | |
|  */
 | |
| void exit_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	struct thread_struct *t = &tsk->thread;
 | |
| 	unsigned long *bp = t->io_bitmap_ptr;
 | |
| 	struct fpu *fpu = &t->fpu;
 | |
| 
 | |
| 	if (bp) {
 | |
| 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
 | |
| 
 | |
| 		t->io_bitmap_ptr = NULL;
 | |
| 		clear_thread_flag(TIF_IO_BITMAP);
 | |
| 		/*
 | |
| 		 * Careful, clear this in the TSS too:
 | |
| 		 */
 | |
| 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 | |
| 		t->io_bitmap_max = 0;
 | |
| 		put_cpu();
 | |
| 		kfree(bp);
 | |
| 	}
 | |
| 
 | |
| 	free_vm86(t);
 | |
| 
 | |
| 	fpu__drop(fpu);
 | |
| }
 | |
| 
 | |
| void flush_thread(void)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	flush_ptrace_hw_breakpoint(tsk);
 | |
| 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 | |
| 
 | |
| 	fpu__clear(&tsk->thread.fpu);
 | |
| }
 | |
| 
 | |
| void disable_TSC(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (!test_and_set_thread_flag(TIF_NOTSC))
 | |
| 		/*
 | |
| 		 * Must flip the CPU state synchronously with
 | |
| 		 * TIF_NOTSC in the current running context.
 | |
| 		 */
 | |
| 		cr4_set_bits(X86_CR4_TSD);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void enable_TSC(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (test_and_clear_thread_flag(TIF_NOTSC))
 | |
| 		/*
 | |
| 		 * Must flip the CPU state synchronously with
 | |
| 		 * TIF_NOTSC in the current running context.
 | |
| 		 */
 | |
| 		cr4_clear_bits(X86_CR4_TSD);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| int get_tsc_mode(unsigned long adr)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (test_thread_flag(TIF_NOTSC))
 | |
| 		val = PR_TSC_SIGSEGV;
 | |
| 	else
 | |
| 		val = PR_TSC_ENABLE;
 | |
| 
 | |
| 	return put_user(val, (unsigned int __user *)adr);
 | |
| }
 | |
| 
 | |
| int set_tsc_mode(unsigned int val)
 | |
| {
 | |
| 	if (val == PR_TSC_SIGSEGV)
 | |
| 		disable_TSC();
 | |
| 	else if (val == PR_TSC_ENABLE)
 | |
| 		enable_TSC();
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 | |
| 
 | |
| static void set_cpuid_faulting(bool on)
 | |
| {
 | |
| 	u64 msrval;
 | |
| 
 | |
| 	msrval = this_cpu_read(msr_misc_features_shadow);
 | |
| 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 | |
| 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 | |
| 	this_cpu_write(msr_misc_features_shadow, msrval);
 | |
| 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 | |
| }
 | |
| 
 | |
| static void disable_cpuid(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 | |
| 		/*
 | |
| 		 * Must flip the CPU state synchronously with
 | |
| 		 * TIF_NOCPUID in the current running context.
 | |
| 		 */
 | |
| 		set_cpuid_faulting(true);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void enable_cpuid(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 | |
| 		/*
 | |
| 		 * Must flip the CPU state synchronously with
 | |
| 		 * TIF_NOCPUID in the current running context.
 | |
| 		 */
 | |
| 		set_cpuid_faulting(false);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static int get_cpuid_mode(void)
 | |
| {
 | |
| 	return !test_thread_flag(TIF_NOCPUID);
 | |
| }
 | |
| 
 | |
| static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
 | |
| {
 | |
| 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (cpuid_enabled)
 | |
| 		enable_cpuid();
 | |
| 	else
 | |
| 		disable_cpuid();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called immediately after a successful exec.
