mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 666245d9a4
			
		
	
	
		666245d9a4
		
	
	
	
	
		
			
			Made suggested modifications from checkpatch in reference to ERROR: trailing whitespace Signed-off-by: Jack Qiu <jack.qiu@huawei.com> Reviewed-by: Ritesh Harjani <riteshh@linux.ibm.com> Link: https://lore.kernel.org/r/20210409042035.15516-1-jack.qiu@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
		
			
				
	
	
		
			6451 lines
		
	
	
		
			180 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6451 lines
		
	
	
		
			180 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 | |
|  * Written by Alex Tomas <alex@clusterfs.com>
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mballoc.c contains the multiblocks allocation routines
 | |
|  */
 | |
| 
 | |
| #include "ext4_jbd2.h"
 | |
| #include "mballoc.h"
 | |
| #include <linux/log2.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/nospec.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <trace/events/ext4.h>
 | |
| 
 | |
| /*
 | |
|  * MUSTDO:
 | |
|  *   - test ext4_ext_search_left() and ext4_ext_search_right()
 | |
|  *   - search for metadata in few groups
 | |
|  *
 | |
|  * TODO v4:
 | |
|  *   - normalization should take into account whether file is still open
 | |
|  *   - discard preallocations if no free space left (policy?)
 | |
|  *   - don't normalize tails
 | |
|  *   - quota
 | |
|  *   - reservation for superuser
 | |
|  *
 | |
|  * TODO v3:
 | |
|  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 | |
|  *   - track min/max extents in each group for better group selection
 | |
|  *   - mb_mark_used() may allocate chunk right after splitting buddy
 | |
|  *   - tree of groups sorted by number of free blocks
 | |
|  *   - error handling
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The allocation request involve request for multiple number of blocks
 | |
|  * near to the goal(block) value specified.
 | |
|  *
 | |
|  * During initialization phase of the allocator we decide to use the
 | |
|  * group preallocation or inode preallocation depending on the size of
 | |
|  * the file. The size of the file could be the resulting file size we
 | |
|  * would have after allocation, or the current file size, which ever
 | |
|  * is larger. If the size is less than sbi->s_mb_stream_request we
 | |
|  * select to use the group preallocation. The default value of
 | |
|  * s_mb_stream_request is 16 blocks. This can also be tuned via
 | |
|  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 | |
|  * terms of number of blocks.
 | |
|  *
 | |
|  * The main motivation for having small file use group preallocation is to
 | |
|  * ensure that we have small files closer together on the disk.
 | |
|  *
 | |
|  * First stage the allocator looks at the inode prealloc list,
 | |
|  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 | |
|  * spaces for this particular inode. The inode prealloc space is
 | |
|  * represented as:
 | |
|  *
 | |
|  * pa_lstart -> the logical start block for this prealloc space
 | |
|  * pa_pstart -> the physical start block for this prealloc space
 | |
|  * pa_len    -> length for this prealloc space (in clusters)
 | |
|  * pa_free   ->  free space available in this prealloc space (in clusters)
 | |
|  *
 | |
|  * The inode preallocation space is used looking at the _logical_ start
 | |
|  * block. If only the logical file block falls within the range of prealloc
 | |
|  * space we will consume the particular prealloc space. This makes sure that
 | |
|  * we have contiguous physical blocks representing the file blocks
 | |
|  *
 | |
|  * The important thing to be noted in case of inode prealloc space is that
 | |
|  * we don't modify the values associated to inode prealloc space except
 | |
|  * pa_free.
 | |
|  *
 | |
|  * If we are not able to find blocks in the inode prealloc space and if we
 | |
|  * have the group allocation flag set then we look at the locality group
 | |
|  * prealloc space. These are per CPU prealloc list represented as
 | |
|  *
 | |
|  * ext4_sb_info.s_locality_groups[smp_processor_id()]
 | |
|  *
 | |
|  * The reason for having a per cpu locality group is to reduce the contention
 | |
|  * between CPUs. It is possible to get scheduled at this point.
 | |
|  *
 | |
|  * The locality group prealloc space is used looking at whether we have
 | |
|  * enough free space (pa_free) within the prealloc space.
 | |
|  *
 | |
|  * If we can't allocate blocks via inode prealloc or/and locality group
 | |
|  * prealloc then we look at the buddy cache. The buddy cache is represented
 | |
|  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 | |
|  * mapped to the buddy and bitmap information regarding different
 | |
|  * groups. The buddy information is attached to buddy cache inode so that
 | |
|  * we can access them through the page cache. The information regarding
 | |
|  * each group is loaded via ext4_mb_load_buddy.  The information involve
 | |
|  * block bitmap and buddy information. The information are stored in the
 | |
|  * inode as:
 | |
|  *
 | |
|  *  {                        page                        }
 | |
|  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 | |
|  *
 | |
|  *
 | |
|  * one block each for bitmap and buddy information.  So for each group we
 | |
|  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
 | |
|  * blocksize) blocks.  So it can have information regarding groups_per_page
 | |
|  * which is blocks_per_page/2
 | |
|  *
 | |
|  * The buddy cache inode is not stored on disk. The inode is thrown
 | |
|  * away when the filesystem is unmounted.
 | |
|  *
 | |
|  * We look for count number of blocks in the buddy cache. If we were able
 | |
|  * to locate that many free blocks we return with additional information
 | |
|  * regarding rest of the contiguous physical block available
 | |
|  *
 | |
|  * Before allocating blocks via buddy cache we normalize the request
 | |
|  * blocks. This ensure we ask for more blocks that we needed. The extra
 | |
|  * blocks that we get after allocation is added to the respective prealloc
 | |
|  * list. In case of inode preallocation we follow a list of heuristics
 | |
|  * based on file size. This can be found in ext4_mb_normalize_request. If
 | |
|  * we are doing a group prealloc we try to normalize the request to
 | |
|  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 | |
|  * dependent on the cluster size; for non-bigalloc file systems, it is
 | |
|  * 512 blocks. This can be tuned via
 | |
|  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
 | |
|  * terms of number of blocks. If we have mounted the file system with -O
 | |
|  * stripe=<value> option the group prealloc request is normalized to the
 | |
|  * smallest multiple of the stripe value (sbi->s_stripe) which is
 | |
|  * greater than the default mb_group_prealloc.
 | |
|  *
 | |
|  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
 | |
|  * structures in two data structures:
 | |
|  *
 | |
|  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
 | |
|  *
 | |
|  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
 | |
|  *
 | |
|  *    This is an array of lists where the index in the array represents the
 | |
|  *    largest free order in the buddy bitmap of the participating group infos of
 | |
|  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
 | |
|  *    number of buddy bitmap orders possible) number of lists. Group-infos are
 | |
|  *    placed in appropriate lists.
 | |
|  *
 | |
|  * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
 | |
|  *
 | |
|  *    Locking: sbi->s_mb_rb_lock (rwlock)
 | |
|  *
 | |
|  *    This is a red black tree consisting of group infos and the tree is sorted
 | |
|  *    by average fragment sizes (which is calculated as ext4_group_info->bb_free
 | |
|  *    / ext4_group_info->bb_fragments).
 | |
|  *
 | |
|  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
 | |
|  * structures to decide the order in which groups are to be traversed for
 | |
|  * fulfilling an allocation request.
 | |
|  *
 | |
|  * At CR = 0, we look for groups which have the largest_free_order >= the order
 | |
|  * of the request. We directly look at the largest free order list in the data
 | |
|  * structure (1) above where largest_free_order = order of the request. If that
 | |
|  * list is empty, we look at remaining list in the increasing order of
 | |
|  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
 | |
|  *
 | |
|  * At CR = 1, we only consider groups where average fragment size > request
 | |
|  * size. So, we lookup a group which has average fragment size just above or
 | |
|  * equal to request size using our rb tree (data structure 2) in O(log N) time.
 | |
|  *
 | |
|  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
 | |
|  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
 | |
|  *
 | |
|  * The regular allocator (using the buddy cache) supports a few tunables.
 | |
|  *
 | |
|  * /sys/fs/ext4/<partition>/mb_min_to_scan
 | |
|  * /sys/fs/ext4/<partition>/mb_max_to_scan
 | |
|  * /sys/fs/ext4/<partition>/mb_order2_req
 | |
|  * /sys/fs/ext4/<partition>/mb_linear_limit
 | |
|  *
 | |
|  * The regular allocator uses buddy scan only if the request len is power of
 | |
|  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 | |
|  * value of s_mb_order2_reqs can be tuned via
 | |
|  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
 | |
|  * stripe size (sbi->s_stripe), we try to search for contiguous block in
 | |
|  * stripe size. This should result in better allocation on RAID setups. If
 | |
|  * not, we search in the specific group using bitmap for best extents. The
 | |
|  * tunable min_to_scan and max_to_scan control the behaviour here.
 | |
|  * min_to_scan indicate how long the mballoc __must__ look for a best
 | |
|  * extent and max_to_scan indicates how long the mballoc __can__ look for a
 | |
|  * best extent in the found extents. Searching for the blocks starts with
 | |
|  * the group specified as the goal value in allocation context via
 | |
|  * ac_g_ex. Each group is first checked based on the criteria whether it
 | |
|  * can be used for allocation. ext4_mb_good_group explains how the groups are
 | |
|  * checked.
 | |
|  *
 | |
|  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
 | |
|  * get traversed linearly. That may result in subsequent allocations being not
 | |
|  * close to each other. And so, the underlying device may get filled up in a
 | |
|  * non-linear fashion. While that may not matter on non-rotational devices, for
 | |
|  * rotational devices that may result in higher seek times. "mb_linear_limit"
 | |
|  * tells mballoc how many groups mballoc should search linearly before
 | |
|  * performing consulting above data structures for more efficient lookups. For
 | |
|  * non rotational devices, this value defaults to 0 and for rotational devices
 | |
|  * this is set to MB_DEFAULT_LINEAR_LIMIT.
 | |
|  *
 | |
|  * Both the prealloc space are getting populated as above. So for the first
 | |
|  * request we will hit the buddy cache which will result in this prealloc
 | |
|  * space getting filled. The prealloc space is then later used for the
 | |
|  * subsequent request.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * mballoc operates on the following data:
 | |
|  *  - on-disk bitmap
 | |
|  *  - in-core buddy (actually includes buddy and bitmap)
 | |
|  *  - preallocation descriptors (PAs)
 | |
|  *
 | |
|  * there are two types of preallocations:
 | |
|  *  - inode
 | |
|  *    assiged to specific inode and can be used for this inode only.
 | |
|  *    it describes part of inode's space preallocated to specific
 | |
|  *    physical blocks. any block from that preallocated can be used
 | |
|  *    independent. the descriptor just tracks number of blocks left
 | |
|  *    unused. so, before taking some block from descriptor, one must
 | |
|  *    make sure corresponded logical block isn't allocated yet. this
 | |
|  *    also means that freeing any block within descriptor's range
 | |
|  *    must discard all preallocated blocks.
 | |
|  *  - locality group
 | |
|  *    assigned to specific locality group which does not translate to
 | |
|  *    permanent set of inodes: inode can join and leave group. space
 | |
|  *    from this type of preallocation can be used for any inode. thus
 | |
|  *    it's consumed from the beginning to the end.
 | |
|  *
 | |
|  * relation between them can be expressed as:
 | |
|  *    in-core buddy = on-disk bitmap + preallocation descriptors
 | |
|  *
 | |
|  * this mean blocks mballoc considers used are:
 | |
|  *  - allocated blocks (persistent)
 | |
|  *  - preallocated blocks (non-persistent)
 | |
|  *
 | |
|  * consistency in mballoc world means that at any time a block is either
 | |
|  * free or used in ALL structures. notice: "any time" should not be read
 | |
|  * literally -- time is discrete and delimited by locks.
 | |
|  *
 | |
|  *  to keep it simple, we don't use block numbers, instead we count number of
 | |
|  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 | |
|  *
 | |
|  * all operations can be expressed as:
 | |
|  *  - init buddy:			buddy = on-disk + PAs
 | |
|  *  - new PA:				buddy += N; PA = N
 | |
|  *  - use inode PA:			on-disk += N; PA -= N
 | |
|  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 | |
|  *  - use locality group PA		on-disk += N; PA -= N
 | |
|  *  - discard locality group PA		buddy -= PA; PA = 0
 | |
|  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 | |
|  *        is used in real operation because we can't know actual used
 | |
|  *        bits from PA, only from on-disk bitmap
 | |
|  *
 | |
|  * if we follow this strict logic, then all operations above should be atomic.
 | |
|  * given some of them can block, we'd have to use something like semaphores
 | |
|  * killing performance on high-end SMP hardware. let's try to relax it using
 | |
|  * the following knowledge:
 | |
|  *  1) if buddy is referenced, it's already initialized
 | |
|  *  2) while block is used in buddy and the buddy is referenced,
 | |
|  *     nobody can re-allocate that block
 | |
|  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 | |
|  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 | |
|  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 | |
|  *     block
 | |
|  *
 | |
|  * so, now we're building a concurrency table:
 | |
|  *  - init buddy vs.
 | |
|  *    - new PA
 | |
|  *      blocks for PA are allocated in the buddy, buddy must be referenced
 | |
|  *      until PA is linked to allocation group to avoid concurrent buddy init
 | |
|  *    - use inode PA
 | |
|  *      we need to make sure that either on-disk bitmap or PA has uptodate data
 | |
|  *      given (3) we care that PA-=N operation doesn't interfere with init
 | |
|  *    - discard inode PA
 | |
|  *      the simplest way would be to have buddy initialized by the discard
 | |
|  *    - use locality group PA
 | |
|  *      again PA-=N must be serialized with init
 | |
|  *    - discard locality group PA
 | |
|  *      the simplest way would be to have buddy initialized by the discard
 | |
|  *  - new PA vs.
 | |
|  *    - use inode PA
 | |
|  *      i_data_sem serializes them
 | |
|  *    - discard inode PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *    - use locality group PA
 | |
|  *      some mutex should serialize them
 | |
|  *    - discard locality group PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *  - use inode PA
 | |
|  *    - use inode PA
 | |
|  *      i_data_sem or another mutex should serializes them
 | |
|  *    - discard inode PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *    - use locality group PA
 | |
|  *      nothing wrong here -- they're different PAs covering different blocks
 | |
|  *    - discard locality group PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *
 | |
|  * now we're ready to make few consequences:
 | |
|  *  - PA is referenced and while it is no discard is possible
 | |
|  *  - PA is referenced until block isn't marked in on-disk bitmap
 | |
|  *  - PA changes only after on-disk bitmap
 | |
|  *  - discard must not compete with init. either init is done before
 | |
|  *    any discard or they're serialized somehow
 | |
|  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 | |
|  *
 | |
|  * a special case when we've used PA to emptiness. no need to modify buddy
 | |
|  * in this case, but we should care about concurrent init
 | |
|  *
 | |
|  */
 | |
| 
 | |
|  /*
 | |
|  * Logic in few words:
 | |
|  *
 | |
|  *  - allocation:
 | |
|  *    load group
 | |
|  *    find blocks
 | |
|  *    mark bits in on-disk bitmap
 | |
|  *    release group
 | |
|  *
 | |
|  *  - use preallocation:
 | |
|  *    find proper PA (per-inode or group)
 | |
|  *    load group
 | |
|  *    mark bits in on-disk bitmap
 | |
|  *    release group
 | |
|  *    release PA
 | |
|  *
 | |
|  *  - free:
 | |
|  *    load group
 | |
|  *    mark bits in on-disk bitmap
 | |
|  *    release group
 | |
|  *
 | |
|  *  - discard preallocations in group:
 | |
|  *    mark PAs deleted
 | |
|  *    move them onto local list
 | |
|  *    load on-disk bitmap
 | |
|  *    load group
 | |
|  *    remove PA from object (inode or locality group)
 | |
|  *    mark free blocks in-core
 | |
|  *
 | |
|  *  - discard inode's preallocations:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Locking rules
 | |
|  *
 | |
|  * Locks:
 | |
|  *  - bitlock on a group	(group)
 | |
|  *  - object (inode/locality)	(object)
 | |
|  *  - per-pa lock		(pa)
 | |
|  *  - cr0 lists lock		(cr0)
 | |
|  *  - cr1 tree lock		(cr1)
 | |
|  *
 | |
|  * Paths:
 | |
|  *  - new pa
 | |
|  *    object
 | |
|  *    group
 | |
|  *
 | |
|  *  - find and use pa:
 | |
|  *    pa
 | |
|  *
 | |
|  *  - release consumed pa:
 | |
|  *    pa
 | |
|  *    group
 | |
|  *    object
 | |
|  *
 | |
|  *  - generate in-core bitmap:
 | |
|  *    group
 | |
|  *        pa
 | |
|  *
 | |
|  *  - discard all for given object (inode, locality group):
 | |
|  *    object
 | |
|  *        pa
 | |
|  *    group
 | |
|  *
 | |
|  *  - discard all for given group:
 | |
|  *    group
 | |
|  *        pa
 | |
|  *    group
 | |
|  *        object
 | |
|  *
 | |
|  *  - allocation path (ext4_mb_regular_allocator)
 | |
|  *    group
 | |
|  *    cr0/cr1
 | |
|  */
 | |
| static struct kmem_cache *ext4_pspace_cachep;
 | |
| static struct kmem_cache *ext4_ac_cachep;
 | |
| static struct kmem_cache *ext4_free_data_cachep;
 | |
| 
 | |
| /* We create slab caches for groupinfo data structures based on the
 | |
|  * superblock block size.  There will be one per mounted filesystem for
 | |
|  * each unique s_blocksize_bits */
 | |
| #define NR_GRPINFO_CACHES 8
 | |
| static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
 | |
| 
 | |
| static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
 | |
| 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
 | |
| 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
 | |
| 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
 | |
| };
 | |
| 
 | |
| static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 | |
| 					ext4_group_t group);
 | |
| static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
 | |
| 						ext4_group_t group);
 | |
| static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
 | |
| 
 | |
| static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
 | |
| 			       ext4_group_t group, int cr);
 | |
| 
 | |
| /*
 | |
|  * The algorithm using this percpu seq counter goes below:
 | |
|  * 1. We sample the percpu discard_pa_seq counter before trying for block
 | |
|  *    allocation in ext4_mb_new_blocks().
 | |
|  * 2. We increment this percpu discard_pa_seq counter when we either allocate
 | |
|  *    or free these blocks i.e. while marking those blocks as used/free in
 | |
|  *    mb_mark_used()/mb_free_blocks().
 | |
|  * 3. We also increment this percpu seq counter when we successfully identify
 | |
|  *    that the bb_prealloc_list is not empty and hence proceed for discarding
 | |
|  *    of those PAs inside ext4_mb_discard_group_preallocations().
 | |
|  *
 | |
|  * Now to make sure that the regular fast path of block allocation is not
 | |
|  * affected, as a small optimization we only sample the percpu seq counter
 | |
|  * on that cpu. Only when the block allocation fails and when freed blocks
 | |
|  * found were 0, that is when we sample percpu seq counter for all cpus using
 | |
|  * below function ext4_get_discard_pa_seq_sum(). This happens after making
 | |
|  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
 | |
|  */
 | |
| static DEFINE_PER_CPU(u64, discard_pa_seq);
 | |
| static inline u64 ext4_get_discard_pa_seq_sum(void)
 | |
| {
 | |
| 	int __cpu;
 | |
| 	u64 __seq = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(__cpu)
 | |
| 		__seq += per_cpu(discard_pa_seq, __cpu);
 | |
| 	return __seq;
 | |
| }
 | |
| 
 | |
| static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
 | |
| {
 | |
| #if BITS_PER_LONG == 64
 | |
| 	*bit += ((unsigned long) addr & 7UL) << 3;
 | |
| 	addr = (void *) ((unsigned long) addr & ~7UL);
 | |
| #elif BITS_PER_LONG == 32
 | |
| 	*bit += ((unsigned long) addr & 3UL) << 3;
 | |
| 	addr = (void *) ((unsigned long) addr & ~3UL);
 | |
| #else
 | |
| #error "how many bits you are?!"
