mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 a8311f647e
			
		
	
	
		a8311f647e
		
	
	
	
	
		
			
			Without yielding while loading kimage segments, a large initrd will block all other work on the CPU performing the load until it is completed. For example loading an initrd of 200MB on a low power single core system will lock up the system for a few seconds. To increase system responsiveness to other tasks at that time, call cond_resched() in both the crash kernel and normal kernel segment loading loops. I did run into a practical problem. Hardware watchdogs on embedded systems can have short timers on the order of seconds. If the system is locked up for a few seconds with only a single core available, the watchdog may not be pet in a timely fashion. If this happens, the hardware watchdog will fire and reset the system. This really only becomes a problem when you are working with a single core, a decently sized initrd, and have a constrained hardware watchdog. Link: http://lkml.kernel.org/r/1528738546-3328-1-git-send-email-jmf@amazon.com Signed-off-by: Jarrett Farnitano <jmf@amazon.com> Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1209 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1209 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * kexec.c - kexec system call core code.
 | |
|  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 | |
|  *
 | |
|  * This source code is licensed under the GNU General Public License,
 | |
|  * Version 2.  See the file COPYING for more details.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/capability.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/numa.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/syscore_ops.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/frame.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/sections.h>
 | |
| 
 | |
| #include <crypto/hash.h>
 | |
| #include <crypto/sha.h>
 | |
| #include "kexec_internal.h"
 | |
| 
 | |
| DEFINE_MUTEX(kexec_mutex);
 | |
| 
 | |
| /* Per cpu memory for storing cpu states in case of system crash. */
 | |
| note_buf_t __percpu *crash_notes;
 | |
| 
 | |
| /* Flag to indicate we are going to kexec a new kernel */
 | |
| bool kexec_in_progress = false;
 | |
| 
 | |
| 
 | |
| /* Location of the reserved area for the crash kernel */
 | |
| struct resource crashk_res = {
 | |
| 	.name  = "Crash kernel",
 | |
| 	.start = 0,
 | |
| 	.end   = 0,
 | |
| 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 | |
| 	.desc  = IORES_DESC_CRASH_KERNEL
 | |
| };
 | |
| struct resource crashk_low_res = {
 | |
| 	.name  = "Crash kernel",
 | |
| 	.start = 0,
 | |
| 	.end   = 0,
 | |
| 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 | |
| 	.desc  = IORES_DESC_CRASH_KERNEL
 | |
| };
 | |
| 
 | |
| int kexec_should_crash(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * If crash_kexec_post_notifiers is enabled, don't run
 | |
| 	 * crash_kexec() here yet, which must be run after panic
 | |
| 	 * notifiers in panic().
 | |
| 	 */
 | |
| 	if (crash_kexec_post_notifiers)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * There are 4 panic() calls in do_exit() path, each of which
 | |
| 	 * corresponds to each of these 4 conditions.
 | |
| 	 */
 | |
| 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kexec_crash_loaded(void)
 | |
| {
 | |
| 	return !!kexec_crash_image;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 | |
| 
 | |
| /*
 | |
|  * When kexec transitions to the new kernel there is a one-to-one
 | |
|  * mapping between physical and virtual addresses.  On processors
 | |
|  * where you can disable the MMU this is trivial, and easy.  For
 | |
|  * others it is still a simple predictable page table to setup.
 | |
|  *
 | |
|  * In that environment kexec copies the new kernel to its final
 | |
|  * resting place.  This means I can only support memory whose
 | |
|  * physical address can fit in an unsigned long.  In particular
 | |
|  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 | |
|  * If the assembly stub has more restrictive requirements
 | |
|  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 | |
|  * defined more restrictively in <asm/kexec.h>.
 | |
|  *
 | |
|  * The code for the transition from the current kernel to the
 | |
|  * the new kernel is placed in the control_code_buffer, whose size
 | |
|  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 | |
|  * page of memory is necessary, but some architectures require more.
 | |
|  * Because this memory must be identity mapped in the transition from
 | |
|  * virtual to physical addresses it must live in the range
 | |
|  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 | |
|  * modifiable.
 | |
|  *
 | |
|  * The assembly stub in the control code buffer is passed a linked list
 | |
|  * of descriptor pages detailing the source pages of the new kernel,
 | |
|  * and the destination addresses of those source pages.  As this data
 | |
|  * structure is not used in the context of the current OS, it must
 | |
|  * be self-contained.
 | |
|  *
 | |
|  * The code has been made to work with highmem pages and will use a
 | |
|  * destination page in its final resting place (if it happens
 | |
|  * to allocate it).  The end product of this is that most of the
 | |
|  * physical address space, and most of RAM can be used.
 | |
|  *
 | |
|  * Future directions include:
 | |
|  *  - allocating a page table with the control code buffer identity
 | |
|  *    mapped, to simplify machine_kexec and make kexec_on_panic more
 | |
|  *    reliable.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * KIMAGE_NO_DEST is an impossible destination address..., for
 | |
|  * allocating pages whose destination address we do not care about.
