mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 0427f06aec
			
		
	
	
		0427f06aec
		
	
	
	
	
		
			
			We initiate vgpu->workload_q_head via for_each_engine macro which may skip unavailable engines. So we should follow this rule anywhere. The function intel_vgpu_reset_execlist is not aware of this. Kernel crash when touch a uninitiated vgpu->workload_q_head[x]. Let's fix it by using for_each_engine_masked and skip unavailable engine ID. Meanwhile rename ring_bitmap to general name engine_mask. v2: remove unnecessary engine activation check (zhenyu) Signed-off-by: Du, Changbin <changbin.du@intel.com> Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
		
			
				
	
	
		
			859 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			859 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice (including the next
 | |
|  * paragraph) shall be included in all copies or substantial portions of the
 | |
|  * Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  *
 | |
|  * Authors:
 | |
|  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
 | |
|  *    Zhi Wang <zhi.a.wang@intel.com>
 | |
|  *
 | |
|  * Contributors:
 | |
|  *    Min He <min.he@intel.com>
 | |
|  *    Bing Niu <bing.niu@intel.com>
 | |
|  *    Ping Gao <ping.a.gao@intel.com>
 | |
|  *    Tina Zhang <tina.zhang@intel.com>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "i915_drv.h"
 | |
| #include "gvt.h"
 | |
| 
 | |
| #define _EL_OFFSET_STATUS       0x234
 | |
| #define _EL_OFFSET_STATUS_BUF   0x370
 | |
| #define _EL_OFFSET_STATUS_PTR   0x3A0
 | |
| 
 | |
| #define execlist_ring_mmio(gvt, ring_id, offset) \
 | |
| 	(gvt->dev_priv->engine[ring_id]->mmio_base + (offset))
 | |
| 
 | |
| #define valid_context(ctx) ((ctx)->valid)
 | |
| #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
 | |
| 		((a)->lrca == (b)->lrca))
 | |
| 
 | |
| static int context_switch_events[] = {
 | |
| 	[RCS] = RCS_AS_CONTEXT_SWITCH,
 | |
| 	[BCS] = BCS_AS_CONTEXT_SWITCH,
 | |
| 	[VCS] = VCS_AS_CONTEXT_SWITCH,
 | |
| 	[VCS2] = VCS2_AS_CONTEXT_SWITCH,
 | |
| 	[VECS] = VECS_AS_CONTEXT_SWITCH,
 | |
| };
 | |
| 
 | |
| static int ring_id_to_context_switch_event(int ring_id)
 | |
| {
 | |
| 	if (WARN_ON(ring_id < RCS && ring_id >
 | |
| 				ARRAY_SIZE(context_switch_events)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return context_switch_events[ring_id];
 | |
| }
 | |
| 
 | |
| static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist)
 | |
| {
 | |
| 	gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n",
 | |
| 			execlist->running_slot ?
 | |
| 			execlist->running_slot->index : -1,
 | |
| 			execlist->running_context ?
 | |
| 			execlist->running_context->context_id : 0,
 | |
| 			execlist->pending_slot ?
 | |
| 			execlist->pending_slot->index : -1);
 | |
| 
 | |
| 	execlist->running_slot = execlist->pending_slot;
 | |
| 	execlist->pending_slot = NULL;
 | |
| 	execlist->running_context = execlist->running_context ?
 | |
| 		&execlist->running_slot->ctx[0] : NULL;
 | |
| 
 | |
| 	gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n",
 | |
| 			execlist->running_slot ?
 | |
| 			execlist->running_slot->index : -1,
 | |
| 			execlist->running_context ?
 | |
| 			execlist->running_context->context_id : 0,
 | |
| 			execlist->pending_slot ?