 | |
| #endif
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static inline int mb_test_bit(int bit, void *addr)
 | |
| {
 | |
| 	/*
 | |
| 	 * ext4_test_bit on architecture like powerpc
 | |
| 	 * needs unsigned long aligned address
 | |
| 	 */
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	return ext4_test_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static inline void mb_set_bit(int bit, void *addr)
 | |
| {
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	ext4_set_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static inline void mb_clear_bit(int bit, void *addr)
 | |
| {
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	ext4_clear_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static inline int mb_test_and_clear_bit(int bit, void *addr)
 | |
| {
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	return ext4_test_and_clear_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static inline int mb_find_next_zero_bit(void *addr, int max, int start)
 | |
| {
 | |
| 	int fix = 0, ret, tmpmax;
 | |
| 	addr = mb_correct_addr_and_bit(&fix, addr);
 | |
| 	tmpmax = max + fix;
 | |
| 	start += fix;
 | |
| 
 | |
| 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
 | |
| 	if (ret > max)
 | |
| 		return max;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int mb_find_next_bit(void *addr, int max, int start)
 | |
| {
 | |
| 	int fix = 0, ret, tmpmax;
 | |
| 	addr = mb_correct_addr_and_bit(&fix, addr);
 | |
| 	tmpmax = max + fix;
 | |
| 	start += fix;
 | |
| 
 | |
| 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
 | |
| 	if (ret > max)
 | |
| 		return max;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
 | |
| {
 | |
| 	char *bb;
 | |
| 
 | |
| 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
 | |
| 	BUG_ON(max == NULL);
 | |
| 
 | |
| 	if (order > e4b->bd_blkbits + 1) {
 | |
| 		*max = 0;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* at order 0 we see each particular block */
 | |
| 	if (order == 0) {
 | |
| 		*max = 1 << (e4b->bd_blkbits + 3);
 | |
| 		return e4b->bd_bitmap;
 | |
| 	}
 | |
| 
 | |
| 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
 | |
| 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
 | |
| 
 | |
| 	return bb;
 | |
| }
 | |
| 
 | |
| #ifdef DOUBLE_CHECK
 | |
| static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
 | |
| 			   int first, int count)
 | |
| {
 | |
| 	int i;
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 
 | |
| 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 | |
| 		return;
 | |
| 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
 | |
| 			ext4_fsblk_t blocknr;
 | |
| 
 | |
| 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
 | |
| 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
 | |
| 			ext4_grp_locked_error(sb, e4b->bd_group,
 | |
| 					      inode ? inode->i_ino : 0,
 | |
| 					      blocknr,
 | |
| 					      "freeing block already freed "
 | |
| 					      "(bit %u)",
 | |
| 					      first + i);
 | |
| 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
 | |
| 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 | |
| 		}
 | |
| 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 | |
| 		return;
 | |
| 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
 | |
| 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 | |
| {
 | |
| 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 | |
| 		return;
 | |
| 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
 | |
| 		unsigned char *b1, *b2;
 | |
| 		int i;
 | |
| 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
 | |
| 		b2 = (unsigned char *) bitmap;
 | |
| 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
 | |
| 			if (b1[i] != b2[i]) {
 | |
| 				ext4_msg(e4b->bd_sb, KERN_ERR,
 | |
| 					 "corruption in group %u "
 | |
| 					 "at byte %u(%u): %x in copy != %x "
 | |
| 					 "on disk/prealloc",
 | |
| 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
 | |
| 				BUG();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_group_bb_bitmap_alloc(struct super_block *sb,
 | |
| 			struct ext4_group_info *grp, ext4_group_t group)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 
 | |
| 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
 | |
| 	if (!grp->bb_bitmap)
 | |
| 		return;
 | |
| 
 | |
| 	bh = ext4_read_block_bitmap(sb, group);
 | |
| 	if (IS_ERR_OR_NULL(bh)) {
 | |
| 		kfree(grp->bb_bitmap);
 | |
| 		grp->bb_bitmap = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
 | |
| 	put_bh(bh);
 | |
| }
 | |
| 
 | |
| static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
 | |
| {
 | |
| 	kfree(grp->bb_bitmap);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void mb_free_blocks_double(struct inode *inode,
 | |
| 				struct ext4_buddy *e4b, int first, int count)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| static inline void mb_mark_used_double(struct ext4_buddy *e4b,
 | |
| 						int first, int count)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
 | |
| 			struct ext4_group_info *grp, ext4_group_t group)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef AGGRESSIVE_CHECK
 | |
| 
 | |
| #define MB_CHECK_ASSERT(assert)						\
 | |
| do {									\
 | |
| 	if (!(assert)) {						\
 | |
| 		printk(KERN_EMERG					\
 | |
| 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
 | |
| 			function, file, line, # assert);		\
 | |
| 		BUG();							\
 | |
| 	}								\
 | |
| } while (0)
 | |
| 
 | |
| static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
 | |
| 				const char *function, int line)
 | |
| {
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	int order = e4b->bd_blkbits + 1;
 | |
| 	int max;
 | |
| 	int max2;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	int k;
 | |
| 	int count;
 | |
| 	struct ext4_group_info *grp;
 | |
| 	int fragments = 0;
 | |
| 	int fstart;
 | |
| 	struct list_head *cur;
 | |
| 	void *buddy;
 | |
| 	void *buddy2;
 | |
| 
 | |
| 	if (e4b->bd_info->bb_check_counter++ % 10)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (order > 1) {
 | |
| 		buddy = mb_find_buddy(e4b, order, &max);
 | |
| 		MB_CHECK_ASSERT(buddy);
 | |
| 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
 | |
| 		MB_CHECK_ASSERT(buddy2);
 | |
| 		MB_CHECK_ASSERT(buddy != buddy2);
 | |
| 		MB_CHECK_ASSERT(max * 2 == max2);
 | |
| 
 | |
| 		count = 0;
 | |
| 		for (i = 0; i < max; i++) {
 | |
| 
 | |
| 			if (mb_test_bit(i, buddy)) {
 | |
| 				/* only single bit in buddy2 may be 1 */
 | |
| 				if (!mb_test_bit(i << 1, buddy2)) {
 | |
| 					MB_CHECK_ASSERT(
 | |
| 						mb_test_bit((i<<1)+1, buddy2));
 | |
| 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
 | |
| 					MB_CHECK_ASSERT(
 | |
| 						mb_test_bit(i << 1, buddy2));
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* both bits in buddy2 must be 1 */
 | |
| 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
 | |
| 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
 | |
| 
 | |
| 			for (j = 0; j < (1 << order); j++) {
 | |
| 				k = (i * (1 << order)) + j;
 | |
| 				MB_CHECK_ASSERT(
 | |
| 					!mb_test_bit(k, e4b->bd_bitmap));
 | |
| 			}
 | |
| 			count++;
 | |
| 		}
 | |
| 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
 | |
| 		order--;
 | |
| 	}
 | |
| 
 | |
| 	fstart = -1;
 | |
| 	buddy = mb_find_buddy(e4b, 0, &max);
 | |
| 	for (i = 0; i < max; i++) {
 | |
| 		if (!mb_test_bit(i, buddy)) {
 | |
| 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
 | |
| 			if (fstart == -1) {
 | |
| 				fragments++;
 | |
| 				fstart = i;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		fstart = -1;
 | |
| 		/* check used bits only */
 | |
| 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
 | |
| 			buddy2 = mb_find_buddy(e4b, j, &max2);
 | |
| 			k = i >> j;
 | |
| 			MB_CHECK_ASSERT(k < max2);
 | |
| 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
 | |
| 		}
 | |
| 	}
 | |
| 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
 | |
| 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
 | |
| 
 | |
| 	grp = ext4_get_group_info(sb, e4b->bd_group);
 | |
| 	list_for_each(cur, &grp->bb_prealloc_list) {
 | |
| 		ext4_group_t groupnr;
 | |
| 		struct ext4_prealloc_space *pa;
 | |
| 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 | |
| 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
 | |
| 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
 | |
| 		for (i = 0; i < pa->pa_len; i++)
 | |
| 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #undef MB_CHECK_ASSERT
 | |
| #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
 | |
| 					__FILE__, __func__, __LINE__)
 | |
| #else
 | |
| #define mb_check_buddy(e4b)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Divide blocks started from @first with length @len into
 | |
|  * smaller chunks with power of 2 blocks.
 | |
|  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 | |
|  * then increase bb_counters[] for corresponded chunk size.
 | |
|  */
 | |
| static void ext4_mb_mark_free_simple(struct super_block *sb,
 | |
| 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
 | |
| 					struct ext4_group_info *grp)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	ext4_grpblk_t min;
 | |
| 	ext4_grpblk_t max;
 | |
| 	ext4_grpblk_t chunk;
 | |
| 	unsigned int border;
 | |
| 
 | |
| 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
 | |
| 
 | |
| 	border = 2 << sb->s_blocksize_bits;
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		/* find how many blocks can be covered since this position */
 | |
| 		max = ffs(first | border) - 1;
 | |
| 
 | |
| 		/* find how many blocks of power 2 we need to mark */
 | |
| 		min = fls(len) - 1;
 | |
| 
 | |
| 		if (max < min)
 | |
| 			min = max;
 | |
| 		chunk = 1 << min;
 | |
| 
 | |
| 		/* mark multiblock chunks only */
 | |
| 		grp->bb_counters[min]++;
 | |
| 		if (min > 0)
 | |
| 			mb_clear_bit(first >> min,
 | |
| 				     buddy + sbi->s_mb_offsets[min]);
 | |
| 
 | |
| 		len -= chunk;
 | |
| 		first += chunk;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
 | |
| 			int (*cmp)(struct rb_node *, struct rb_node *))
 | |
| {
 | |
| 	struct rb_node **iter = &root->rb_node, *parent = NULL;
 | |
| 
 | |
| 	while (*iter) {
 | |
| 		parent = *iter;
 | |
| 		if (cmp(new, *iter) > 0)
 | |
| 			iter = &((*iter)->rb_left);
 | |
| 		else
 | |
| 			iter = &((*iter)->rb_right);
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(new, parent, iter);
 | |
| 	rb_insert_color(new, root);
 | |
| }
 | |
| 
 | |
| static int
 | |
| ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
 | |
| {
 | |
| 	struct ext4_group_info *grp1 = rb_entry(rb1,
 | |
| 						struct ext4_group_info,
 | |
| 						bb_avg_fragment_size_rb);
 | |
| 	struct ext4_group_info *grp2 = rb_entry(rb2,
 | |
| 						struct ext4_group_info,
 | |
| 						bb_avg_fragment_size_rb);
 | |
| 	int num_frags_1, num_frags_2;
 | |
| 
 | |
| 	num_frags_1 = grp1->bb_fragments ?
 | |
| 		grp1->bb_free / grp1->bb_fragments : 0;
 | |
| 	num_frags_2 = grp2->bb_fragments ?
 | |
| 		grp2->bb_free / grp2->bb_fragments : 0;
 | |
| 
 | |
| 	return (num_frags_2 - num_frags_1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reinsert grpinfo into the avg_fragment_size tree with new average
 | |
|  * fragment size.
 | |
|  */
 | |
| static void
 | |
| mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
 | |
| 		return;
 | |
| 
 | |
| 	write_lock(&sbi->s_mb_rb_lock);
 | |
| 	if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
 | |
| 		rb_erase(&grp->bb_avg_fragment_size_rb,
 | |
| 				&sbi->s_mb_avg_fragment_size_root);
 | |
| 		RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
 | |
| 		&grp->bb_avg_fragment_size_rb,
 | |
| 		ext4_mb_avg_fragment_size_cmp);
 | |
| 	write_unlock(&sbi->s_mb_rb_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
 | |
|  * cr level needs an update.
 | |
|  */
 | |
| static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
 | |
| 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	struct ext4_group_info *iter, *grp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (ac->ac_status == AC_STATUS_FOUND)
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
 | |
| 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
 | |
| 
 | |
| 	grp = NULL;
 | |
| 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
 | |
| 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
 | |
| 			continue;
 | |
| 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
 | |
| 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
 | |
| 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
 | |
| 			continue;
 | |
| 		}
 | |
| 		grp = NULL;
 | |
| 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
 | |
| 				    bb_largest_free_order_node) {
 | |
| 			if (sbi->s_mb_stats)
 | |
| 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
 | |
| 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
 | |
| 				grp = iter;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
 | |
| 		if (grp)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!grp) {
 | |
| 		/* Increment cr and search again */
 | |
| 		*new_cr = 1;
 | |
| 	} else {
 | |
| 		*group = grp->bb_group;
 | |
| 		ac->ac_last_optimal_group = *group;
 | |
| 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Choose next group by traversing average fragment size tree. Updates *new_cr
 | |
|  * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
 | |
|  * the linear search should continue for one iteration since there's lock
 | |
|  * contention on the rb tree lock.
 | |
|  */
 | |
| static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
 | |
| 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	int avg_fragment_size, best_so_far;
 | |
| 	struct rb_node *node, *found;
 | |
| 	struct ext4_group_info *grp;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is contention on the lock, instead of waiting for the lock
 | |
| 	 * to become available, just continue searching lineraly. We'll resume
 | |
| 	 * our rb tree search later starting at ac->ac_last_optimal_group.
 | |
| 	 */
 | |
| 	if (!read_trylock(&sbi->s_mb_rb_lock)) {
 | |
| 		ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
 | |
| 		if (sbi->s_mb_stats)
 | |
| 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
 | |
| 		/* We have found something at CR 1 in the past */
 | |
| 		grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
 | |
| 		for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
 | |
| 		     found = rb_next(found)) {
 | |
| 			grp = rb_entry(found, struct ext4_group_info,
 | |
| 				       bb_avg_fragment_size_rb);
 | |
| 			if (sbi->s_mb_stats)
 | |
| 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
 | |
| 			if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
 | |
| 				break;
 | |
| 		}
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	node = sbi->s_mb_avg_fragment_size_root.rb_node;
 | |
| 	best_so_far = 0;
 | |
| 	found = NULL;
 | |
| 
 | |
| 	while (node) {
 | |
| 		grp = rb_entry(node, struct ext4_group_info,
 | |
| 			       bb_avg_fragment_size_rb);
 | |
| 		avg_fragment_size = 0;
 | |
| 		if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
 | |
| 			avg_fragment_size = grp->bb_fragments ?
 | |
| 				grp->bb_free / grp->bb_fragments : 0;
 | |
| 			if (!best_so_far || avg_fragment_size < best_so_far) {
 | |
| 				best_so_far = avg_fragment_size;
 | |
| 				found = node;
 | |
| 			}
 | |
| 		}
 | |
| 		if (avg_fragment_size > ac->ac_g_ex.fe_len)
 | |
| 			node = node->rb_right;
 | |
| 		else
 | |
| 			node = node->rb_left;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (found) {
 | |
| 		grp = rb_entry(found, struct ext4_group_info,
 | |
| 			       bb_avg_fragment_size_rb);
 | |
| 		*group = grp->bb_group;
 | |
| 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
 | |
| 	} else {
 | |
| 		*new_cr = 2;
 | |
| 	}
 | |
| 
 | |
| 	read_unlock(&sbi->s_mb_rb_lock);
 | |
| 	ac->ac_last_optimal_group = *group;
 | |
| }
 | |
| 
 | |
| static inline int should_optimize_scan(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
 | |
| 		return 0;
 | |
| 	if (ac->ac_criteria >= 2)
 | |
| 		return 0;
 | |
| 	if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return next linear group for allocation. If linear traversal should not be
 | |
|  * performed, this function just returns the same group
 | |
|  */
 | |
| static int
 | |
| next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
 | |
| {
 | |
| 	if (!should_optimize_scan(ac))
 | |
| 		goto inc_and_return;
 | |
| 
 | |
| 	if (ac->ac_groups_linear_remaining) {
 | |
| 		ac->ac_groups_linear_remaining--;
 | |
| 		goto inc_and_return;
 | |
| 	}
 | |
| 
 | |
| 	if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
 | |
| 		ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
 | |
| 		goto inc_and_return;
 | |
| 	}
 | |
| 
 | |
| 	return group;
 | |
| inc_and_return:
 | |
| 	/*
 | |
| 	 * Artificially restricted ngroups for non-extent
 | |
| 	 * files makes group > ngroups possible on first loop.
 | |
| 	 */
 | |
| 	return group + 1 >= ngroups ? 0 : group + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_mb_choose_next_group: choose next group for allocation.
 | |
|  *
 | |
|  * @ac        Allocation Context
 | |
|  * @new_cr    This is an output parameter. If the there is no good group
 | |
|  *            available at current CR level, this field is updated to indicate
 | |
|  *            the new cr level that should be used.
 | |
|  * @group     This is an input / output parameter. As an input it indicates the
 | |
|  *            next group that the allocator intends to use for allocation. As
 | |
|  *            output, this field indicates the next group that should be used as
 | |
|  *            determined by the optimization functions.
 | |
|  * @ngroups   Total number of groups
 | |
|  */
 | |
| static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
 | |
| 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
 | |
| {
 | |
| 	*new_cr = ac->ac_criteria;
 | |
| 
 | |
| 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining)
 | |
| 		return;
 | |
| 
 | |
| 	if (*new_cr == 0) {
 | |
| 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
 | |
| 	} else if (*new_cr == 1) {
 | |
| 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
 | |
| 		 * bb_free. But until that happens, we should never come here.
 | |
| 		 */
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cache the order of the largest free extent we have available in this block
 | |
|  * group.
 | |
|  */
 | |
| static void
 | |
| mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	int i;
 | |
| 
 | |
| 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
 | |
| 		write_lock(&sbi->s_mb_largest_free_orders_locks[
 | |
| 					      grp->bb_largest_free_order]);
 | |
| 		list_del_init(&grp->bb_largest_free_order_node);
 | |
| 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
 | |
| 					      grp->bb_largest_free_order]);
 | |
| 	}
 | |
| 	grp->bb_largest_free_order = -1; /* uninit */
 | |
| 
 | |
| 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
 | |
| 		if (grp->bb_counters[i] > 0) {
 | |
| 			grp->bb_largest_free_order = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) &&
 | |
| 	    grp->bb_largest_free_order >= 0 && grp->bb_free) {
 | |
| 		write_lock(&sbi->s_mb_largest_free_orders_locks[
 | |
| 					      grp->bb_largest_free_order]);
 | |
| 		list_add_tail(&grp->bb_largest_free_order_node,
 | |
| 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
 | |
| 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
 | |
| 					      grp->bb_largest_free_order]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| void ext4_mb_generate_buddy(struct super_block *sb,
 | |
| 				void *buddy, void *bitmap, ext4_group_t group)
 | |
| {
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
 | |
| 	ext4_grpblk_t i = 0;
 | |
| 	ext4_grpblk_t first;
 | |
| 	ext4_grpblk_t len;
 | |
| 	unsigned free = 0;
 | |
| 	unsigned fragments = 0;
 | |
| 	unsigned long long period = get_cycles();
 | |
| 
 | |
| 	/* initialize buddy from bitmap which is aggregation
 | |
| 	 * of on-disk bitmap and preallocations */
 | |
| 	i = mb_find_next_zero_bit(bitmap, max, 0);
 | |
| 	grp->bb_first_free = i;
 | |
| 	while (i < max) {
 | |
| 		fragments++;
 | |
| 		first = i;
 | |
| 		i = mb_find_next_bit(bitmap, max, i);
 | |
| 		len = i - first;
 | |
| 		free += len;
 | |
| 		if (len > 1)
 | |
| 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
 | |
| 		else
 | |
| 			grp->bb_counters[0]++;
 | |
| 		if (i < max)
 | |
| 			i = mb_find_next_zero_bit(bitmap, max, i);
 | |
| 	}
 | |
| 	grp->bb_fragments = fragments;
 | |
| 
 | |
| 	if (free != grp->bb_free) {
 | |
| 		ext4_grp_locked_error(sb, group, 0, 0,
 | |
| 				      "block bitmap and bg descriptor "
 | |
| 				      "inconsistent: %u vs %u free clusters",
 | |
| 				      free, grp->bb_free);
 | |
| 		/*
 | |
| 		 * If we intend to continue, we consider group descriptor
 | |
| 		 * corrupt and update bb_free using bitmap value
 | |
| 		 */
 | |
| 		grp->bb_free = free;
 | |
| 		ext4_mark_group_bitmap_corrupted(sb, group,
 | |
| 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 | |
| 	}
 | |
| 	mb_set_largest_free_order(sb, grp);
 | |
| 
 | |
| 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
 | |
| 
 | |
| 	period = get_cycles() - period;
 | |
| 	atomic_inc(&sbi->s_mb_buddies_generated);
 | |
| 	atomic64_add(period, &sbi->s_mb_generation_time);
 | |
| 	mb_update_avg_fragment_size(sb, grp);
 | |
| }
 | |
| 
 | |
| /* The buddy information is attached the buddy cache inode
 | |
|  * for convenience. The information regarding each group
 | |
|  * is loaded via ext4_mb_load_buddy. The information involve
 | |
|  * block bitmap and buddy information. The information are
 | |
|  * stored in the inode as
 | |
|  *
 | |
|  * {                        page                        }
 | |
|  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 | |
|  *
 | |
|  *
 | |
|  * one block each for bitmap and buddy information.
 | |
|  * So for each group we take up 2 blocks. A page can
 | |
|  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
 | |
|  * So it can have information regarding groups_per_page which
 | |
|  * is blocks_per_page/2
 | |
|  *
 | |
|  * Locking note:  This routine takes the block group lock of all groups
 | |
|  * for this page; do not hold this lock when calling this routine!
 | |
|  */
 | |
| 
 | |
| static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
 | |
| {
 | |
| 	ext4_group_t ngroups;
 | |
| 	int blocksize;
 | |
| 	int blocks_per_page;
 | |
| 	int groups_per_page;
 | |
| 	int err = 0;
 | |
| 	int i;
 | |
| 	ext4_group_t first_group, group;
 | |
| 	int first_block;
 | |
| 	struct super_block *sb;
 | |
| 	struct buffer_head *bhs;
 | |
| 	struct buffer_head **bh = NULL;
 | |
| 	struct inode *inode;
 | |
| 	char *data;
 | |
| 	char *bitmap;
 | |
| 	struct ext4_group_info *grinfo;
 | |
| 
 | |
| 	inode = page->mapping->host;
 | |
| 	sb = inode->i_sb;
 | |
| 	ngroups = ext4_get_groups_count(sb);
 | |
| 	blocksize = i_blocksize(inode);
 | |
| 	blocks_per_page = PAGE_SIZE / blocksize;
 | |
| 
 | |
| 	mb_debug(sb, "init page %lu\n", page->index);
 | |
| 
 | |
| 	groups_per_page = blocks_per_page >> 1;
 | |
| 	if (groups_per_page == 0)
 | |
| 		groups_per_page = 1;
 | |
| 
 | |
| 	/* allocate buffer_heads to read bitmaps */
 | |
| 	if (groups_per_page > 1) {
 | |
| 		i = sizeof(struct buffer_head *) * groups_per_page;
 | |
| 		bh = kzalloc(i, gfp);
 | |
| 		if (bh == NULL) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else
 | |
| 		bh = &bhs;
 | |
| 
 | |
| 	first_group = page->index * blocks_per_page / 2;
 | |
| 
 | |
| 	/* read all groups the page covers into the cache */
 | |
| 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 | |
| 		if (group >= ngroups)
 | |
| 			break;
 | |
| 
 | |
| 		grinfo = ext4_get_group_info(sb, group);
 | |
| 		/*
 | |
| 		 * If page is uptodate then we came here after online resize
 | |
| 		 * which added some new uninitialized group info structs, so
 | |
| 		 * we must skip all initialized uptodate buddies on the page,
 | |
| 		 * which may be currently in use by an allocating task.
