mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 c89304b8ea
			
		
	
	
		c89304b8ea
		
	
	
	
	
		
			
			The check from commit 30c2235c is incomplete and cannot prevent
cases like key_len = 0x80000000 (INT_MAX + 1).  In that case, the
left-hand side of the check (INT_MAX - key_len), which is unsigned,
becomes 0xffffffff (UINT_MAX) and bypasses the check.
However this shouldn't be a security issue.  The function is called
from the following two code paths:
 1) setsockopt()
 2) sctp_auth_asoc_set_secret()
In case (1), sca_keylength is never going to exceed 65535 since it's
bounded by a u16 from the user API.  As such, the key length will
never overflow.
In case (2), sca_keylength is computed based on the user key (1 short)
and 2 * key_vector (3 shorts) for a total of 7 * USHRT_MAX, which still
will not overflow.
In other words, this overflow check is not really necessary.  Just
make it more correct.
Signed-off-by: Xi Wang <xi.wang@gmail.com>
Cc: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			951 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			951 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SCTP kernel implementation
 | |
|  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
 | |
|  *
 | |
|  * This file is part of the SCTP kernel implementation
 | |
|  *
 | |
|  * This SCTP implementation is free software;
 | |
|  * you can redistribute it and/or modify it under the terms of
 | |
|  * the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * This SCTP implementation is distributed in the hope that it
 | |
|  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 | |
|  *                 ************************
 | |
|  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  * See the GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with GNU CC; see the file COPYING.  If not, write to
 | |
|  * the Free Software Foundation, 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Please send any bug reports or fixes you make to the
 | |
|  * email address(es):
 | |
|  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
 | |
|  *
 | |
|  * Or submit a bug report through the following website:
 | |
|  *    http://www.sf.net/projects/lksctp
 | |
|  *
 | |
|  * Written or modified by:
 | |
|  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
 | |
|  *
 | |
|  * Any bugs reported given to us we will try to fix... any fixes shared will
 | |
|  * be incorporated into the next SCTP release.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <net/sctp/sctp.h>
 | |
| #include <net/sctp/auth.h>
 | |
| 
 | |
| static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
 | |
| 	{
 | |
| 		/* id 0 is reserved.  as all 0 */
 | |
| 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
 | |
| 	},
 | |
| 	{
 | |
| 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
 | |
| 		.hmac_name="hmac(sha1)",
 | |
| 		.hmac_len = SCTP_SHA1_SIG_SIZE,
 | |
| 	},
 | |
| 	{
 | |
| 		/* id 2 is reserved as well */
 | |
| 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
 | |
| 	},
 | |
| #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
 | |
| 	{
 | |
| 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
 | |
| 		.hmac_name="hmac(sha256)",
 | |
| 		.hmac_len = SCTP_SHA256_SIG_SIZE,
 | |
| 	}
 | |
| #endif
 | |
| };
 | |
| 
 | |
| 
 | |
| void sctp_auth_key_put(struct sctp_auth_bytes *key)
 | |
| {
 | |
| 	if (!key)
 | |
| 		return;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&key->refcnt)) {
 | |
| 		kfree(key);
 | |
| 		SCTP_DBG_OBJCNT_DEC(keys);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Create a new key structure of a given length */
 | |
| static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
 | |
| {
 | |
| 	struct sctp_auth_bytes *key;
 | |
| 
 | |
| 	/* Verify that we are not going to overflow INT_MAX */
 | |
| 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Allocate the shared key */
 | |
| 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
 | |
| 	if (!key)
 | |
| 		return NULL;
 | |
| 
 | |
| 	key->len = key_len;
 | |
| 	atomic_set(&key->refcnt, 1);
 | |
| 	SCTP_DBG_OBJCNT_INC(keys);
 | |
| 
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| /* Create a new shared key container with a give key id */
 | |
| struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
 | |
| {
 | |
| 	struct sctp_shared_key *new;
 | |
| 
 | |
| 	/* Allocate the shared key container */
 | |
| 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
 | |
| 	if (!new)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&new->key_list);
 | |
| 	new->key_id = key_id;
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /* Free the shared key structure */
 | |
| static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
 | |
| {
 | |
| 	BUG_ON(!list_empty(&sh_key->key_list));
 | |
| 	sctp_auth_key_put(sh_key->key);
 | |
| 	sh_key->key = NULL;
 | |
| 	kfree(sh_key);
 | |
| }
 | |
| 
 | |
| /* Destroy the entire key list.  This is done during the
 | |
|  * associon and endpoint free process.