 | |
|  */
 | |
| void arch_setup_new_exec(void)
 | |
| {
 | |
| 	/* If cpuid was previously disabled for this task, re-enable it. */
 | |
| 	if (test_thread_flag(TIF_NOCPUID))
 | |
| 		enable_cpuid();
 | |
| }
 | |
| 
 | |
| static inline void switch_to_bitmap(struct tss_struct *tss,
 | |
| 				    struct thread_struct *prev,
 | |
| 				    struct thread_struct *next,
 | |
| 				    unsigned long tifp, unsigned long tifn)
 | |
| {
 | |
| 	if (tifn & _TIF_IO_BITMAP) {
 | |
| 		/*
 | |
| 		 * Copy the relevant range of the IO bitmap.
 | |
| 		 * Normally this is 128 bytes or less:
 | |
| 		 */
 | |
| 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 | |
| 		       max(prev->io_bitmap_max, next->io_bitmap_max));
 | |
| 		/*
 | |
| 		 * Make sure that the TSS limit is correct for the CPU
 | |
| 		 * to notice the IO bitmap.
 | |
| 		 */
 | |
| 		refresh_tss_limit();
 | |
| 	} else if (tifp & _TIF_IO_BITMAP) {
 | |
| 		/*
 | |
| 		 * Clear any possible leftover bits:
 | |
| 		 */
 | |
| 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| struct ssb_state {
 | |
| 	struct ssb_state	*shared_state;
 | |
| 	raw_spinlock_t		lock;
 | |
| 	unsigned int		disable_state;
 | |
| 	unsigned long		local_state;
 | |
| };
 | |
| 
 | |
| #define LSTATE_SSB	0
 | |
| 
 | |
| static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 | |
| 
 | |
| void speculative_store_bypass_ht_init(void)
 | |
| {
 | |
| 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 | |
| 	unsigned int this_cpu = smp_processor_id();
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	st->local_state = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Shared state setup happens once on the first bringup
 | |
| 	 * of the CPU. It's not destroyed on CPU hotunplug.
 | |
| 	 */
 | |
| 	if (st->shared_state)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_init(&st->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Go over HT siblings and check whether one of them has set up the
 | |
| 	 * shared state pointer already.
 | |
| 	 */
 | |
| 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 | |
| 		if (cpu == this_cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!per_cpu(ssb_state, cpu).shared_state)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Link it to the state of the sibling: */
 | |
| 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First HT sibling to come up on the core.  Link shared state of
 | |
| 	 * the first HT sibling to itself. The siblings on the same core
 | |
| 	 * which come up later will see the shared state pointer and link
 | |
| 	 * themself to the state of this CPU.
 | |
| 	 */
 | |
| 	st->shared_state = st;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Logic is: First HT sibling enables SSBD for both siblings in the core
 | |
|  * and last sibling to disable it, disables it for the whole core. This how
 | |
|  * MSR_SPEC_CTRL works in "hardware":
 | |
|  *
 | |
|  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 | |
|  */
 | |
| static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 | |
| {
 | |
| 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 | |
| 	u64 msr = x86_amd_ls_cfg_base;
 | |
| 
 | |
| 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 | |
| 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 | |
| 		wrmsrl(MSR_AMD64_LS_CFG, msr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (tifn & _TIF_SSBD) {
 | |
| 		/*
 | |
| 		 * Since this can race with prctl(), block reentry on the
 | |
| 		 * same CPU.
 | |
| 		 */
 | |
| 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 | |
| 			return;
 | |
| 
 | |
| 		msr |= x86_amd_ls_cfg_ssbd_mask;
 | |
| 
 | |
| 		raw_spin_lock(&st->shared_state->lock);
 | |
| 		/* First sibling enables SSBD: */
 | |
| 		if (!st->shared_state->disable_state)
 | |
| 			wrmsrl(MSR_AMD64_LS_CFG, msr);
 | |
| 		st->shared_state->disable_state++;
 | |
| 		raw_spin_unlock(&st->shared_state->lock);
 | |
| 	} else {
 | |
| 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 | |
| 			return;
 | |
| 
 | |
| 		raw_spin_lock(&st->shared_state->lock);
 | |
| 		st->shared_state->disable_state--;
 | |
| 		if (!st->shared_state->disable_state)
 | |
| 			wrmsrl(MSR_AMD64_LS_CFG, msr);
 | |
| 		raw_spin_unlock(&st->shared_state->lock);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 | |
| {
 | |
| 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 | |
| 
 | |
| 	wrmsrl(MSR_AMD64_LS_CFG, msr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 | |
| {
 | |
| 	/*
 | |
| 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 | |
| 	 * so ssbd_tif_to_spec_ctrl() just works.