 | |
| 		 */
 | |
| 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
 | |
| 			bh[i] = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
 | |
| 		if (IS_ERR(bh[i])) {
 | |
| 			err = PTR_ERR(bh[i]);
 | |
| 			bh[i] = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		mb_debug(sb, "read bitmap for group %u\n", group);
 | |
| 	}
 | |
| 
 | |
| 	/* wait for I/O completion */
 | |
| 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 | |
| 		int err2;
 | |
| 
 | |
| 		if (!bh[i])
 | |
| 			continue;
 | |
| 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
 | |
| 		if (!err)
 | |
| 			err = err2;
 | |
| 	}
 | |
| 
 | |
| 	first_block = page->index * blocks_per_page;
 | |
| 	for (i = 0; i < blocks_per_page; i++) {
 | |
| 		group = (first_block + i) >> 1;
 | |
| 		if (group >= ngroups)
 | |
| 			break;
 | |
| 
 | |
| 		if (!bh[group - first_group])
 | |
| 			/* skip initialized uptodate buddy */
 | |
| 			continue;
 | |
| 
 | |
| 		if (!buffer_verified(bh[group - first_group]))
 | |
| 			/* Skip faulty bitmaps */
 | |
| 			continue;
 | |
| 		err = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * data carry information regarding this
 | |
| 		 * particular group in the format specified
 | |
| 		 * above
 | |
| 		 *
 | |
| 		 */
 | |
| 		data = page_address(page) + (i * blocksize);
 | |
| 		bitmap = bh[group - first_group]->b_data;
 | |
| 
 | |
| 		/*
 | |
| 		 * We place the buddy block and bitmap block
 | |
| 		 * close together
 | |
| 		 */
 | |
| 		if ((first_block + i) & 1) {
 | |
| 			/* this is block of buddy */
 | |
| 			BUG_ON(incore == NULL);
 | |
| 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
 | |
| 				group, page->index, i * blocksize);
 | |
| 			trace_ext4_mb_buddy_bitmap_load(sb, group);
 | |
| 			grinfo = ext4_get_group_info(sb, group);
 | |
| 			grinfo->bb_fragments = 0;
 | |
| 			memset(grinfo->bb_counters, 0,
 | |
| 			       sizeof(*grinfo->bb_counters) *
 | |
| 			       (MB_NUM_ORDERS(sb)));
 | |
| 			/*
 | |
| 			 * incore got set to the group block bitmap below
 | |
| 			 */
 | |
| 			ext4_lock_group(sb, group);
 | |
| 			/* init the buddy */
 | |
| 			memset(data, 0xff, blocksize);
 | |
| 			ext4_mb_generate_buddy(sb, data, incore, group);
 | |
| 			ext4_unlock_group(sb, group);
 | |
| 			incore = NULL;
 | |
| 		} else {
 | |
| 			/* this is block of bitmap */
 | |
| 			BUG_ON(incore != NULL);
 | |
| 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
 | |
| 				group, page->index, i * blocksize);
 | |
| 			trace_ext4_mb_bitmap_load(sb, group);
 | |
| 
 | |
| 			/* see comments in ext4_mb_put_pa() */
 | |
| 			ext4_lock_group(sb, group);
 | |
| 			memcpy(data, bitmap, blocksize);
 | |
| 
 | |
| 			/* mark all preallocated blks used in in-core bitmap */
 | |
| 			ext4_mb_generate_from_pa(sb, data, group);
 | |
| 			ext4_mb_generate_from_freelist(sb, data, group);
 | |
| 			ext4_unlock_group(sb, group);
 | |
| 
 | |
| 			/* set incore so that the buddy information can be
 | |
| 			 * generated using this
 | |
| 			 */
 | |
| 			incore = data;
 | |
| 		}
 | |
| 	}
 | |
| 	SetPageUptodate(page);
 | |
| 
 | |
| out:
 | |
| 	if (bh) {
 | |
| 		for (i = 0; i < groups_per_page; i++)
 | |
| 			brelse(bh[i]);
 | |
| 		if (bh != &bhs)
 | |
| 			kfree(bh);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock the buddy and bitmap pages. This make sure other parallel init_group
 | |
|  * on the same buddy page doesn't happen whild holding the buddy page lock.
 | |
|  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 | |
|  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
 | |
|  */
 | |
| static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
 | |
| 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
 | |
| {
 | |
| 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
 | |
| 	int block, pnum, poff;
 | |
| 	int blocks_per_page;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	e4b->bd_buddy_page = NULL;
 | |
| 	e4b->bd_bitmap_page = NULL;
 | |
| 
 | |
| 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
 | |
| 	/*
 | |
| 	 * the buddy cache inode stores the block bitmap
 | |
| 	 * and buddy information in consecutive blocks.
 | |
| 	 * So for each group we need two blocks.
 | |
| 	 */
 | |
| 	block = group * 2;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	poff = block % blocks_per_page;
 | |
| 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 	BUG_ON(page->mapping != inode->i_mapping);
 | |
| 	e4b->bd_bitmap_page = page;
 | |
| 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
 | |
| 
 | |
| 	if (blocks_per_page >= 2) {
 | |
| 		/* buddy and bitmap are on the same page */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	block++;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 	BUG_ON(page->mapping != inode->i_mapping);
 | |
| 	e4b->bd_buddy_page = page;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
 | |
| {
 | |
| 	if (e4b->bd_bitmap_page) {
 | |
| 		unlock_page(e4b->bd_bitmap_page);
 | |
| 		put_page(e4b->bd_bitmap_page);
 | |
| 	}
 | |
| 	if (e4b->bd_buddy_page) {
 | |
| 		unlock_page(e4b->bd_buddy_page);
 | |
| 		put_page(e4b->bd_buddy_page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 | |
|  * block group lock of all groups for this page; do not hold the BG lock when
 | |
|  * calling this routine!
 | |
|  */
 | |
| static noinline_for_stack
 | |
| int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
 | |
| {
 | |
| 
 | |
| 	struct ext4_group_info *this_grp;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	struct page *page;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	mb_debug(sb, "init group %u\n", group);
 | |
| 	this_grp = ext4_get_group_info(sb, group);
 | |
| 	/*
 | |
| 	 * This ensures that we don't reinit the buddy cache
 | |
| 	 * page which map to the group from which we are already
 | |
| 	 * allocating. If we are looking at the buddy cache we would
 | |
| 	 * have taken a reference using ext4_mb_load_buddy and that
 | |
| 	 * would have pinned buddy page to page cache.
 | |
| 	 * The call to ext4_mb_get_buddy_page_lock will mark the
 | |
| 	 * page accessed.
 | |
| 	 */
 | |
| 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
 | |
| 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
 | |
| 		/*
 | |
| 		 * somebody initialized the group
 | |
| 		 * return without doing anything
 | |
| 		 */
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	page = e4b.bd_bitmap_page;
 | |
| 	ret = ext4_mb_init_cache(page, NULL, gfp);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (e4b.bd_buddy_page == NULL) {
 | |
| 		/*
 | |
| 		 * If both the bitmap and buddy are in
 | |
| 		 * the same page we don't need to force
 | |
| 		 * init the buddy
 | |
| 		 */
 | |
| 		ret = 0;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	/* init buddy cache */
 | |
| 	page = e4b.bd_buddy_page;
 | |
| 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| err:
 | |
| 	ext4_mb_put_buddy_page_lock(&e4b);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 | |
|  * block group lock of all groups for this page; do not hold the BG lock when
 | |
|  * calling this routine!
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
 | |
| 		       struct ext4_buddy *e4b, gfp_t gfp)
 | |
| {
 | |
| 	int blocks_per_page;
 | |
| 	int block;
 | |
| 	int pnum;
 | |
| 	int poff;
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 	struct ext4_group_info *grp;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct inode *inode = sbi->s_buddy_cache;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	mb_debug(sb, "load group %u\n", group);
 | |
| 
 | |
| 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
 | |
| 	grp = ext4_get_group_info(sb, group);
 | |
| 
 | |
| 	e4b->bd_blkbits = sb->s_blocksize_bits;
 | |
| 	e4b->bd_info = grp;
 | |
| 	e4b->bd_sb = sb;
 | |
| 	e4b->bd_group = group;
 | |
| 	e4b->bd_buddy_page = NULL;
 | |
| 	e4b->bd_bitmap_page = NULL;
 | |
| 
 | |
| 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
 | |
| 		/*
 | |
| 		 * we need full data about the group
 | |
| 		 * to make a good selection
 | |
| 		 */
 | |
| 		ret = ext4_mb_init_group(sb, group, gfp);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the buddy cache inode stores the block bitmap
 | |
| 	 * and buddy information in consecutive blocks.
 | |
| 	 * So for each group we need two blocks.
 | |
| 	 */
 | |
| 	block = group * 2;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	poff = block % blocks_per_page;
 | |
| 
 | |
| 	/* we could use find_or_create_page(), but it locks page
 | |
| 	 * what we'd like to avoid in fast path ... */
 | |
| 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
 | |
| 	if (page == NULL || !PageUptodate(page)) {
 | |
| 		if (page)
 | |
| 			/*
 | |
| 			 * drop the page reference and try
 | |
| 			 * to get the page with lock. If we
 | |
| 			 * are not uptodate that implies
 | |
| 			 * somebody just created the page but
 | |
| 			 * is yet to initialize the same. So
 | |
| 			 * wait for it to initialize.
 | |
| 			 */
 | |
| 			put_page(page);
 | |
| 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
 | |
| 		if (page) {
 | |
| 			BUG_ON(page->mapping != inode->i_mapping);
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				ret = ext4_mb_init_cache(page, NULL, gfp);
 | |
| 				if (ret) {
 | |
| 					unlock_page(page);
 | |
| 					goto err;
 | |
| 				}
 | |
| 				mb_cmp_bitmaps(e4b, page_address(page) +
 | |
| 					       (poff * sb->s_blocksize));
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 	if (page == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* Pages marked accessed already */
 | |
| 	e4b->bd_bitmap_page = page;
 | |
| 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
 | |
| 
 | |
| 	block++;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	poff = block % blocks_per_page;
 | |
| 
 | |
| 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
 | |
| 	if (page == NULL || !PageUptodate(page)) {
 | |
| 		if (page)
 | |
| 			put_page(page);
 | |
| 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
 | |
| 		if (page) {
 | |
| 			BUG_ON(page->mapping != inode->i_mapping);
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
 | |
| 							 gfp);
 | |
| 				if (ret) {
 | |
| 					unlock_page(page);
 | |
| 					goto err;
 | |
| 				}
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 	if (page == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* Pages marked accessed already */
 | |
| 	e4b->bd_buddy_page = page;
 | |
| 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	if (page)
 | |
| 		put_page(page);
 | |
| 	if (e4b->bd_bitmap_page)
 | |
| 		put_page(e4b->bd_bitmap_page);
 | |
| 	if (e4b->bd_buddy_page)
 | |
| 		put_page(e4b->bd_buddy_page);
 | |
| 	e4b->bd_buddy = NULL;
 | |
| 	e4b->bd_bitmap = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
 | |
| 			      struct ext4_buddy *e4b)
 | |
| {
 | |
| 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
 | |
| }
 | |
| 
 | |
| static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
 | |
| {
 | |
| 	if (e4b->bd_bitmap_page)
 | |
| 		put_page(e4b->bd_bitmap_page);
 | |
| 	if (e4b->bd_buddy_page)
 | |
| 		put_page(e4b->bd_buddy_page);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
 | |
| {
 | |
| 	int order = 1, max;
 | |
| 	void *bb;
 | |
| 
 | |
| 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
 | |
| 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
 | |
| 
 | |
| 	while (order <= e4b->bd_blkbits + 1) {
 | |
| 		bb = mb_find_buddy(e4b, order, &max);
 | |
| 		if (!mb_test_bit(block >> order, bb)) {
 | |
| 			/* this block is part of buddy of order 'order' */
 | |
| 			return order;
 | |
| 		}
 | |
| 		order++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mb_clear_bits(void *bm, int cur, int len)
 | |
| {
 | |
| 	__u32 *addr;
 | |
| 
 | |
| 	len = cur + len;
 | |
| 	while (cur < len) {
 | |
| 		if ((cur & 31) == 0 && (len - cur) >= 32) {
 | |
| 			/* fast path: clear whole word at once */
 | |
| 			addr = bm + (cur >> 3);
 | |
| 			*addr = 0;
 | |
| 			cur += 32;
 | |
| 			continue;
 | |
| 		}
 | |
| 		mb_clear_bit(cur, bm);
 | |
| 		cur++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* clear bits in given range
 | |
|  * will return first found zero bit if any, -1 otherwise
 | |
|  */
 | |
| static int mb_test_and_clear_bits(void *bm, int cur, int len)
 | |
| {
 | |
| 	__u32 *addr;
 | |
| 	int zero_bit = -1;
 | |
| 
 | |
| 	len = cur + len;
 | |
| 	while (cur < len) {
 | |
| 		if ((cur & 31) == 0 && (len - cur) >= 32) {
 | |
| 			/* fast path: clear whole word at once */
 | |
| 			addr = bm + (cur >> 3);
 | |
| 			if (*addr != (__u32)(-1) && zero_bit == -1)
 | |
| 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
 | |
| 			*addr = 0;
 | |
| 			cur += 32;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
 | |
| 			zero_bit = cur;
 | |
| 		cur++;
 | |
| 	}
 | |
| 
 | |
| 	return zero_bit;
 | |
| }
 | |
| 
 | |
| void ext4_set_bits(void *bm, int cur, int len)
 | |
| {
 | |
| 	__u32 *addr;
 | |
| 
 | |
| 	len = cur + len;
 | |
| 	while (cur < len) {
 | |
| 		if ((cur & 31) == 0 && (len - cur) >= 32) {
 | |
| 			/* fast path: set whole word at once */
 | |
| 			addr = bm + (cur >> 3);
 | |
| 			*addr = 0xffffffff;
 | |
| 			cur += 32;
 | |
| 			continue;
 | |
| 		}
 | |
| 		mb_set_bit(cur, bm);
 | |
| 		cur++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
 | |
| {
 | |
| 	if (mb_test_bit(*bit + side, bitmap)) {
 | |
| 		mb_clear_bit(*bit, bitmap);
 | |
| 		(*bit) -= side;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		(*bit) += side;
 | |
| 		mb_set_bit(*bit, bitmap);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
 | |
| {
 | |
| 	int max;
 | |
| 	int order = 1;
 | |
| 	void *buddy = mb_find_buddy(e4b, order, &max);
 | |
| 
 | |
| 	while (buddy) {
 | |
| 		void *buddy2;
 | |
| 
 | |
| 		/* Bits in range [first; last] are known to be set since
 | |
| 		 * corresponding blocks were allocated. Bits in range
 | |
| 		 * (first; last) will stay set because they form buddies on
 | |
| 		 * upper layer. We just deal with borders if they don't
 | |
| 		 * align with upper layer and then go up.
 | |
| 		 * Releasing entire group is all about clearing
 | |
| 		 * single bit of highest order buddy.
 | |
| 		 */
 | |
| 
 | |
| 		/* Example:
 | |
| 		 * ---------------------------------
 | |
| 		 * |   1   |   1   |   1   |   1   |
 | |
| 		 * ---------------------------------
 | |
| 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
 | |
| 		 * ---------------------------------
 | |
| 		 *   0   1   2   3   4   5   6   7
 | |
| 		 *      \_____________________/
 | |
| 		 *
 | |
| 		 * Neither [1] nor [6] is aligned to above layer.
 | |
| 		 * Left neighbour [0] is free, so mark it busy,
 | |
| 		 * decrease bb_counters and extend range to
 | |
| 		 * [0; 6]
 | |
| 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
 | |
| 		 * mark [6] free, increase bb_counters and shrink range to
 | |
| 		 * [0; 5].
 | |
| 		 * Then shift range to [0; 2], go up and do the same.
 | |
| 		 */
 | |
| 
 | |
| 
 | |
| 		if (first & 1)
 | |
| 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
 | |
| 		if (!(last & 1))
 | |
| 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
 | |
| 		if (first > last)
 | |
| 			break;
 | |
| 		order++;
 | |
| 
 | |
| 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
 | |
| 			mb_clear_bits(buddy, first, last - first + 1);
 | |
| 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		first >>= 1;
 | |
| 		last >>= 1;
 | |
| 		buddy = buddy2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
 | |
| 			   int first, int count)
 | |
| {
 | |
| 	int left_is_free = 0;
 | |
| 	int right_is_free = 0;
 | |
| 	int block;
 | |
| 	int last = first + count - 1;
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 
 | |
| 	if (WARN_ON(count == 0))
 | |
| 		return;
 | |
| 	BUG_ON(last >= (sb->s_blocksize << 3));
 | |
| 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 | |
| 	/* Don't bother if the block group is corrupt. */
 | |
| 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
 | |
| 		return;
 | |
| 
 | |
| 	mb_check_buddy(e4b);
 | |
| 	mb_free_blocks_double(inode, e4b, first, count);
 | |
| 
 | |
| 	this_cpu_inc(discard_pa_seq);
 | |
| 	e4b->bd_info->bb_free += count;
 | |
| 	if (first < e4b->bd_info->bb_first_free)
 | |
| 		e4b->bd_info->bb_first_free = first;
 | |
| 
 | |
| 	/* access memory sequentially: check left neighbour,
 | |
| 	 * clear range and then check right neighbour
 | |
| 	 */
 | |
| 	if (first != 0)
 | |
| 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
 | |
| 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
 | |
| 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
 | |
| 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
 | |
| 
 | |
| 	if (unlikely(block != -1)) {
 | |
| 		struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 		ext4_fsblk_t blocknr;
 | |
| 
 | |
| 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
 | |
| 		blocknr += EXT4_C2B(sbi, block);
 | |
| 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
 | |
| 			ext4_grp_locked_error(sb, e4b->bd_group,
 | |
| 					      inode ? inode->i_ino : 0,
 | |
| 					      blocknr,
 | |
| 					      "freeing already freed block (bit %u); block bitmap corrupt.",
 | |
| 					      block);
 | |
| 			ext4_mark_group_bitmap_corrupted(
 | |
| 				sb, e4b->bd_group,
 | |
| 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 | |
| 		}
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* let's maintain fragments counter */
 | |
| 	if (left_is_free && right_is_free)
 | |
| 		e4b->bd_info->bb_fragments--;
 | |
| 	else if (!left_is_free && !right_is_free)
 | |
| 		e4b->bd_info->bb_fragments++;
 | |
| 
 | |
| 	/* buddy[0] == bd_bitmap is a special case, so handle
 | |
| 	 * it right away and let mb_buddy_mark_free stay free of
 | |
| 	 * zero order checks.
 | |
| 	 * Check if neighbours are to be coaleasced,
 | |
| 	 * adjust bitmap bb_counters and borders appropriately.