 | |
|  */
 | |
| #define KIMAGE_NO_DEST (-1UL)
 | |
| #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 | |
| 
 | |
| static struct page *kimage_alloc_page(struct kimage *image,
 | |
| 				       gfp_t gfp_mask,
 | |
| 				       unsigned long dest);
 | |
| 
 | |
| int sanity_check_segment_list(struct kimage *image)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long nr_segments = image->nr_segments;
 | |
| 	unsigned long total_pages = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify we have good destination addresses.  The caller is
 | |
| 	 * responsible for making certain we don't attempt to load
 | |
| 	 * the new image into invalid or reserved areas of RAM.  This
 | |
| 	 * just verifies it is an address we can use.
 | |
| 	 *
 | |
| 	 * Since the kernel does everything in page size chunks ensure
 | |
| 	 * the destination addresses are page aligned.  Too many
 | |
| 	 * special cases crop of when we don't do this.  The most
 | |
| 	 * insidious is getting overlapping destination addresses
 | |
| 	 * simply because addresses are changed to page size
 | |
| 	 * granularity.
 | |
| 	 */
 | |
| 	for (i = 0; i < nr_segments; i++) {
 | |
| 		unsigned long mstart, mend;
 | |
| 
 | |
| 		mstart = image->segment[i].mem;
 | |
| 		mend   = mstart + image->segment[i].memsz;
 | |
| 		if (mstart > mend)
 | |
| 			return -EADDRNOTAVAIL;
 | |
| 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 | |
| 			return -EADDRNOTAVAIL;
 | |
| 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 | |
| 			return -EADDRNOTAVAIL;
 | |
| 	}
 | |
| 
 | |
| 	/* Verify our destination addresses do not overlap.
 | |
| 	 * If we alloed overlapping destination addresses
 | |
| 	 * through very weird things can happen with no
 | |
| 	 * easy explanation as one segment stops on another.
 | |
| 	 */
 | |
| 	for (i = 0; i < nr_segments; i++) {
 | |
| 		unsigned long mstart, mend;
 | |
| 		unsigned long j;
 | |
| 
 | |
| 		mstart = image->segment[i].mem;
 | |
| 		mend   = mstart + image->segment[i].memsz;
 | |
| 		for (j = 0; j < i; j++) {
 | |
| 			unsigned long pstart, pend;
 | |
| 
 | |
| 			pstart = image->segment[j].mem;
 | |
| 			pend   = pstart + image->segment[j].memsz;
 | |
| 			/* Do the segments overlap ? */
 | |
| 			if ((mend > pstart) && (mstart < pend))
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure our buffer sizes are strictly less than
 | |
| 	 * our memory sizes.  This should always be the case,
 | |
| 	 * and it is easier to check up front than to be surprised
 | |
| 	 * later on.
 | |
| 	 */
 | |
| 	for (i = 0; i < nr_segments; i++) {
 | |
| 		if (image->segment[i].bufsz > image->segment[i].memsz)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that no more than half of memory will be consumed. If the
 | |
| 	 * request from userspace is too large, a large amount of time will be
 | |
| 	 * wasted allocating pages, which can cause a soft lockup.
 | |
| 	 */
 | |
| 	for (i = 0; i < nr_segments; i++) {
 | |
| 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		total_pages += PAGE_COUNT(image->segment[i].memsz);
 | |
| 	}
 | |
| 
 | |
| 	if (total_pages > totalram_pages / 2)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify we have good destination addresses.  Normally
 | |
| 	 * the caller is responsible for making certain we don't
 | |
| 	 * attempt to load the new image into invalid or reserved
 | |
| 	 * areas of RAM.  But crash kernels are preloaded into a
 | |
| 	 * reserved area of ram.  We must ensure the addresses
 | |
| 	 * are in the reserved area otherwise preloading the
 | |
| 	 * kernel could corrupt things.
 | |
| 	 */
 | |
| 
 | |
| 	if (image->type == KEXEC_TYPE_CRASH) {
 | |
| 		for (i = 0; i < nr_segments; i++) {
 | |
| 			unsigned long mstart, mend;
 | |
| 
 | |
| 			mstart = image->segment[i].mem;
 | |
| 			mend = mstart + image->segment[i].memsz - 1;
 | |
| 			/* Ensure we are within the crash kernel limits */
 | |
| 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 | |
| 			    (mend > phys_to_boot_phys(crashk_res.end)))
 | |
| 				return -EADDRNOTAVAIL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct kimage *do_kimage_alloc_init(void)
 | |
| {
 | |
| 	struct kimage *image;
 | |
| 
 | |
| 	/* Allocate a controlling structure */
 | |
| 	image = kzalloc(sizeof(*image), GFP_KERNEL);
 | |
| 	if (!image)
 | |
| 		return NULL;
 | |
| 
 | |
| 	image->head = 0;
 | |
| 	image->entry = &image->head;
 | |
| 	image->last_entry = &image->head;
 | |
| 	image->control_page = ~0; /* By default this does not apply */
 | |
| 	image->type = KEXEC_TYPE_DEFAULT;
 | |
| 
 | |
| 	/* Initialize the list of control pages */
 | |
| 	INIT_LIST_HEAD(&image->control_pages);
 | |
| 
 | |
| 	/* Initialize the list of destination pages */
 | |
| 	INIT_LIST_HEAD(&image->dest_pages);
 | |
| 
 | |
| 	/* Initialize the list of unusable pages */
 | |
| 	INIT_LIST_HEAD(&image->unusable_pages);
 | |
| 
 | |
| 	return image;