 | |
| 			execlist->pending_slot->index : -1);
 | |
| }
 | |
| 
 | |
| static void emulate_execlist_status(struct intel_vgpu_execlist *execlist)
 | |
| {
 | |
| 	struct intel_vgpu_execlist_slot *running = execlist->running_slot;
 | |
| 	struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
 | |
| 	struct execlist_ctx_descriptor_format *desc = execlist->running_context;
 | |
| 	struct intel_vgpu *vgpu = execlist->vgpu;
 | |
| 	struct execlist_status_format status;
 | |
| 	int ring_id = execlist->ring_id;
 | |
| 	u32 status_reg = execlist_ring_mmio(vgpu->gvt,
 | |
| 			ring_id, _EL_OFFSET_STATUS);
 | |
| 
 | |
| 	status.ldw = vgpu_vreg(vgpu, status_reg);
 | |
| 	status.udw = vgpu_vreg(vgpu, status_reg + 4);
 | |
| 
 | |
| 	if (running) {
 | |
| 		status.current_execlist_pointer = !!running->index;
 | |
| 		status.execlist_write_pointer = !!!running->index;
 | |
| 		status.execlist_0_active = status.execlist_0_valid =
 | |
| 			!!!(running->index);
 | |
| 		status.execlist_1_active = status.execlist_1_valid =
 | |
| 			!!(running->index);
 | |
| 	} else {
 | |
| 		status.context_id = 0;
 | |
| 		status.execlist_0_active = status.execlist_0_valid = 0;
 | |
| 		status.execlist_1_active = status.execlist_1_valid = 0;
 | |
| 	}
 | |
| 
 | |
| 	status.context_id = desc ? desc->context_id : 0;
 | |
| 	status.execlist_queue_full = !!(pending);
 | |
| 
 | |
| 	vgpu_vreg(vgpu, status_reg) = status.ldw;
 | |
| 	vgpu_vreg(vgpu, status_reg + 4) = status.udw;
 | |
| 
 | |
| 	gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n",
 | |
| 		vgpu->id, status_reg, status.ldw, status.udw);
 | |
| }
 | |
| 
 | |
| static void emulate_csb_update(struct intel_vgpu_execlist *execlist,
 | |
| 		struct execlist_context_status_format *status,
 | |
| 		bool trigger_interrupt_later)
 | |
| {
 | |
| 	struct intel_vgpu *vgpu = execlist->vgpu;
 | |
| 	int ring_id = execlist->ring_id;
 | |
| 	struct execlist_context_status_pointer_format ctx_status_ptr;
 | |
| 	u32 write_pointer;
 | |
| 	u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset;
 | |
| 
 | |
| 	ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
 | |
| 			_EL_OFFSET_STATUS_PTR);
 | |
| 	ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
 | |
| 			_EL_OFFSET_STATUS_BUF);
 | |
| 
 | |
| 	ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
 | |
| 
 | |
| 	write_pointer = ctx_status_ptr.write_ptr;
 | |
| 
 | |
| 	if (write_pointer == 0x7)
 | |
| 		write_pointer = 0;
 | |
| 	else {
 | |
| 		++write_pointer;
 | |
| 		write_pointer %= 0x6;
 | |
| 	}
 | |
| 
 | |
| 	offset = ctx_status_buf_reg + write_pointer * 8;
 | |
| 
 | |
| 	vgpu_vreg(vgpu, offset) = status->ldw;
 | |
| 	vgpu_vreg(vgpu, offset + 4) = status->udw;
 | |
| 
 | |
| 	ctx_status_ptr.write_ptr = write_pointer;
 | |
| 	vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
 | |
| 
 | |
| 	gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n",
 | |
| 		vgpu->id, write_pointer, offset, status->ldw, status->udw);
 | |
| 
 | |
| 	if (trigger_interrupt_later)
 | |
| 		return;
 | |
| 
 | |
| 	intel_vgpu_trigger_virtual_event(vgpu,
 | |
| 			ring_id_to_context_switch_event(execlist->ring_id));
 | |
| }
 | |
| 
 | |
| static int emulate_execlist_ctx_schedule_out(
 | |
| 		struct intel_vgpu_execlist *execlist,
 | |
| 		struct execlist_ctx_descriptor_format *ctx)
 | |
| {
 | |
| 	struct intel_vgpu_execlist_slot *running = execlist->running_slot;
 | |
| 	struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
 | |
| 	struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0];
 | |
| 	struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1];
 | |
| 	struct execlist_context_status_format status;
 | |
| 
 | |
| 	memset(&status, 0, sizeof(status));
 | |
| 
 | |
| 	gvt_dbg_el("schedule out context id %x\n", ctx->context_id);
 | |