 | |
| 	 */
 | |
| 	if (first & 1) {
 | |
| 		first += !left_is_free;
 | |
| 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
 | |
| 	}
 | |
| 	if (!(last & 1)) {
 | |
| 		last -= !right_is_free;
 | |
| 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
 | |
| 	}
 | |
| 
 | |
| 	if (first <= last)
 | |
| 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
 | |
| 
 | |
| done:
 | |
| 	mb_set_largest_free_order(sb, e4b->bd_info);
 | |
| 	mb_update_avg_fragment_size(sb, e4b->bd_info);
 | |
| 	mb_check_buddy(e4b);
 | |
| }
 | |
| 
 | |
| static int mb_find_extent(struct ext4_buddy *e4b, int block,
 | |
| 				int needed, struct ext4_free_extent *ex)
 | |
| {
 | |
| 	int next = block;
 | |
| 	int max, order;
 | |
| 	void *buddy;
 | |
| 
 | |
| 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 | |
| 	BUG_ON(ex == NULL);
 | |
| 
 | |
| 	buddy = mb_find_buddy(e4b, 0, &max);
 | |
| 	BUG_ON(buddy == NULL);
 | |
| 	BUG_ON(block >= max);
 | |
| 	if (mb_test_bit(block, buddy)) {
 | |
| 		ex->fe_len = 0;
 | |
| 		ex->fe_start = 0;
 | |
| 		ex->fe_group = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* find actual order */
 | |
| 	order = mb_find_order_for_block(e4b, block);
 | |
| 	block = block >> order;
 | |
| 
 | |
| 	ex->fe_len = 1 << order;
 | |
| 	ex->fe_start = block << order;
 | |
| 	ex->fe_group = e4b->bd_group;
 | |
| 
 | |
| 	/* calc difference from given start */
 | |
| 	next = next - ex->fe_start;
 | |
| 	ex->fe_len -= next;
 | |
| 	ex->fe_start += next;
 | |
| 
 | |
| 	while (needed > ex->fe_len &&
 | |
| 	       mb_find_buddy(e4b, order, &max)) {
 | |
| 
 | |
| 		if (block + 1 >= max)
 | |
| 			break;
 | |
| 
 | |
| 		next = (block + 1) * (1 << order);
 | |
| 		if (mb_test_bit(next, e4b->bd_bitmap))
 | |
| 			break;
 | |
| 
 | |
| 		order = mb_find_order_for_block(e4b, next);
 | |
| 
 | |
| 		block = next >> order;
 | |
| 		ex->fe_len += 1 << order;
 | |
| 	}
 | |
| 
 | |
| 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
 | |
| 		/* Should never happen! (but apparently sometimes does?!?) */
 | |
| 		WARN_ON(1);
 | |
| 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
 | |
| 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
 | |
| 			   block, order, needed, ex->fe_group, ex->fe_start,
 | |
| 			   ex->fe_len, ex->fe_logical);
 | |
| 		ex->fe_len = 0;
 | |
| 		ex->fe_start = 0;
 | |
| 		ex->fe_group = 0;
 | |
| 	}
 | |
| 	return ex->fe_len;
 | |
| }
 | |
| 
 | |
| static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
 | |
| {
 | |
| 	int ord;
 | |
| 	int mlen = 0;
 | |
| 	int max = 0;
 | |
| 	int cur;
 | |
| 	int start = ex->fe_start;
 | |
| 	int len = ex->fe_len;
 | |
| 	unsigned ret = 0;
 | |
| 	int len0 = len;
 | |
| 	void *buddy;
 | |
| 
 | |
| 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
 | |
| 	BUG_ON(e4b->bd_group != ex->fe_group);
 | |
| 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 | |
| 	mb_check_buddy(e4b);
 | |
| 	mb_mark_used_double(e4b, start, len);
 | |
| 
 | |
| 	this_cpu_inc(discard_pa_seq);
 | |
| 	e4b->bd_info->bb_free -= len;
 | |
| 	if (e4b->bd_info->bb_first_free == start)
 | |
| 		e4b->bd_info->bb_first_free += len;
 | |
| 
 | |
| 	/* let's maintain fragments counter */
 | |
| 	if (start != 0)
 | |
| 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
 | |
| 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
 | |
| 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
 | |
| 	if (mlen && max)
 | |
| 		e4b->bd_info->bb_fragments++;
 | |
| 	else if (!mlen && !max)
 | |
| 		e4b->bd_info->bb_fragments--;
 | |
| 
 | |
| 	/* let's maintain buddy itself */
 | |
| 	while (len) {
 | |
| 		ord = mb_find_order_for_block(e4b, start);
 | |
| 
 | |
| 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
 | |
| 			/* the whole chunk may be allocated at once! */
 | |
| 			mlen = 1 << ord;
 | |
| 			buddy = mb_find_buddy(e4b, ord, &max);
 | |
| 			BUG_ON((start >> ord) >= max);
 | |
| 			mb_set_bit(start >> ord, buddy);
 | |
| 			e4b->bd_info->bb_counters[ord]--;
 | |
| 			start += mlen;
 | |
| 			len -= mlen;
 | |
| 			BUG_ON(len < 0);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* store for history */
 | |
| 		if (ret == 0)
 | |
| 			ret = len | (ord << 16);
 | |
| 
 | |
| 		/* we have to split large buddy */
 | |
| 		BUG_ON(ord <= 0);
 | |
| 		buddy = mb_find_buddy(e4b, ord, &max);
 | |
| 		mb_set_bit(start >> ord, buddy);
 | |
| 		e4b->bd_info->bb_counters[ord]--;
 | |
| 
 | |
| 		ord--;
 | |
| 		cur = (start >> ord) & ~1U;
 | |
| 		buddy = mb_find_buddy(e4b, ord, &max);
 | |
| 		mb_clear_bit(cur, buddy);
 | |
| 		mb_clear_bit(cur + 1, buddy);
 | |
| 		e4b->bd_info->bb_counters[ord]++;
 | |
| 		e4b->bd_info->bb_counters[ord]++;
 | |
| 	}
 | |
| 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
 | |
| 
 | |
| 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
 | |
| 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
 | |
| 	mb_check_buddy(e4b);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called under group lock!
 | |
|  */
 | |
| static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
 | |
| 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
 | |
| 
 | |
| 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
 | |
| 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
 | |
| 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
 | |
| 
 | |
| 	/* preallocation can change ac_b_ex, thus we store actually
 | |
| 	 * allocated blocks for history */
 | |
| 	ac->ac_f_ex = ac->ac_b_ex;
 | |
| 
 | |
| 	ac->ac_status = AC_STATUS_FOUND;
 | |
| 	ac->ac_tail = ret & 0xffff;
 | |
| 	ac->ac_buddy = ret >> 16;
 | |
| 
 | |
| 	/*
 | |
| 	 * take the page reference. We want the page to be pinned
 | |
| 	 * so that we don't get a ext4_mb_init_cache_call for this
 | |
| 	 * group until we update the bitmap. That would mean we
 | |
| 	 * double allocate blocks. The reference is dropped
 | |
| 	 * in ext4_mb_release_context
 | |
| 	 */
 | |
| 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
 | |
| 	get_page(ac->ac_bitmap_page);
 | |
| 	ac->ac_buddy_page = e4b->bd_buddy_page;
 | |
| 	get_page(ac->ac_buddy_page);
 | |
| 	/* store last allocated for subsequent stream allocation */
 | |
| 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
 | |
| 		spin_lock(&sbi->s_md_lock);
 | |
| 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
 | |
| 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
 | |
| 		spin_unlock(&sbi->s_md_lock);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * As we've just preallocated more space than
 | |
| 	 * user requested originally, we store allocated
 | |
| 	 * space in a special descriptor.
 | |
| 	 */
 | |
| 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
 | |
| 		ext4_mb_new_preallocation(ac);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b,
 | |
| 					int finish_group)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	struct ext4_free_extent *bex = &ac->ac_b_ex;
 | |
| 	struct ext4_free_extent *gex = &ac->ac_g_ex;
 | |
| 	struct ext4_free_extent ex;
 | |
| 	int max;
 | |
| 
 | |
| 	if (ac->ac_status == AC_STATUS_FOUND)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We don't want to scan for a whole year
 | |
| 	 */
 | |
| 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
 | |
| 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
 | |
| 		ac->ac_status = AC_STATUS_BREAK;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Haven't found good chunk so far, let's continue
 | |
| 	 */
 | |
| 	if (bex->fe_len < gex->fe_len)
 | |
| 		return;
 | |
| 
 | |
| 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
 | |
| 			&& bex->fe_group == e4b->bd_group) {
 | |
| 		/* recheck chunk's availability - we don't know
 | |
| 		 * when it was found (within this lock-unlock
 | |
| 		 * period or not) */
 | |
| 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
 | |
| 		if (max >= gex->fe_len) {
 | |
| 			ext4_mb_use_best_found(ac, e4b);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The routine checks whether found extent is good enough. If it is,
 | |
|  * then the extent gets marked used and flag is set to the context
 | |
|  * to stop scanning. Otherwise, the extent is compared with the
 | |
|  * previous found extent and if new one is better, then it's stored
 | |
|  * in the context. Later, the best found extent will be used, if
 | |
|  * mballoc can't find good enough extent.
 | |
|  *
 | |
|  * FIXME: real allocation policy is to be designed yet!
 | |
|  */
 | |
| static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_free_extent *ex,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct ext4_free_extent *bex = &ac->ac_b_ex;
 | |
| 	struct ext4_free_extent *gex = &ac->ac_g_ex;
 | |
| 
 | |
| 	BUG_ON(ex->fe_len <= 0);
 | |
| 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
 | |
| 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
 | |
| 
 | |
| 	ac->ac_found++;
 | |
| 
 | |
| 	/*
 | |
| 	 * The special case - take what you catch first
 | |
| 	 */
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
 | |
| 		*bex = *ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's check whether the chuck is good enough
 | |
| 	 */
 | |
| 	if (ex->fe_len == gex->fe_len) {
 | |
| 		*bex = *ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is first found extent, just store it in the context
 | |
| 	 */
 | |
| 	if (bex->fe_len == 0) {
 | |
| 		*bex = *ex;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If new found extent is better, store it in the context
 | |
| 	 */
 | |
| 	if (bex->fe_len < gex->fe_len) {
 | |
| 		/* if the request isn't satisfied, any found extent
 | |
| 		 * larger than previous best one is better */
 | |
| 		if (ex->fe_len > bex->fe_len)
 | |
| 			*bex = *ex;
 | |
| 	} else if (ex->fe_len > gex->fe_len) {
 | |
| 		/* if the request is satisfied, then we try to find
 | |
| 		 * an extent that still satisfy the request, but is
 | |
| 		 * smaller than previous one */
 | |
| 		if (ex->fe_len < bex->fe_len)
 | |
| 			*bex = *ex;
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_check_limits(ac, e4b, 0);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct ext4_free_extent ex = ac->ac_b_ex;
 | |
| 	ext4_group_t group = ex.fe_group;
 | |
| 	int max;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(ex.fe_len <= 0);
 | |
| 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ext4_lock_group(ac->ac_sb, group);
 | |
| 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
 | |
| 
 | |
| 	if (max > 0) {
 | |
| 		ac->ac_b_ex = ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 	}
 | |
| 
 | |
| 	ext4_unlock_group(ac->ac_sb, group);
 | |
| 	ext4_mb_unload_buddy(e4b);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_buddy *e4b)
 | |
| {
 | |
| 	ext4_group_t group = ac->ac_g_ex.fe_group;
 | |
| 	int max;
 | |
| 	int err;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
 | |
| 	struct ext4_free_extent ex;
 | |
| 
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
 | |
| 		return 0;
 | |
| 	if (grp->bb_free == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
 | |
| 		ext4_mb_unload_buddy(e4b);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ext4_lock_group(ac->ac_sb, group);
 | |
| 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
 | |
| 			     ac->ac_g_ex.fe_len, &ex);
 | |
| 	ex.fe_logical = 0xDEADFA11; /* debug value */
 | |
| 
 | |
| 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
 | |
| 		ext4_fsblk_t start;
 | |
| 
 | |
| 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
 | |
| 			ex.fe_start;
 | |
| 		/* use do_div to get remainder (would be 64-bit modulo) */
 | |
| 		if (do_div(start, sbi->s_stripe) == 0) {
 | |
| 			ac->ac_found++;
 | |
| 			ac->ac_b_ex = ex;
 | |
| 			ext4_mb_use_best_found(ac, e4b);
 | |
| 		}
 | |
| 	} else if (max >= ac->ac_g_ex.fe_len) {
 | |
| 		BUG_ON(ex.fe_len <= 0);
 | |
| 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
 | |
| 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
 | |
| 		ac->ac_found++;
 | |
| 		ac->ac_b_ex = ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
 | |
| 		/* Sometimes, caller may want to merge even small
 | |
| 		 * number of blocks to an existing extent */
 | |
| 		BUG_ON(ex.fe_len <= 0);
 | |
| 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
 | |
| 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
 | |
| 		ac->ac_found++;
 | |
| 		ac->ac_b_ex = ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 	}
 | |
| 	ext4_unlock_group(ac->ac_sb, group);
 | |
| 	ext4_mb_unload_buddy(e4b);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The routine scans buddy structures (not bitmap!) from given order
 | |
|  * to max order and tries to find big enough chunk to satisfy the req
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_group_info *grp = e4b->bd_info;
 | |
| 	void *buddy;
 | |
| 	int i;
 | |
| 	int k;
 | |
| 	int max;
 | |
| 
 | |
| 	BUG_ON(ac->ac_2order <= 0);
 | |
| 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
 | |
| 		if (grp->bb_counters[i] == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		buddy = mb_find_buddy(e4b, i, &max);
 | |
| 		BUG_ON(buddy == NULL);
 | |
| 
 | |
| 		k = mb_find_next_zero_bit(buddy, max, 0);
 | |
| 		if (k >= max) {
 | |
| 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
 | |
| 				"%d free clusters of order %d. But found 0",
 | |
| 				grp->bb_counters[i], i);
 | |
| 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
 | |
| 					 e4b->bd_group,
 | |
| 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 | |
| 			break;
 | |
| 		}
 | |
| 		ac->ac_found++;
 | |
| 
 | |
| 		ac->ac_b_ex.fe_len = 1 << i;
 | |
| 		ac->ac_b_ex.fe_start = k << i;
 | |
| 		ac->ac_b_ex.fe_group = e4b->bd_group;
 | |
| 
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 
 | |
| 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
 | |
| 
 | |
| 		if (EXT4_SB(sb)->s_mb_stats)
 | |
| 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The routine scans the group and measures all found extents.
 | |
|  * In order to optimize scanning, caller must pass number of
 | |
|  * free blocks in the group, so the routine can know upper limit.
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	void *bitmap = e4b->bd_bitmap;
 | |
| 	struct ext4_free_extent ex;
 | |
| 	int i;
 | |
| 	int free;
 | |
| 
 | |
| 	free = e4b->bd_info->bb_free;
 | |
| 	if (WARN_ON(free <= 0))
 | |
| 		return;
 | |
| 
 | |
| 	i = e4b->bd_info->bb_first_free;
 | |
| 
 | |
| 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
 | |
| 		i = mb_find_next_zero_bit(bitmap,
 | |
| 						EXT4_CLUSTERS_PER_GROUP(sb), i);
 | |
| 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
 | |
| 			/*
 | |
| 			 * IF we have corrupt bitmap, we won't find any
 | |
| 			 * free blocks even though group info says we
 | |
| 			 * have free blocks
 | |
| 			 */
 | |
| 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
 | |
| 					"%d free clusters as per "
 | |
| 					"group info. But bitmap says 0",
 | |
| 					free);
 | |
| 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
 | |
| 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
 | |
| 		if (WARN_ON(ex.fe_len <= 0))
 | |
| 			break;
 | |
| 		if (free < ex.fe_len) {
 | |
| 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
 | |
| 					"%d free clusters as per "
 | |
| 					"group info. But got %d blocks",
 | |
| 					free, ex.fe_len);
 | |
| 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
 | |
| 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 | |
| 			/*
 | |
| 			 * The number of free blocks differs. This mostly
 | |
| 			 * indicate that the bitmap is corrupt. So exit
 | |
| 			 * without claiming the space.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		ex.fe_logical = 0xDEADC0DE; /* debug value */
 | |
| 		ext4_mb_measure_extent(ac, &ex, e4b);
 | |
| 
 | |
| 		i += ex.fe_len;
 | |
| 		free -= ex.fe_len;
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_check_limits(ac, e4b, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a special case for storages like raid5
 | |
|  * we try to find stripe-aligned chunks for stripe-size-multiple requests
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
 | |
| 				 struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	void *bitmap = e4b->bd_bitmap;
 | |
| 	struct ext4_free_extent ex;
 | |
| 	ext4_fsblk_t first_group_block;
 | |
| 	ext4_fsblk_t a;
 | |
| 	ext4_grpblk_t i;
 | |
| 	int max;
 | |
| 
 | |
| 	BUG_ON(sbi->s_stripe == 0);
 | |
| 
 | |
| 	/* find first stripe-aligned block in group */
 | |
| 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
 | |
| 
 | |
| 	a = first_group_block + sbi->s_stripe - 1;
 | |
| 	do_div(a, sbi->s_stripe);
 | |
| 	i = (a * sbi->s_stripe) - first_group_block;
 | |
| 
 | |
| 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
 | |
| 		if (!mb_test_bit(i, bitmap)) {
 | |
| 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
 | |
| 			if (max >= sbi->s_stripe) {
 | |
| 				ac->ac_found++;
 | |
| 				ex.fe_logical = 0xDEADF00D; /* debug value */
 | |
| 				ac->ac_b_ex = ex;
 | |
| 				ext4_mb_use_best_found(ac, e4b);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		i += sbi->s_stripe;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is also called BEFORE we load the buddy bitmap.
 | |
|  * Returns either 1 or 0 indicating that the group is either suitable
 | |
|  * for the allocation or not.
 | |
|  */
 | |
| static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
 | |
| 				ext4_group_t group, int cr)
 | |
| {
 | |
| 	ext4_grpblk_t free, fragments;
 | |
| 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
 | |
| 
 | |
| 	BUG_ON(cr < 0 || cr >= 4);
 | |
| 
 | |
| 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
 | |
| 		return false;
 | |
| 
 | |
| 	free = grp->bb_free;
 | |
| 	if (free == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	fragments = grp->bb_fragments;
 | |
| 	if (fragments == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		BUG_ON(ac->ac_2order == 0);
 | |
| 
 | |
| 		/* Avoid using the first bg of a flexgroup for data files */
 | |
| 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
 | |
| 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
 | |
| 		    ((group % flex_size) == 0))
 | |
| 			return false;
 | |
| 
 | |
| 		if (free < ac->ac_g_ex.fe_len)
 | |
| 			return false;
 | |
| 
 | |
| 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
 | |
| 			return true;
 | |
| 
 | |
| 		if (grp->bb_largest_free_order < ac->ac_2order)
 | |
| 			return false;
 | |
| 
 | |
| 		return true;
 | |
| 	case 1:
 | |
| 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
 | |
| 			return true;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		if (free >= ac->ac_g_ex.fe_len)
 | |
| 			return true;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This could return negative error code if something goes wrong
 | |
|  * during ext4_mb_init_group(). This should not be called with
 | |
|  * ext4_lock_group() held.
 | |
|  */
 | |
| static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
 | |
| 				     ext4_group_t group, int cr)
 | |
| {
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
 | |
| 	ext4_grpblk_t free;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (sbi->s_mb_stats)
 | |
| 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
 | |
| 	if (should_lock)
 | |
| 		ext4_lock_group(sb, group);
 | |
| 	free = grp->bb_free;
 | |
| 	if (free == 0)
 | |
| 		goto out;
 | |
| 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
 | |
| 		goto out;
 | |
| 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
 | |
| 		goto out;
 | |
| 	if (should_lock)
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 
 | |
| 	/* We only do this if the grp has never been initialized */
 | |
| 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
 | |
| 		struct ext4_group_desc *gdp =
 | |
| 			ext4_get_group_desc(sb, group, NULL);
 | |
| 		int ret;
 | |
| 
 | |
| 		/* cr=0/1 is a very optimistic search to find large
 | |
| 		 * good chunks almost for free.  If buddy data is not
 | |
| 		 * ready, then this optimization makes no sense.  But
 | |
| 		 * we never skip the first block group in a flex_bg,
 | |
| 		 * since this gets used for metadata block allocation,
 | |
| 		 * and we want to make sure we locate metadata blocks
 | |
| 		 * in the first block group in the flex_bg if possible.
 | |
| 		 */
 | |
| 		if (cr < 2 &&
 | |
| 		    (!sbi->s_log_groups_per_flex ||
 | |
| 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
 | |
| 		    !(ext4_has_group_desc_csum(sb) &&
 | |
| 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
 | |
| 			return 0;
 | |
| 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (should_lock)
 | |
| 		ext4_lock_group(sb, group);
 | |
| 	ret = ext4_mb_good_group(ac, group, cr);
 | |
| out:
 | |
| 	if (should_lock)
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start prefetching @nr block bitmaps starting at @group.
 | |
|  * Return the next group which needs to be prefetched.
 | |
|  */
 | |
| ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
 | |
| 			      unsigned int nr, int *cnt)
 | |
| {
 | |
| 	ext4_group_t ngroups = ext4_get_groups_count(sb);
 | |
| 	struct buffer_head *bh;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	while (nr-- > 0) {
 | |
| 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
 | |
| 								  NULL);
 | |
| 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 
 | |
| 		/*
 | |
| 		 * Prefetch block groups with free blocks; but don't
 | |
| 		 * bother if it is marked uninitialized on disk, since
 | |
| 		 * it won't require I/O to read.  Also only try to
 | |
| 		 * prefetch once, so we avoid getblk() call, which can
 | |
| 		 * be expensive.
 | |
| 		 */
 | |
| 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
 | |
| 		    EXT4_MB_GRP_NEED_INIT(grp) &&
 | |
| 		    ext4_free_group_clusters(sb, gdp) > 0 &&
 | |
| 		    !(ext4_has_group_desc_csum(sb) &&
 | |
| 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
 | |
| 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
 | |
| 			if (bh && !IS_ERR(bh)) {
 | |
| 				if (!buffer_uptodate(bh) && cnt)
 | |
| 					(*cnt)++;
 | |
| 				brelse(bh);
 | |
| 			}
 | |
| 		}
 | |
| 		if (++group >= ngroups)
 | |
| 			group = 0;
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| 	return group;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prefetching reads the block bitmap into the buffer cache; but we
 | |
|  * need to make sure that the buddy bitmap in the page cache has been
 | |
|  * initialized.  Note that ext4_mb_init_group() will block if the I/O
 | |
|  * is not yet completed, or indeed if it was not initiated by
 | |
|  * ext4_mb_prefetch did not start the I/O.
 | |
|  *
 | |
|  * TODO: We should actually kick off the buddy bitmap setup in a work
 | |
|  * queue when the buffer I/O is completed, so that we don't block
 | |
|  * waiting for the block allocation bitmap read to finish when
 | |
|  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
 | |
|  */
 | |
| void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
 | |
| 			   unsigned int nr)
 | |
| {
 | |
| 	while (nr-- > 0) {
 | |
| 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
 | |
| 								  NULL);
 | |
| 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 
 | |
| 		if (!group)
 | |
| 			group = ext4_get_groups_count(sb);
 | |
| 		group--;
 | |
| 		grp = ext4_get_group_info(sb, group);
 | |
| 
 | |
| 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
 | |
| 		    ext4_free_group_clusters(sb, gdp) > 0 &&
 | |
| 		    !(ext4_has_group_desc_csum(sb) &&
 | |
| 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
 | |
| 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
 | |
| 	int cr = -1;
 | |
| 	int err = 0, first_err = 0;
 | |
| 	unsigned int nr = 0, prefetch_ios = 0;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct super_block *sb;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int lost;
 | |
| 
 | |
| 	sb = ac->ac_sb;
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 	ngroups = ext4_get_groups_count(sb);
 | |
| 	/* non-extent files are limited to low blocks/groups */
 | |
| 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
 | |
| 		ngroups = sbi->s_blockfile_groups;
 | |
| 
 | |
| 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
 | |
| 
 | |
| 	/* first, try the goal */
 | |
| 	err = ext4_mb_find_by_goal(ac, &e4b);
 | |
| 	if (err || ac->ac_status == AC_STATUS_FOUND)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * ac->ac_2order is set only if the fe_len is a power of 2
 | |
| 	 * if ac->ac_2order is set we also set criteria to 0 so that we
 | |
| 	 * try exact allocation using buddy.