 | |
| }
 | |
| 
 | |
| int kimage_is_destination_range(struct kimage *image,
 | |
| 					unsigned long start,
 | |
| 					unsigned long end)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < image->nr_segments; i++) {
 | |
| 		unsigned long mstart, mend;
 | |
| 
 | |
| 		mstart = image->segment[i].mem;
 | |
| 		mend = mstart + image->segment[i].memsz;
 | |
| 		if ((end > mstart) && (start < mend))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	struct page *pages;
 | |
| 
 | |
| 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 | |
| 	if (pages) {
 | |
| 		unsigned int count, i;
 | |
| 
 | |
| 		pages->mapping = NULL;
 | |
| 		set_page_private(pages, order);
 | |
| 		count = 1 << order;
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			SetPageReserved(pages + i);
 | |
| 
 | |
| 		arch_kexec_post_alloc_pages(page_address(pages), count,
 | |
| 					    gfp_mask);
 | |
| 
 | |
| 		if (gfp_mask & __GFP_ZERO)
 | |
| 			for (i = 0; i < count; i++)
 | |
| 				clear_highpage(pages + i);
 | |
| 	}
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| static void kimage_free_pages(struct page *page)
 | |
| {
 | |
| 	unsigned int order, count, i;
 | |
| 
 | |
| 	order = page_private(page);
 | |
| 	count = 1 << order;
 | |
| 
 | |
| 	arch_kexec_pre_free_pages(page_address(page), count);
 | |
| 
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		ClearPageReserved(page + i);
 | |
| 	__free_pages(page, order);
 | |
| }
 | |
| 
 | |
| void kimage_free_page_list(struct list_head *list)
 | |
| {
 | |
| 	struct page *page, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, next, list, lru) {
 | |
| 		list_del(&page->lru);
 | |
| 		kimage_free_pages(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 | |
| 							unsigned int order)
 | |
| {
 | |
| 	/* Control pages are special, they are the intermediaries
 | |
| 	 * that are needed while we copy the rest of the pages
 | |
| 	 * to their final resting place.  As such they must
 | |
| 	 * not conflict with either the destination addresses
 | |
| 	 * or memory the kernel is already using.
 | |
| 	 *
 | |
| 	 * The only case where we really need more than one of
 | |
| 	 * these are for architectures where we cannot disable
 | |
| 	 * the MMU and must instead generate an identity mapped
 | |
| 	 * page table for all of the memory.
 | |
| 	 *
 | |
| 	 * At worst this runs in O(N) of the image size.
 | |
| 	 */
 | |
| 	struct list_head extra_pages;
 | |
| 	struct page *pages;
 | |
| 	unsigned int count;
 | |
| 
 | |
| 	count = 1 << order;
 | |
| 	INIT_LIST_HEAD(&extra_pages);
 | |
| 
 | |
| 	/* Loop while I can allocate a page and the page allocated
 | |
| 	 * is a destination page.
 | |
| 	 */
 | |
| 	do {
 | |
| 		unsigned long pfn, epfn, addr, eaddr;
 | |
| 
 | |
| 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 | |
| 		if (!pages)
 | |
| 			break;
 | |
| 		pfn   = page_to_boot_pfn(pages);
 | |
| 		epfn  = pfn + count;
 | |
| 		addr  = pfn << PAGE_SHIFT;
 | |
| 		eaddr = epfn << PAGE_SHIFT;
 | |
| 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 | |
| 			      kimage_is_destination_range(image, addr, eaddr)) {
 | |
| 			list_add(&pages->lru, &extra_pages);
 | |
| 			pages = NULL;
 | |
| 		}
 | |
| 	} while (!pages);
 | |
| 
 | |
| 	if (pages) {
 | |
| 		/* Remember the allocated page... */
 | |
| 		list_add(&pages->lru, &image->control_pages);
 | |
| 
 | |
| 		/* Because the page is already in it's destination
 | |
| 		 * location we will never allocate another page at
 | |
| 		 * that address.  Therefore kimage_alloc_pages
 | |
| 		 * will not return it (again) and we don't need
 | |
| 		 * to give it an entry in image->segment[].
 | |
| 		 */
 | |
| 	}
 | |
| 	/* Deal with the destination pages I have inadvertently allocated.
 | |
| 	 *
 | |
| 	 * Ideally I would convert multi-page allocations into single
 | |
| 	 * page allocations, and add everything to image->dest_pages.
 | |
| 	 *
 | |
| 	 * For now it is simpler to just free the pages.
 | |
| 	 */
 | |
| 	kimage_free_page_list(&extra_pages);
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 | |
| 						      unsigned int order)
 | |
| {
 | |
| 	/* Control pages are special, they are the intermediaries
 | |
| 	 * that are needed while we copy the rest of the pages
 | |
| 	 * to their final resting place.  As such they must
 | |
| 	 * not conflict with either the destination addresses
 | |
| 	 * or memory the kernel is already using.
 | |
| 	 *
 | |
| 	 * Control pages are also the only pags we must allocate
 | |
| 	 * when loading a crash kernel.  All of the other pages
 | |
| 	 * are specified by the segments and we just memcpy
 | |
| 	 * into them directly.
 | |
| 	 *
 | |
| 	 * The only case where we really need more than one of
 | |
| 	 * these are for architectures where we cannot disable
 | |
| 	 * the MMU and must instead generate an identity mapped
 | |
| 	 * page table for all of the memory.