| 
 | |
| 	if (WARN_ON(!same_context(ctx, execlist->running_context))) {
 | |
| 		gvt_err("schedule out context is not running context,"
 | |
| 				"ctx id %x running ctx id %x\n",
 | |
| 				ctx->context_id,
 | |
| 				execlist->running_context->context_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */
 | |
| 	if (valid_context(ctx1) && same_context(ctx0, ctx)) {
 | |
| 		gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n");
 | |
| 
 | |
| 		execlist->running_context = ctx1;
 | |
| 
 | |
| 		emulate_execlist_status(execlist);
 | |
| 
 | |
| 		status.context_complete = status.element_switch = 1;
 | |
| 		status.context_id = ctx->context_id;
 | |
| 
 | |
| 		emulate_csb_update(execlist, &status, false);
 | |
| 		/*
 | |
| 		 * ctx1 is not valid, ctx == ctx0
 | |
| 		 * ctx1 is valid, ctx1 == ctx
 | |
| 		 *	--> last element is finished
 | |
| 		 * emulate:
 | |
| 		 *	active-to-idle if there is *no* pending execlist
 | |
| 		 *	context-complete if there *is* pending execlist
 | |
| 		 */
 | |
| 	} else if ((!valid_context(ctx1) && same_context(ctx0, ctx))
 | |
| 			|| (valid_context(ctx1) && same_context(ctx1, ctx))) {
 | |
| 		gvt_dbg_el("need to switch virtual execlist slot\n");
 | |
| 
 | |
| 		switch_virtual_execlist_slot(execlist);
 | |
| 
 | |
| 		emulate_execlist_status(execlist);
 | |
| 
 | |
| 		status.context_complete = status.active_to_idle = 1;
 | |
| 		status.context_id = ctx->context_id;
 | |
| 
 | |
| 		if (!pending) {
 | |
| 			emulate_csb_update(execlist, &status, false);
 | |
| 		} else {
 | |
| 			emulate_csb_update(execlist, &status, true);
 | |
| 
 | |
| 			memset(&status, 0, sizeof(status));
 | |
| 
 | |
| 			status.idle_to_active = 1;
 | |
| 			status.context_id = 0;
 | |
| 
 | |
| 			emulate_csb_update(execlist, &status, false);
 | |
| 		}
 | |
| 	} else {
 | |
| 		WARN_ON(1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct intel_vgpu_execlist_slot *get_next_execlist_slot(
 | |
| 		struct intel_vgpu_execlist *execlist)
 | |
| {
 | |
| 	struct intel_vgpu *vgpu = execlist->vgpu;
 | |
| 	int ring_id = execlist->ring_id;
 | |
| 	u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
 | |
| 			_EL_OFFSET_STATUS);
 | |
| 	struct execlist_status_format status;
 | |
| 
 | |
| 	status.ldw = vgpu_vreg(vgpu, status_reg);
 | |
| 	status.udw = vgpu_vreg(vgpu, status_reg + 4);
 | |
| 
 | |
| 	if (status.execlist_queue_full) {
 | |
| 		gvt_err("virtual execlist slots are full\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return &execlist->slot[status.execlist_write_pointer];
 | |
| }
 | |
| 
 | |
| static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist,
 | |
| 		struct execlist_ctx_descriptor_format ctx[2])
 | |
| {
 | |
| 	struct intel_vgpu_execlist_slot *running = execlist->running_slot;
 | |
| 	struct intel_vgpu_execlist_slot *slot =
 | |
| 		get_next_execlist_slot(execlist);
 | |
| 
 | |
| 	struct execlist_ctx_descriptor_format *ctx0, *ctx1;
 | |
| 	struct execlist_context_status_format status;
 | |
| 
 | |
| 	gvt_dbg_el("emulate schedule-in\n");
 | |
| 
 | |
| 	if (!slot) {
 | |
| 		gvt_err("no available execlist slot\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	memset(&status, 0, sizeof(status));
 | |
| 	memset(slot->ctx, 0, sizeof(slot->ctx));
 | |
| 
 | |
| 	slot->ctx[0] = ctx[0];
 | |
| 	slot->ctx[1] = ctx[1];
 | |
| 
 | |
| 	gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n",
 | |
| 			slot->index, ctx[0].context_id,
 | |
| 			ctx[1].context_id);
 | |
| 
 | |
| 	/*
 | |
| 	 * no running execlist, make this write bundle as running execlist
 | |
| 	 * -> idle-to-active
 | |
| 	 */
 | |
| 	if (!running) {
 | |
| 		gvt_dbg_el("no current running execlist\n");
 | |
| 
 | |
| 		execlist->running_slot = slot;
 | |
| 		execlist->pending_slot = NULL;
 | |