 | |
| 	 */
 | |
| 	i = fls(ac->ac_g_ex.fe_len);
 | |
| 	ac->ac_2order = 0;
 | |
| 	/*
 | |
| 	 * We search using buddy data only if the order of the request
 | |
| 	 * is greater than equal to the sbi_s_mb_order2_reqs
 | |
| 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
 | |
| 	 * We also support searching for power-of-two requests only for
 | |
| 	 * requests upto maximum buddy size we have constructed.
 | |
| 	 */
 | |
| 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
 | |
| 		/*
 | |
| 		 * This should tell if fe_len is exactly power of 2
 | |
| 		 */
 | |
| 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
 | |
| 			ac->ac_2order = array_index_nospec(i - 1,
 | |
| 							   MB_NUM_ORDERS(sb));
 | |
| 	}
 | |
| 
 | |
| 	/* if stream allocation is enabled, use global goal */
 | |
| 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
 | |
| 		/* TBD: may be hot point */
 | |
| 		spin_lock(&sbi->s_md_lock);
 | |
| 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
 | |
| 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
 | |
| 		spin_unlock(&sbi->s_md_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Let's just scan groups to find more-less suitable blocks */
 | |
| 	cr = ac->ac_2order ? 0 : 1;
 | |
| 	/*
 | |
| 	 * cr == 0 try to get exact allocation,
 | |
| 	 * cr == 3  try to get anything
 | |
| 	 */
 | |
| repeat:
 | |
| 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
 | |
| 		ac->ac_criteria = cr;
 | |
| 		/*
 | |
| 		 * searching for the right group start
 | |
| 		 * from the goal value specified
 | |
| 		 */
 | |
| 		group = ac->ac_g_ex.fe_group;
 | |
| 		ac->ac_last_optimal_group = group;
 | |
| 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
 | |
| 		prefetch_grp = group;
 | |
| 
 | |
| 		for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups),
 | |
| 			     i++) {
 | |
| 			int ret = 0, new_cr;
 | |
| 
 | |
| 			cond_resched();
 | |
| 
 | |
| 			ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
 | |
| 			if (new_cr != cr) {
 | |
| 				cr = new_cr;
 | |
| 				goto repeat;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Batch reads of the block allocation bitmaps
 | |
| 			 * to get multiple READs in flight; limit
 | |
| 			 * prefetching at cr=0/1, otherwise mballoc can
 | |
| 			 * spend a lot of time loading imperfect groups
 | |
| 			 */
 | |
| 			if ((prefetch_grp == group) &&
 | |
| 			    (cr > 1 ||
 | |
| 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
 | |
| 				unsigned int curr_ios = prefetch_ios;
 | |
| 
 | |
| 				nr = sbi->s_mb_prefetch;
 | |
| 				if (ext4_has_feature_flex_bg(sb)) {
 | |
| 					nr = 1 << sbi->s_log_groups_per_flex;
 | |
| 					nr -= group & (nr - 1);
 | |
| 					nr = min(nr, sbi->s_mb_prefetch);
 | |
| 				}
 | |
| 				prefetch_grp = ext4_mb_prefetch(sb, group,
 | |
| 							nr, &prefetch_ios);
 | |
| 				if (prefetch_ios == curr_ios)
 | |
| 					nr = 0;
 | |
| 			}
 | |
| 
 | |
| 			/* This now checks without needing the buddy page */
 | |
| 			ret = ext4_mb_good_group_nolock(ac, group, cr);
 | |
| 			if (ret <= 0) {
 | |
| 				if (!first_err)
 | |
| 					first_err = ret;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 
 | |
| 			ext4_lock_group(sb, group);
 | |
| 
 | |
| 			/*
 | |
| 			 * We need to check again after locking the
 | |
| 			 * block group
 | |
| 			 */
 | |
| 			ret = ext4_mb_good_group(ac, group, cr);
 | |
| 			if (ret == 0) {
 | |
| 				ext4_unlock_group(sb, group);
 | |
| 				ext4_mb_unload_buddy(&e4b);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ac->ac_groups_scanned++;
 | |
| 			if (cr == 0)
 | |
| 				ext4_mb_simple_scan_group(ac, &e4b);
 | |
| 			else if (cr == 1 && sbi->s_stripe &&
 | |
| 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
 | |
| 				ext4_mb_scan_aligned(ac, &e4b);
 | |
| 			else
 | |
| 				ext4_mb_complex_scan_group(ac, &e4b);
 | |
| 
 | |
| 			ext4_unlock_group(sb, group);
 | |
| 			ext4_mb_unload_buddy(&e4b);
 | |
| 
 | |
| 			if (ac->ac_status != AC_STATUS_CONTINUE)
 | |
| 				break;
 | |
| 		}
 | |
| 		/* Processed all groups and haven't found blocks */
 | |
| 		if (sbi->s_mb_stats && i == ngroups)
 | |
| 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
 | |
| 	}
 | |
| 
 | |
| 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
 | |
| 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
 | |
| 		/*
 | |
| 		 * We've been searching too long. Let's try to allocate
 | |
| 		 * the best chunk we've found so far
 | |
| 		 */
 | |
| 		ext4_mb_try_best_found(ac, &e4b);
 | |
| 		if (ac->ac_status != AC_STATUS_FOUND) {
 | |
| 			/*
 | |
| 			 * Someone more lucky has already allocated it.
 | |
| 			 * The only thing we can do is just take first
 | |
| 			 * found block(s)
 | |
| 			 */
 | |
| 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
 | |
| 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
 | |
| 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
 | |
| 				 ac->ac_b_ex.fe_len, lost);
 | |
| 
 | |
| 			ac->ac_b_ex.fe_group = 0;
 | |
| 			ac->ac_b_ex.fe_start = 0;
 | |
| 			ac->ac_b_ex.fe_len = 0;
 | |
| 			ac->ac_status = AC_STATUS_CONTINUE;
 | |
| 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
 | |
| 			cr = 3;
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
 | |
| 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
 | |
| out:
 | |
| 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
 | |
| 		err = first_err;
 | |
| 
 | |
| 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
 | |
| 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
 | |
| 		 ac->ac_flags, cr, err);
 | |
| 
 | |
| 	if (nr)
 | |
| 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
 | |
| 	ext4_group_t group;
 | |
| 
 | |
| 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
 | |
| 		return NULL;
 | |
| 	group = *pos + 1;
 | |
| 	return (void *) ((unsigned long) group);
 | |
| }
 | |
| 
 | |
| static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
 | |
| 	ext4_group_t group;
 | |
| 
 | |
| 	++*pos;
 | |
| 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
 | |
| 		return NULL;
 | |
| 	group = *pos + 1;
 | |
| 	return (void *) ((unsigned long) group);
 | |
| }
 | |
| 
 | |
| static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
 | |
| 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
 | |
| 	int i;
 | |
| 	int err, buddy_loaded = 0;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	struct ext4_group_info *grinfo;
 | |
| 	unsigned char blocksize_bits = min_t(unsigned char,
 | |
| 					     sb->s_blocksize_bits,
 | |
| 					     EXT4_MAX_BLOCK_LOG_SIZE);
 | |
| 	struct sg {
 | |
| 		struct ext4_group_info info;
 | |
| 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
 | |
| 	} sg;
 | |
| 
 | |
| 	group--;
 | |
| 	if (group == 0)
 | |
| 		seq_puts(seq, "#group: free  frags first ["
 | |
| 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
 | |
| 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
 | |
| 
 | |
| 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
 | |
| 		sizeof(struct ext4_group_info);
 | |
| 
 | |
| 	grinfo = ext4_get_group_info(sb, group);
 | |
| 	/* Load the group info in memory only if not already loaded. */
 | |
| 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
 | |
| 		err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 		if (err) {
 | |
| 			seq_printf(seq, "#%-5u: I/O error\n", group);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		buddy_loaded = 1;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(&sg, ext4_get_group_info(sb, group), i);
 | |
| 
 | |
| 	if (buddy_loaded)
 | |
| 		ext4_mb_unload_buddy(&e4b);
 | |
| 
 | |
| 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
 | |
| 			sg.info.bb_fragments, sg.info.bb_first_free);
 | |
| 	for (i = 0; i <= 13; i++)
 | |
| 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
 | |
| 				sg.info.bb_counters[i] : 0);
 | |
| 	seq_puts(seq, " ]\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| const struct seq_operations ext4_mb_seq_groups_ops = {
 | |
| 	.start  = ext4_mb_seq_groups_start,
 | |
| 	.next   = ext4_mb_seq_groups_next,
 | |
| 	.stop   = ext4_mb_seq_groups_stop,
 | |
| 	.show   = ext4_mb_seq_groups_show,
 | |
| };
 | |
| 
 | |
| int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
 | |
| {
 | |
| 	struct super_block *sb = (struct super_block *)seq->private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	seq_puts(seq, "mballoc:\n");
 | |
| 	if (!sbi->s_mb_stats) {
 | |
| 		seq_puts(seq, "\tmb stats collection turned off.\n");
 | |
| 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
 | |
| 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
 | |
| 
 | |
| 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
 | |
| 
 | |
| 	seq_puts(seq, "\tcr0_stats:\n");
 | |
| 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
 | |
| 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
 | |
| 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
 | |
| 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
 | |
| 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
 | |
| 
 | |
| 	seq_puts(seq, "\tcr1_stats:\n");
 | |
| 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
 | |
| 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
 | |
| 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
 | |
| 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
 | |
| 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
 | |
| 
 | |
| 	seq_puts(seq, "\tcr2_stats:\n");
 | |
| 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
 | |
| 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
 | |
| 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
 | |
| 
 | |
| 	seq_puts(seq, "\tcr3_stats:\n");
 | |
| 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
 | |
| 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
 | |
| 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
 | |
| 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
 | |
| 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
 | |
| 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
 | |
| 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
 | |
| 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
 | |
| 
 | |
| 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
 | |
| 		   atomic_read(&sbi->s_mb_buddies_generated),
 | |
| 		   ext4_get_groups_count(sb));
 | |
| 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
 | |
| 		   atomic64_read(&sbi->s_mb_generation_time));
 | |
| 	seq_printf(seq, "\tpreallocated: %u\n",
 | |
| 		   atomic_read(&sbi->s_mb_preallocated));
 | |
| 	seq_printf(seq, "\tdiscarded: %u\n",
 | |
| 		   atomic_read(&sbi->s_mb_discarded));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
 | |
| 	unsigned long position;
 | |
| 
 | |
| 	read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
 | |
| 
 | |
| 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
 | |
| 		return NULL;
 | |
| 	position = *pos + 1;
 | |
| 	return (void *) ((unsigned long) position);
 | |
| }
 | |
| 
 | |
| static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
 | |
| 	unsigned long position;
 | |
| 
 | |
| 	++*pos;
 | |
| 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
 | |
| 		return NULL;
 | |
| 	position = *pos + 1;
 | |
| 	return (void *) ((unsigned long) position);
 | |
| }
 | |
| 
 | |
| static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	unsigned long position = ((unsigned long) v);
 | |
| 	struct ext4_group_info *grp;
 | |
| 	struct rb_node *n;
 | |
| 	unsigned int count, min, max;
 | |
| 
 | |
| 	position--;
 | |
| 	if (position >= MB_NUM_ORDERS(sb)) {
 | |
| 		seq_puts(seq, "fragment_size_tree:\n");
 | |
| 		n = rb_first(&sbi->s_mb_avg_fragment_size_root);
 | |
| 		if (!n) {
 | |
| 			seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
 | |
| 		min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
 | |
| 		count = 1;
 | |
| 		while (rb_next(n)) {
 | |
| 			count++;
 | |
| 			n = rb_next(n);
 | |
| 		}
 | |
| 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
 | |
| 		max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
 | |
| 
 | |
| 		seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
 | |
| 			   min, max, count);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (position == 0) {
 | |
| 		seq_printf(seq, "optimize_scan: %d\n",
 | |
| 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
 | |
| 		seq_puts(seq, "max_free_order_lists:\n");
 | |
| 	}
 | |
| 	count = 0;
 | |
| 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
 | |
| 			    bb_largest_free_order_node)
 | |
| 		count++;
 | |
| 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
 | |
| 		   (unsigned int)position, count);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
 | |
| 
 | |
| 	read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
 | |
| }
 | |
| 
 | |
| const struct seq_operations ext4_mb_seq_structs_summary_ops = {
 | |
| 	.start  = ext4_mb_seq_structs_summary_start,
 | |
| 	.next   = ext4_mb_seq_structs_summary_next,
 | |
| 	.stop   = ext4_mb_seq_structs_summary_stop,
 | |
| 	.show   = ext4_mb_seq_structs_summary_show,
 | |
| };
 | |
| 
 | |
| static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
 | |
| {
 | |
| 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
 | |
| 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
 | |
| 
 | |
| 	BUG_ON(!cachep);
 | |
| 	return cachep;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate the top-level s_group_info array for the specified number
 | |
|  * of groups
 | |
|  */
 | |
| int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	unsigned size;
 | |
| 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
 | |
| 
 | |
| 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
 | |
| 		EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 	if (size <= sbi->s_group_info_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
 | |
| 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
 | |
| 	if (!new_groupinfo) {
 | |
| 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	rcu_read_lock();
 | |
| 	old_groupinfo = rcu_dereference(sbi->s_group_info);
 | |
| 	if (old_groupinfo)
 | |
| 		memcpy(new_groupinfo, old_groupinfo,
 | |
| 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
 | |
| 	rcu_read_unlock();
 | |
| 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
 | |
| 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
 | |
| 	if (old_groupinfo)
 | |
| 		ext4_kvfree_array_rcu(old_groupinfo);
 | |
| 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
 | |
| 		   sbi->s_group_info_size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Create and initialize ext4_group_info data for the given group. */
 | |
| int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
 | |
| 			  struct ext4_group_desc *desc)
 | |
| {
 | |
| 	int i;
 | |
| 	int metalen = 0;
 | |
| 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_group_info **meta_group_info;
 | |
| 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
 | |
| 
 | |
| 	/*
 | |
| 	 * First check if this group is the first of a reserved block.
 | |
| 	 * If it's true, we have to allocate a new table of pointers
 | |
| 	 * to ext4_group_info structures
 | |
| 	 */
 | |
| 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
 | |
| 		metalen = sizeof(*meta_group_info) <<
 | |
| 			EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 		meta_group_info = kmalloc(metalen, GFP_NOFS);
 | |
| 		if (meta_group_info == NULL) {
 | |
| 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
 | |
| 				 "for a buddy group");
 | |
| 			goto exit_meta_group_info;
 | |
| 		}
 | |
| 		rcu_read_lock();
 | |
| 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
 | |
| 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
 | |
| 
 | |
| 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
 | |
| 	if (meta_group_info[i] == NULL) {
 | |
| 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
 | |
| 		goto exit_group_info;
 | |
| 	}
 | |
| 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
 | |
| 		&(meta_group_info[i]->bb_state));
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize bb_free to be able to skip
 | |
| 	 * empty groups without initialization
 | |
| 	 */
 | |
| 	if (ext4_has_group_desc_csum(sb) &&
 | |
| 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
 | |
| 		meta_group_info[i]->bb_free =
 | |
| 			ext4_free_clusters_after_init(sb, group, desc);
 | |
| 	} else {
 | |
| 		meta_group_info[i]->bb_free =
 | |
| 			ext4_free_group_clusters(sb, desc);
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
 | |
| 	init_rwsem(&meta_group_info[i]->alloc_sem);
 | |
| 	meta_group_info[i]->bb_free_root = RB_ROOT;
 | |
| 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
 | |
| 	RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
 | |
| 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
 | |
| 	meta_group_info[i]->bb_group = group;
 | |
| 
 | |
| 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
 | |
| 	return 0;
 | |
| 
 | |
| exit_group_info:
 | |
| 	/* If a meta_group_info table has been allocated, release it now */
 | |
| 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
 | |
| 		struct ext4_group_info ***group_info;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		group_info = rcu_dereference(sbi->s_group_info);
 | |
| 		kfree(group_info[idx]);
 | |
| 		group_info[idx] = NULL;
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| exit_meta_group_info:
 | |
| 	return -ENOMEM;
 | |
| } /* ext4_mb_add_groupinfo */
 | |
| 
 | |
| static int ext4_mb_init_backend(struct super_block *sb)
 | |
| {
 | |
| 	ext4_group_t ngroups = ext4_get_groups_count(sb);
 | |
| 	ext4_group_t i;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	int err;
 | |
| 	struct ext4_group_desc *desc;
 | |
| 	struct ext4_group_info ***group_info;
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	sbi->s_buddy_cache = new_inode(sb);
 | |
| 	if (sbi->s_buddy_cache == NULL) {
 | |
| 		ext4_msg(sb, KERN_ERR, "can't get new inode");
 | |
| 		goto err_freesgi;
 | |
| 	}
 | |
| 	/* To avoid potentially colliding with an valid on-disk inode number,
 | |
| 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
 | |
| 	 * not in the inode hash, so it should never be found by iget(), but
 | |
| 	 * this will avoid confusion if it ever shows up during debugging. */
 | |
| 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
 | |
| 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
 | |
| 	for (i = 0; i < ngroups; i++) {
 | |
| 		cond_resched();
 | |
| 		desc = ext4_get_group_desc(sb, i, NULL);
 | |
| 		if (desc == NULL) {
 | |
| 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
 | |
| 			goto err_freebuddy;
 | |
| 		}
 | |
| 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
 | |
| 			goto err_freebuddy;
 | |
| 	}
 | |
| 
 | |
| 	if (ext4_has_feature_flex_bg(sb)) {
 | |
| 		/* a single flex group is supposed to be read by a single IO.
 | |
| 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
 | |
| 		 * unsigned integer, so the maximum shift is 32.
 | |
| 		 */
 | |
| 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
 | |
| 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
 | |
| 			goto err_freesgi;
 | |
| 		}
 | |
| 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
 | |
| 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
 | |
| 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
 | |
| 	} else {
 | |
| 		sbi->s_mb_prefetch = 32;
 | |
| 	}
 | |
| 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
 | |
| 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
 | |
| 	/* now many real IOs to prefetch within a single allocation at cr=0
 | |
| 	 * given cr=0 is an CPU-related optimization we shouldn't try to
 | |
| 	 * load too many groups, at some point we should start to use what
 | |
| 	 * we've got in memory.
 | |
| 	 * with an average random access time 5ms, it'd take a second to get
 | |
| 	 * 200 groups (* N with flex_bg), so let's make this limit 4
 | |
| 	 */
 | |
| 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
 | |
| 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
 | |
| 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_freebuddy:
 | |
| 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
 | |
| 	while (i-- > 0)
 | |
| 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
 | |
| 	i = sbi->s_group_info_size;
 | |
| 	rcu_read_lock();
 | |
| 	group_info = rcu_dereference(sbi->s_group_info);
 | |
| 	while (i-- > 0)
 | |
| 		kfree(group_info[i]);
 | |
| 	rcu_read_unlock();
 | |
| 	iput(sbi->s_buddy_cache);
 | |
| err_freesgi:
 | |
| 	rcu_read_lock();
 | |
| 	kvfree(rcu_dereference(sbi->s_group_info));
 | |
| 	rcu_read_unlock();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void ext4_groupinfo_destroy_slabs(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
 | |
| 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
 | |
| 		ext4_groupinfo_caches[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ext4_groupinfo_create_slab(size_t size)
 | |
| {
 | |
| 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
 | |
| 	int slab_size;
 | |
| 	int blocksize_bits = order_base_2(size);
 | |
| 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	if (cache_index >= NR_GRPINFO_CACHES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(cache_index < 0))
 | |
| 		cache_index = 0;
 | |
| 
 | |
| 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
 | |
| 	if (ext4_groupinfo_caches[cache_index]) {
 | |
| 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
 | |
| 		return 0;	/* Already created */
 | |
| 	}
 | |
| 
 | |
| 	slab_size = offsetof(struct ext4_group_info,
 | |
| 				bb_counters[blocksize_bits + 2]);
 | |
| 
 | |
| 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
 | |
| 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
 | |
| 					NULL);
 | |
| 
 | |
| 	ext4_groupinfo_caches[cache_index] = cachep;
 | |
| 
 | |
| 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
 | |
| 	if (!cachep) {
 | |
| 		printk(KERN_EMERG
 | |
| 		       "EXT4-fs: no memory for groupinfo slab cache\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ext4_mb_init(struct super_block *sb)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	unsigned i, j;
 | |
| 	unsigned offset, offset_incr;
 | |
| 	unsigned max;
 | |
| 	int ret;
 | |
| 
 | |
| 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
 | |
| 
 | |
| 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
 | |
| 	if (sbi->s_mb_offsets == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
 | |
| 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
 | |
| 	if (sbi->s_mb_maxs == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* order 0 is regular bitmap */
 | |
| 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
 | |
| 	sbi->s_mb_offsets[0] = 0;
 | |
| 
 | |
| 	i = 1;
 | |
| 	offset = 0;
 | |
| 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
 | |
| 	max = sb->s_blocksize << 2;
 | |
| 	do {
 | |
| 		sbi->s_mb_offsets[i] = offset;
 | |
| 		sbi->s_mb_maxs[i] = max;
 | |
| 		offset += offset_incr;
 | |
| 		offset_incr = offset_incr >> 1;
 | |
| 		max = max >> 1;
 | |
| 		i++;
 | |
| 	} while (i < MB_NUM_ORDERS(sb));
 | |
| 
 | |
| 	sbi->s_mb_avg_fragment_size_root = RB_ROOT;
 | |
| 	sbi->s_mb_largest_free_orders =
 | |
| 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
 | |
| 			GFP_KERNEL);
 | |
| 	if (!sbi->s_mb_largest_free_orders) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	sbi->s_mb_largest_free_orders_locks =
 | |
| 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
 | |
| 			GFP_KERNEL);
 | |
| 	if (!sbi->s_mb_largest_free_orders_locks) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
 | |
| 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
 | |
| 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
 | |
| 	}
 | |
| 	rwlock_init(&sbi->s_mb_rb_lock);
 | |
| 
 | |
| 	spin_lock_init(&sbi->s_md_lock);
 | |
| 	sbi->s_mb_free_pending = 0;
 | |
| 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
 | |
| 
 | |
| 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
 | |
| 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
 | |
| 	sbi->s_mb_stats = MB_DEFAULT_STATS;
 | |
| 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
 | |
| 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
 | |
| 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
 | |
| 	/*
 | |
| 	 * The default group preallocation is 512, which for 4k block
 | |
| 	 * sizes translates to 2 megabytes.  However for bigalloc file
 | |
| 	 * systems, this is probably too big (i.e, if the cluster size
 | |
| 	 * is 1 megabyte, then group preallocation size becomes half a
 | |
| 	 * gigabyte!).  As a default, we will keep a two megabyte
 | |
| 	 * group pralloc size for cluster sizes up to 64k, and after
 | |
| 	 * that, we will force a minimum group preallocation size of
 | |
| 	 * 32 clusters.  This translates to 8 megs when the cluster
 | |
| 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
 | |
| 	 * which seems reasonable as a default.