 | |
|  */
 | |
| void sctp_auth_destroy_keys(struct list_head *keys)
 | |
| {
 | |
| 	struct sctp_shared_key *ep_key;
 | |
| 	struct sctp_shared_key *tmp;
 | |
| 
 | |
| 	if (list_empty(keys))
 | |
| 		return;
 | |
| 
 | |
| 	key_for_each_safe(ep_key, tmp, keys) {
 | |
| 		list_del_init(&ep_key->key_list);
 | |
| 		sctp_auth_shkey_free(ep_key);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Compare two byte vectors as numbers.  Return values
 | |
|  * are:
 | |
|  * 	  0 - vectors are equal
 | |
|  * 	< 0 - vector 1 is smaller than vector2
 | |
|  * 	> 0 - vector 1 is greater than vector2
 | |
|  *
 | |
|  * Algorithm is:
 | |
|  * 	This is performed by selecting the numerically smaller key vector...
 | |
|  *	If the key vectors are equal as numbers but differ in length ...
 | |
|  *	the shorter vector is considered smaller
 | |
|  *
 | |
|  * Examples (with small values):
 | |
|  * 	000123456789 > 123456789 (first number is longer)
 | |
|  * 	000123456789 < 234567891 (second number is larger numerically)
 | |
|  * 	123456789 > 2345678 	 (first number is both larger & longer)
 | |
|  */
 | |
| static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
 | |
| 			      struct sctp_auth_bytes *vector2)
 | |
| {
 | |
| 	int diff;
 | |
| 	int i;
 | |
| 	const __u8 *longer;
 | |
| 
 | |
| 	diff = vector1->len - vector2->len;
 | |
| 	if (diff) {
 | |
| 		longer = (diff > 0) ? vector1->data : vector2->data;
 | |
| 
 | |
| 		/* Check to see if the longer number is
 | |
| 		 * lead-zero padded.  If it is not, it
 | |
| 		 * is automatically larger numerically.
 | |
| 		 */
 | |
| 		for (i = 0; i < abs(diff); i++ ) {
 | |
| 			if (longer[i] != 0)
 | |
| 				return diff;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* lengths are the same, compare numbers */
 | |
| 	return memcmp(vector1->data, vector2->data, vector1->len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a key vector as described in SCTP-AUTH, Section 6.1
 | |
|  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 | |
|  *    parameter sent by each endpoint are concatenated as byte vectors.
 | |
|  *    These parameters include the parameter type, parameter length, and
 | |
|  *    the parameter value, but padding is omitted; all padding MUST be
 | |
|  *    removed from this concatenation before proceeding with further
 | |
|  *    computation of keys.  Parameters which were not sent are simply
 | |
|  *    omitted from the concatenation process.  The resulting two vectors
 | |
|  *    are called the two key vectors.