| 		execlist->running_context = &slot->ctx[0];
 | |
| 
 | |
| 		gvt_dbg_el("running slot index %d running context %x\n",
 | |
| 				execlist->running_slot->index,
 | |
| 				execlist->running_context->context_id);
 | |
| 
 | |
| 		emulate_execlist_status(execlist);
 | |
| 
 | |
| 		status.idle_to_active = 1;
 | |
| 		status.context_id = 0;
 | |
| 
 | |
| 		emulate_csb_update(execlist, &status, false);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ctx0 = &running->ctx[0];
 | |
| 	ctx1 = &running->ctx[1];
 | |
| 
 | |
| 	gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n",
 | |
| 		running->index, ctx0->context_id, ctx1->context_id);
 | |
| 
 | |
| 	/*
 | |
| 	 * already has an running execlist
 | |
| 	 *	a. running ctx1 is valid,
 | |
| 	 *	   ctx0 is finished, and running ctx1 == new execlist ctx[0]
 | |
| 	 *	b. running ctx1 is not valid,
 | |
| 	 *	   ctx0 == new execlist ctx[0]
 | |
| 	 * ----> lite-restore + preempted
 | |
| 	 */
 | |
| 	if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) &&
 | |
| 		/* condition a */
 | |
| 		(!same_context(ctx0, execlist->running_context))) ||
 | |
| 			(!valid_context(ctx1) &&
 | |
| 			 same_context(ctx0, &slot->ctx[0]))) { /* condition b */
 | |
| 		gvt_dbg_el("need to switch virtual execlist slot\n");
 | |
| 
 | |
| 		execlist->pending_slot = slot;
 | |
| 		switch_virtual_execlist_slot(execlist);
 | |
| 
 | |
| 		emulate_execlist_status(execlist);
 | |
| 
 | |
| 		status.lite_restore = status.preempted = 1;
 | |
| 		status.context_id = ctx[0].context_id;
 | |
| 
 | |
| 		emulate_csb_update(execlist, &status, false);
 | |
| 	} else {
 | |
| 		gvt_dbg_el("emulate as pending slot\n");
 | |
| 		/*
 | |
| 		 * otherwise
 | |
| 		 * --> emulate pending execlist exist + but no preemption case
 | |
| 		 */
 | |
| 		execlist->pending_slot = slot;
 | |
| 		emulate_execlist_status(execlist);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_workload(struct intel_vgpu_workload *workload)
 | |
| {
 | |
| 	intel_vgpu_unpin_mm(workload->shadow_mm);
 | |
| 	intel_gvt_mm_unreference(workload->shadow_mm);
 | |
| 	kmem_cache_free(workload->vgpu->workloads, workload);
 | |
| }
 | |
| 
 | |
| #define get_desc_from_elsp_dwords(ed, i) \
 | |
| 	((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2]))
 | |
| 
 | |
| 
 | |
| #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
 | |
| #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
 | |
| static int set_gma_to_bb_cmd(struct intel_shadow_bb_entry *entry_obj,
 | |
| 			     unsigned long add, int gmadr_bytes)
 | |
| {
 | |
| 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8))
 | |
| 		return -1;
 | |
| 
 | |
| 	*((u32 *)(entry_obj->bb_start_cmd_va + (1 << 2))) = add &
 | |
| 		BATCH_BUFFER_ADDR_MASK;
 | |
| 	if (gmadr_bytes == 8) {
 | |
| 		*((u32 *)(entry_obj->bb_start_cmd_va + (2 << 2))) =
 | |
| 			add & BATCH_BUFFER_ADDR_HIGH_MASK;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
 | |
| {
 | |
| 	int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
 | |
| 
 | |
| 	/* pin the gem object to ggtt */
 | |
| 	if (!list_empty(&workload->shadow_bb)) {
 | |
| 		struct intel_shadow_bb_entry *entry_obj =
 | |
| 			list_first_entry(&workload->shadow_bb,
 | |
| 					 struct intel_shadow_bb_entry,
 | |
| 					 list);
 | |
| 		struct intel_shadow_bb_entry *temp;
 | |
| 
 | |
| 		list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb,
 | |
| 				list) {
 | |
| 			struct i915_vma *vma;
 | |
| 
 | |
| 			vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0,
 | |
| 						       4, 0);
 | |
| 			if (IS_ERR(vma)) {
 | |
| 				gvt_err("Cannot pin\n");
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			/* FIXME: we are not tracking our pinned VMA leaving it
 | |
| 			 * up to the core to fix up the stray pin_count upon
 | |
| 			 * free.