 | |
| 	 *
 | |
| 	 * Given the low demand this implements a very simple
 | |
| 	 * allocator that finds the first hole of the appropriate
 | |
| 	 * size in the reserved memory region, and allocates all
 | |
| 	 * of the memory up to and including the hole.
 | |
| 	 */
 | |
| 	unsigned long hole_start, hole_end, size;
 | |
| 	struct page *pages;
 | |
| 
 | |
| 	pages = NULL;
 | |
| 	size = (1 << order) << PAGE_SHIFT;
 | |
| 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 | |
| 	hole_end   = hole_start + size - 1;
 | |
| 	while (hole_end <= crashk_res.end) {
 | |
| 		unsigned long i;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 | |
| 			break;
 | |
| 		/* See if I overlap any of the segments */
 | |
| 		for (i = 0; i < image->nr_segments; i++) {
 | |
| 			unsigned long mstart, mend;
 | |
| 
 | |
| 			mstart = image->segment[i].mem;
 | |
| 			mend   = mstart + image->segment[i].memsz - 1;
 | |
| 			if ((hole_end >= mstart) && (hole_start <= mend)) {
 | |
| 				/* Advance the hole to the end of the segment */
 | |
| 				hole_start = (mend + (size - 1)) & ~(size - 1);
 | |
| 				hole_end   = hole_start + size - 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		/* If I don't overlap any segments I have found my hole! */
 | |
| 		if (i == image->nr_segments) {
 | |
| 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 | |
| 			image->control_page = hole_end;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct page *kimage_alloc_control_pages(struct kimage *image,
 | |
| 					 unsigned int order)
 | |
| {
 | |
| 	struct page *pages = NULL;
 | |
| 
 | |
| 	switch (image->type) {
 | |
| 	case KEXEC_TYPE_DEFAULT:
 | |
| 		pages = kimage_alloc_normal_control_pages(image, order);
 | |
| 		break;
 | |
| 	case KEXEC_TYPE_CRASH:
 | |
| 		pages = kimage_alloc_crash_control_pages(image, order);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 | |
| {
 | |
| 	struct page *vmcoreinfo_page;
 | |
| 	void *safecopy;
 | |
| 
 | |
| 	if (image->type != KEXEC_TYPE_CRASH)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For kdump, allocate one vmcoreinfo safe copy from the
 | |
| 	 * crash memory. as we have arch_kexec_protect_crashkres()
 | |
| 	 * after kexec syscall, we naturally protect it from write
 | |
| 	 * (even read) access under kernel direct mapping. But on
 | |
| 	 * the other hand, we still need to operate it when crash
 | |
| 	 * happens to generate vmcoreinfo note, hereby we rely on
 | |
| 	 * vmap for this purpose.
 | |
| 	 */
 | |
| 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 | |
| 	if (!vmcoreinfo_page) {
 | |
| 		pr_warn("Could not allocate vmcoreinfo buffer\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 | |
| 	if (!safecopy) {
 | |
| 		pr_warn("Could not vmap vmcoreinfo buffer\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	image->vmcoreinfo_data_copy = safecopy;
 | |
| 	crash_update_vmcoreinfo_safecopy(safecopy);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 | |
| {
 | |
| 	if (*image->entry != 0)
 | |
| 		image->entry++;
 | |
| 
 | |
| 	if (image->entry == image->last_entry) {
 | |
| 		kimage_entry_t *ind_page;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		ind_page = page_address(page);
 | |
| 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 | |
| 		image->entry = ind_page;
 | |
| 		image->last_entry = ind_page +
 | |
| 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 | |
| 	}
 | |
| 	*image->entry = entry;
 | |
| 	image->entry++;
 | |
| 	*image->entry = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kimage_set_destination(struct kimage *image,
 | |
| 				   unsigned long destination)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	destination &= PAGE_MASK;
 | |
| 	result = kimage_add_entry(image, destination | IND_DESTINATION);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int kimage_add_page(struct kimage *image, unsigned long page)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	page &= PAGE_MASK;
 | |
| 	result = kimage_add_entry(image, page | IND_SOURCE);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void kimage_free_extra_pages(struct kimage *image)
 | |
| {
 | |
| 	/* Walk through and free any extra destination pages I may have */
 | |
| 	kimage_free_page_list(&image->dest_pages);
 | |
| 
 | |
| 	/* Walk through and free any unusable pages I have cached */
 | |
| 	kimage_free_page_list(&image->unusable_pages);
 | |
| 
 | |
| }
 | |
| void kimage_terminate(struct kimage *image)
 | |
| {
 | |
| 	if (*image->entry != 0)
 | |
| 		image->entry++;
 | |
| 
 | |
| 	*image->entry = IND_DONE;
 | |
| }
 | |
| 
 | |
| #define for_each_kimage_entry(image, ptr, entry) \
 | |
| 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 | |
| 		ptr = (entry & IND_INDIRECTION) ? \
 | |
| 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 | |
| 
 | |
| static void kimage_free_entry(kimage_entry_t entry)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 | |
| 	kimage_free_pages(page);
 | |
| }
 | |
| 
 | |
| void kimage_free(struct kimage *image)
 | |
| {
 | |
| 	kimage_entry_t *ptr, entry;
 | |
| 	kimage_entry_t ind = 0;
 | |
| 
 | |
| 	if (!image)
 | |
| 		return;
 | |
| 
 | |
| 	if (image->vmcoreinfo_data_copy) {
 | |
| 		crash_update_vmcoreinfo_safecopy(NULL);
 | |
| 		vunmap(image->vmcoreinfo_data_copy);
 | |
| 	}
 | |
| 
 | |
| 	kimage_free_extra_pages(image);
 | |
| 	for_each_kimage_entry(image, ptr, entry) {
 | |
| 		if (entry & IND_INDIRECTION) {
 | |
| 			/* Free the previous indirection page */
 | |
| 			if (ind & IND_INDIRECTION)
 | |
| 				kimage_free_entry(ind);
 | |
| 			/* Save this indirection page until we are
 | |
| 			 * done with it.