 | |
| 	 */
 | |
| 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
 | |
| 				       sbi->s_cluster_bits, 32);
 | |
| 	/*
 | |
| 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
 | |
| 	 * to the lowest multiple of s_stripe which is bigger than
 | |
| 	 * the s_mb_group_prealloc as determined above. We want
 | |
| 	 * the preallocation size to be an exact multiple of the
 | |
| 	 * RAID stripe size so that preallocations don't fragment
 | |
| 	 * the stripes.
 | |
| 	 */
 | |
| 	if (sbi->s_stripe > 1) {
 | |
| 		sbi->s_mb_group_prealloc = roundup(
 | |
| 			sbi->s_mb_group_prealloc, sbi->s_stripe);
 | |
| 	}
 | |
| 
 | |
| 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
 | |
| 	if (sbi->s_locality_groups == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct ext4_locality_group *lg;
 | |
| 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
 | |
| 		mutex_init(&lg->lg_mutex);
 | |
| 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
 | |
| 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
 | |
| 		spin_lock_init(&lg->lg_prealloc_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev)))
 | |
| 		sbi->s_mb_max_linear_groups = 0;
 | |
| 	else
 | |
| 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
 | |
| 	/* init file for buddy data */
 | |
| 	ret = ext4_mb_init_backend(sb);
 | |
| 	if (ret != 0)
 | |
| 		goto out_free_locality_groups;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_locality_groups:
 | |
| 	free_percpu(sbi->s_locality_groups);
 | |
| 	sbi->s_locality_groups = NULL;
 | |
| out:
 | |
| 	kfree(sbi->s_mb_largest_free_orders);
 | |
| 	kfree(sbi->s_mb_largest_free_orders_locks);
 | |
| 	kfree(sbi->s_mb_offsets);
 | |
| 	sbi->s_mb_offsets = NULL;
 | |
| 	kfree(sbi->s_mb_maxs);
 | |
| 	sbi->s_mb_maxs = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* need to called with the ext4 group lock held */
 | |
| static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct list_head *cur, *tmp;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
 | |
| 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		count++;
 | |
| 		kmem_cache_free(ext4_pspace_cachep, pa);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| int ext4_mb_release(struct super_block *sb)
 | |
| {
 | |
| 	ext4_group_t ngroups = ext4_get_groups_count(sb);
 | |
| 	ext4_group_t i;
 | |
| 	int num_meta_group_infos;
 | |
| 	struct ext4_group_info *grinfo, ***group_info;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
 | |
| 	int count;
 | |
| 
 | |
| 	if (sbi->s_group_info) {
 | |
| 		for (i = 0; i < ngroups; i++) {
 | |
| 			cond_resched();
 | |
| 			grinfo = ext4_get_group_info(sb, i);
 | |
| 			mb_group_bb_bitmap_free(grinfo);
 | |
| 			ext4_lock_group(sb, i);
 | |
| 			count = ext4_mb_cleanup_pa(grinfo);
 | |
| 			if (count)
 | |
| 				mb_debug(sb, "mballoc: %d PAs left\n",
 | |
| 					 count);
 | |
| 			ext4_unlock_group(sb, i);
 | |
| 			kmem_cache_free(cachep, grinfo);
 | |
| 		}
 | |
| 		num_meta_group_infos = (ngroups +
 | |
| 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
 | |
| 			EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 		rcu_read_lock();
 | |
| 		group_info = rcu_dereference(sbi->s_group_info);
 | |
| 		for (i = 0; i < num_meta_group_infos; i++)
 | |
| 			kfree(group_info[i]);
 | |
| 		kvfree(group_info);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	kfree(sbi->s_mb_largest_free_orders);
 | |
| 	kfree(sbi->s_mb_largest_free_orders_locks);
 | |
| 	kfree(sbi->s_mb_offsets);
 | |
| 	kfree(sbi->s_mb_maxs);
 | |
| 	iput(sbi->s_buddy_cache);
 | |
| 	if (sbi->s_mb_stats) {
 | |
| 		ext4_msg(sb, KERN_INFO,
 | |
| 		       "mballoc: %u blocks %u reqs (%u success)",
 | |
| 				atomic_read(&sbi->s_bal_allocated),
 | |
| 				atomic_read(&sbi->s_bal_reqs),
 | |
| 				atomic_read(&sbi->s_bal_success));
 | |
| 		ext4_msg(sb, KERN_INFO,
 | |
| 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
 | |
| 				"%u 2^N hits, %u breaks, %u lost",
 | |
| 				atomic_read(&sbi->s_bal_ex_scanned),
 | |
| 				atomic_read(&sbi->s_bal_groups_scanned),
 | |
| 				atomic_read(&sbi->s_bal_goals),
 | |
| 				atomic_read(&sbi->s_bal_2orders),
 | |
| 				atomic_read(&sbi->s_bal_breaks),
 | |
| 				atomic_read(&sbi->s_mb_lost_chunks));
 | |
| 		ext4_msg(sb, KERN_INFO,
 | |
| 		       "mballoc: %u generated and it took %llu",
 | |
| 				atomic_read(&sbi->s_mb_buddies_generated),
 | |
| 				atomic64_read(&sbi->s_mb_generation_time));
 | |
| 		ext4_msg(sb, KERN_INFO,
 | |
| 		       "mballoc: %u preallocated, %u discarded",
 | |
| 				atomic_read(&sbi->s_mb_preallocated),
 | |
| 				atomic_read(&sbi->s_mb_discarded));
 | |
| 	}
 | |
| 
 | |
| 	free_percpu(sbi->s_locality_groups);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int ext4_issue_discard(struct super_block *sb,
 | |
| 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
 | |
| 		struct bio **biop)
 | |
| {
 | |
| 	ext4_fsblk_t discard_block;
 | |
| 
 | |
| 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
 | |
| 			 ext4_group_first_block_no(sb, block_group));
 | |
| 	count = EXT4_C2B(EXT4_SB(sb), count);
 | |
| 	trace_ext4_discard_blocks(sb,
 | |
| 			(unsigned long long) discard_block, count);
 | |
| 	if (biop) {
 | |
| 		return __blkdev_issue_discard(sb->s_bdev,
 | |
| 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
 | |
| 			(sector_t)count << (sb->s_blocksize_bits - 9),
 | |
| 			GFP_NOFS, 0, biop);
 | |
| 	} else
 | |
| 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
 | |
| }
 | |
| 
 | |
| static void ext4_free_data_in_buddy(struct super_block *sb,
 | |
| 				    struct ext4_free_data *entry)
 | |
| {
 | |
| 	struct ext4_buddy e4b;
 | |
| 	struct ext4_group_info *db;
 | |
| 	int err, count = 0, count2 = 0;
 | |
| 
 | |
| 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
 | |
| 		 entry->efd_count, entry->efd_group, entry);
 | |
| 
 | |
| 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
 | |
| 	/* we expect to find existing buddy because it's pinned */
 | |
| 	BUG_ON(err != 0);
 | |
| 
 | |
| 	spin_lock(&EXT4_SB(sb)->s_md_lock);
 | |
| 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
 | |
| 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
 | |
| 
 | |
| 	db = e4b.bd_info;
 | |
| 	/* there are blocks to put in buddy to make them really free */
 | |
| 	count += entry->efd_count;
 | |
| 	count2++;
 | |
| 	ext4_lock_group(sb, entry->efd_group);
 | |
| 	/* Take it out of per group rb tree */
 | |
| 	rb_erase(&entry->efd_node, &(db->bb_free_root));
 | |
| 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the trimmed flag for the group so that the next
 | |
| 	 * ext4_trim_fs can trim it.
 | |
| 	 * If the volume is mounted with -o discard, online discard
 | |
| 	 * is supported and the free blocks will be trimmed online.
 | |
| 	 */
 | |
| 	if (!test_opt(sb, DISCARD))
 | |
| 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
 | |
| 
 | |
| 	if (!db->bb_free_root.rb_node) {
 | |
| 		/* No more items in the per group rb tree
 | |
| 		 * balance refcounts from ext4_mb_free_metadata()
 | |
| 		 */
 | |
| 		put_page(e4b.bd_buddy_page);
 | |
| 		put_page(e4b.bd_bitmap_page);
 | |
| 	}
 | |
| 	ext4_unlock_group(sb, entry->efd_group);
 | |
| 	kmem_cache_free(ext4_free_data_cachep, entry);
 | |
| 	ext4_mb_unload_buddy(&e4b);
 | |
| 
 | |
| 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
 | |
| 		 count2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called by the jbd2 layer once the commit has finished,
 | |
|  * so we know we can free the blocks that were released with that commit.
 | |
|  */
 | |
| void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_free_data *entry, *tmp;
 | |
| 	struct bio *discard_bio = NULL;
 | |
| 	struct list_head freed_data_list;
 | |
| 	struct list_head *cut_pos = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&freed_data_list);
 | |
| 
 | |
| 	spin_lock(&sbi->s_md_lock);
 | |
| 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
 | |
| 		if (entry->efd_tid != commit_tid)
 | |
| 			break;
 | |
| 		cut_pos = &entry->efd_list;
 | |
| 	}
 | |
| 	if (cut_pos)
 | |
| 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
 | |
| 				  cut_pos);
 | |
| 	spin_unlock(&sbi->s_md_lock);
 | |
| 
 | |
| 	if (test_opt(sb, DISCARD)) {
 | |
| 		list_for_each_entry(entry, &freed_data_list, efd_list) {
 | |
| 			err = ext4_issue_discard(sb, entry->efd_group,
 | |
| 						 entry->efd_start_cluster,
 | |
| 						 entry->efd_count,
 | |
| 						 &discard_bio);
 | |
| 			if (err && err != -EOPNOTSUPP) {
 | |
| 				ext4_msg(sb, KERN_WARNING, "discard request in"
 | |
| 					 " group:%d block:%d count:%d failed"
 | |
| 					 " with %d", entry->efd_group,
 | |
| 					 entry->efd_start_cluster,
 | |
| 					 entry->efd_count, err);
 | |
| 			} else if (err == -EOPNOTSUPP)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (discard_bio) {
 | |
| 			submit_bio_wait(discard_bio);
 | |
| 			bio_put(discard_bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
 | |
| 		ext4_free_data_in_buddy(sb, entry);
 | |
| }
 | |
| 
 | |
| int __init ext4_init_mballoc(void)
 | |
| {
 | |
| 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
 | |
| 					SLAB_RECLAIM_ACCOUNT);
 | |
| 	if (ext4_pspace_cachep == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
 | |
| 				    SLAB_RECLAIM_ACCOUNT);
 | |
| 	if (ext4_ac_cachep == NULL)
 | |
| 		goto out_pa_free;
 | |
| 
 | |
| 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
 | |
| 					   SLAB_RECLAIM_ACCOUNT);
 | |
| 	if (ext4_free_data_cachep == NULL)
 | |
| 		goto out_ac_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_ac_free:
 | |
| 	kmem_cache_destroy(ext4_ac_cachep);
 | |
| out_pa_free:
 | |
| 	kmem_cache_destroy(ext4_pspace_cachep);
 | |
| out:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void ext4_exit_mballoc(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
 | |
| 	 * before destroying the slab cache.
 | |
| 	 */
 | |
| 	rcu_barrier();
 | |
| 	kmem_cache_destroy(ext4_pspace_cachep);
 | |
| 	kmem_cache_destroy(ext4_ac_cachep);
 | |
| 	kmem_cache_destroy(ext4_free_data_cachep);
 | |
| 	ext4_groupinfo_destroy_slabs();
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
 | |
|  * Returns 0 if success or error code
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
 | |
| 				handle_t *handle, unsigned int reserv_clstrs)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct ext4_group_desc *gdp;
 | |
| 	struct buffer_head *gdp_bh;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct super_block *sb;
 | |
| 	ext4_fsblk_t block;
 | |
| 	int err, len;
 | |
| 
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
 | |
| 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
 | |
| 
 | |
| 	sb = ac->ac_sb;
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
 | |
| 	if (IS_ERR(bitmap_bh)) {
 | |
| 		err = PTR_ERR(bitmap_bh);
 | |
| 		bitmap_bh = NULL;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	BUFFER_TRACE(bitmap_bh, "getting write access");
 | |
| 	err = ext4_journal_get_write_access(handle, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
 | |
| 	if (!gdp)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
 | |
| 			ext4_free_group_clusters(sb, gdp));
 | |
| 
 | |
| 	BUFFER_TRACE(gdp_bh, "get_write_access");
 | |
| 	err = ext4_journal_get_write_access(handle, gdp_bh);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 | |
| 
 | |
| 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
 | |
| 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
 | |
| 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
 | |
| 			   "fs metadata", block, block+len);
 | |
| 		/* File system mounted not to panic on error
 | |
| 		 * Fix the bitmap and return EFSCORRUPTED
 | |
| 		 * We leak some of the blocks here.
 | |
| 		 */
 | |
| 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
 | |
| 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
 | |
| 			      ac->ac_b_ex.fe_len);
 | |
| 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
 | |
| 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 | |
| 		if (!err)
 | |
| 			err = -EFSCORRUPTED;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
 | |
| #ifdef AGGRESSIVE_CHECK
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
 | |
| 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
 | |
| 						bitmap_bh->b_data));
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
 | |
| 		      ac->ac_b_ex.fe_len);
 | |
| 	if (ext4_has_group_desc_csum(sb) &&
 | |
| 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
 | |
| 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 | |
| 		ext4_free_group_clusters_set(sb, gdp,
 | |
| 					     ext4_free_clusters_after_init(sb,
 | |
| 						ac->ac_b_ex.fe_group, gdp));
 | |
| 	}
 | |
| 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
 | |
| 	ext4_free_group_clusters_set(sb, gdp, len);
 | |
| 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
 | |
| 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
 | |
| 
 | |
| 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
 | |
| 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
 | |
| 	/*
 | |
| 	 * Now reduce the dirty block count also. Should not go negative
 | |
| 	 */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
 | |
| 		/* release all the reserved blocks if non delalloc */
 | |
| 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 | |
| 				   reserv_clstrs);
 | |
| 
 | |
| 	if (sbi->s_log_groups_per_flex) {
 | |
| 		ext4_group_t flex_group = ext4_flex_group(sbi,
 | |
| 							  ac->ac_b_ex.fe_group);
 | |
| 		atomic64_sub(ac->ac_b_ex.fe_len,
 | |
| 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
 | |
| 						  flex_group)->free_clusters);
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
 | |
| 
 | |
| out_err:
 | |
| 	brelse(bitmap_bh);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Idempotent helper for Ext4 fast commit replay path to set the state of
 | |
|  * blocks in bitmaps and update counters.
 | |
|  */
 | |
| void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
 | |
| 			int len, int state)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct ext4_group_desc *gdp;
 | |
| 	struct buffer_head *gdp_bh;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	ext4_group_t group;
 | |
| 	ext4_grpblk_t blkoff;
 | |
| 	int i, clen, err;
 | |
| 	int already;
 | |
| 
 | |
| 	clen = EXT4_B2C(sbi, len);
 | |
| 
 | |
| 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, group);
 | |
| 	if (IS_ERR(bitmap_bh)) {
 | |
| 		err = PTR_ERR(bitmap_bh);
 | |
| 		bitmap_bh = NULL;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
 | |
| 	if (!gdp)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ext4_lock_group(sb, group);
 | |
| 	already = 0;
 | |
| 	for (i = 0; i < clen; i++)
 | |
| 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
 | |
| 			already++;
 | |
| 
 | |
| 	if (state)
 | |
| 		ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
 | |
| 	else
 | |
| 		mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
 | |
| 	if (ext4_has_group_desc_csum(sb) &&
 | |
| 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
 | |
| 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 | |
| 		ext4_free_group_clusters_set(sb, gdp,
 | |
| 					     ext4_free_clusters_after_init(sb,
 | |
| 						group, gdp));
 | |
| 	}
 | |
| 	if (state)
 | |
| 		clen = ext4_free_group_clusters(sb, gdp) - clen + already;
 | |
| 	else
 | |
| 		clen = ext4_free_group_clusters(sb, gdp) + clen - already;
 | |
| 
 | |
| 	ext4_free_group_clusters_set(sb, gdp, clen);
 | |
| 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
 | |
| 	ext4_group_desc_csum_set(sb, group, gdp);
 | |
| 
 | |
| 	ext4_unlock_group(sb, group);
 | |
| 
 | |
| 	if (sbi->s_log_groups_per_flex) {
 | |
| 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
 | |
| 
 | |
| 		atomic64_sub(len,
 | |
| 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
 | |
| 						  flex_group)->free_clusters);
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 	sync_dirty_buffer(bitmap_bh);
 | |
| 	err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
 | |
| 	sync_dirty_buffer(gdp_bh);
 | |
| 
 | |
| out_err:
 | |
| 	brelse(bitmap_bh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * here we normalize request for locality group
 | |
|  * Group request are normalized to s_mb_group_prealloc, which goes to
 | |
|  * s_strip if we set the same via mount option.
 | |
|  * s_mb_group_prealloc can be configured via
 | |
|  * /sys/fs/ext4/<partition>/mb_group_prealloc
 | |
|  *
 | |
|  * XXX: should we try to preallocate more than the group has now?
 | |
|  */
 | |
| static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_locality_group *lg = ac->ac_lg;
 | |
| 
 | |
| 	BUG_ON(lg == NULL);
 | |
| 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
 | |
| 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Normalization means making request better in terms of
 | |
|  * size and alignment
 | |
|  */
 | |
| static noinline_for_stack void
 | |
| ext4_mb_normalize_request(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_allocation_request *ar)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	int bsbits, max;
 | |
| 	ext4_lblk_t end;
 | |
| 	loff_t size, start_off;
 | |
| 	loff_t orig_size __maybe_unused;
 | |
| 	ext4_lblk_t start;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 
 | |
| 	/* do normalize only data requests, metadata requests
 | |
| 	   do not need preallocation */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
 | |
| 		return;
 | |
| 
 | |
| 	/* sometime caller may want exact blocks */
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
 | |
| 		return;
 | |
| 
 | |
| 	/* caller may indicate that preallocation isn't
 | |
| 	 * required (it's a tail, for example) */
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
 | |
| 		return;
 | |
| 
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
 | |
| 		ext4_mb_normalize_group_request(ac);
 | |
| 		return ;
 | |
| 	}
 | |
| 
 | |
| 	bsbits = ac->ac_sb->s_blocksize_bits;
 | |
| 
 | |
| 	/* first, let's learn actual file size
 | |
| 	 * given current request is allocated */
 | |
| 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
 | |
| 	size = size << bsbits;
 | |
| 	if (size < i_size_read(ac->ac_inode))
 | |
| 		size = i_size_read(ac->ac_inode);
 | |
| 	orig_size = size;
 | |
| 
 | |
| 	/* max size of free chunks */
 | |
| 	max = 2 << bsbits;
 | |
| 
 | |
| #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
 | |
| 		(req <= (size) || max <= (chunk_size))
 | |
| 
 | |
| 	/* first, try to predict filesize */
 | |
| 	/* XXX: should this table be tunable? */
 | |
| 	start_off = 0;
 | |
| 	if (size <= 16 * 1024) {
 | |
| 		size = 16 * 1024;
 | |
| 	} else if (size <= 32 * 1024) {
 | |
| 		size = 32 * 1024;
 | |
| 	} else if (size <= 64 * 1024) {
 | |
| 		size = 64 * 1024;
 | |
| 	} else if (size <= 128 * 1024) {
 | |
| 		size = 128 * 1024;
 | |
| 	} else if (size <= 256 * 1024) {
 | |
| 		size = 256 * 1024;
 | |
| 	} else if (size <= 512 * 1024) {
 | |
| 		size = 512 * 1024;
 | |
| 	} else if (size <= 1024 * 1024) {
 | |
| 		size = 1024 * 1024;
 | |
| 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
 | |
| 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
 | |
| 						(21 - bsbits)) << 21;
 | |
| 		size = 2 * 1024 * 1024;
 | |
| 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
 | |
| 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
 | |
| 							(22 - bsbits)) << 22;
 | |
| 		size = 4 * 1024 * 1024;
 | |
| 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
 | |
| 					(8<<20)>>bsbits, max, 8 * 1024)) {
 | |
| 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
 | |
| 							(23 - bsbits)) << 23;
 | |
| 		size = 8 * 1024 * 1024;
 | |
| 	} else {
 | |
| 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
 | |
| 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
 | |
| 					      ac->ac_o_ex.fe_len) << bsbits;
 | |
| 	}
 | |
| 	size = size >> bsbits;
 | |
| 	start = start_off >> bsbits;
 | |
| 
 | |
| 	/* don't cover already allocated blocks in selected range */
 | |
| 	if (ar->pleft && start <= ar->lleft) {
 | |
| 		size -= ar->lleft + 1 - start;
 | |
| 		start = ar->lleft + 1;
 | |
| 	}
 | |
| 	if (ar->pright && start + size - 1 >= ar->lright)
 | |
| 		size -= start + size - ar->lright;
 | |
| 
 | |
| 	/*
 | |
| 	 * Trim allocation request for filesystems with artificially small
 | |
| 	 * groups.