 | |
|  */
 | |
| static struct sctp_auth_bytes *sctp_auth_make_key_vector(
 | |
| 			sctp_random_param_t *random,
 | |
| 			sctp_chunks_param_t *chunks,
 | |
| 			sctp_hmac_algo_param_t *hmacs,
 | |
| 			gfp_t gfp)
 | |
| {
 | |
| 	struct sctp_auth_bytes *new;
 | |
| 	__u32	len;
 | |
| 	__u32	offset = 0;
 | |
| 
 | |
| 	len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
 | |
|         if (chunks)
 | |
| 		len += ntohs(chunks->param_hdr.length);
 | |
| 
 | |
| 	new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
 | |
| 	if (!new)
 | |
| 		return NULL;
 | |
| 
 | |
| 	new->len = len;
 | |
| 
 | |
| 	memcpy(new->data, random, ntohs(random->param_hdr.length));
 | |
| 	offset += ntohs(random->param_hdr.length);
 | |
| 
 | |
| 	if (chunks) {
 | |
| 		memcpy(new->data + offset, chunks,
 | |
| 			ntohs(chunks->param_hdr.length));
 | |
| 		offset += ntohs(chunks->param_hdr.length);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Make a key vector based on our local parameters */
 | |
| static struct sctp_auth_bytes *sctp_auth_make_local_vector(
 | |
| 				    const struct sctp_association *asoc,
 | |
| 				    gfp_t gfp)
 | |
| {
 | |
| 	return sctp_auth_make_key_vector(
 | |
| 				    (sctp_random_param_t*)asoc->c.auth_random,
 | |
| 				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
 | |
| 				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
 | |
| 				    gfp);
 | |
| }
 | |
| 
 | |
| /* Make a key vector based on peer's parameters */
 | |
| static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
 | |
| 				    const struct sctp_association *asoc,
 | |
| 				    gfp_t gfp)
 | |
| {
 | |
| 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
 | |
| 					 asoc->peer.peer_chunks,
 | |
| 					 asoc->peer.peer_hmacs,
 | |
| 					 gfp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Set the value of the association shared key base on the parameters
 | |
|  * given.  The algorithm is:
 | |
|  *    From the endpoint pair shared keys and the key vectors the
 | |
|  *    association shared keys are computed.  This is performed by selecting
 | |
|  *    the numerically smaller key vector and concatenating it to the
 | |
|  *    endpoint pair shared key, and then concatenating the numerically
 | |
|  *    larger key vector to that.  The result of the concatenation is the
 | |
|  *    association shared key.
 | |
|  */
 | |
| static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
 | |
| 			struct sctp_shared_key *ep_key,
 | |
| 			struct sctp_auth_bytes *first_vector,
 | |
| 			struct sctp_auth_bytes *last_vector,
 | |
| 			gfp_t gfp)
 | |
| {
 | |
| 	struct sctp_auth_bytes *secret;
 | |
| 	__u32 offset = 0;
 | |
| 	__u32 auth_len;
 | |
| 
 | |
| 	auth_len = first_vector->len + last_vector->len;
 | |
| 	if (ep_key->key)
 | |
| 		auth_len += ep_key->key->len;
 | |
| 
 | |
| 	secret = sctp_auth_create_key(auth_len, gfp);
 | |
| 	if (!secret)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (ep_key->key) {
 | |
| 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
 | |
| 		offset += ep_key->key->len;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
 | |
| 	offset += first_vector->len;
 | |
| 
 | |
| 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
 | |
| 
 | |
| 	return secret;
 | |
| }
 | |
| 
 | |
| /* Create an association shared key.  Follow the algorithm
 | |
|  * described in SCTP-AUTH, Section 6.1
 | |
|  */
 | |
| static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
 | |
| 				 const struct sctp_association *asoc,
 | |
| 				 struct sctp_shared_key *ep_key,
 | |
| 				 gfp_t gfp)
 | |
| {
 | |
| 	struct sctp_auth_bytes *local_key_vector;
 | |
| 	struct sctp_auth_bytes *peer_key_vector;
 | |
| 	struct sctp_auth_bytes	*first_vector,
 | |
| 				*last_vector;
 | |
| 	struct sctp_auth_bytes	*secret = NULL;
 | |
| 	int	cmp;
 | |
| 
 | |
| 
 | |
| 	/* Now we need to build the key vectors
 | |
| 	 * SCTP-AUTH , Section 6.1
 | |
| 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 | |
| 	 *    parameter sent by each endpoint are concatenated as byte vectors.