 | |
| 			 */
 | |
| 			ind = entry;
 | |
| 		} else if (entry & IND_SOURCE)
 | |
| 			kimage_free_entry(entry);
 | |
| 	}
 | |
| 	/* Free the final indirection page */
 | |
| 	if (ind & IND_INDIRECTION)
 | |
| 		kimage_free_entry(ind);
 | |
| 
 | |
| 	/* Handle any machine specific cleanup */
 | |
| 	machine_kexec_cleanup(image);
 | |
| 
 | |
| 	/* Free the kexec control pages... */
 | |
| 	kimage_free_page_list(&image->control_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free up any temporary buffers allocated. This might hit if
 | |
| 	 * error occurred much later after buffer allocation.
 | |
| 	 */
 | |
| 	if (image->file_mode)
 | |
| 		kimage_file_post_load_cleanup(image);
 | |
| 
 | |
| 	kfree(image);
 | |
| }
 | |
| 
 | |
| static kimage_entry_t *kimage_dst_used(struct kimage *image,
 | |
| 					unsigned long page)
 | |
| {
 | |
| 	kimage_entry_t *ptr, entry;
 | |
| 	unsigned long destination = 0;
 | |
| 
 | |
| 	for_each_kimage_entry(image, ptr, entry) {
 | |
| 		if (entry & IND_DESTINATION)
 | |
| 			destination = entry & PAGE_MASK;
 | |
| 		else if (entry & IND_SOURCE) {
 | |
| 			if (page == destination)
 | |
| 				return ptr;
 | |
| 			destination += PAGE_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct page *kimage_alloc_page(struct kimage *image,
 | |
| 					gfp_t gfp_mask,
 | |
| 					unsigned long destination)
 | |
| {
 | |
| 	/*
 | |
| 	 * Here we implement safeguards to ensure that a source page
 | |
| 	 * is not copied to its destination page before the data on
 | |
| 	 * the destination page is no longer useful.
 | |
| 	 *
 | |
| 	 * To do this we maintain the invariant that a source page is
 | |
| 	 * either its own destination page, or it is not a
 | |
| 	 * destination page at all.
 | |
| 	 *
 | |
| 	 * That is slightly stronger than required, but the proof
 | |
| 	 * that no problems will not occur is trivial, and the
 | |
| 	 * implementation is simply to verify.
 | |
| 	 *
 | |
| 	 * When allocating all pages normally this algorithm will run
 | |
| 	 * in O(N) time, but in the worst case it will run in O(N^2)
 | |
| 	 * time.   If the runtime is a problem the data structures can
 | |
| 	 * be fixed.
 | |
| 	 */
 | |
| 	struct page *page;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk through the list of destination pages, and see if I
 | |
| 	 * have a match.
 | |
| 	 */
 | |
| 	list_for_each_entry(page, &image->dest_pages, lru) {
 | |
| 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 | |
| 		if (addr == destination) {
 | |
| 			list_del(&page->lru);
 | |
| 			return page;
 | |
| 		}
 | |
| 	}
 | |
| 	page = NULL;
 | |
| 	while (1) {
 | |
| 		kimage_entry_t *old;
 | |
| 
 | |
| 		/* Allocate a page, if we run out of memory give up */
 | |
| 		page = kimage_alloc_pages(gfp_mask, 0);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 		/* If the page cannot be used file it away */
 | |
| 		if (page_to_boot_pfn(page) >
 | |
| 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 | |
| 			list_add(&page->lru, &image->unusable_pages);
 | |
| 			continue;
 | |
| 		}
 | |
| 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 | |
| 
 | |
| 		/* If it is the destination page we want use it */
 | |
| 		if (addr == destination)
 | |
| 			break;
 | |
| 
 | |
| 		/* If the page is not a destination page use it */
 | |
| 		if (!kimage_is_destination_range(image, addr,
 | |
| 						  addr + PAGE_SIZE))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * I know that the page is someones destination page.
 | |
| 		 * See if there is already a source page for this
 | |
| 		 * destination page.  And if so swap the source pages.
 | |
| 		 */
 | |
| 		old = kimage_dst_used(image, addr);
 | |
| 		if (old) {
 | |
| 			/* If so move it */
 | |
| 			unsigned long old_addr;
 | |
| 			struct page *old_page;
 | |
| 
 | |
| 			old_addr = *old & PAGE_MASK;
 | |
| 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 | |
| 			copy_highpage(page, old_page);
 | |
| 			*old = addr | (*old & ~PAGE_MASK);
 | |
| 
 | |
| 			/* The old page I have found cannot be a
 | |
| 			 * destination page, so return it if it's
 | |
| 			 * gfp_flags honor the ones passed in.
