mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 bcea3f96e1
			
		
	
	
		bcea3f96e1
		
	
	
	
	
		
			
			Add the SPDX License header to ease license compliance management. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
		
			
				
	
	
		
			635 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			635 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * trace_hwlatdetect.c - A simple Hardware Latency detector.
 | |
|  *
 | |
|  * Use this tracer to detect large system latencies induced by the behavior of
 | |
|  * certain underlying system hardware or firmware, independent of Linux itself.
 | |
|  * The code was developed originally to detect the presence of SMIs on Intel
 | |
|  * and AMD systems, although there is no dependency upon x86 herein.
 | |
|  *
 | |
|  * The classical example usage of this tracer is in detecting the presence of
 | |
|  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
 | |
|  * somewhat special form of hardware interrupt spawned from earlier CPU debug
 | |
|  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
 | |
|  * LPC (or other device) to generate a special interrupt under certain
 | |
|  * circumstances, for example, upon expiration of a special SMI timer device,
 | |
|  * due to certain external thermal readings, on certain I/O address accesses,
 | |
|  * and other situations. An SMI hits a special CPU pin, triggers a special
 | |
|  * SMI mode (complete with special memory map), and the OS is unaware.
 | |
|  *
 | |
|  * Although certain hardware-inducing latencies are necessary (for example,
 | |
|  * a modern system often requires an SMI handler for correct thermal control
 | |
|  * and remote management) they can wreak havoc upon any OS-level performance
 | |
|  * guarantees toward low-latency, especially when the OS is not even made
 | |
|  * aware of the presence of these interrupts. For this reason, we need a
 | |
|  * somewhat brute force mechanism to detect these interrupts. In this case,
 | |
|  * we do it by hogging all of the CPU(s) for configurable timer intervals,
 | |
|  * sampling the built-in CPU timer, looking for discontiguous readings.
 | |
|  *
 | |
|  * WARNING: This implementation necessarily introduces latencies. Therefore,
 | |
|  *          you should NEVER use this tracer while running in a production
 | |
|  *          environment requiring any kind of low-latency performance
 | |
|  *          guarantee(s).
 | |
|  *
 | |
|  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
 | |
|  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
 | |
|  *
 | |
|  * Includes useful feedback from Clark Williams <clark@redhat.com>
 | |
|  *
 | |
|  */
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/tracefs.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include "trace.h"
 | |
| 
 | |
| static struct trace_array	*hwlat_trace;
 | |
| 
 | |
| #define U64STR_SIZE		22			/* 20 digits max */
 | |
| 
 | |
| #define BANNER			"hwlat_detector: "
 | |
| #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
 | |
| #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
 | |
| #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
 | |
| 
 | |
| /* sampling thread*/
 | |
| static struct task_struct *hwlat_kthread;
 | |
| 
 | |
| static struct dentry *hwlat_sample_width;	/* sample width us */
 | |
| static struct dentry *hwlat_sample_window;	/* sample window us */
 | |
| 
 | |
| /* Save the previous tracing_thresh value */
 | |
| static unsigned long save_tracing_thresh;
 | |
| 
 | |
| /* NMI timestamp counters */
 | |
| static u64 nmi_ts_start;
 | |
| static u64 nmi_total_ts;
 | |
| static int nmi_count;
 | |
| static int nmi_cpu;
 | |
| 
 | |
| /* Tells NMIs to call back to the hwlat tracer to record timestamps */
 | |
| bool trace_hwlat_callback_enabled;
 | |
| 
 | |
| /* If the user changed threshold, remember it */
 | |
| static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
 | |
| 
 | |
| /* Individual latency samples are stored here when detected. */
 | |
| struct hwlat_sample {
 | |
| 	u64			seqnum;		/* unique sequence */
 | |
| 	u64			duration;	/* delta */
 | |
| 	u64			outer_duration;	/* delta (outer loop) */
 | |