 | |
| 	 */
 | |
| 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 | |
| }
 | |
| 
 | |
| static __always_inline void intel_set_ssb_state(unsigned long tifn)
 | |
| {
 | |
| 	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
 | |
| 
 | |
| 	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 | |
| }
 | |
| 
 | |
| static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
 | |
| {
 | |
| 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
 | |
| 		amd_set_ssb_virt_state(tifn);
 | |
| 	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 | |
| 		amd_set_core_ssb_state(tifn);
 | |
| 	else
 | |
| 		intel_set_ssb_state(tifn);
 | |
| }
 | |
| 
 | |
| void speculative_store_bypass_update(unsigned long tif)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	__speculative_store_bypass_update(tif);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 | |
| 		      struct tss_struct *tss)
 | |
| {
 | |
| 	struct thread_struct *prev, *next;
 | |
| 	unsigned long tifp, tifn;
 | |
| 
 | |
| 	prev = &prev_p->thread;
 | |
| 	next = &next_p->thread;
 | |
| 
 | |
| 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
 | |
| 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
 | |
| 	switch_to_bitmap(tss, prev, next, tifp, tifn);
 | |
| 
 | |
| 	propagate_user_return_notify(prev_p, next_p);
 | |
| 
 | |
| 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 | |
| 	    arch_has_block_step()) {
 | |
| 		unsigned long debugctl, msk;
 | |
| 
 | |
| 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 | |
| 		debugctl &= ~DEBUGCTLMSR_BTF;
 | |
| 		msk = tifn & _TIF_BLOCKSTEP;
 | |
| 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 | |
| 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 | |
| 	}
 | |
| 
 | |
| 	if ((tifp ^ tifn) & _TIF_NOTSC)
 | |
| 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 | |
| 
 | |
| 	if ((tifp ^ tifn) & _TIF_NOCPUID)
 | |
| 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 | |
| 
 | |
| 	if ((tifp ^ tifn) & _TIF_SSBD)
 | |
| 		__speculative_store_bypass_update(tifn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Idle related variables and functions
 | |
|  */
 | |
| unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 | |
| EXPORT_SYMBOL(boot_option_idle_override);
 | |
| 
 | |
| static void (*x86_idle)(void);
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| static inline void play_dead(void)
 | |
| {
 | |
| 	BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void arch_cpu_idle_enter(void)
 | |
| {
 | |
| 	tsc_verify_tsc_adjust(false);
 | |
| 	local_touch_nmi();
 | |
| }
 | |
| 
 | |
| void arch_cpu_idle_dead(void)
 | |
| {
 | |
| 	play_dead();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from the generic idle code.
 | |
|  */
 | |
| void arch_cpu_idle(void)
 | |
| {
 | |
| 	x86_idle();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use this if we don't have any better idle routine..
 | |
|  */
 | |
| void __cpuidle default_idle(void)
 | |
| {
 | |
| 	trace_cpu_idle_rcuidle(1, smp_processor_id());
 | |
| 	safe_halt();
 | |
| 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 | |
| }
 | |
| #ifdef CONFIG_APM_MODULE
 | |
| EXPORT_SYMBOL(default_idle);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_XEN
 | |
| bool xen_set_default_idle(void)
 | |
| {
 | |
| 	bool ret = !!x86_idle;
 | |
| 
 | |
| 	x86_idle = default_idle;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void stop_this_cpu(void *dummy)
 | |
| {
 | |
| 	local_irq_disable();
 | |
| 	/*
 | |
| 	 * Remove this CPU:
 | |
| 	 */
 | |
| 	set_cpu_online(smp_processor_id(), false);
 | |
| 	disable_local_APIC();
 | |
| 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 | |
| 
 | |
| 	/*
 | |
| 	 * Use wbinvd on processors that support SME. This provides support
 | |
| 	 * for performing a successful kexec when going from SME inactive
 | |
| 	 * to SME active (or vice-versa). The cache must be cleared so that
 | |
| 	 * if there are entries with the same physical address, both with and
 | |
| 	 * without the encryption bit, they don't race each other when flushed
 | |
| 	 * and potentially end up with the wrong entry being committed to
 | |
| 	 * memory.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_SME))
 | |
| 		native_wbinvd();
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * Use native_halt() so that memory contents don't change
 | |
| 		 * (stack usage and variables) after possibly issuing the
 | |
| 		 * native_wbinvd() above.