 | |
| 	 *    These parameters include the parameter type, parameter length, and
 | |
| 	 *    the parameter value, but padding is omitted; all padding MUST be
 | |
| 	 *    removed from this concatenation before proceeding with further
 | |
| 	 *    computation of keys.  Parameters which were not sent are simply
 | |
| 	 *    omitted from the concatenation process.  The resulting two vectors
 | |
| 	 *    are called the two key vectors.
 | |
| 	 */
 | |
| 
 | |
| 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
 | |
| 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
 | |
| 
 | |
| 	if (!peer_key_vector || !local_key_vector)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Figure out the order in which the key_vectors will be
 | |
| 	 * added to the endpoint shared key.
 | |
| 	 * SCTP-AUTH, Section 6.1:
 | |
| 	 *   This is performed by selecting the numerically smaller key
 | |
| 	 *   vector and concatenating it to the endpoint pair shared
 | |
| 	 *   key, and then concatenating the numerically larger key
 | |
| 	 *   vector to that.  If the key vectors are equal as numbers
 | |
| 	 *   but differ in length, then the concatenation order is the
 | |
| 	 *   endpoint shared key, followed by the shorter key vector,
 | |
| 	 *   followed by the longer key vector.  Otherwise, the key
 | |
| 	 *   vectors are identical, and may be concatenated to the
 | |
| 	 *   endpoint pair key in any order.
 | |
| 	 */
 | |
| 	cmp = sctp_auth_compare_vectors(local_key_vector,
 | |
| 					peer_key_vector);
 | |
| 	if (cmp < 0) {
 | |
| 		first_vector = local_key_vector;
 | |
| 		last_vector = peer_key_vector;
 | |
| 	} else {
 | |
| 		first_vector = peer_key_vector;
 | |
| 		last_vector = local_key_vector;
 | |
| 	}
 | |
| 
 | |
| 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
 | |
| 					    gfp);
 | |
| out:
 | |
| 	kfree(local_key_vector);
 | |
| 	kfree(peer_key_vector);
 | |
| 
 | |
| 	return secret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Populate the association overlay list with the list
 | |
|  * from the endpoint.
 | |
|  */
 | |
| int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
 | |
| 				struct sctp_association *asoc,
 | |
| 				gfp_t gfp)
 | |
| {
 | |
| 	struct sctp_shared_key *sh_key;
 | |
| 	struct sctp_shared_key *new;
 | |
| 
 | |
| 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
 | |
| 
 | |
| 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
 | |
| 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
 | |
| 		if (!new)
 | |
| 			goto nomem;
 | |
| 
 | |
| 		new->key = sh_key->key;
 | |
| 		sctp_auth_key_hold(new->key);
 | |
| 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Public interface to creat the association shared key.
 | |
|  * See code above for the algorithm.
 | |
|  */
 | |
| int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
 | |
| {
 | |
| 	struct sctp_auth_bytes	*secret;
 | |
| 	struct sctp_shared_key *ep_key;
 | |
| 
 | |
| 	/* If we don't support AUTH, or peer is not capable
 | |
| 	 * we don't need to do anything.
 | |
| 	 */
 | |
| 	if (!sctp_auth_enable || !asoc->peer.auth_capable)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If the key_id is non-zero and we couldn't find an
 | |
| 	 * endpoint pair shared key, we can't compute the
 | |
| 	 * secret.
 | |
| 	 * For key_id 0, endpoint pair shared key is a NULL key.