| 	u64			nmi_total_ts;	/* Total time spent in NMIs */
 | |
| 	struct timespec64	timestamp;	/* wall time */
 | |
| 	int			nmi_count;	/* # NMIs during this sample */
 | |
| };
 | |
| 
 | |
| /* keep the global state somewhere. */
 | |
| static struct hwlat_data {
 | |
| 
 | |
| 	struct mutex lock;		/* protect changes */
 | |
| 
 | |
| 	u64	count;			/* total since reset */
 | |
| 
 | |
| 	u64	sample_window;		/* total sampling window (on+off) */
 | |
| 	u64	sample_width;		/* active sampling portion of window */
 | |
| 
 | |
| } hwlat_data = {
 | |
| 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
 | |
| 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
 | |
| };
 | |
| 
 | |
| static void trace_hwlat_sample(struct hwlat_sample *sample)
 | |
| {
 | |
| 	struct trace_array *tr = hwlat_trace;
 | |
| 	struct trace_event_call *call = &event_hwlat;
 | |
| 	struct ring_buffer *buffer = tr->trace_buffer.buffer;
 | |
| 	struct ring_buffer_event *event;
 | |
| 	struct hwlat_entry *entry;
 | |
| 	unsigned long flags;
 | |
| 	int pc;
 | |
| 
 | |
| 	pc = preempt_count();
 | |
| 	local_save_flags(flags);
 | |
| 
 | |
| 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
 | |
| 					  flags, pc);
 | |
| 	if (!event)
 | |
| 		return;
 | |
| 	entry	= ring_buffer_event_data(event);
 | |
| 	entry->seqnum			= sample->seqnum;
 | |
| 	entry->duration			= sample->duration;
 | |
| 	entry->outer_duration		= sample->outer_duration;
 | |
| 	entry->timestamp		= sample->timestamp;
 | |
| 	entry->nmi_total_ts		= sample->nmi_total_ts;
 | |
| 	entry->nmi_count		= sample->nmi_count;
 | |
| 
 | |
| 	if (!call_filter_check_discard(call, entry, buffer, event))
 | |
| 		trace_buffer_unlock_commit_nostack(buffer, event);
 | |
| }
 | |
| 
 | |
| /* Macros to encapsulate the time capturing infrastructure */
 | |
| #define time_type	u64
 | |
| #define time_get()	trace_clock_local()
 | |
| #define time_to_us(x)	div_u64(x, 1000)
 | |
| #define time_sub(a, b)	((a) - (b))
 | |
| #define init_time(a, b)	(a = b)
 | |
| #define time_u64(a)	a
 | |
| 
 | |
| void trace_hwlat_callback(bool enter)
 | |
| {
 | |
| 	if (smp_processor_id() != nmi_cpu)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently trace_clock_local() calls sched_clock() and the
 | |
| 	 * generic version is not NMI safe.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
 | |
| 		if (enter)
 | |
| 			nmi_ts_start = time_get();
 | |
| 		else
 | |
| 			nmi_total_ts = time_get() - nmi_ts_start;
 | |
| 	}
 | |
| 
 | |
| 	if (enter)
 | |
| 		nmi_count++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_sample - sample the CPU TSC and look for likely hardware latencies
 | |
|  *
 | |
|  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
 | |
|  * hardware-induced latency. Called with interrupts disabled and with
 | |
|  * hwlat_data.lock held.
 | |
|  */
 | |
| static int get_sample(void)
 | |
| {
 | |
| 	struct trace_array *tr = hwlat_trace;
 | |
| 	time_type start, t1, t2, last_t2;
 | |
| 	s64 diff, total, last_total = 0;
 | |
| 	u64 sample = 0;
 | |
| 	u64 thresh = tracing_thresh;
 | |
| 	u64 outer_sample = 0;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
 | |
| 
 | |
| 	nmi_cpu = smp_processor_id();
 | |
| 	nmi_total_ts = 0;
 | |
| 	nmi_count = 0;
 | |
| 	/* Make sure NMIs see this first */
 | |
| 	barrier();
 | |
| 
 | |
| 	trace_hwlat_callback_enabled = true;
 | |
| 
 | |
| 	init_time(last_t2, 0);
 | |
| 	start = time_get(); /* start timestamp */
 | |
| 
 | |
| 	do {
 | |
| 
 | |
| 		t1 = time_get();	/* we'll look for a discontinuity */
 | |
| 		t2 = time_get();
 | |
| 
 | |
| 		if (time_u64(last_t2)) {
 | |
| 			/* Check the delta from outer loop (t2 to next t1) */
 | |
| 			diff = time_to_us(time_sub(t1, last_t2));
 | |
| 			/* This shouldn't happen */
 | |
| 			if (diff < 0) {
 | |
| 				pr_err(BANNER "time running backwards\n");
 | |
| 				goto out;
 | |
| 			}
 | |
| 			if (diff > outer_sample)
 | |
| 				outer_sample = diff;
 | |
| 		}
 | |
| 		last_t2 = t2;
 | |
| 
 | |
| 		total = time_to_us(time_sub(t2, start)); /* sample width */
 | |
| 
 | |
| 		/* Check for possible overflows */
 | |
| 		if (total < last_total) {
 | |