 | |
| 			 */
 | |
| 
 | |
| 			/* update the relocate gma with shadow batch buffer*/
 | |
| 			set_gma_to_bb_cmd(entry_obj,
 | |
| 					  i915_ggtt_offset(vma),
 | |
| 					  gmadr_bytes);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
 | |
| {
 | |
| 	int ring_id = wa_ctx->workload->ring_id;
 | |
| 	struct i915_gem_context *shadow_ctx =
 | |
| 		wa_ctx->workload->vgpu->shadow_ctx;
 | |
| 	struct drm_i915_gem_object *ctx_obj =
 | |
| 		shadow_ctx->engine[ring_id].state->obj;
 | |
| 	struct execlist_ring_context *shadow_ring_context;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
 | |
| 	shadow_ring_context = kmap_atomic(page);
 | |
| 
 | |
| 	shadow_ring_context->bb_per_ctx_ptr.val =
 | |
| 		(shadow_ring_context->bb_per_ctx_ptr.val &
 | |
| 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
 | |
| 	shadow_ring_context->rcs_indirect_ctx.val =
 | |
| 		(shadow_ring_context->rcs_indirect_ctx.val &
 | |
| 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
 | |
| 
 | |
| 	kunmap_atomic(shadow_ring_context);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
 | |
| {
 | |
| 	struct i915_vma *vma;
 | |
| 	unsigned char *per_ctx_va =
 | |
| 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
 | |
| 		wa_ctx->indirect_ctx.size;
 | |
| 
 | |
| 	if (wa_ctx->indirect_ctx.size == 0)
 | |
| 		return;
 | |
| 
 | |
| 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
 | |
| 				       0, CACHELINE_BYTES, 0);
 | |
| 	if (IS_ERR(vma)) {
 | |
| 		gvt_err("Cannot pin indirect ctx obj\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME: we are not tracking our pinned VMA leaving it
 | |
| 	 * up to the core to fix up the stray pin_count upon
 | |
| 	 * free.
 | |
| 	 */
 | |
| 
 | |
| 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
 | |
| 
 | |
| 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
 | |
| 	memset(per_ctx_va, 0, CACHELINE_BYTES);
 | |
| 
 | |
| 	update_wa_ctx_2_shadow_ctx(wa_ctx);
 | |
| }
 | |
| 
 | |
| static int prepare_execlist_workload(struct intel_vgpu_workload *workload)
 | |
| {
 | |
| 	struct intel_vgpu *vgpu = workload->vgpu;
 | |
| 	struct execlist_ctx_descriptor_format ctx[2];
 | |
| 	int ring_id = workload->ring_id;
 | |
| 
 | |
| 	intel_vgpu_pin_mm(workload->shadow_mm);
 | |
| 	intel_vgpu_sync_oos_pages(workload->vgpu);
 | |
| 	intel_vgpu_flush_post_shadow(workload->vgpu);
 | |
| 	prepare_shadow_batch_buffer(workload);
 | |
| 	prepare_shadow_wa_ctx(&workload->wa_ctx);
 | |
| 	if (!workload->emulate_schedule_in)
 | |
| 		return 0;
 | |
| 
 | |
| 	ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1);
 | |
| 	ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0);
 | |
| 
 | |
| 	return emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx);
 | |
| }
 | |
| 
 | |
| static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
 | |
| {
 | |
| 	/* release all the shadow batch buffer */
 | |
| 	if (!list_empty(&workload->shadow_bb)) {
 | |
| 		struct intel_shadow_bb_entry *entry_obj =
 | |
| 			list_first_entry(&workload->shadow_bb,
 | |
| 					 struct intel_shadow_bb_entry,
 | |
| 					 list);
 | |
| 		struct intel_shadow_bb_entry *temp;
 | |
| 
 | |
| 		list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb,
 | |
| 					 list) {
 | |
| 			i915_gem_object_unpin_map(entry_obj->obj);
 | |
| 			i915_gem_object_put(entry_obj->obj);
 | |
| 			list_del(&entry_obj->list);
 | |
| 			kfree(entry_obj);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
 | |
| {
 | |
| 	if (wa_ctx->indirect_ctx.size == 0)
 | |
| 		return;
 | |
| 
 | |
| 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
 | |
| 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
 | |
| }
 | |
| 