 | |
| 	 */
 | |
| 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
 | |
| 	BUG_ON(!ep_key);
 | |
| 
 | |
| 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 | |
| 	if (!secret)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sctp_auth_key_put(asoc->asoc_shared_key);
 | |
| 	asoc->asoc_shared_key = secret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Find the endpoint pair shared key based on the key_id */
 | |
| struct sctp_shared_key *sctp_auth_get_shkey(
 | |
| 				const struct sctp_association *asoc,
 | |
| 				__u16 key_id)
 | |
| {
 | |
| 	struct sctp_shared_key *key;
 | |
| 
 | |
| 	/* First search associations set of endpoint pair shared keys */
 | |
| 	key_for_each(key, &asoc->endpoint_shared_keys) {
 | |
| 		if (key->key_id == key_id)
 | |
| 			return key;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize all the possible digest transforms that we can use.  Right now
 | |
|  * now, the supported digests are SHA1 and SHA256.  We do this here once
 | |
|  * because of the restrictiong that transforms may only be allocated in
 | |
|  * user context.  This forces us to pre-allocated all possible transforms
 | |
|  * at the endpoint init time.
 | |
|  */
 | |
| int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
 | |
| {
 | |
| 	struct crypto_hash *tfm = NULL;
 | |
| 	__u16   id;
 | |
| 
 | |
| 	/* if the transforms are already allocted, we are done */
 | |
| 	if (!sctp_auth_enable) {
 | |
| 		ep->auth_hmacs = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ep->auth_hmacs)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Allocated the array of pointers to transorms */
 | |
| 	ep->auth_hmacs = kzalloc(
 | |
| 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
 | |
| 			    gfp);
 | |
| 	if (!ep->auth_hmacs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
 | |
| 
 | |
| 		/* See is we support the id.  Supported IDs have name and
 | |
| 		 * length fields set, so that we can allocated and use
 | |
| 		 * them.  We can safely just check for name, for without the
 | |
| 		 * name, we can't allocate the TFM.
 | |
| 		 */
 | |
| 		if (!sctp_hmac_list[id].hmac_name)
 | |
| 			continue;
 | |
| 
 | |
| 		/* If this TFM has been allocated, we are all set */
 | |
| 		if (ep->auth_hmacs[id])
 | |
| 			continue;
 | |
| 
 | |
| 		/* Allocate the ID */
 | |
| 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
 | |
| 					CRYPTO_ALG_ASYNC);
 | |
| 		if (IS_ERR(tfm))
 | |
| 			goto out_err;
 | |
| 
 | |
| 		ep->auth_hmacs[id] = tfm;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	/* Clean up any successful allocations */
 | |
| 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Destroy the hmac tfm array */
 | |
| void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!auth_hmacs)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
 | |
| 	{
 | |
| 		if (auth_hmacs[i])
 | |
| 			crypto_free_hash(auth_hmacs[i]);
 | |
| 	}
 | |
| 	kfree(auth_hmacs);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
 | |
| {
 | |
| 	return &sctp_hmac_list[hmac_id];
 | |
| }
 | |
| 
 | |
| /* Get an hmac description information that we can use to build
 | |
|  * the AUTH chunk
 | |
|  */
 | |
| struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
 | |
| {
 | |
| 	struct sctp_hmac_algo_param *hmacs;
 | |
| 	__u16 n_elt;
 | |
| 	__u16 id = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* If we have a default entry, use it */
 | |
| 	if (asoc->default_hmac_id)
 | |
| 		return &sctp_hmac_list[asoc->default_hmac_id];
 | |
| 
 | |
| 	/* Since we do not have a default entry, find the first entry
 | |
| 	 * we support and return that.  Do not cache that id.
 | |
| 	 */
 | |
| 	hmacs = asoc->peer.peer_hmacs;
 | |
| 	if (!hmacs)
 | |
| 		return NULL;
 | |
| 
 | |
| 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 | |
| 	for (i = 0; i < n_elt; i++) {
 | |
| 		id = ntohs(hmacs->hmac_ids[i]);
 | |
| 
 | |
| 		/* Check the id is in the supported range */
 | |
| 		if (id > SCTP_AUTH_HMAC_ID_MAX) {
 | |
| 			id = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* See is we support the id.  Supported IDs have name and
 | |
| 		 * length fields set, so that we can allocated and use
 | |
| 		 * them.  We can safely just check for name, for without the
 | |
| 		 * name, we can't allocate the TFM.