 | |
| 		 */
 | |
| 		native_halt();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 | |
|  * states (local apic timer and TSC stop).
 | |
|  */
 | |
| static void amd_e400_idle(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 | |
| 	 * gets set after static_cpu_has() places have been converted via
 | |
| 	 * alternatives.
 | |
| 	 */
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 | |
| 		default_idle();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tick_broadcast_enter();
 | |
| 
 | |
| 	default_idle();
 | |
| 
 | |
| 	/*
 | |
| 	 * The switch back from broadcast mode needs to be called with
 | |
| 	 * interrupts disabled.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	tick_broadcast_exit();
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 | |
|  * We can't rely on cpuidle installing MWAIT, because it will not load
 | |
|  * on systems that support only C1 -- so the boot default must be MWAIT.
 | |
|  *
 | |
|  * Some AMD machines are the opposite, they depend on using HALT.
 | |
|  *
 | |
|  * So for default C1, which is used during boot until cpuidle loads,
 | |
|  * use MWAIT-C1 on Intel HW that has it, else use HALT.
 | |
|  */
 | |
| static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	if (c->x86_vendor != X86_VENDOR_INTEL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 | |
|  * with interrupts enabled and no flags, which is backwards compatible with the
 | |
|  * original MWAIT implementation.
 | |
|  */
 | |
| static __cpuidle void mwait_idle(void)
 | |
| {
 | |
| 	if (!current_set_polling_and_test()) {
 | |
| 		trace_cpu_idle_rcuidle(1, smp_processor_id());
 | |
| 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 | |
| 			mb(); /* quirk */
 | |
| 			clflush((void *)¤t_thread_info()->flags);
 | |
| 			mb(); /* quirk */
 | |
| 		}
 | |
| 
 | |
| 		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | |
| 		if (!need_resched())
 | |
| 			__sti_mwait(0, 0);
 | |
| 		else
 | |
| 			local_irq_enable();
 | |
| 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 | |
| 	} else {
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| 	__current_clr_polling();
 | |
| }
 | |
| 
 | |
| void select_idle_routine(const struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 | |
| 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 | |
| #endif
 | |
| 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 | |
| 		return;
 | |
| 
 | |
| 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 | |
| 		pr_info("using AMD E400 aware idle routine\n");
 | |
| 		x86_idle = amd_e400_idle;
 | |
| 	} else if (prefer_mwait_c1_over_halt(c)) {
 | |
| 		pr_info("using mwait in idle threads\n");
 | |
| 		x86_idle = mwait_idle;
 | |
| 	} else
 | |
| 		x86_idle = default_idle;
 | |
| }
 | |
| 
 | |
| void amd_e400_c1e_apic_setup(void)
 | |
| {
 | |
| 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 | |
| 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 | |
| 		local_irq_disable();
 | |
| 		tick_broadcast_force();
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init arch_post_acpi_subsys_init(void)
 | |
| {
 | |
| 	u32 lo, hi;
 | |
| 
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 | |
| 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 | |
| 	 * MSR_K8_INT_PENDING_MSG.