 | |
| static int complete_execlist_workload(struct intel_vgpu_workload *workload)
 | |
| {
 | |
| 	struct intel_vgpu *vgpu = workload->vgpu;
 | |
| 	struct intel_vgpu_execlist *execlist =
 | |
| 		&vgpu->execlist[workload->ring_id];
 | |
| 	struct intel_vgpu_workload *next_workload;
 | |
| 	struct list_head *next = workload_q_head(vgpu, workload->ring_id)->next;
 | |
| 	bool lite_restore = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	gvt_dbg_el("complete workload %p status %d\n", workload,
 | |
| 			workload->status);
 | |
| 
 | |
| 	release_shadow_batch_buffer(workload);
 | |
| 	release_shadow_wa_ctx(&workload->wa_ctx);
 | |
| 
 | |
| 	if (workload->status || vgpu->resetting)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!list_empty(workload_q_head(vgpu, workload->ring_id))) {
 | |
| 		struct execlist_ctx_descriptor_format *this_desc, *next_desc;
 | |
| 
 | |
| 		next_workload = container_of(next,
 | |
| 				struct intel_vgpu_workload, list);
 | |
| 		this_desc = &workload->ctx_desc;
 | |
| 		next_desc = &next_workload->ctx_desc;
 | |
| 
 | |
| 		lite_restore = same_context(this_desc, next_desc);
 | |
| 	}
 | |
| 
 | |
| 	if (lite_restore) {
 | |
| 		gvt_dbg_el("next context == current - no schedule-out\n");
 | |
| 		free_workload(workload);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| out:
 | |
| 	free_workload(workload);
 | |
| 	return 0;
 | |
| err:
 | |
| 	free_workload(workload);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define RING_CTX_OFF(x) \
 | |
| 	offsetof(struct execlist_ring_context, x)
 | |
| 
 | |
| static void read_guest_pdps(struct intel_vgpu *vgpu,
 | |
| 		u64 ring_context_gpa, u32 pdp[8])
 | |
| {
 | |
| 	u64 gpa;
 | |
| 	int i;
 | |
| 
 | |
| 	gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		intel_gvt_hypervisor_read_gpa(vgpu,
 | |
| 				gpa + i * 8, &pdp[7 - i], 4);
 | |
| }
 | |
| 
 | |
| static int prepare_mm(struct intel_vgpu_workload *workload)
 | |
| {
 | |
| 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
 | |
| 	struct intel_vgpu_mm *mm;
 | |
| 	int page_table_level;
 | |
| 	u32 pdp[8];
 | |
| 
 | |
| 	if (desc->addressing_mode == 1) { /* legacy 32-bit */
 | |
| 		page_table_level = 3;
 | |
| 	} else if (desc->addressing_mode == 3) { /* legacy 64 bit */
 | |
| 		page_table_level = 4;
 | |
| 	} else {
 | |
| 		gvt_err("Advanced Context mode(SVM) is not supported!\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp);
 | |
| 
 | |
| 	mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp);
 | |
| 	if (mm) {
 | |
| 		intel_gvt_mm_reference(mm);
 | |
| 	} else {
 | |
| 
 | |
| 		mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT,
 | |
| 				pdp, page_table_level, 0);
 | |
| 		if (IS_ERR(mm)) {
 | |
| 			gvt_err("fail to create mm object.\n");
 | |
| 			return PTR_ERR(mm);
 | |
| 		}
 | |
| 	}
 | |
| 	workload->shadow_mm = mm;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define get_last_workload(q) \
 | |
| 	(list_empty(q) ? NULL : container_of(q->prev, \
 | |
| 	struct intel_vgpu_workload, list))
 | |
| 
 | |
| static int submit_context(struct intel_vgpu *vgpu, int ring_id,
 | |
| 		struct execlist_ctx_descriptor_format *desc,
 | |
| 		bool emulate_schedule_in)
 | |
| {
 | |
| 	struct list_head *q = workload_q_head(vgpu, ring_id);
 | |
| 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
 | |
| 	struct intel_vgpu_workload *workload = NULL;
 | |
| 	u64 ring_context_gpa;
 | |
| 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
 | |
| 	int ret;
 | |
| 
 | |
| 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
 | |
| 			(u32)((desc->lrca + 1) << GTT_PAGE_SHIFT));
 | |
| 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