 | |
| 		 */
 | |
| 		if (!sctp_hmac_list[id].hmac_name) {
 | |
| 			id = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (id == 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &sctp_hmac_list[id];
 | |
| }
 | |
| 
 | |
| static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
 | |
| {
 | |
| 	int  found = 0;
 | |
| 	int  i;
 | |
| 
 | |
| 	for (i = 0; i < n_elts; i++) {
 | |
| 		if (hmac_id == hmacs[i]) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /* See if the HMAC_ID is one that we claim as supported */
 | |
| int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
 | |
| 				    __be16 hmac_id)
 | |
| {
 | |
| 	struct sctp_hmac_algo_param *hmacs;
 | |
| 	__u16 n_elt;
 | |
| 
 | |
| 	if (!asoc)
 | |
| 		return 0;
 | |
| 
 | |
| 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
 | |
| 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 | |
| 
 | |
| 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 | |
|  * Section 6.1:
 | |
|  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 | |
|  *   algorithm it supports.
 | |
|  */
 | |
| void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
 | |
| 				     struct sctp_hmac_algo_param *hmacs)
 | |
| {
 | |
| 	struct sctp_endpoint *ep;
 | |
| 	__u16   id;
 | |
| 	int	i;
 | |
| 	int	n_params;
 | |
| 
 | |
| 	/* if the default id is already set, use it */
 | |
| 	if (asoc->default_hmac_id)
 | |
| 		return;
 | |
| 
 | |
| 	n_params = (ntohs(hmacs->param_hdr.length)
 | |
| 				- sizeof(sctp_paramhdr_t)) >> 1;
 | |
| 	ep = asoc->ep;
 | |
| 	for (i = 0; i < n_params; i++) {
 | |
| 		id = ntohs(hmacs->hmac_ids[i]);
 | |
| 
 | |
| 		/* Check the id is in the supported range */
 | |
| 		if (id > SCTP_AUTH_HMAC_ID_MAX)
 | |
| 			continue;
 | |
| 
 | |
| 		/* If this TFM has been allocated, use this id */
 | |
| 		if (ep->auth_hmacs[id]) {
 | |
| 			asoc->default_hmac_id = id;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Check to see if the given chunk is supposed to be authenticated */
 | |
| static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
 | |
| {
 | |
| 	unsigned short len;
 | |
| 	int found = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!param || param->param_hdr.length == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
 | |
| 
 | |
| 	/* SCTP-AUTH, Section 3.2
 | |
| 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
 | |
| 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
 | |
| 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
 | |
| 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
 | |
| 	 */
 | |
| 	for (i = 0; !found && i < len; i++) {
 | |
| 		switch (param->chunks[i]) {
 | |
| 		    case SCTP_CID_INIT:
 | |
| 		    case SCTP_CID_INIT_ACK:
 | |
| 		    case SCTP_CID_SHUTDOWN_COMPLETE:
 | |
| 		    case SCTP_CID_AUTH:
 | |
| 			break;
 | |
| 
 | |
| 		    default:
 | |
| 			if (param->chunks[i] == chunk)
 | |
| 			    found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /* Check if peer requested that this chunk is authenticated */
 | |
| int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
 | |
| {
 | |
| 	if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
 | |
| 		return 0;
 | |
| 
 | |
| 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
 | |
| }
 | |
| 
 | |
| /* Check if we requested that peer authenticate this chunk. */
 | |
| int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
 | |
| {
 | |
| 	if (!sctp_auth_enable || !asoc)
 | |
| 		return 0;
 | |
| 
 | |
| 	return __sctp_auth_cid(chunk,
 | |
| 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
 | |
| }
 | |
| 
 | |
| /* SCTP-AUTH: Section 6.2:
 | |
|  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 | |
|  *    the hash function H as described by the MAC Identifier and the shared
 | |
|  *    association key K based on the endpoint pair shared key described by
 | |
|  *    the shared key identifier.  The 'data' used for the computation of
 | |
|  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 | |
|  *    zero (as shown in Figure 6) followed by all chunks that are placed
 | |
|  *    after the AUTH chunk in the SCTP packet.