 | |
| 	 */
 | |
| 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 | |
| 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 | |
| 		return;
 | |
| 
 | |
| 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 | |
| 		mark_tsc_unstable("TSC halt in AMD C1E");
 | |
| 	pr_info("System has AMD C1E enabled\n");
 | |
| }
 | |
| 
 | |
| static int __init idle_setup(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!strcmp(str, "poll")) {
 | |
| 		pr_info("using polling idle threads\n");
 | |
| 		boot_option_idle_override = IDLE_POLL;
 | |
| 		cpu_idle_poll_ctrl(true);
 | |
| 	} else if (!strcmp(str, "halt")) {
 | |
| 		/*
 | |
| 		 * When the boot option of idle=halt is added, halt is
 | |
| 		 * forced to be used for CPU idle. In such case CPU C2/C3
 | |
| 		 * won't be used again.
 | |
| 		 * To continue to load the CPU idle driver, don't touch
 | |
| 		 * the boot_option_idle_override.
 | |
| 		 */
 | |
| 		x86_idle = default_idle;
 | |
| 		boot_option_idle_override = IDLE_HALT;
 | |
| 	} else if (!strcmp(str, "nomwait")) {
 | |
| 		/*
 | |
| 		 * If the boot option of "idle=nomwait" is added,
 | |
| 		 * it means that mwait will be disabled for CPU C2/C3
 | |
| 		 * states. In such case it won't touch the variable
 | |
| 		 * of boot_option_idle_override.
 | |
| 		 */
 | |
| 		boot_option_idle_override = IDLE_NOMWAIT;
 | |
| 	} else
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("idle", idle_setup);
 | |
| 
 | |
| unsigned long arch_align_stack(unsigned long sp)
 | |
| {
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		sp -= get_random_int() % 8192;
 | |
| 	return sp & ~0xf;
 | |
| }
 | |
| 
 | |
| unsigned long arch_randomize_brk(struct mm_struct *mm)
 | |
| {
 | |
| 	return randomize_page(mm->brk, 0x02000000);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from fs/proc with a reference on @p to find the function
 | |
|  * which called into schedule(). This needs to be done carefully
 | |
|  * because the task might wake up and we might look at a stack
 | |
|  * changing under us.
 | |
|  */
 | |
| unsigned long get_wchan(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (!p || p == current || p->state == TASK_RUNNING)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!try_get_task_stack(p))
 | |
| 		return 0;
 | |
| 
 | |
| 	start = (unsigned long)task_stack_page(p);
 | |
| 	if (!start)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Layout of the stack page:
 | |
| 	 *
 | |
| 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 | |
| 	 * PADDING
 | |
| 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 | |
| 	 * stack
 | |
| 	 * ----------- bottom = start
 | |
| 	 *
 | |
| 	 * The tasks stack pointer points at the location where the
 | |
| 	 * framepointer is stored. The data on the stack is:
 | |
| 	 * ... IP FP ... IP FP
 | |
| 	 *
 | |
| 	 * We need to read FP and IP, so we need to adjust the upper
 | |
| 	 * bound by another unsigned long.
 | |
| 	 */
 | |
| 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 | |
| 	top -= 2 * sizeof(unsigned long);
 | |
| 	bottom = start;
 | |
| 
 | |
| 	sp = READ_ONCE(p->thread.sp);
 | |
| 	if (sp < bottom || sp > top)
 | |
| 		goto out;
 | |
| 
 | |
| 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
 | |
| 	do {
 | |
| 		if (fp < bottom || fp > top)
 | |
| 			goto out;
 | |
| 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 | |
| 		if (!in_sched_functions(ip)) {
 | |
| 			ret = ip;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 | |
| 	} while (count++ < 16 && p->state != TASK_RUNNING);
 | |
| 
 | |
| out:
 | |
| 	put_task_stack(p);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| long do_arch_prctl_common(struct task_struct *task, int option,
 | |
| 			  unsigned long cpuid_enabled)
 | |
| {
 | |
| 	switch (option) {
 | |
| 	case ARCH_GET_CPUID:
 | |
| 		return get_cpuid_mode();
 | |
| 	case ARCH_SET_CPUID:
 | |
| 		return set_cpuid_mode(task, cpuid_enabled);
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 |