 | |
| 			 */
 | |
| 			if (!(gfp_mask & __GFP_HIGHMEM) &&
 | |
| 			    PageHighMem(old_page)) {
 | |
| 				kimage_free_pages(old_page);
 | |
| 				continue;
 | |
| 			}
 | |
| 			addr = old_addr;
 | |
| 			page = old_page;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Place the page on the destination list, to be used later */
 | |
| 		list_add(&page->lru, &image->dest_pages);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static int kimage_load_normal_segment(struct kimage *image,
 | |
| 					 struct kexec_segment *segment)
 | |
| {
 | |
| 	unsigned long maddr;
 | |
| 	size_t ubytes, mbytes;
 | |
| 	int result;
 | |
| 	unsigned char __user *buf = NULL;
 | |
| 	unsigned char *kbuf = NULL;
 | |
| 
 | |
| 	result = 0;
 | |
| 	if (image->file_mode)
 | |
| 		kbuf = segment->kbuf;
 | |
| 	else
 | |
| 		buf = segment->buf;
 | |
| 	ubytes = segment->bufsz;
 | |
| 	mbytes = segment->memsz;
 | |
| 	maddr = segment->mem;
 | |
| 
 | |
| 	result = kimage_set_destination(image, maddr);
 | |
| 	if (result < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (mbytes) {
 | |
| 		struct page *page;
 | |
| 		char *ptr;
 | |
| 		size_t uchunk, mchunk;
 | |
| 
 | |
| 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 | |
| 		if (!page) {
 | |
| 			result  = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		result = kimage_add_page(image, page_to_boot_pfn(page)
 | |
| 								<< PAGE_SHIFT);
 | |
| 		if (result < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		ptr = kmap(page);
 | |
| 		/* Start with a clear page */
 | |
| 		clear_page(ptr);
 | |
| 		ptr += maddr & ~PAGE_MASK;
 | |
| 		mchunk = min_t(size_t, mbytes,
 | |
| 				PAGE_SIZE - (maddr & ~PAGE_MASK));
 | |
| 		uchunk = min(ubytes, mchunk);
 | |
| 
 | |
| 		/* For file based kexec, source pages are in kernel memory */
 | |
| 		if (image->file_mode)
 | |
| 			memcpy(ptr, kbuf, uchunk);
 | |
| 		else
 | |
| 			result = copy_from_user(ptr, buf, uchunk);
 | |
| 		kunmap(page);
 | |
| 		if (result) {
 | |
| 			result = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ubytes -= uchunk;
 | |
| 		maddr  += mchunk;
 | |
| 		if (image->file_mode)
 | |
| 			kbuf += mchunk;
 | |
| 		else
 | |
| 			buf += mchunk;
 | |
| 		mbytes -= mchunk;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| out:
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int kimage_load_crash_segment(struct kimage *image,
 | |
| 					struct kexec_segment *segment)
 | |
| {
 | |
| 	/* For crash dumps kernels we simply copy the data from
 | |
| 	 * user space to it's destination.
 | |
| 	 * We do things a page at a time for the sake of kmap.
 | |
| 	 */
 | |
| 	unsigned long maddr;
 | |
| 	size_t ubytes, mbytes;
 | |
| 	int result;
 | |
| 	unsigned char __user *buf = NULL;
 | |
| 	unsigned char *kbuf = NULL;
 | |
| 
 | |
| 	result = 0;
 | |
| 	if (image->file_mode)
 | |
| 		kbuf = segment->kbuf;
 | |
| 	else
 | |
| 		buf = segment->buf;
 | |
| 	ubytes = segment->bufsz;
 | |
| 	mbytes = segment->memsz;
 | |
| 	maddr = segment->mem;
 | |
| 	while (mbytes) {
 | |
| 		struct page *page;
 | |
| 		char *ptr;
 | |
| 		size_t uchunk, mchunk;
 | |
| 
 | |
| 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 | |
| 		if (!page) {
 | |
| 			result  = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ptr = kmap(page);
 | |
| 		ptr += maddr & ~PAGE_MASK;
 | |
| 		mchunk = min_t(size_t, mbytes,
 | |
| 				PAGE_SIZE - (maddr & ~PAGE_MASK));
 | |
| 		uchunk = min(ubytes, mchunk);
 | |
| 		if (mchunk > uchunk) {
 | |
| 			/* Zero the trailing part of the page */
 | |
| 			memset(ptr + uchunk, 0, mchunk - uchunk);
 | |
| 		}
 | |
| 
 | |
| 		/* For file based kexec, source pages are in kernel memory */
 | |
| 		if (image->file_mode)
 | |
| 			memcpy(ptr, kbuf, uchunk);
 | |
| 		else
 | |
| 			result = copy_from_user(ptr, buf, uchunk);
 | |
| 		kexec_flush_icache_page(page);
 | |
| 		kunmap(page);
 | |
| 		if (result) {
 | |
| 			result = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ubytes -= uchunk;
 | |
| 		maddr  += mchunk;
 | |
| 		if (image->file_mode)
 | |
| 			kbuf += mchunk;
 | |
| 		else
 | |
| 			buf += mchunk;
 | |
| 		mbytes -= mchunk;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| out:
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| int kimage_load_segment(struct kimage *image,
 | |
| 				struct kexec_segment *segment)
 | |
| {
 | |
| 	int result = -ENOMEM;
 | |
| 
 | |
| 	switch (image->type) {
 | |
| 	case KEXEC_TYPE_DEFAULT:
 | |
| 		result = kimage_load_normal_segment(image, segment);
 | |
| 		break;
 | |
| 	case KEXEC_TYPE_CRASH:
 | |
| 		result = kimage_load_crash_segment(image, segment);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| struct kimage *kexec_image;
 | |
| struct kimage *kexec_crash_image;
 | |
| int kexec_load_disabled;
 | |
| 
 | |
| /*
 | |
|  * No panic_cpu check version of crash_kexec().  This function is called
 | |
|  * only when panic_cpu holds the current CPU number; this is the only CPU
 | |
|  * which processes crash_kexec routines.