 | |
|  */
 | |
| void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
 | |
| 			      struct sk_buff *skb,
 | |
| 			      struct sctp_auth_chunk *auth,
 | |
| 			      gfp_t gfp)
 | |
| {
 | |
| 	struct scatterlist sg;
 | |
| 	struct hash_desc desc;
 | |
| 	struct sctp_auth_bytes *asoc_key;
 | |
| 	__u16 key_id, hmac_id;
 | |
| 	__u8 *digest;
 | |
| 	unsigned char *end;
 | |
| 	int free_key = 0;
 | |
| 
 | |
| 	/* Extract the info we need:
 | |
| 	 * - hmac id
 | |
| 	 * - key id
 | |
| 	 */
 | |
| 	key_id = ntohs(auth->auth_hdr.shkey_id);
 | |
| 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
 | |
| 
 | |
| 	if (key_id == asoc->active_key_id)
 | |
| 		asoc_key = asoc->asoc_shared_key;
 | |
| 	else {
 | |
| 		struct sctp_shared_key *ep_key;
 | |
| 
 | |
| 		ep_key = sctp_auth_get_shkey(asoc, key_id);
 | |
| 		if (!ep_key)
 | |
| 			return;
 | |
| 
 | |
| 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 | |
| 		if (!asoc_key)
 | |
| 			return;
 | |
| 
 | |
| 		free_key = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* set up scatter list */
 | |
| 	end = skb_tail_pointer(skb);
 | |
| 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
 | |
| 
 | |
| 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
 | |
| 	desc.flags = 0;
 | |
| 
 | |
| 	digest = auth->auth_hdr.hmac;
 | |
| 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
 | |
| 		goto free;
 | |
| 
 | |
| 	crypto_hash_digest(&desc, &sg, sg.length, digest);
 | |
| 
 | |
| free:
 | |
| 	if (free_key)
 | |
| 		sctp_auth_key_put(asoc_key);
 | |
| }
 | |
| 
 | |
| /* API Helpers */
 | |
| 
 | |
| /* Add a chunk to the endpoint authenticated chunk list */
 | |
| int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
 | |
| {
 | |
| 	struct sctp_chunks_param *p = ep->auth_chunk_list;
 | |
| 	__u16 nchunks;
 | |
| 	__u16 param_len;
 | |
| 
 | |
| 	/* If this chunk is already specified, we are done */
 | |
| 	if (__sctp_auth_cid(chunk_id, p))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check if we can add this chunk to the array */
 | |
| 	param_len = ntohs(p->param_hdr.length);
 | |
| 	nchunks = param_len - sizeof(sctp_paramhdr_t);
 | |
| 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	p->chunks[nchunks] = chunk_id;
 | |
| 	p->param_hdr.length = htons(param_len + 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Add hmac identifires to the endpoint list of supported hmac ids */
 | |
| int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
 | |
| 			   struct sctp_hmacalgo *hmacs)
 | |
| {
 | |
| 	int has_sha1 = 0;
 | |
| 	__u16 id;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Scan the list looking for unsupported id.  Also make sure that
 | |
| 	 * SHA1 is specified.
 | |
| 	 */
 | |
| 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
 | |
| 		id = hmacs->shmac_idents[i];
 | |
| 
 | |
| 		if (id > SCTP_AUTH_HMAC_ID_MAX)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
 | |
| 			has_sha1 = 1;
 | |
| 
 | |
| 		if (!sctp_hmac_list[id].hmac_name)
 | |
| 			return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (!has_sha1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
 | |
| 		hmacs->shmac_num_idents * sizeof(__u16));
 | |
| 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
 | |
| 				hmacs->shmac_num_idents * sizeof(__u16));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Set a new shared key on either endpoint or association.  If the
 | |
|  * the key with a same ID already exists, replace the key (remove the
 | |
|  * old key and add a new one).