 | |
| 	 */
 | |
| 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
 | |
| 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
 | |
| 
 | |
| 	end = start + size;
 | |
| 
 | |
| 	/* check we don't cross already preallocated blocks */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 | |
| 		ext4_lblk_t pa_end;
 | |
| 
 | |
| 		if (pa->pa_deleted)
 | |
| 			continue;
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (pa->pa_deleted) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
 | |
| 						  pa->pa_len);
 | |
| 
 | |
| 		/* PA must not overlap original request */
 | |
| 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
 | |
| 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
 | |
| 
 | |
| 		/* skip PAs this normalized request doesn't overlap with */
 | |
| 		if (pa->pa_lstart >= end || pa_end <= start) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
 | |
| 
 | |
| 		/* adjust start or end to be adjacent to this pa */
 | |
| 		if (pa_end <= ac->ac_o_ex.fe_logical) {
 | |
| 			BUG_ON(pa_end < start);
 | |
| 			start = pa_end;
 | |
| 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
 | |
| 			BUG_ON(pa->pa_lstart > end);
 | |
| 			end = pa->pa_lstart;
 | |
| 		}
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	size = end - start;
 | |
| 
 | |
| 	/* XXX: extra loop to check we really don't overlap preallocations */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 | |
| 		ext4_lblk_t pa_end;
 | |
| 
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (pa->pa_deleted == 0) {
 | |
| 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
 | |
| 							  pa->pa_len);
 | |
| 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
 | |
| 		}
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (start + size <= ac->ac_o_ex.fe_logical &&
 | |
| 			start > ac->ac_o_ex.fe_logical) {
 | |
| 		ext4_msg(ac->ac_sb, KERN_ERR,
 | |
| 			 "start %lu, size %lu, fe_logical %lu",
 | |
| 			 (unsigned long) start, (unsigned long) size,
 | |
| 			 (unsigned long) ac->ac_o_ex.fe_logical);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
 | |
| 
 | |
| 	/* now prepare goal request */
 | |
| 
 | |
| 	/* XXX: is it better to align blocks WRT to logical
 | |
| 	 * placement or satisfy big request as is */
 | |
| 	ac->ac_g_ex.fe_logical = start;
 | |
| 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
 | |
| 
 | |
| 	/* define goal start in order to merge */
 | |
| 	if (ar->pright && (ar->lright == (start + size))) {
 | |
| 		/* merge to the right */
 | |
| 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
 | |
| 						&ac->ac_f_ex.fe_group,
 | |
| 						&ac->ac_f_ex.fe_start);
 | |
| 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
 | |
| 	}
 | |
| 	if (ar->pleft && (ar->lleft + 1 == start)) {
 | |
| 		/* merge to the left */
 | |
| 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
 | |
| 						&ac->ac_f_ex.fe_group,
 | |
| 						&ac->ac_f_ex.fe_start);
 | |
| 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
 | |
| 	}
 | |
| 
 | |
| 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
 | |
| 		 orig_size, start);
 | |
| }
 | |
| 
 | |
| static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 
 | |
| 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
 | |
| 		atomic_inc(&sbi->s_bal_reqs);
 | |
| 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
 | |
| 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
 | |
| 			atomic_inc(&sbi->s_bal_success);
 | |
| 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
 | |
| 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
 | |
| 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
 | |
| 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
 | |
| 			atomic_inc(&sbi->s_bal_goals);
 | |
| 		if (ac->ac_found > sbi->s_mb_max_to_scan)
 | |
| 			atomic_inc(&sbi->s_bal_breaks);
 | |
| 	}
 | |
| 
 | |
| 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
 | |
| 		trace_ext4_mballoc_alloc(ac);
 | |
| 	else
 | |
| 		trace_ext4_mballoc_prealloc(ac);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called on failure; free up any blocks from the inode PA for this
 | |
|  * context.  We don't need this for MB_GROUP_PA because we only change
 | |
|  * pa_free in ext4_mb_release_context(), but on failure, we've already
 | |
|  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 | |
|  */
 | |
| static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa = ac->ac_pa;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int err;
 | |
| 
 | |
| 	if (pa == NULL) {
 | |
| 		if (ac->ac_f_ex.fe_len == 0)
 | |
| 			return;
 | |
| 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
 | |
| 		if (err) {
 | |
| 			/*
 | |
| 			 * This should never happen since we pin the
 | |
| 			 * pages in the ext4_allocation_context so
 | |
| 			 * ext4_mb_load_buddy() should never fail.
 | |
| 			 */
 | |
| 			WARN(1, "mb_load_buddy failed (%d)", err);
 | |
| 			return;
 | |
| 		}
 | |
| 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
 | |
| 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
 | |
| 			       ac->ac_f_ex.fe_len);
 | |
| 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
 | |
| 		ext4_mb_unload_buddy(&e4b);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (pa->pa_type == MB_INODE_PA)
 | |
| 		pa->pa_free += ac->ac_b_ex.fe_len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * use blocks preallocated to inode
 | |
|  */
 | |
| static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	ext4_fsblk_t start;
 | |
| 	ext4_fsblk_t end;
 | |
| 	int len;
 | |
| 
 | |
| 	/* found preallocated blocks, use them */
 | |
| 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
 | |
| 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
 | |
| 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
 | |
| 	len = EXT4_NUM_B2C(sbi, end - start);
 | |
| 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
 | |
| 					&ac->ac_b_ex.fe_start);
 | |
| 	ac->ac_b_ex.fe_len = len;
 | |
| 	ac->ac_status = AC_STATUS_FOUND;
 | |
| 	ac->ac_pa = pa;
 | |
| 
 | |
| 	BUG_ON(start < pa->pa_pstart);
 | |
| 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
 | |
| 	BUG_ON(pa->pa_free < len);
 | |
| 	pa->pa_free -= len;
 | |
| 
 | |
| 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * use blocks preallocated to locality group
 | |
|  */
 | |
| static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	unsigned int len = ac->ac_o_ex.fe_len;
 | |
| 
 | |
| 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
 | |
| 					&ac->ac_b_ex.fe_group,
 | |
| 					&ac->ac_b_ex.fe_start);
 | |
| 	ac->ac_b_ex.fe_len = len;
 | |
| 	ac->ac_status = AC_STATUS_FOUND;
 | |
| 	ac->ac_pa = pa;
 | |
| 
 | |
| 	/* we don't correct pa_pstart or pa_plen here to avoid
 | |
| 	 * possible race when the group is being loaded concurrently
 | |
| 	 * instead we correct pa later, after blocks are marked
 | |
| 	 * in on-disk bitmap -- see ext4_mb_release_context()
 | |
| 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
 | |
| 	 */
 | |
| 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
 | |
| 		 pa->pa_lstart-len, len, pa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the prealloc space that have minimal distance
 | |
|  * from the goal block. @cpa is the prealloc
 | |
|  * space that is having currently known minimal distance
 | |
|  * from the goal block.
 | |
|  */
 | |
| static struct ext4_prealloc_space *
 | |
| ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
 | |
| 			struct ext4_prealloc_space *pa,
 | |
| 			struct ext4_prealloc_space *cpa)
 | |
| {
 | |
| 	ext4_fsblk_t cur_distance, new_distance;
 | |
| 
 | |
| 	if (cpa == NULL) {
 | |
| 		atomic_inc(&pa->pa_count);
 | |
| 		return pa;
 | |
| 	}
 | |
| 	cur_distance = abs(goal_block - cpa->pa_pstart);
 | |
| 	new_distance = abs(goal_block - pa->pa_pstart);
 | |
| 
 | |
| 	if (cur_distance <= new_distance)
 | |
| 		return cpa;
 | |
| 
 | |
| 	/* drop the previous reference */
 | |
| 	atomic_dec(&cpa->pa_count);
 | |
| 	atomic_inc(&pa->pa_count);
 | |
| 	return pa;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search goal blocks in preallocated space
 | |
|  */
 | |
| static noinline_for_stack bool
 | |
| ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	int order, i;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
 | |
| 	struct ext4_locality_group *lg;
 | |
| 	struct ext4_prealloc_space *pa, *cpa = NULL;
 | |
| 	ext4_fsblk_t goal_block;
 | |
| 
 | |
| 	/* only data can be preallocated */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
 | |
| 		return false;
 | |
| 
 | |
| 	/* first, try per-file preallocation */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 | |
| 
 | |
| 		/* all fields in this condition don't change,
 | |
| 		 * so we can skip locking for them */
 | |
| 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
 | |
| 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
 | |
| 					       EXT4_C2B(sbi, pa->pa_len)))
 | |
| 			continue;
 | |
| 
 | |
| 		/* non-extent files can't have physical blocks past 2^32 */
 | |
| 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
 | |
| 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
 | |
| 		     EXT4_MAX_BLOCK_FILE_PHYS))
 | |
| 			continue;
 | |
| 
 | |
| 		/* found preallocated blocks, use them */
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (pa->pa_deleted == 0 && pa->pa_free) {
 | |
| 			atomic_inc(&pa->pa_count);
 | |
| 			ext4_mb_use_inode_pa(ac, pa);
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			ac->ac_criteria = 10;
 | |
| 			rcu_read_unlock();
 | |
| 			return true;
 | |
| 		}
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* can we use group allocation? */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
 | |
| 		return false;
 | |
| 
 | |
| 	/* inode may have no locality group for some reason */
 | |
| 	lg = ac->ac_lg;
 | |
| 	if (lg == NULL)
 | |
| 		return false;
 | |
| 	order  = fls(ac->ac_o_ex.fe_len) - 1;
 | |
| 	if (order > PREALLOC_TB_SIZE - 1)
 | |
| 		/* The max size of hash table is PREALLOC_TB_SIZE */
 | |
| 		order = PREALLOC_TB_SIZE - 1;
 | |
| 
 | |
| 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
 | |
| 	/*
 | |
| 	 * search for the prealloc space that is having
 | |
| 	 * minimal distance from the goal block.
 | |
| 	 */
 | |
| 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
 | |
| 		rcu_read_lock();
 | |
| 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
 | |
| 					pa_inode_list) {
 | |
| 			spin_lock(&pa->pa_lock);
 | |
| 			if (pa->pa_deleted == 0 &&
 | |
| 					pa->pa_free >= ac->ac_o_ex.fe_len) {
 | |
| 
 | |
| 				cpa = ext4_mb_check_group_pa(goal_block,
 | |
| 								pa, cpa);
 | |
| 			}
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	if (cpa) {
 | |
| 		ext4_mb_use_group_pa(ac, cpa);
 | |
| 		ac->ac_criteria = 20;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the function goes through all block freed in the group
 | |
|  * but not yet committed and marks them used in in-core bitmap.
 | |
|  * buddy must be generated from this bitmap
 | |
|  * Need to be called with the ext4 group lock held
 | |
|  */
 | |
| static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
 | |
| 						ext4_group_t group)
 | |
| {
 | |
| 	struct rb_node *n;
 | |
| 	struct ext4_group_info *grp;
 | |
| 	struct ext4_free_data *entry;
 | |
| 
 | |
| 	grp = ext4_get_group_info(sb, group);
 | |
| 	n = rb_first(&(grp->bb_free_root));
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct ext4_free_data, efd_node);
 | |
| 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
 | |
| 		n = rb_next(n);
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the function goes through all preallocation in this group and marks them
 | |
|  * used in in-core bitmap. buddy must be generated from this bitmap
 | |
|  * Need to be called with ext4 group lock held
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 | |
| 					ext4_group_t group)
 | |
| {
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct list_head *cur;
 | |
| 	ext4_group_t groupnr;
 | |
| 	ext4_grpblk_t start;
 | |
| 	int preallocated = 0;
 | |
| 	int len;
 | |
| 
 | |
| 	/* all form of preallocation discards first load group,
 | |
| 	 * so the only competing code is preallocation use.
 | |
| 	 * we don't need any locking here
 | |
| 	 * notice we do NOT ignore preallocations with pa_deleted
 | |
| 	 * otherwise we could leave used blocks available for
 | |
| 	 * allocation in buddy when concurrent ext4_mb_put_pa()
 | |
| 	 * is dropping preallocation
 | |
| 	 */
 | |
| 	list_for_each(cur, &grp->bb_prealloc_list) {
 | |
| 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
 | |
| 					     &groupnr, &start);
 | |
| 		len = pa->pa_len;
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 		if (unlikely(len == 0))
 | |
| 			continue;
 | |
| 		BUG_ON(groupnr != group);
 | |
| 		ext4_set_bits(bitmap, start, len);
 | |
| 		preallocated += len;
 | |
| 	}
 | |
| 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
 | |
| }
 | |
| 
 | |
| static void ext4_mb_mark_pa_deleted(struct super_block *sb,
 | |
| 				    struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	struct ext4_inode_info *ei;
 | |
| 
 | |
| 	if (pa->pa_deleted) {
 | |
| 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
 | |
| 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
 | |
| 			     pa->pa_len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pa->pa_deleted = 1;
 | |
| 
 | |
| 	if (pa->pa_type == MB_INODE_PA) {
 | |
| 		ei = EXT4_I(pa->pa_inode);
 | |
| 		atomic_dec(&ei->i_prealloc_active);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ext4_mb_pa_callback(struct rcu_head *head)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
 | |
| 
 | |
| 	BUG_ON(atomic_read(&pa->pa_count));
 | |
| 	BUG_ON(pa->pa_deleted == 0);
 | |
| 	kmem_cache_free(ext4_pspace_cachep, pa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drops a reference to preallocated space descriptor
 | |
|  * if this was the last reference and the space is consumed
 | |
|  */
 | |
| static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
 | |
| 			struct super_block *sb, struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	ext4_group_t grp;
 | |
| 	ext4_fsblk_t grp_blk;
 | |
| 
 | |
| 	/* in this short window concurrent discard can set pa_deleted */
 | |
| 	spin_lock(&pa->pa_lock);
 | |
| 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (pa->pa_deleted == 1) {
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_mark_pa_deleted(sb, pa);
 | |
| 	spin_unlock(&pa->pa_lock);
 | |
| 
 | |
| 	grp_blk = pa->pa_pstart;
 | |
| 	/*
 | |
| 	 * If doing group-based preallocation, pa_pstart may be in the
 | |
| 	 * next group when pa is used up
 | |
| 	 */
 | |
| 	if (pa->pa_type == MB_GROUP_PA)
 | |
| 		grp_blk--;
 | |
| 
 | |
| 	grp = ext4_get_group_number(sb, grp_blk);
 | |
| 
 | |
| 	/*
 | |
| 	 * possible race:
 | |
| 	 *
 | |
| 	 *  P1 (buddy init)			P2 (regular allocation)
 | |
| 	 *					find block B in PA
 | |
| 	 *  copy on-disk bitmap to buddy
 | |
| 	 *  					mark B in on-disk bitmap
 | |
| 	 *					drop PA from group
 | |
| 	 *  mark all PAs in buddy
 | |
| 	 *
 | |
| 	 * thus, P1 initializes buddy with B available. to prevent this
 | |
| 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
 | |
| 	 * against that pair
 | |
| 	 */
 | |
| 	ext4_lock_group(sb, grp);
 | |
| 	list_del(&pa->pa_group_list);
 | |
| 	ext4_unlock_group(sb, grp);
 | |
| 
 | |
| 	spin_lock(pa->pa_obj_lock);
 | |
| 	list_del_rcu(&pa->pa_inode_list);
 | |
| 	spin_unlock(pa->pa_obj_lock);
 | |
| 
 | |
| 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * creates new preallocated space for given inode
 | |
|  */
 | |
| static noinline_for_stack void
 | |
| ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct ext4_group_info *grp;
 | |
| 	struct ext4_inode_info *ei;
 | |
| 
 | |
| 	/* preallocate only when found space is larger then requested */
 | |
| 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
 | |
| 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
 | |
| 	BUG_ON(ac->ac_pa == NULL);
 | |
| 
 | |
| 	pa = ac->ac_pa;
 | |
| 
 | |
| 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
 | |
| 		int winl;
 | |
| 		int wins;
 | |
| 		int win;
 | |
| 		int offs;
 | |
| 
 | |
| 		/* we can't allocate as much as normalizer wants.
 | |
| 		 * so, found space must get proper lstart
 | |
| 		 * to cover original request */
 | |
| 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
 | |
| 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
 | |
| 
 | |
| 		/* we're limited by original request in that
 | |
| 		 * logical block must be covered any way
 | |
| 		 * winl is window we can move our chunk within */
 | |
| 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
 | |
| 
 | |
| 		/* also, we should cover whole original request */
 | |
| 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
 | |
| 
 | |
| 		/* the smallest one defines real window */
 | |
| 		win = min(winl, wins);
 | |
| 
 | |
| 		offs = ac->ac_o_ex.fe_logical %
 | |
| 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
 | |
| 		if (offs && offs < win)
 | |
| 			win = offs;
 | |
| 
 | |
| 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
 | |
| 			EXT4_NUM_B2C(sbi, win);
 | |
| 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
 | |
| 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
 | |
| 	}
 | |
| 
 | |
| 	/* preallocation can change ac_b_ex, thus we store actually
 | |
| 	 * allocated blocks for history */
 | |
| 	ac->ac_f_ex = ac->ac_b_ex;
 | |
| 
 | |
| 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
 | |
| 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 | |
| 	pa->pa_len = ac->ac_b_ex.fe_len;
 | |
| 	pa->pa_free = pa->pa_len;
 | |
| 	spin_lock_init(&pa->pa_lock);
 | |
| 	INIT_LIST_HEAD(&pa->pa_inode_list);
 | |
| 	INIT_LIST_HEAD(&pa->pa_group_list);
 | |
| 	pa->pa_deleted = 0;
 | |
| 	pa->pa_type = MB_INODE_PA;
 | |
| 
 | |
| 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
 | |
| 		 pa->pa_len, pa->pa_lstart);
 | |
| 	trace_ext4_mb_new_inode_pa(ac, pa);
 | |
| 
 | |
| 	ext4_mb_use_inode_pa(ac, pa);
 | |
| 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
 | |
| 
 | |
| 	ei = EXT4_I(ac->ac_inode);
 | |
| 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
 | |
| 
 | |
| 	pa->pa_obj_lock = &ei->i_prealloc_lock;
 | |
| 	pa->pa_inode = ac->ac_inode;
 | |
| 
 | |
| 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
 | |
| 
 | |
| 	spin_lock(pa->pa_obj_lock);
 | |
| 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
 | |
| 	spin_unlock(pa->pa_obj_lock);
 | |
| 	atomic_inc(&ei->i_prealloc_active);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * creates new preallocated space for locality group inodes belongs to
 | |
|  */
 | |
| static noinline_for_stack void
 | |
| ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_locality_group *lg;
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct ext4_group_info *grp;
 | |
| 
 | |
| 	/* preallocate only when found space is larger then requested */
 | |
| 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
 | |
| 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
 | |
| 	BUG_ON(ac->ac_pa == NULL);
 | |
| 
 | |
| 	pa = ac->ac_pa;
 | |
| 
 | |
| 	/* preallocation can change ac_b_ex, thus we store actually
 | |
| 	 * allocated blocks for history */
 | |
| 	ac->ac_f_ex = ac->ac_b_ex;
 | |
| 
 | |
| 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 | |
| 	pa->pa_lstart = pa->pa_pstart;
 | |
| 	pa->pa_len = ac->ac_b_ex.fe_len;
 | |
| 	pa->pa_free = pa->pa_len;
 | |
| 	spin_lock_init(&pa->pa_lock);
 | |
| 	INIT_LIST_HEAD(&pa->pa_inode_list);
 | |
| 	INIT_LIST_HEAD(&pa->pa_group_list);
 | |
| 	pa->pa_deleted = 0;
 | |
| 	pa->pa_type = MB_GROUP_PA;
 | |
| 
 | |
| 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
 | |
| 		 pa->pa_len, pa->pa_lstart);
 | |
| 	trace_ext4_mb_new_group_pa(ac, pa);
 | |
| 
 | |
| 	ext4_mb_use_group_pa(ac, pa);
 | |
| 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
 | |
| 
 | |
| 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
 | |
| 	lg = ac->ac_lg;
 | |
| 	BUG_ON(lg == NULL);
 | |
| 
 | |
| 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
 | |
| 	pa->pa_inode = NULL;
 | |
| 
 | |
| 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * We will later add the new pa to the right bucket
 | |
| 	 * after updating the pa_free in ext4_mb_release_context
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
 | |
| 		ext4_mb_new_group_pa(ac);
 | |
| 	else
 | |
| 		ext4_mb_new_inode_pa(ac);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finds all unused blocks in on-disk bitmap, frees them in
 | |
|  * in-core bitmap and buddy.
 | |
|  * @pa must be unlinked from inode and group lists, so that
 | |
|  * nobody else can find/use it.
 | |
|  * the caller MUST hold group/inode locks.