 | |
|  */
 | |
| void __noclone __crash_kexec(struct pt_regs *regs)
 | |
| {
 | |
| 	/* Take the kexec_mutex here to prevent sys_kexec_load
 | |
| 	 * running on one cpu from replacing the crash kernel
 | |
| 	 * we are using after a panic on a different cpu.
 | |
| 	 *
 | |
| 	 * If the crash kernel was not located in a fixed area
 | |
| 	 * of memory the xchg(&kexec_crash_image) would be
 | |
| 	 * sufficient.  But since I reuse the memory...
 | |
| 	 */
 | |
| 	if (mutex_trylock(&kexec_mutex)) {
 | |
| 		if (kexec_crash_image) {
 | |
| 			struct pt_regs fixed_regs;
 | |
| 
 | |
| 			crash_setup_regs(&fixed_regs, regs);
 | |
| 			crash_save_vmcoreinfo();
 | |
| 			machine_crash_shutdown(&fixed_regs);
 | |
| 			machine_kexec(kexec_crash_image);
 | |
| 		}
 | |
| 		mutex_unlock(&kexec_mutex);
 | |
| 	}
 | |
| }
 | |
| STACK_FRAME_NON_STANDARD(__crash_kexec);
 | |
| 
 | |
| void crash_kexec(struct pt_regs *regs)
 | |
| {
 | |
| 	int old_cpu, this_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only one CPU is allowed to execute the crash_kexec() code as with
 | |
| 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 | |
| 	 * may stop each other.  To exclude them, we use panic_cpu here too.
 | |
| 	 */
 | |
| 	this_cpu = raw_smp_processor_id();
 | |
| 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 | |
| 	if (old_cpu == PANIC_CPU_INVALID) {
 | |
| 		/* This is the 1st CPU which comes here, so go ahead. */
 | |
| 		printk_safe_flush_on_panic();
 | |
| 		__crash_kexec(regs);
 | |
| 
 | |
| 		/*
 | |
| 		 * Reset panic_cpu to allow another panic()/crash_kexec()
 | |
| 		 * call.
 | |
| 		 */
 | |
| 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| size_t crash_get_memory_size(void)
 | |
| {
 | |
| 	size_t size = 0;
 | |
| 
 | |
| 	mutex_lock(&kexec_mutex);
 | |
| 	if (crashk_res.end != crashk_res.start)
 | |
| 		size = resource_size(&crashk_res);
 | |
| 	mutex_unlock(&kexec_mutex);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| void __weak crash_free_reserved_phys_range(unsigned long begin,
 | |
| 					   unsigned long end)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	for (addr = begin; addr < end; addr += PAGE_SIZE)
 | |
| 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
 | |
| }
 | |
| 
 | |
| int crash_shrink_memory(unsigned long new_size)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long start, end;
 | |
| 	unsigned long old_size;
 | |
| 	struct resource *ram_res;
 | |
| 
 | |
| 	mutex_lock(&kexec_mutex);
 | |
| 
 | |
| 	if (kexec_crash_image) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	start = crashk_res.start;
 | |
| 	end = crashk_res.end;
 | |
| 	old_size = (end == 0) ? 0 : end - start + 1;
 | |
| 	if (new_size >= old_size) {
 | |
| 		ret = (new_size == old_size) ? 0 : -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
 | |
| 	if (!ram_res) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
 | |
| 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
 | |
| 
 | |
| 	crash_free_reserved_phys_range(end, crashk_res.end);
 | |
| 
 | |
| 	if ((start == end) && (crashk_res.parent != NULL))
 | |
| 		release_resource(&crashk_res);
 | |
| 
 | |
| 	ram_res->start = end;
 | |
| 	ram_res->end = crashk_res.end;
 | |
| 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
 | |
| 	ram_res->name = "System RAM";
 | |
| 
 | |
| 	crashk_res.end = end - 1;
 | |
| 
 | |
| 	insert_resource(&iomem_resource, ram_res);
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&kexec_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void crash_save_cpu(struct pt_regs *regs, int cpu)
 | |
| {
 | |
| 	struct elf_prstatus prstatus;
 | |
| 	u32 *buf;
 | |
| 
 | |
| 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
 | |
| 		return;
 | |
| 
 | |
| 	/* Using ELF notes here is opportunistic.