| 			pr_err("Time total overflowed\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		last_total = total;
 | |
| 
 | |
| 		/* This checks the inner loop (t1 to t2) */
 | |
| 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
 | |
| 
 | |
| 		/* This shouldn't happen */
 | |
| 		if (diff < 0) {
 | |
| 			pr_err(BANNER "time running backwards\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (diff > sample)
 | |
| 			sample = diff; /* only want highest value */
 | |
| 
 | |
| 	} while (total <= hwlat_data.sample_width);
 | |
| 
 | |
| 	barrier(); /* finish the above in the view for NMIs */
 | |
| 	trace_hwlat_callback_enabled = false;
 | |
| 	barrier(); /* Make sure nmi_total_ts is no longer updated */
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* If we exceed the threshold value, we have found a hardware latency */
 | |
| 	if (sample > thresh || outer_sample > thresh) {
 | |
| 		struct hwlat_sample s;
 | |
| 
 | |
| 		ret = 1;
 | |
| 
 | |
| 		/* We read in microseconds */
 | |
| 		if (nmi_total_ts)
 | |
| 			do_div(nmi_total_ts, NSEC_PER_USEC);
 | |
| 
 | |
| 		hwlat_data.count++;
 | |
| 		s.seqnum = hwlat_data.count;
 | |
| 		s.duration = sample;
 | |
| 		s.outer_duration = outer_sample;
 | |
| 		ktime_get_real_ts64(&s.timestamp);
 | |
| 		s.nmi_total_ts = nmi_total_ts;
 | |
| 		s.nmi_count = nmi_count;
 | |
| 		trace_hwlat_sample(&s);
 | |
| 
 | |
| 		/* Keep a running maximum ever recorded hardware latency */
 | |
| 		if (sample > tr->max_latency)
 | |
| 			tr->max_latency = sample;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct cpumask save_cpumask;
 | |
| static bool disable_migrate;
 | |
| 
 | |
| static void move_to_next_cpu(void)
 | |
| {
 | |
| 	struct cpumask *current_mask = &save_cpumask;
 | |
| 	int next_cpu;
 | |
| 
 | |
| 	if (disable_migrate)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * If for some reason the user modifies the CPU affinity
 | |
| 	 * of this thread, than stop migrating for the duration
 | |
| 	 * of the current test.
 | |
| 	 */
 | |
| 	if (!cpumask_equal(current_mask, ¤t->cpus_allowed))
 | |
| 		goto disable;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
 | |
| 	next_cpu = cpumask_next(smp_processor_id(), current_mask);
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	if (next_cpu >= nr_cpu_ids)
 | |
| 		next_cpu = cpumask_first(current_mask);
 | |
| 
 | |
| 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
 | |
| 		goto disable;
 | |
| 
 | |
| 	cpumask_clear(current_mask);
 | |
| 	cpumask_set_cpu(next_cpu, current_mask);
 | |
| 
 | |
| 	sched_setaffinity(0, current_mask);
 | |
| 	return;
 | |
| 
 | |
|  disable:
 | |
| 	disable_migrate = true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
 | |
|  *
 | |
|  * Used to periodically sample the CPU TSC via a call to get_sample. We
 | |
|  * disable interrupts, which does (intentionally) introduce latency since we
 | |
|  * need to ensure nothing else might be running (and thus preempting).
 | |
|  * Obviously this should never be used in production environments.
 | |
|  *
 | |
|  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
 | |
|  */
 | |
| static int kthread_fn(void *data)
 | |
| {
 | |
| 	u64 interval;
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 
 | |
| 		move_to_next_cpu();
 | |
| 
 | |
| 		local_irq_disable();
 | |
| 		get_sample();
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 		mutex_lock(&hwlat_data.lock);
 | |
| 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
 | |
| 		mutex_unlock(&hwlat_data.lock);
 | |
| 
 | |
| 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
 | |
| 
 | |
| 		/* Always sleep for at least 1ms */
 | |
| 		if (interval < 1)
 | |
| 			interval = 1;
 | |
| 
 | |
| 		if (msleep_interruptible(interval))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * start_kthread - Kick off the hardware latency sampling/detector kthread
 | |
|  *
 | |
|  * This starts the kernel thread that will sit and sample the CPU timestamp
 | |
|  * counter (TSC or similar) and look for potential hardware latencies.
 | |
|  */
 | |
| static int start_kthread(struct trace_array *tr)
 | |
| {
 | |
| 	struct cpumask *current_mask = &save_cpumask;
 | |
| 	struct task_struct *kthread;