 | |
| 		gvt_err("invalid guest context LRCA: %x\n", desc->lrca);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
 | |
| 			RING_CTX_OFF(ring_header.val), &head, 4);
 | |
| 
 | |
| 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
 | |
| 			RING_CTX_OFF(ring_tail.val), &tail, 4);
 | |
| 
 | |
| 	head &= RB_HEAD_OFF_MASK;
 | |
| 	tail &= RB_TAIL_OFF_MASK;
 | |
| 
 | |
| 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
 | |
| 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
 | |
| 		gvt_dbg_el("ctx head %x real head %lx\n", head,
 | |
| 				last_workload->rb_tail);
 | |
| 		/*
 | |
| 		 * cannot use guest context head pointer here,
 | |
| 		 * as it might not be updated at this time
 | |
| 		 */
 | |
| 		head = last_workload->rb_tail;
 | |
| 	}
 | |
| 
 | |
| 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
 | |
| 
 | |
| 	workload = kmem_cache_zalloc(vgpu->workloads, GFP_KERNEL);
 | |
| 	if (!workload)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* record some ring buffer register values for scan and shadow */
 | |
| 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
 | |
| 			RING_CTX_OFF(rb_start.val), &start, 4);
 | |
| 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
 | |
| 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
 | |
| 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
 | |
| 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&workload->list);
 | |
| 	INIT_LIST_HEAD(&workload->shadow_bb);
 | |
| 
 | |
| 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
 | |
| 	atomic_set(&workload->shadow_ctx_active, 0);
 | |
| 
 | |
| 	workload->vgpu = vgpu;
 | |
| 	workload->ring_id = ring_id;
 | |
| 	workload->ctx_desc = *desc;
 | |
| 	workload->ring_context_gpa = ring_context_gpa;
 | |
| 	workload->rb_head = head;
 | |
| 	workload->rb_tail = tail;
 | |
| 	workload->rb_start = start;
 | |
| 	workload->rb_ctl = ctl;
 | |
| 	workload->prepare = prepare_execlist_workload;
 | |
| 	workload->complete = complete_execlist_workload;
 | |
| 	workload->status = -EINPROGRESS;
 | |
| 	workload->emulate_schedule_in = emulate_schedule_in;
 | |
| 
 | |
| 	if (ring_id == RCS) {
 | |
| 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
 | |
| 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
 | |
| 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
 | |
| 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
 | |
| 
 | |
| 		workload->wa_ctx.indirect_ctx.guest_gma =
 | |
| 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
 | |
| 		workload->wa_ctx.indirect_ctx.size =
 | |
| 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
 | |
| 			CACHELINE_BYTES;
 | |
| 		workload->wa_ctx.per_ctx.guest_gma =
 | |
| 			per_ctx & PER_CTX_ADDR_MASK;
 | |
| 		workload->wa_ctx.workload = workload;
 | |
| 
 | |
| 		WARN_ON(workload->wa_ctx.indirect_ctx.size && !(per_ctx & 0x1));
 | |
| 	}
 | |
| 
 | |
| 	if (emulate_schedule_in)
 | |
| 		memcpy(&workload->elsp_dwords,
 | |
| 				&vgpu->execlist[ring_id].elsp_dwords,
 | |
| 				sizeof(workload->elsp_dwords));
 | |
| 
 | |
| 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
 | |
| 			workload, ring_id, head, tail, start, ctl);
 | |
| 
 | |
| 	gvt_dbg_el("workload %p emulate schedule_in %d\n", workload,
 | |
| 			emulate_schedule_in);
 | |
| 
 | |
| 	ret = prepare_mm(workload);
 | |
| 	if (ret) {
 | |
| 		kmem_cache_free(vgpu->workloads, workload);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	queue_workload(workload);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id)
 | |
| {
 | |
| 	struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
 | |
| 	struct execlist_ctx_descriptor_format *desc[2], valid_desc[2];