 | |
| 	 * I need a well defined structure format
 | |
| 	 * for the data I pass, and I need tags
 | |
| 	 * on the data to indicate what information I have
 | |
| 	 * squirrelled away.  ELF notes happen to provide
 | |
| 	 * all of that, so there is no need to invent something new.
 | |
| 	 */
 | |
| 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 	memset(&prstatus, 0, sizeof(prstatus));
 | |
| 	prstatus.pr_pid = current->pid;
 | |
| 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 | |
| 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
 | |
| 			      &prstatus, sizeof(prstatus));
 | |
| 	final_note(buf);
 | |
| }
 | |
| 
 | |
| static int __init crash_notes_memory_init(void)
 | |
| {
 | |
| 	/* Allocate memory for saving cpu registers. */
 | |
| 	size_t size, align;
 | |
| 
 | |
| 	/*
 | |
| 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
 | |
| 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
 | |
| 	 * pages are also on 2 continuous physical pages. In this case the
 | |
| 	 * 2nd part of crash_notes in 2nd page could be lost since only the
 | |
| 	 * starting address and size of crash_notes are exported through sysfs.
 | |
| 	 * Here round up the size of crash_notes to the nearest power of two
 | |
| 	 * and pass it to __alloc_percpu as align value. This can make sure
 | |
| 	 * crash_notes is allocated inside one physical page.
 | |
| 	 */
 | |
| 	size = sizeof(note_buf_t);
 | |
| 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
 | |
| 	 * definitely will be in 2 pages with that.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(size > PAGE_SIZE);
 | |
| 
 | |
| 	crash_notes = __alloc_percpu(size, align);
 | |
| 	if (!crash_notes) {
 | |
| 		pr_warn("Memory allocation for saving cpu register states failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(crash_notes_memory_init);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Move into place and start executing a preloaded standalone
 | |
|  * executable.  If nothing was preloaded return an error.
 | |
|  */
 | |
| int kernel_kexec(void)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (!mutex_trylock(&kexec_mutex))
 | |
| 		return -EBUSY;
 | |
| 	if (!kexec_image) {
 | |
| 		error = -EINVAL;
 | |
| 		goto Unlock;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_JUMP
 | |
| 	if (kexec_image->preserve_context) {
 | |
| 		lock_system_sleep();
 | |
| 		pm_prepare_console();
 | |
| 		error = freeze_processes();
 | |
| 		if (error) {
 | |
| 			error = -EBUSY;
 | |
| 			goto Restore_console;
 | |
| 		}
 | |
| 		suspend_console();
 | |
| 		error = dpm_suspend_start(PMSG_FREEZE);
 | |
| 		if (error)
 | |
| 			goto Resume_console;
 | |
| 		/* At this point, dpm_suspend_start() has been called,
 | |
| 		 * but *not* dpm_suspend_end(). We *must* call
 | |
| 		 * dpm_suspend_end() now.  Otherwise, drivers for
 | |
| 		 * some devices (e.g. interrupt controllers) become
 | |
| 		 * desynchronized with the actual state of the
 | |
| 		 * hardware at resume time, and evil weirdness ensues.
 | |
| 		 */
 | |
| 		error = dpm_suspend_end(PMSG_FREEZE);
 | |
| 		if (error)
 | |
| 			goto Resume_devices;
 | |
| 		error = disable_nonboot_cpus();
 | |
| 		if (error)
 | |
| 			goto Enable_cpus;
 | |
| 		local_irq_disable();
 | |
| 		error = syscore_suspend();
 | |
| 		if (error)
 | |
| 			goto Enable_irqs;
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		kexec_in_progress = true;
 | |
| 		kernel_restart_prepare(NULL);
 | |
| 		migrate_to_reboot_cpu();
 | |
| 
 | |
| 		/*
 | |
| 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
 | |
| 		 * no further code needs to use CPU hotplug (which is true in
 | |
| 		 * the reboot case). However, the kexec path depends on using
 | |
| 		 * CPU hotplug again; so re-enable it here.
 | |
| 		 */
 | |
| 		cpu_hotplug_enable();
 | |
| 		pr_emerg("Starting new kernel\n");
 | |
| 		machine_shutdown();
 | |
| 	}
 | |
| 
 | |
| 	machine_kexec(kexec_image);
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_JUMP
 | |
| 	if (kexec_image->preserve_context) {
 | |
| 		syscore_resume();
 | |
|  Enable_irqs:
 | |
| 		local_irq_enable();
 | |
|  Enable_cpus:
 | |
| 		enable_nonboot_cpus();
 | |
| 		dpm_resume_start(PMSG_RESTORE);
 | |
|  Resume_devices:
 | |
| 		dpm_resume_end(PMSG_RESTORE);
 | |
|  Resume_console:
 | |
| 		resume_console();
 | |
| 		thaw_processes();
 | |
|  Restore_console:
 | |
| 		pm_restore_console();
 | |
| 		unlock_system_sleep();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
|  Unlock:
 | |
| 	mutex_unlock(&kexec_mutex);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Protection mechanism for crashkernel reserved memory after
 | |
|  * the kdump kernel is loaded.
 | |
|  *
 | |
|  * Provide an empty default implementation here -- architecture
 | |
|  * code may override this
 | |
|  */
 | |
| void __weak arch_kexec_protect_crashkres(void)
 | |
| {}
 | |
| 
 | |
| void __weak arch_kexec_unprotect_crashkres(void)
 | |
| {}
 |