 | |
| 	int next_cpu;
 | |
| 
 | |
| 	if (WARN_ON(hwlat_kthread))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Just pick the first CPU on first iteration */
 | |
| 	current_mask = &save_cpumask;
 | |
| 	get_online_cpus();
 | |
| 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
 | |
| 	put_online_cpus();
 | |
| 	next_cpu = cpumask_first(current_mask);
 | |
| 
 | |
| 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
 | |
| 	if (IS_ERR(kthread)) {
 | |
| 		pr_err(BANNER "could not start sampling thread\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	cpumask_clear(current_mask);
 | |
| 	cpumask_set_cpu(next_cpu, current_mask);
 | |
| 	sched_setaffinity(kthread->pid, current_mask);
 | |
| 
 | |
| 	hwlat_kthread = kthread;
 | |
| 	wake_up_process(kthread);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * stop_kthread - Inform the hardware latency samping/detector kthread to stop
 | |
|  *
 | |
|  * This kicks the running hardware latency sampling/detector kernel thread and
 | |
|  * tells it to stop sampling now. Use this on unload and at system shutdown.
 | |
|  */
 | |
| static void stop_kthread(void)
 | |
| {
 | |
| 	if (!hwlat_kthread)
 | |
| 		return;
 | |
| 	kthread_stop(hwlat_kthread);
 | |
| 	hwlat_kthread = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hwlat_read - Wrapper read function for reading both window and width
 | |
|  * @filp: The active open file structure
 | |
|  * @ubuf: The userspace provided buffer to read value into
 | |
|  * @cnt: The maximum number of bytes to read
 | |
|  * @ppos: The current "file" position
 | |
|  *
 | |
|  * This function provides a generic read implementation for the global state
 | |
|  * "hwlat_data" structure filesystem entries.
 | |
|  */
 | |
| static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
 | |
| 			  size_t cnt, loff_t *ppos)
 | |
| {
 | |
| 	char buf[U64STR_SIZE];
 | |
| 	u64 *entry = filp->private_data;
 | |
| 	u64 val;
 | |
| 	int len;
 | |
| 
 | |
| 	if (!entry)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (cnt > sizeof(buf))
 | |
| 		cnt = sizeof(buf);
 | |
| 
 | |
| 	val = *entry;
 | |
| 
 | |
| 	len = snprintf(buf, sizeof(buf), "%llu\n", val);
 | |
| 
 | |
| 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hwlat_width_write - Write function for "width" entry
 | |
|  * @filp: The active open file structure
 | |
|  * @ubuf: The user buffer that contains the value to write
 | |
|  * @cnt: The maximum number of bytes to write to "file"
 | |
|  * @ppos: The current position in @file
 | |
|  *
 | |
|  * This function provides a write implementation for the "width" interface
 | |
|  * to the hardware latency detector. It can be used to configure
 | |
|  * for how many us of the total window us we will actively sample for any
 | |
|  * hardware-induced latency periods. Obviously, it is not possible to
 | |
|  * sample constantly and have the system respond to a sample reader, or,
 | |
|  * worse, without having the system appear to have gone out to lunch. It
 | |
|  * is enforced that width is less that the total window size.
 | |
|  */
 | |
| static ssize_t
 | |
| hwlat_width_write(struct file *filp, const char __user *ubuf,
 | |
| 		  size_t cnt, loff_t *ppos)
 | |
| {
 | |
| 	u64 val;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	mutex_lock(&hwlat_data.lock);
 | |
| 	if (val < hwlat_data.sample_window)
 | |
| 		hwlat_data.sample_width = val;
 | |
| 	else
 | |
| 		err = -EINVAL;
 | |
| 	mutex_unlock(&hwlat_data.lock);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hwlat_window_write - Write function for "window" entry
 | |
|  * @filp: The active open file structure
 | |
|  * @ubuf: The user buffer that contains the value to write
 | |
|  * @cnt: The maximum number of bytes to write to "file"
 | |
|  * @ppos: The current position in @file
 | |
|  *
 | |
|  * This function provides a write implementation for the "window" interface
 | |
|  * to the hardware latency detetector. The window is the total time
 | |
|  * in us that will be considered one sample period. Conceptually, windows
 | |
|  * occur back-to-back and contain a sample width period during which
 | |