 | |
|  */
 | |
| int sctp_auth_set_key(struct sctp_endpoint *ep,
 | |
| 		      struct sctp_association *asoc,
 | |
| 		      struct sctp_authkey *auth_key)
 | |
| {
 | |
| 	struct sctp_shared_key *cur_key = NULL;
 | |
| 	struct sctp_auth_bytes *key;
 | |
| 	struct list_head *sh_keys;
 | |
| 	int replace = 0;
 | |
| 
 | |
| 	/* Try to find the given key id to see if
 | |
| 	 * we are doing a replace, or adding a new key
 | |
| 	 */
 | |
| 	if (asoc)
 | |
| 		sh_keys = &asoc->endpoint_shared_keys;
 | |
| 	else
 | |
| 		sh_keys = &ep->endpoint_shared_keys;
 | |
| 
 | |
| 	key_for_each(cur_key, sh_keys) {
 | |
| 		if (cur_key->key_id == auth_key->sca_keynumber) {
 | |
| 			replace = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If we are not replacing a key id, we need to allocate
 | |
| 	 * a shared key.
 | |
| 	 */
 | |
| 	if (!replace) {
 | |
| 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
 | |
| 						 GFP_KERNEL);
 | |
| 		if (!cur_key)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Create a new key data based on the info passed in */
 | |
| 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
 | |
| 	if (!key)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 | |
| 
 | |
| 	/* If we are replacing, remove the old keys data from the
 | |
| 	 * key id.  If we are adding new key id, add it to the
 | |
| 	 * list.
 | |
| 	 */
 | |
| 	if (replace)
 | |
| 		sctp_auth_key_put(cur_key->key);
 | |
| 	else
 | |
| 		list_add(&cur_key->key_list, sh_keys);
 | |
| 
 | |
| 	cur_key->key = key;
 | |
| 	sctp_auth_key_hold(key);
 | |
| 
 | |
| 	return 0;
 | |
| nomem:
 | |
| 	if (!replace)
 | |
| 		sctp_auth_shkey_free(cur_key);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int sctp_auth_set_active_key(struct sctp_endpoint *ep,
 | |
| 			     struct sctp_association *asoc,
 | |
| 			     __u16  key_id)
 | |
| {
 | |
| 	struct sctp_shared_key *key;
 | |
| 	struct list_head *sh_keys;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	/* The key identifier MUST correst to an existing key */
 | |
| 	if (asoc)
 | |
| 		sh_keys = &asoc->endpoint_shared_keys;
 | |
| 	else
 | |
| 		sh_keys = &ep->endpoint_shared_keys;
 | |
| 
 | |
| 	key_for_each(key, sh_keys) {
 | |
| 		if (key->key_id == key_id) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!found)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (asoc) {
 | |
| 		asoc->active_key_id = key_id;
 | |
| 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 | |
| 	} else
 | |
| 		ep->active_key_id = key_id;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sctp_auth_del_key_id(struct sctp_endpoint *ep,
 | |
| 			 struct sctp_association *asoc,
 | |
| 			 __u16  key_id)
 | |
| {
 | |
| 	struct sctp_shared_key *key;
 | |
| 	struct list_head *sh_keys;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	/* The key identifier MUST NOT be the current active key
 | |
| 	 * The key identifier MUST correst to an existing key
 | |
| 	 */
 | |
| 	if (asoc) {
 | |
| 		if (asoc->active_key_id == key_id)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		sh_keys = &asoc->endpoint_shared_keys;
 | |
| 	} else {
 | |
| 		if (ep->active_key_id == key_id)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		sh_keys = &ep->endpoint_shared_keys;
 | |
| 	}
 | |
| 
 | |
| 	key_for_each(key, sh_keys) {
 | |
| 		if (key->key_id == key_id) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!found)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Delete the shared key */
 | |
| 	list_del_init(&key->key_list);
 | |
| 	sctp_auth_shkey_free(key);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |