mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 6da2ec5605
			
		
	
	
		6da2ec5605
		
	
	
	
	
		
			
			The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
        kmalloc(a * b, gfp)
with:
        kmalloc_array(a * b, gfp)
as well as handling cases of:
        kmalloc(a * b * c, gfp)
with:
        kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
        kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
        kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
		
	
			
		
			
				
	
	
		
			697 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			697 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Longest prefix match list implementation
 | |
|  *
 | |
|  * Copyright (c) 2016,2017 Daniel Mack
 | |
|  * Copyright (c) 2016 David Herrmann
 | |
|  *
 | |
|  * This file is subject to the terms and conditions of version 2 of the GNU
 | |
|  * General Public License.  See the file COPYING in the main directory of the
 | |
|  * Linux distribution for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <net/ipv6.h>
 | |
| 
 | |
| /* Intermediate node */
 | |
| #define LPM_TREE_NODE_FLAG_IM BIT(0)
 | |
| 
 | |
| struct lpm_trie_node;
 | |
| 
 | |
| struct lpm_trie_node {
 | |
| 	struct rcu_head rcu;
 | |
| 	struct lpm_trie_node __rcu	*child[2];
 | |
| 	u32				prefixlen;
 | |
| 	u32				flags;
 | |
| 	u8				data[0];
 | |
| };
 | |
| 
 | |
| struct lpm_trie {
 | |
| 	struct bpf_map			map;
 | |
| 	struct lpm_trie_node __rcu	*root;
 | |
| 	size_t				n_entries;
 | |
| 	size_t				max_prefixlen;
 | |
| 	size_t				data_size;
 | |
| 	raw_spinlock_t			lock;
 | |
| };
 | |
| 
 | |
| /* This trie implements a longest prefix match algorithm that can be used to
 | |
|  * match IP addresses to a stored set of ranges.
 | |
|  *
 | |
|  * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 | |
|  * interpreted as big endian, so data[0] stores the most significant byte.
 | |
|  *
 | |
|  * Match ranges are internally stored in instances of struct lpm_trie_node
 | |
|  * which each contain their prefix length as well as two pointers that may
 | |
|  * lead to more nodes containing more specific matches. Each node also stores
 | |
|  * a value that is defined by and returned to userspace via the update_elem
 | |
|  * and lookup functions.
 | |
|  *
 | |
|  * For instance, let's start with a trie that was created with a prefix length
 | |
|  * of 32, so it can be used for IPv4 addresses, and one single element that
 | |
|  * matches 192.168.0.0/16. The data array would hence contain
 | |
|  * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 | |
|  * stick to IP-address notation for readability though.
 | |
|  *
 | |
|  * As the trie is empty initially, the new node (1) will be places as root
 | |
|  * node, denoted as (R) in the example below. As there are no other node, both
 | |
|  * child pointers are %NULL.
 | |
|  *
 | |
|  *              +----------------+
 | |
|  *              |       (1)  (R) |
 | |
|  *              | 192.168.0.0/16 |
 | |
|  *              |    value: 1    |
 | |
|  *              |   [0]    [1]   |
 | |
|  *              +----------------+
 | |
|  *
 | |
|  * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 | |
|  * a node with the same data and a smaller prefix (ie, a less specific one),
 | |
|  * node (2) will become a child of (1). In child index depends on the next bit
 | |
|  * that is outside of what (1) matches, and that bit is 0, so (2) will be
 | |
|  * child[0] of (1):
 | |
|  *
 | |
|  *              +----------------+
 | |
|  *              |       (1)  (R) |
 | |
|  *              | 192.168.0.0/16 |
 | |
|  *              |    value: 1    |
 | |
|  *              |   [0]    [1]   |
 | |
|  *              +----------------+
 | |
|  *                   |
 | |
|  *    +----------------+
 | |
|  *    |       (2)      |
 | |
|  *    | 192.168.0.0/24 |
 | |
|  *    |    value: 2    |
 | |
|  *    |   [0]    [1]   |
 | |
|  *    +----------------+
 | |
|  *
 | |
|  * The child[1] slot of (1) could be filled with another node which has bit #17
 | |
|  * (the next bit after the ones that (1) matches on) set to 1. For instance,
 | |
|  * 192.168.128.0/24:
 | |
|  *