|  * actual sampling occurs. Can be used to write a new total window size. It
 | |
|  * is enfoced that any value written must be greater than the sample width
 | |
|  * size, or an error results.
 | |
|  */
 | |
| static ssize_t
 | |
| hwlat_window_write(struct file *filp, const char __user *ubuf,
 | |
| 		   size_t cnt, loff_t *ppos)
 | |
| {
 | |
| 	u64 val;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	mutex_lock(&hwlat_data.lock);
 | |
| 	if (hwlat_data.sample_width < val)
 | |
| 		hwlat_data.sample_window = val;
 | |
| 	else
 | |
| 		err = -EINVAL;
 | |
| 	mutex_unlock(&hwlat_data.lock);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| static const struct file_operations width_fops = {
 | |
| 	.open		= tracing_open_generic,
 | |
| 	.read		= hwlat_read,
 | |
| 	.write		= hwlat_width_write,
 | |
| };
 | |
| 
 | |
| static const struct file_operations window_fops = {
 | |
| 	.open		= tracing_open_generic,
 | |
| 	.read		= hwlat_read,
 | |
| 	.write		= hwlat_window_write,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * init_tracefs - A function to initialize the tracefs interface files
 | |
|  *
 | |
|  * This function creates entries in tracefs for "hwlat_detector".
 | |
|  * It creates the hwlat_detector directory in the tracing directory,
 | |
|  * and within that directory is the count, width and window files to
 | |
|  * change and view those values.
 | |
|  */
 | |
| static int init_tracefs(void)
 | |
| {
 | |
| 	struct dentry *d_tracer;
 | |
| 	struct dentry *top_dir;
 | |
| 
 | |
| 	d_tracer = tracing_init_dentry();
 | |
| 	if (IS_ERR(d_tracer))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
 | |
| 	if (!top_dir)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	hwlat_sample_window = tracefs_create_file("window", 0640,
 | |
| 						  top_dir,
 | |
| 						  &hwlat_data.sample_window,
 | |
| 						  &window_fops);
 | |
| 	if (!hwlat_sample_window)
 | |
| 		goto err;
 | |
| 
 | |
| 	hwlat_sample_width = tracefs_create_file("width", 0644,
 | |
| 						 top_dir,
 | |
| 						 &hwlat_data.sample_width,
 | |
| 						 &width_fops);
 | |
| 	if (!hwlat_sample_width)
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err:
 | |
| 	tracefs_remove_recursive(top_dir);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void hwlat_tracer_start(struct trace_array *tr)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = start_kthread(tr);
 | |
| 	if (err)
 | |
| 		pr_err(BANNER "Cannot start hwlat kthread\n");
 | |
| }
 | |
| 
 | |
| static void hwlat_tracer_stop(struct trace_array *tr)
 | |
| {
 | |
| 	stop_kthread();
 | |
| }
 | |
| 
 | |
| static bool hwlat_busy;
 | |
| 
 | |
| static int hwlat_tracer_init(struct trace_array *tr)
 | |
| {
 | |
| 	/* Only allow one instance to enable this */
 | |
| 	if (hwlat_busy)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	hwlat_trace = tr;
 | |
| 
 | |
| 	disable_migrate = false;
 | |
| 	hwlat_data.count = 0;
 | |
| 	tr->max_latency = 0;
 | |
| 	save_tracing_thresh = tracing_thresh;
 | |
| 
 | |
| 	/* tracing_thresh is in nsecs, we speak in usecs */
 | |
| 	if (!tracing_thresh)
 | |
| 		tracing_thresh = last_tracing_thresh;
 | |
| 
 | |
| 	if (tracer_tracing_is_on(tr))
 | |
| 		hwlat_tracer_start(tr);
 | |
| 
 | |
| 	hwlat_busy = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hwlat_tracer_reset(struct trace_array *tr)
 | |
| {
 | |
| 	stop_kthread();
 | |
| 
 | |
| 	/* the tracing threshold is static between runs */
 | |
| 	last_tracing_thresh = tracing_thresh;
 | |
| 
 | |
| 	tracing_thresh = save_tracing_thresh;
 | |
| 	hwlat_busy = false;
 | |
| }
 | |
| 
 | |
| static struct tracer hwlat_tracer __read_mostly =
 | |
| {
 | |
| 	.name		= "hwlat",
 | |
| 	.init		= hwlat_tracer_init,
 | |
| 	.reset		= hwlat_tracer_reset,
 | |
| 	.start		= hwlat_tracer_start,
 | |
| 	.stop		= hwlat_tracer_stop,
 | |
| 	.allow_instances = true,
 | |
| };
 | |
| 
 | |
| __init static int init_hwlat_tracer(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_init(&hwlat_data.lock);
 | |
| 
 | |
| 	ret = register_tracer(&hwlat_tracer);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	init_tracefs();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(init_hwlat_tracer);
 |