 | |
| 	unsigned long valid_desc_bitmap = 0;
 | |
| 	bool emulate_schedule_in = true;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	memset(valid_desc, 0, sizeof(valid_desc));
 | |
| 
 | |
| 	desc[0] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1);
 | |
| 	desc[1] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0);
 | |
| 
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		if (!desc[i]->valid)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!desc[i]->privilege_access) {
 | |
| 			gvt_err("vgpu%d: unexpected GGTT elsp submission\n",
 | |
| 					vgpu->id);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* TODO: add another guest context checks here. */
 | |
| 		set_bit(i, &valid_desc_bitmap);
 | |
| 		valid_desc[i] = *desc[i];
 | |
| 	}
 | |
| 
 | |
| 	if (!valid_desc_bitmap) {
 | |
| 		gvt_err("vgpu%d: no valid desc in a elsp submission\n",
 | |
| 				vgpu->id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(0, (void *)&valid_desc_bitmap) &&
 | |
| 			test_bit(1, (void *)&valid_desc_bitmap)) {
 | |
| 		gvt_err("vgpu%d: weird elsp submission, desc 0 is not valid\n",
 | |
| 				vgpu->id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* submit workload */
 | |
| 	for_each_set_bit(i, (void *)&valid_desc_bitmap, 2) {
 | |
| 		ret = submit_context(vgpu, ring_id, &valid_desc[i],
 | |
| 				emulate_schedule_in);
 | |
| 		if (ret) {
 | |
| 			gvt_err("vgpu%d: fail to schedule workload\n",
 | |
| 					vgpu->id);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		emulate_schedule_in = false;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id)
 | |
| {
 | |
| 	struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
 | |
| 	struct execlist_context_status_pointer_format ctx_status_ptr;
 | |
| 	u32 ctx_status_ptr_reg;
 | |
| 
 | |
| 	memset(execlist, 0, sizeof(*execlist));
 | |
| 
 | |
| 	execlist->vgpu = vgpu;
 | |
| 	execlist->ring_id = ring_id;
 | |
| 	execlist->slot[0].index = 0;
 | |
| 	execlist->slot[1].index = 1;
 | |
| 
 | |
| 	ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
 | |
| 			_EL_OFFSET_STATUS_PTR);
 | |
| 
 | |
| 	ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
 | |
| 	ctx_status_ptr.read_ptr = ctx_status_ptr.write_ptr = 0x7;
 | |
| 	vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
 | |
| }
 | |
| 
 | |
| void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu)
 | |
| {
 | |
| 	kmem_cache_destroy(vgpu->workloads);
 | |
| }
 | |
| 
 | |
| int intel_vgpu_init_execlist(struct intel_vgpu *vgpu)
 | |
| {
 | |
| 	enum intel_engine_id i;
 | |
| 	struct intel_engine_cs *engine;
 | |
| 
 | |
| 	/* each ring has a virtual execlist engine */
 | |
| 	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
 | |
| 		init_vgpu_execlist(vgpu, i);
 | |
| 		INIT_LIST_HEAD(&vgpu->workload_q_head[i]);
 | |
| 	}
 | |
| 
 | |
| 	vgpu->workloads = kmem_cache_create("gvt-g vgpu workload",
 | |
| 			sizeof(struct intel_vgpu_workload), 0,
 | |
| 			SLAB_HWCACHE_ALIGN,
 | |
| 			NULL);
 | |
| 
 | |
| 	if (!vgpu->workloads)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu,
 | |
| 		unsigned long engine_mask)
 | |
| {
 | |
| 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
 | |
| 	struct intel_engine_cs *engine;
 | |
| 	struct intel_vgpu_workload *pos, *n;
 | |
| 	unsigned int tmp;
 | |
| 
 | |
| 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
 | |
| 		/* free the unsubmited workload in the queue */
 | |
| 		list_for_each_entry_safe(pos, n,
 | |
| 			&vgpu->workload_q_head[engine->id], list) {
 | |
| 			list_del_init(&pos->list);
 | |
| 			free_workload(pos);
 | |
| 		}
 | |
| 
 | |
| 		init_vgpu_execlist(vgpu, engine->id);
 | |
| 	}
 | |
| }
 |