 | |
|  *              +----------------+
 | |
|  *              |       (1)  (R) |
 | |
|  *              | 192.168.0.0/16 |
 | |
|  *              |    value: 1    |
 | |
|  *              |   [0]    [1]   |
 | |
|  *              +----------------+
 | |
|  *                   |      |
 | |
|  *    +----------------+  +------------------+
 | |
|  *    |       (2)      |  |        (3)       |
 | |
|  *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 | |
|  *    |    value: 2    |  |     value: 3     |
 | |
|  *    |   [0]    [1]   |  |    [0]    [1]    |
 | |
|  *    +----------------+  +------------------+
 | |
|  *
 | |
|  * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 | |
|  * it, node (1) is looked at first, and because (4) of the semantics laid out
 | |
|  * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 | |
|  * However, that slot is already allocated, so a new node is needed in between.
 | |
|  * That node does not have a value attached to it and it will never be
 | |
|  * returned to users as result of a lookup. It is only there to differentiate
 | |
|  * the traversal further. It will get a prefix as wide as necessary to
 | |
|  * distinguish its two children:
 | |
|  *
 | |
|  *                      +----------------+
 | |
|  *                      |       (1)  (R) |
 | |
|  *                      | 192.168.0.0/16 |
 | |
|  *                      |    value: 1    |
 | |
|  *                      |   [0]    [1]   |
 | |
|  *                      +----------------+
 | |
|  *                           |      |
 | |
|  *            +----------------+  +------------------+
 | |
|  *            |       (4)  (I) |  |        (3)       |
 | |
|  *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 | |
|  *            |    value: ---  |  |     value: 3     |
 | |
|  *            |   [0]    [1]   |  |    [0]    [1]    |
 | |
|  *            +----------------+  +------------------+
 | |
|  *                 |      |
 | |
|  *  +----------------+  +----------------+
 | |
|  *  |       (2)      |  |       (5)      |
 | |
|  *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 | |
|  *  |    value: 2    |  |     value: 5   |
 | |
|  *  |   [0]    [1]   |  |   [0]    [1]   |
 | |
|  *  +----------------+  +----------------+
 | |
|  *
 | |
|  * 192.168.1.1/32 would be a child of (5) etc.
 | |
|  *
 | |
|  * An intermediate node will be turned into a 'real' node on demand. In the
 | |
|  * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 | |
|  *
 | |
|  * A fully populated trie would have a height of 32 nodes, as the trie was
 | |
|  * created with a prefix length of 32.
 | |
|  *
 | |
|  * The lookup starts at the root node. If the current node matches and if there
 | |
|  * is a child that can be used to become more specific, the trie is traversed
 | |
|  * downwards. The last node in the traversal that is a non-intermediate one is
 | |
|  * returned.
 | |
|  */
 | |
| 
 | |
| static inline int extract_bit(const u8 *data, size_t index)
 | |
| {
 | |
| 	return !!(data[index / 8] & (1 << (7 - (index % 8))));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * longest_prefix_match() - determine the longest prefix
 | |
|  * @trie:	The trie to get internal sizes from
 | |
|  * @node:	The node to operate on
 | |
|  * @key:	The key to compare to @node
 | |
|  *
 | |
|  * Determine the longest prefix of @node that matches the bits in @key.
 | |
|  */
 | |
| static size_t longest_prefix_match(const struct lpm_trie *trie,
 | |
| 				   const struct lpm_trie_node *node,
 | |
| 				   const struct bpf_lpm_trie_key *key)
 | |
| {
 | |
| 	size_t prefixlen = 0;
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < trie->data_size; i++) {
 | |
| 		size_t b;
 | |
| 
 | |
| 		b = 8 - fls(node->data[i] ^ key->data[i]);
 | |
| 		prefixlen += b;
 | |
| 
 | |
| 		if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
 | |
| 			return min(node->prefixlen, key->prefixlen);
 | |
| 
 | |
| 		if (b < 8)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return prefixlen;
 | |
| }
 | |
| 
 | |
| /* Called from syscall or from eBPF program */
 | |
| static void *trie_lookup_elem(struct bpf_map *map, void *_key)
 | |
| {
 | |
| 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 | |
| 	struct lpm_trie_node *node, *found = NULL;
 | |
| 	struct bpf_lpm_trie_key *key = _key;
 | |
| 
 | |
| 	/* Start walking the trie from the root node ... */
 | |
| 
 | |
| 	for (node = rcu_dereference(trie->root); node;) {
 | |
| 		unsigned int next_bit;
 | |
| 		size_t matchlen;
 | |
| 
 | |
| 		/* Determine the longest prefix of @node that matches @key.
 | |
| 		 * If it's the maximum possible prefix for this trie, we have
 | |
| 		 * an exact match and can return it directly.
 | |
| 		 */
 | |
| 		matchlen = longest_prefix_match(trie, node, key);
 | |
| 		if (matchlen == trie->max_prefixlen) {
 | |
| 			found = node;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* If the number of bits that match is smaller than the prefix
 | |
| 		 * length of @node, bail out and return the node we have seen
 | |
| 		 * last in the traversal (ie, the parent).
 | |
| 		 */
 | |
| 		if (matchlen < node->prefixlen)
 | |
| 			break;
 | |
| 
 | |
| 		/* Consider this node as return candidate unless it is an
 | |
| 		 * artificially added intermediate one.
 | |
| 		 */
 | |
| 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 | |
| 			found = node;
 | |
| 
 | |
| 		/* If the node match is fully satisfied, let's see if we can
 | |
| 		 * become more specific. Determine the next bit in the key and
 | |
| 		 * traverse down.
 | |
| 		 */
 | |
| 		next_bit = extract_bit(key->data, node->prefixlen);
 | |
| 		node = rcu_dereference(node->child[next_bit]);
 | |
| 	}
 | |
| 
 | |
| 	if (!found)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return found->data + trie->data_size;
 | |
| }
 | |
| 
 | |
| static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
 | |
| 						 const void *value)
 | |
| {
 | |
| 	struct lpm_trie_node *node;
 | |
| 	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
 | |
| 
 | |
| 	if (value)
 | |
| 		size += trie->map.value_size;
 | |
| 
 | |
| 	node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
 | |
| 			    trie->map.numa_node);
 | |
| 	if (!node)
 | |
| 		return NULL;
 | |
| 
 | |
| 	node->flags = 0;
 | |
| 
 | |
| 	if (value)
 | |
| 		memcpy(node->data + trie->data_size, value,
 | |
| 		       trie->map.value_size);
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| /* Called from syscall or from eBPF program */
 | |
| static int trie_update_elem(struct bpf_map *map,
 | |
| 			    void *_key, void *value, u64 flags)
 | |
| {
 | |
| 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 | |
| 	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
 | |
| 	struct lpm_trie_node __rcu **slot;
 | |
| 	struct bpf_lpm_trie_key *key = _key;
 | |
| 	unsigned long irq_flags;
 | |
| 	unsigned int next_bit;
 | |
| 	size_t matchlen = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (unlikely(flags > BPF_EXIST))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (key->prefixlen > trie->max_prefixlen)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&trie->lock, irq_flags);
 | |
| 
 | |
| 	/* Allocate and fill a new node */
 | |
| 
 | |
| 	if (trie->n_entries == trie->map.max_entries) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	new_node = lpm_trie_node_alloc(trie, value);
 | |
| 	if (!new_node) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trie->n_entries++;
 | |
| 
 | |
| 	new_node->prefixlen = key->prefixlen;
 | |
| 	RCU_INIT_POINTER(new_node->child[0], NULL);
 | |
| 	RCU_INIT_POINTER(new_node->child[1], NULL);
 | |
| 	memcpy(new_node->data, key->data, trie->data_size);
 | |
| 
 | |
| 	/* Now find a slot to attach the new node. To do that, walk the tree
 | |
| 	 * from the root and match as many bits as possible for each node until
 | |
| 	 * we either find an empty slot or a slot that needs to be replaced by
 | |
| 	 * an intermediate node.
 | |
| 	 */
 | |
| 	slot = &trie->root;
 | |
| 
 | |
| 	while ((node = rcu_dereference_protected(*slot,
 | |
| 					lockdep_is_held(&trie->lock)))) {
 | |
| 		matchlen = longest_prefix_match(trie, node, key);
 | |
| 
 | |
| 		if (node->prefixlen != matchlen ||
 | |
| 		    node->prefixlen == key->prefixlen ||
 | |
| 		    node->prefixlen == trie->max_prefixlen)
 | |
| 			break;
 | |
| 
 | |
| 		next_bit = extract_bit(key->data, node->prefixlen);
 | |
| 		slot = &node->child[next_bit];
 | |
| 	}
 | |
| 
 | |
| 	/* If the slot is empty (a free child pointer or an empty root),
 | |
| 	 * simply assign the @new_node to that slot and be done.
 | |
| 	 */
 | |
| 	if (!node) {
 | |
| 		rcu_assign_pointer(*slot, new_node);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If the slot we picked already exists, replace it with @new_node
 | |
| 	 * which already has the correct data array set.
 | |
| 	 */
 | |
| 	if (node->prefixlen == matchlen) {
 | |
| 		new_node->child[0] = node->child[0];
 | |
| 		new_node->child[1] = node->child[1];
 | |
| 
 | |
| 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 | |
| 			trie->n_entries--;
 | |
| 
 | |
| 		rcu_assign_pointer(*slot, new_node);
 | |
| 		kfree_rcu(node, rcu);
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If the new node matches the prefix completely, it must be inserted
 | |
| 	 * as an ancestor. Simply insert it between @node and *@slot.
 | |
| 	 */
 | |
| 	if (matchlen == key->prefixlen) {
 | |
| 		next_bit = extract_bit(node->data, matchlen);
 | |
| 		rcu_assign_pointer(new_node->child[next_bit], node);
 | |
| 		rcu_assign_pointer(*slot, new_node);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	im_node = lpm_trie_node_alloc(trie, NULL);
 | |
| 	if (!im_node) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	im_node->prefixlen = matchlen;
 | |
| 	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
 | |
| 	memcpy(im_node->data, node->data, trie->data_size);
 | |
| 
 | |
| 	/* Now determine which child to install in which slot */
 | |
| 	if (extract_bit(key->data, matchlen)) {
 | |
| 		rcu_assign_pointer(im_node->child[0], node);
 | |
| 		rcu_assign_pointer(im_node->child[1], new_node);
 | |
| 	} else {
 | |
| 		rcu_assign_pointer(im_node->child[0], new_node);
 | |
| 		rcu_assign_pointer(im_node->child[1], node);
 | |
| 	}
 | |
| 
 | |
| 	/* Finally, assign the intermediate node to the determined spot */
 | |
| 	rcu_assign_pointer(*slot, im_node);
 | |
| 
 | |
| out:
 | |
| 	if (ret) {
 | |
| 		if (new_node)
 | |
| 			trie->n_entries--;
 | |
| 
 | |
| 		kfree(new_node);
 | |
| 		kfree(im_node);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Called from syscall or from eBPF program */
 | |
| static int trie_delete_elem(struct bpf_map *map, void *_key)
 | |
| {
 | |
| 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 | |
| 	struct bpf_lpm_trie_key *key = _key;
 | |
| 	struct lpm_trie_node __rcu **trim, **trim2;
 | |
| 	struct lpm_trie_node *node, *parent;
 | |
| 	unsigned long irq_flags;
 | |
| 	unsigned int next_bit;
 | |
| 	size_t matchlen = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (key->prefixlen > trie->max_prefixlen)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&trie->lock, irq_flags);
 | |
| 
 | |
| 	/* Walk the tree looking for an exact key/length match and keeping
 | |
| 	 * track of the path we traverse.  We will need to know the node
 | |
| 	 * we wish to delete, and the slot that points to the node we want
 | |
| 	 * to delete.  We may also need to know the nodes parent and the
 | |
| 	 * slot that contains it.
 | |
| 	 */
 | |
| 	trim = &trie->root;
 | |
| 	trim2 = trim;
 | |
| 	parent = NULL;
 | |
| 	while ((node = rcu_dereference_protected(
 | |
| 		       *trim, lockdep_is_held(&trie->lock)))) {
 | |
| 		matchlen = longest_prefix_match(trie, node, key);
 | |
| 
 | |
| 		if (node->prefixlen != matchlen ||
 | |
| 		    node->prefixlen == key->prefixlen)
 | |
| 			break;
 | |
| 
 | |
| 		parent = node;
 | |
| 		trim2 = trim;
 | |
| 		next_bit = extract_bit(key->data, node->prefixlen);
 | |
| 		trim = &node->child[next_bit];
 | |
| 	}
 | |
| 
 | |
| 	if (!node || node->prefixlen != key->prefixlen ||
 | |
| 	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trie->n_entries--;
 | |
| 
 | |
| 	/* If the node we are removing has two children, simply mark it
 | |
| 	 * as intermediate and we are done.
 | |
| 	 */
 | |
| 	if (rcu_access_pointer(node->child[0]) &&
 | |
| 	    rcu_access_pointer(node->child[1])) {
 | |
| 		node->flags |= LPM_TREE_NODE_FLAG_IM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If the parent of the node we are about to delete is an intermediate
 | |
| 	 * node, and the deleted node doesn't have any children, we can delete
 | |
| 	 * the intermediate parent as well and promote its other child
 | |
| 	 * up the tree.  Doing this maintains the invariant that all
 | |
| 	 * intermediate nodes have exactly 2 children and that there are no
 | |
| 	 * unnecessary intermediate nodes in the tree.
 | |
| 	 */
 | |
| 	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
 | |
| 	    !node->child[0] && !node->child[1]) {
 | |
| 		if (node == rcu_access_pointer(parent->child[0]))
 | |
| 			rcu_assign_pointer(
 | |
| 				*trim2, rcu_access_pointer(parent->child[1]));
 | |
| 		else
 | |
| 			rcu_assign_pointer(
 | |
| 				*trim2, rcu_access_pointer(parent->child[0]));
 | |
| 		kfree_rcu(parent, rcu);
 | |
| 		kfree_rcu(node, rcu);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* The node we are removing has either zero or one child. If there
 | |
| 	 * is a child, move it into the removed node's slot then delete
 | |
| 	 * the node.  Otherwise just clear the slot and delete the node.
 | |
| 	 */
 | |
| 	if (node->child[0])
 | |
| 		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
 | |
| 	else if (node->child[1])
 | |
| 		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
 | |
| 	else
 | |
| 		RCU_INIT_POINTER(*trim, NULL);
 | |
| 	kfree_rcu(node, rcu);
 | |
| 
 | |
| out:
 | |
| 	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define LPM_DATA_SIZE_MAX	256
 | |
| #define LPM_DATA_SIZE_MIN	1
 | |
| 
 | |
| #define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
 | |
| 				 sizeof(struct lpm_trie_node))
 | |
| #define LPM_VAL_SIZE_MIN	1
 | |
| 
 | |
| #define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X))
 | |
| #define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
 | |
| #define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
 | |
| 
 | |
| #define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
 | |
| 				 BPF_F_RDONLY | BPF_F_WRONLY)
 | |
| 
 | |
| static struct bpf_map *trie_alloc(union bpf_attr *attr)
 | |
| {
 | |
| 	struct lpm_trie *trie;
 | |
| 	u64 cost = sizeof(*trie), cost_per_node;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 
 | |
| 	/* check sanity of attributes */
 | |
| 	if (attr->max_entries == 0 ||
 | |
| 	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
 | |
| 	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
 | |
| 	    attr->key_size < LPM_KEY_SIZE_MIN ||
 | |
| 	    attr->key_size > LPM_KEY_SIZE_MAX ||
 | |
| 	    attr->value_size < LPM_VAL_SIZE_MIN ||
 | |
| 	    attr->value_size > LPM_VAL_SIZE_MAX)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
 | |
| 	if (!trie)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* copy mandatory map attributes */
 | |
| 	bpf_map_init_from_attr(&trie->map, attr);
 | |
| 	trie->data_size = attr->key_size -
 | |
| 			  offsetof(struct bpf_lpm_trie_key, data);
 | |
| 	trie->max_prefixlen = trie->data_size * 8;
 | |
| 
 | |
| 	cost_per_node = sizeof(struct lpm_trie_node) +
 | |
| 			attr->value_size + trie->data_size;
 | |
| 	cost += (u64) attr->max_entries * cost_per_node;
 | |
| 	if (cost >= U32_MAX - PAGE_SIZE) {
 | |
| 		ret = -E2BIG;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 | |
| 
 | |
| 	ret = bpf_map_precharge_memlock(trie->map.pages);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	raw_spin_lock_init(&trie->lock);
 | |
| 
 | |
| 	return &trie->map;
 | |
| out_err:
 | |
| 	kfree(trie);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static void trie_free(struct bpf_map *map)
 | |
| {
 | |
| 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 | |
| 	struct lpm_trie_node __rcu **slot;
 | |
| 	struct lpm_trie_node *node;
 | |
| 
 | |
| 	/* Wait for outstanding programs to complete
 | |
| 	 * update/lookup/delete/get_next_key and free the trie.
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	/* Always start at the root and walk down to a node that has no
 | |
| 	 * children. Then free that node, nullify its reference in the parent
 | |
| 	 * and start over.
 | |
| 	 */
 | |
| 
 | |
| 	for (;;) {
 | |
| 		slot = &trie->root;
 | |
| 
 | |
| 		for (;;) {
 | |
| 			node = rcu_dereference_protected(*slot, 1);
 | |
| 			if (!node)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (rcu_access_pointer(node->child[0])) {
 | |
| 				slot = &node->child[0];
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (rcu_access_pointer(node->child[1])) {
 | |
| 				slot = &node->child[1];
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			kfree(node);
 | |
| 			RCU_INIT_POINTER(*slot, NULL);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(trie);
 | |
| }
 | |
| 
 | |
| static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
 | |
| {
 | |
| 	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
 | |
| 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 | |
| 	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
 | |
| 	struct lpm_trie_node **node_stack = NULL;
 | |
| 	int err = 0, stack_ptr = -1;
 | |
| 	unsigned int next_bit;
 | |
| 	size_t matchlen;
 | |
| 
 | |
| 	/* The get_next_key follows postorder. For the 4 node example in
 | |
| 	 * the top of this file, the trie_get_next_key() returns the following
 | |
| 	 * one after another:
 | |
| 	 *   192.168.0.0/24
 | |
| 	 *   192.168.1.0/24
 | |
| 	 *   192.168.128.0/24
 | |
| 	 *   192.168.0.0/16
 | |
| 	 *
 | |
| 	 * The idea is to return more specific keys before less specific ones.
 | |
| 	 */
 | |
| 
 | |
| 	/* Empty trie */
 | |
| 	search_root = rcu_dereference(trie->root);
 | |
| 	if (!search_root)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* For invalid key, find the leftmost node in the trie */
 | |
| 	if (!key || key->prefixlen > trie->max_prefixlen)
 | |
| 		goto find_leftmost;
 | |
| 
 | |
| 	node_stack = kmalloc_array(trie->max_prefixlen,
 | |
| 				   sizeof(struct lpm_trie_node *),
 | |
| 				   GFP_ATOMIC | __GFP_NOWARN);
 | |
| 	if (!node_stack)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Try to find the exact node for the given key */
 | |
| 	for (node = search_root; node;) {
 | |
| 		node_stack[++stack_ptr] = node;
 | |
| 		matchlen = longest_prefix_match(trie, node, key);
 | |
| 		if (node->prefixlen != matchlen ||
 | |
| 		    node->prefixlen == key->prefixlen)
 | |
| 			break;
 | |
| 
 | |
| 		next_bit = extract_bit(key->data, node->prefixlen);
 | |
| 		node = rcu_dereference(node->child[next_bit]);
 | |
| 	}
 | |
| 	if (!node || node->prefixlen != key->prefixlen ||
 | |
| 	    (node->flags & LPM_TREE_NODE_FLAG_IM))
 | |
| 		goto find_leftmost;
 | |
| 
 | |
| 	/* The node with the exactly-matching key has been found,
 | |
| 	 * find the first node in postorder after the matched node.
 | |
| 	 */
 | |
| 	node = node_stack[stack_ptr];
 | |
| 	while (stack_ptr > 0) {
 | |
| 		parent = node_stack[stack_ptr - 1];
 | |
| 		if (rcu_dereference(parent->child[0]) == node) {
 | |
| 			search_root = rcu_dereference(parent->child[1]);
 | |
| 			if (search_root)
 | |
| 				goto find_leftmost;
 | |
| 		}
 | |
| 		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
 | |
| 			next_node = parent;
 | |
| 			goto do_copy;
 | |
| 		}
 | |
| 
 | |
| 		node = parent;
 | |
| 		stack_ptr--;
 | |
| 	}
 | |
| 
 | |
| 	/* did not find anything */
 | |
| 	err = -ENOENT;
 | |
| 	goto free_stack;
 | |
| 
 | |
| find_leftmost:
 | |
| 	/* Find the leftmost non-intermediate node, all intermediate nodes
 | |
| 	 * have exact two children, so this function will never return NULL.
 | |
| 	 */
 | |
| 	for (node = search_root; node;) {
 | |
| 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 | |
| 			next_node = node;
 | |
| 		node = rcu_dereference(node->child[0]);
 | |
| 	}
 | |
| do_copy:
 | |
| 	next_key->prefixlen = next_node->prefixlen;
 | |
| 	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
 | |
| 	       next_node->data, trie->data_size);
 | |
| free_stack:
 | |
| 	kfree(node_stack);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| const struct bpf_map_ops trie_map_ops = {
 | |
| 	.map_alloc = trie_alloc,
 | |
| 	.map_free = trie_free,
 | |
| 	.map_get_next_key = trie_get_next_key,
 | |
| 	.map_lookup_elem = trie_lookup_elem,
 | |
| 	.map_update_elem = trie_update_elem,
 | |
| 	.map_delete_elem = trie_delete_elem,
 | |
| };
 |