 | |
|  * TODO: optimize the case when there are no in-core structures yet
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
 | |
| 			struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	unsigned int end;
 | |
| 	unsigned int next;
 | |
| 	ext4_group_t group;
 | |
| 	ext4_grpblk_t bit;
 | |
| 	unsigned long long grp_blk_start;
 | |
| 	int free = 0;
 | |
| 
 | |
| 	BUG_ON(pa->pa_deleted == 0);
 | |
| 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
 | |
| 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
 | |
| 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
 | |
| 	end = bit + pa->pa_len;
 | |
| 
 | |
| 	while (bit < end) {
 | |
| 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
 | |
| 		if (bit >= end)
 | |
| 			break;
 | |
| 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
 | |
| 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
 | |
| 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
 | |
| 			 (unsigned) next - bit, (unsigned) group);
 | |
| 		free += next - bit;
 | |
| 
 | |
| 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
 | |
| 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
 | |
| 						    EXT4_C2B(sbi, bit)),
 | |
| 					       next - bit);
 | |
| 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
 | |
| 		bit = next + 1;
 | |
| 	}
 | |
| 	if (free != pa->pa_free) {
 | |
| 		ext4_msg(e4b->bd_sb, KERN_CRIT,
 | |
| 			 "pa %p: logic %lu, phys. %lu, len %d",
 | |
| 			 pa, (unsigned long) pa->pa_lstart,
 | |
| 			 (unsigned long) pa->pa_pstart,
 | |
| 			 pa->pa_len);
 | |
| 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
 | |
| 					free, pa->pa_free);
 | |
| 		/*
 | |
| 		 * pa is already deleted so we use the value obtained
 | |
| 		 * from the bitmap and continue.
 | |
| 		 */
 | |
| 	}
 | |
| 	atomic_add(free, &sbi->s_mb_discarded);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_release_group_pa(struct ext4_buddy *e4b,
 | |
| 				struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	ext4_group_t group;
 | |
| 	ext4_grpblk_t bit;
 | |
| 
 | |
| 	trace_ext4_mb_release_group_pa(sb, pa);
 | |
| 	BUG_ON(pa->pa_deleted == 0);
 | |
| 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
 | |
| 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
 | |
| 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
 | |
| 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
 | |
| 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * releases all preallocations in given group
 | |
|  *
 | |
|  * first, we need to decide discard policy:
 | |
|  * - when do we discard
 | |
|  *   1) ENOSPC
 | |
|  * - how many do we discard
 | |
|  *   1) how many requested
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_discard_group_preallocations(struct super_block *sb,
 | |
| 					ext4_group_t group, int needed)
 | |
| {
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct ext4_prealloc_space *pa, *tmp;
 | |
| 	struct list_head list;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int err;
 | |
| 	int busy = 0;
 | |
| 	int free, free_total = 0;
 | |
| 
 | |
| 	mb_debug(sb, "discard preallocation for group %u\n", group);
 | |
| 	if (list_empty(&grp->bb_prealloc_list))
 | |
| 		goto out_dbg;
 | |
| 
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, group);
 | |
| 	if (IS_ERR(bitmap_bh)) {
 | |
| 		err = PTR_ERR(bitmap_bh);
 | |
| 		ext4_error_err(sb, -err,
 | |
| 			       "Error %d reading block bitmap for %u",
 | |
| 			       err, group);
 | |
| 		goto out_dbg;
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 	if (err) {
 | |
| 		ext4_warning(sb, "Error %d loading buddy information for %u",
 | |
| 			     err, group);
 | |
| 		put_bh(bitmap_bh);
 | |
| 		goto out_dbg;
 | |
| 	}
 | |
| 
 | |
| 	if (needed == 0)
 | |
| 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| repeat:
 | |
| 	free = 0;
 | |
| 	ext4_lock_group(sb, group);
 | |
| 	list_for_each_entry_safe(pa, tmp,
 | |
| 				&grp->bb_prealloc_list, pa_group_list) {
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (atomic_read(&pa->pa_count)) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			busy = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pa->pa_deleted) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* seems this one can be freed ... */
 | |
| 		ext4_mb_mark_pa_deleted(sb, pa);
 | |
| 
 | |
| 		if (!free)
 | |
| 			this_cpu_inc(discard_pa_seq);
 | |
| 
 | |
| 		/* we can trust pa_free ... */
 | |
| 		free += pa->pa_free;
 | |
| 
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		list_add(&pa->u.pa_tmp_list, &list);
 | |
| 	}
 | |
| 
 | |
| 	/* now free all selected PAs */
 | |
| 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
 | |
| 
 | |
| 		/* remove from object (inode or locality group) */
 | |
| 		spin_lock(pa->pa_obj_lock);
 | |
| 		list_del_rcu(&pa->pa_inode_list);
 | |
| 		spin_unlock(pa->pa_obj_lock);
 | |
| 
 | |
| 		if (pa->pa_type == MB_GROUP_PA)
 | |
| 			ext4_mb_release_group_pa(&e4b, pa);
 | |
| 		else
 | |
| 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
 | |
| 
 | |
| 		list_del(&pa->u.pa_tmp_list);
 | |
| 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| 	}
 | |
| 
 | |
| 	free_total += free;
 | |
| 
 | |
| 	/* if we still need more blocks and some PAs were used, try again */
 | |
| 	if (free_total < needed && busy) {
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 		cond_resched();
 | |
| 		busy = 0;
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	ext4_unlock_group(sb, group);
 | |
| 	ext4_mb_unload_buddy(&e4b);
 | |
| 	put_bh(bitmap_bh);
 | |
| out_dbg:
 | |
| 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
 | |
| 		 free_total, group, grp->bb_free);
 | |
| 	return free_total;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * releases all non-used preallocated blocks for given inode
 | |
|  *
 | |
|  * It's important to discard preallocations under i_data_sem
 | |
|  * We don't want another block to be served from the prealloc
 | |
|  * space when we are discarding the inode prealloc space.
 | |
|  *
 | |
|  * FIXME!! Make sure it is valid at all the call sites
 | |
|  */
 | |
| void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct ext4_prealloc_space *pa, *tmp;
 | |
| 	ext4_group_t group = 0;
 | |
| 	struct list_head list;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!S_ISREG(inode->i_mode)) {
 | |
| 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
 | |
| 		return;
 | |
| 
 | |
| 	mb_debug(sb, "discard preallocation for inode %lu\n",
 | |
| 		 inode->i_ino);
 | |
| 	trace_ext4_discard_preallocations(inode,
 | |
| 			atomic_read(&ei->i_prealloc_active), needed);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 
 | |
| 	if (needed == 0)
 | |
| 		needed = UINT_MAX;
 | |
| 
 | |
| repeat:
 | |
| 	/* first, collect all pa's in the inode */
 | |
| 	spin_lock(&ei->i_prealloc_lock);
 | |
| 	while (!list_empty(&ei->i_prealloc_list) && needed) {
 | |
| 		pa = list_entry(ei->i_prealloc_list.prev,
 | |
| 				struct ext4_prealloc_space, pa_inode_list);
 | |
| 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (atomic_read(&pa->pa_count)) {
 | |
| 			/* this shouldn't happen often - nobody should
 | |
| 			 * use preallocation while we're discarding it */
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			spin_unlock(&ei->i_prealloc_lock);
 | |
| 			ext4_msg(sb, KERN_ERR,
 | |
| 				 "uh-oh! used pa while discarding");
 | |
| 			WARN_ON(1);
 | |
| 			schedule_timeout_uninterruptible(HZ);
 | |
| 			goto repeat;
 | |
| 
 | |
| 		}
 | |
| 		if (pa->pa_deleted == 0) {
 | |
| 			ext4_mb_mark_pa_deleted(sb, pa);
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			list_del_rcu(&pa->pa_inode_list);
 | |
| 			list_add(&pa->u.pa_tmp_list, &list);
 | |
| 			needed--;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* someone is deleting pa right now */
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 		spin_unlock(&ei->i_prealloc_lock);
 | |
| 
 | |
| 		/* we have to wait here because pa_deleted
 | |
| 		 * doesn't mean pa is already unlinked from
 | |
| 		 * the list. as we might be called from
 | |
| 		 * ->clear_inode() the inode will get freed
 | |
| 		 * and concurrent thread which is unlinking
 | |
| 		 * pa from inode's list may access already
 | |
| 		 * freed memory, bad-bad-bad */
 | |
| 
 | |
| 		/* XXX: if this happens too often, we can
 | |
| 		 * add a flag to force wait only in case
 | |
| 		 * of ->clear_inode(), but not in case of
 | |
| 		 * regular truncate */
 | |
| 		schedule_timeout_uninterruptible(HZ);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	spin_unlock(&ei->i_prealloc_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
 | |
| 		BUG_ON(pa->pa_type != MB_INODE_PA);
 | |
| 		group = ext4_get_group_number(sb, pa->pa_pstart);
 | |
| 
 | |
| 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
 | |
| 					     GFP_NOFS|__GFP_NOFAIL);
 | |
| 		if (err) {
 | |
| 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
 | |
| 				       err, group);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		bitmap_bh = ext4_read_block_bitmap(sb, group);
 | |
| 		if (IS_ERR(bitmap_bh)) {
 | |
| 			err = PTR_ERR(bitmap_bh);
 | |
| 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
 | |
| 				       err, group);
 | |
| 			ext4_mb_unload_buddy(&e4b);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ext4_lock_group(sb, group);
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 
 | |
| 		ext4_mb_unload_buddy(&e4b);
 | |
| 		put_bh(bitmap_bh);
 | |
| 
 | |
| 		list_del(&pa->u.pa_tmp_list);
 | |
| 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 
 | |
| 	BUG_ON(ext4_pspace_cachep == NULL);
 | |
| 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
 | |
| 	if (!pa)
 | |
| 		return -ENOMEM;
 | |
| 	atomic_set(&pa->pa_count, 1);
 | |
| 	ac->ac_pa = pa;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa = ac->ac_pa;
 | |
| 
 | |
| 	BUG_ON(!pa);
 | |
| 	ac->ac_pa = NULL;
 | |
| 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
 | |
| 	kmem_cache_free(ext4_pspace_cachep, pa);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_EXT4_DEBUG
 | |
| static inline void ext4_mb_show_pa(struct super_block *sb)
 | |
| {
 | |
| 	ext4_group_t i, ngroups;
 | |
| 
 | |
| 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
 | |
| 		return;
 | |
| 
 | |
| 	ngroups = ext4_get_groups_count(sb);
 | |
| 	mb_debug(sb, "groups: ");
 | |
| 	for (i = 0; i < ngroups; i++) {
 | |
| 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
 | |
| 		struct ext4_prealloc_space *pa;
 | |
| 		ext4_grpblk_t start;
 | |
| 		struct list_head *cur;
 | |
| 		ext4_lock_group(sb, i);
 | |
| 		list_for_each(cur, &grp->bb_prealloc_list) {
 | |
| 			pa = list_entry(cur, struct ext4_prealloc_space,
 | |
| 					pa_group_list);
 | |
| 			spin_lock(&pa->pa_lock);
 | |
| 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
 | |
| 						     NULL, &start);
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
 | |
| 				 pa->pa_len);
 | |
| 		}
 | |
| 		ext4_unlock_group(sb, i);
 | |
| 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
 | |
| 			 grp->bb_fragments);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 
 | |
| 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
 | |
| 		return;
 | |
| 
 | |
| 	mb_debug(sb, "Can't allocate:"
 | |
| 			" Allocation context details:");
 | |
| 	mb_debug(sb, "status %u flags 0x%x",
 | |
| 			ac->ac_status, ac->ac_flags);
 | |
| 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
 | |
| 			"goal %lu/%lu/%lu@%lu, "
 | |
| 			"best %lu/%lu/%lu@%lu cr %d",
 | |
| 			(unsigned long)ac->ac_o_ex.fe_group,
 | |
| 			(unsigned long)ac->ac_o_ex.fe_start,
 | |
| 			(unsigned long)ac->ac_o_ex.fe_len,
 | |
| 			(unsigned long)ac->ac_o_ex.fe_logical,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_group,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_start,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_len,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_logical,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_group,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_start,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_len,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_logical,
 | |
| 			(int)ac->ac_criteria);
 | |
| 	mb_debug(sb, "%u found", ac->ac_found);
 | |
| 	ext4_mb_show_pa(sb);
 | |
| }
 | |
| #else
 | |
| static inline void ext4_mb_show_pa(struct super_block *sb)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	ext4_mb_show_pa(ac->ac_sb);
 | |
| 	return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We use locality group preallocation for small size file. The size of the
 | |
|  * file is determined by the current size or the resulting size after
 | |
|  * allocation which ever is larger
 | |
|  *
 | |
|  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
 | |
|  */
 | |
| static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	int bsbits = ac->ac_sb->s_blocksize_bits;
 | |
| 	loff_t size, isize;
 | |
| 
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
 | |
| 		return;
 | |
| 
 | |
| 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
 | |
| 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
 | |
| 		>> bsbits;
 | |
| 
 | |
| 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
 | |
| 	    !inode_is_open_for_write(ac->ac_inode)) {
 | |
| 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (sbi->s_mb_group_prealloc <= 0) {
 | |
| 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* don't use group allocation for large files */
 | |
| 	size = max(size, isize);
 | |
| 	if (size > sbi->s_mb_stream_request) {
 | |
| 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(ac->ac_lg != NULL);
 | |
| 	/*
 | |
| 	 * locality group prealloc space are per cpu. The reason for having
 | |
| 	 * per cpu locality group is to reduce the contention between block
 | |
| 	 * request from multiple CPUs.
 | |
| 	 */
 | |
| 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
 | |
| 
 | |
| 	/* we're going to use group allocation */
 | |
| 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
 | |
| 
 | |
| 	/* serialize all allocations in the group */
 | |
| 	mutex_lock(&ac->ac_lg->lg_mutex);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_initialize_context(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_allocation_request *ar)
 | |
| {
 | |
| 	struct super_block *sb = ar->inode->i_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_super_block *es = sbi->s_es;
 | |
| 	ext4_group_t group;
 | |
| 	unsigned int len;
 | |
| 	ext4_fsblk_t goal;
 | |
| 	ext4_grpblk_t block;
 | |
| 
 | |
| 	/* we can't allocate > group size */
 | |
| 	len = ar->len;
 | |
| 
 | |
| 	/* just a dirty hack to filter too big requests  */
 | |
| 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
 | |
| 		len = EXT4_CLUSTERS_PER_GROUP(sb);
 | |
| 
 | |
| 	/* start searching from the goal */
 | |
| 	goal = ar->goal;
 | |
| 	if (goal < le32_to_cpu(es->s_first_data_block) ||
 | |
| 			goal >= ext4_blocks_count(es))
 | |
| 		goal = le32_to_cpu(es->s_first_data_block);
 | |
| 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
 | |
| 
 | |
| 	/* set up allocation goals */
 | |
| 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
 | |
| 	ac->ac_status = AC_STATUS_CONTINUE;
 | |
| 	ac->ac_sb = sb;
 | |
| 	ac->ac_inode = ar->inode;
 | |
| 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
 | |
| 	ac->ac_o_ex.fe_group = group;
 | |
| 	ac->ac_o_ex.fe_start = block;
 | |
| 	ac->ac_o_ex.fe_len = len;
 | |
| 	ac->ac_g_ex = ac->ac_o_ex;
 | |
| 	ac->ac_flags = ar->flags;
 | |
| 
 | |
| 	/* we have to define context: we'll work with a file or
 | |
| 	 * locality group. this is a policy, actually */
 | |
| 	ext4_mb_group_or_file(ac);
 | |
| 
 | |
| 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
 | |
| 			"left: %u/%u, right %u/%u to %swritable\n",
 | |
| 			(unsigned) ar->len, (unsigned) ar->logical,
 | |
| 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
 | |
| 			(unsigned) ar->lleft, (unsigned) ar->pleft,
 | |
| 			(unsigned) ar->lright, (unsigned) ar->pright,
 | |
| 			inode_is_open_for_write(ar->inode) ? "" : "non-");
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void
 | |
| ext4_mb_discard_lg_preallocations(struct super_block *sb,
 | |
| 					struct ext4_locality_group *lg,
 | |
| 					int order, int total_entries)
 | |
| {
 | |
| 	ext4_group_t group = 0;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	struct list_head discard_list;
 | |
| 	struct ext4_prealloc_space *pa, *tmp;
 | |
| 
 | |
| 	mb_debug(sb, "discard locality group preallocation\n");
 | |
| 
 | |
| 	INIT_LIST_HEAD(&discard_list);
 | |
| 
 | |
| 	spin_lock(&lg->lg_prealloc_lock);
 | |
| 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
 | |
| 				pa_inode_list,
 | |
| 				lockdep_is_held(&lg->lg_prealloc_lock)) {
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (atomic_read(&pa->pa_count)) {
 | |
| 			/*
 | |
| 			 * This is the pa that we just used
 | |
| 			 * for block allocation. So don't
 | |
| 			 * free that
 | |
| 			 */
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pa->pa_deleted) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* only lg prealloc space */
 | |
| 		BUG_ON(pa->pa_type != MB_GROUP_PA);
 | |
| 
 | |
| 		/* seems this one can be freed ... */
 | |
| 		ext4_mb_mark_pa_deleted(sb, pa);
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 
 | |
| 		list_del_rcu(&pa->pa_inode_list);
 | |
| 		list_add(&pa->u.pa_tmp_list, &discard_list);
 | |
| 
 | |
| 		total_entries--;
 | |
| 		if (total_entries <= 5) {
 | |
| 			/*
 | |
| 			 * we want to keep only 5 entries
 | |
| 			 * allowing it to grow to 8. This
 | |
| 			 * mak sure we don't call discard
 | |
| 			 * soon for this list.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&lg->lg_prealloc_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
 | |
| 		int err;
 | |
| 
 | |
| 		group = ext4_get_group_number(sb, pa->pa_pstart);
 | |
| 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
 | |
| 					     GFP_NOFS|__GFP_NOFAIL);
 | |
| 		if (err) {
 | |
| 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
 | |
| 				       err, group);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ext4_lock_group(sb, group);
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		ext4_mb_release_group_pa(&e4b, pa);
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 
 | |
| 		ext4_mb_unload_buddy(&e4b);
 | |
| 		list_del(&pa->u.pa_tmp_list);
 | |
| 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have incremented pa_count. So it cannot be freed at this
 | |
|  * point. Also we hold lg_mutex. So no parallel allocation is
 | |
|  * possible from this lg. That means pa_free cannot be updated.
 | |
|  *
 | |
|  * A parallel ext4_mb_discard_group_preallocations is possible.
 | |
|  * which can cause the lg_prealloc_list to be updated.
 | |
|  */
 | |
| 
 | |
| static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	int order, added = 0, lg_prealloc_count = 1;
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_locality_group *lg = ac->ac_lg;
 | |
| 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
 | |
| 
 | |
| 	order = fls(pa->pa_free) - 1;
 | |
| 	if (order > PREALLOC_TB_SIZE - 1)
 | |
| 		/* The max size of hash table is PREALLOC_TB_SIZE */
 | |
| 		order = PREALLOC_TB_SIZE - 1;
 | |
| 	/* Add the prealloc space to lg */
 | |
| 	spin_lock(&lg->lg_prealloc_lock);
 | |
| 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
 | |
| 				pa_inode_list,
 | |
| 				lockdep_is_held(&lg->lg_prealloc_lock)) {
 | |
| 		spin_lock(&tmp_pa->pa_lock);
 | |
| 		if (tmp_pa->pa_deleted) {
 | |
| 			spin_unlock(&tmp_pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!added && pa->pa_free < tmp_pa->pa_free) {
 | |
| 			/* Add to the tail of the previous entry */
 | |
| 			list_add_tail_rcu(&pa->pa_inode_list,
 | |
| 						&tmp_pa->pa_inode_list);
 | |
| 			added = 1;
 | |
| 			/*
 | |
| 			 * we want to count the total
 | |
| 			 * number of entries in the list
 | |
| 			 */
 | |
| 		}
 | |
| 		spin_unlock(&tmp_pa->pa_lock);
 | |
| 		lg_prealloc_count++;
 | |
| 	}
 | |
| 	if (!added)
 | |
| 		list_add_tail_rcu(&pa->pa_inode_list,
 | |
| 					&lg->lg_prealloc_list[order]);
 | |
| 	spin_unlock(&lg->lg_prealloc_lock);
 | |
| 
 | |
| 	/* Now trim the list to be not more than 8 elements */
 | |
| 	if (lg_prealloc_count > 8) {
 | |
| 		ext4_mb_discard_lg_preallocations(sb, lg,
 | |
| 						  order, lg_prealloc_count);
 | |
| 		return;
 | |
| 	}
 | |
| 	return ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * if per-inode prealloc list is too long, trim some PA
 | |
|  */
 | |
| static void ext4_mb_trim_inode_pa(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	int count, delta;
 | |
| 
 | |
| 	count = atomic_read(&ei->i_prealloc_active);
 | |
| 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
 | |
| 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
 | |
| 		count -= sbi->s_mb_max_inode_prealloc;
 | |
| 		ext4_discard_preallocations(inode, count);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * release all resource we used in allocation
 | |
|  */
 | |
| static int ext4_mb_release_context(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct inode *inode = ac->ac_inode;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	struct ext4_prealloc_space *pa = ac->ac_pa;
 | |
| 	if (pa) {
 | |
| 		if (pa->pa_type == MB_GROUP_PA) {
 | |
| 			/* see comment in ext4_mb_use_group_pa() */
 | |
| 			spin_lock(&pa->pa_lock);
 | |
| 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
 | |
| 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
 | |
| 			pa->pa_free -= ac->ac_b_ex.fe_len;
 | |
| 			pa->pa_len -= ac->ac_b_ex.fe_len;
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 
 | |
| 			/*
 | |
| 			 * We want to add the pa to the right bucket.
 | |
| 			 * Remove it from the list and while adding
 | |
| 			 * make sure the list to which we are adding
 | |
| 			 * doesn't grow big.
 | |
| 			 */
 | |
| 			if (likely(pa->pa_free)) {
 | |
| 				spin_lock(pa->pa_obj_lock);
 | |
| 				list_del_rcu(&pa->pa_inode_list);
 | |
| 				spin_unlock(pa->pa_obj_lock);
 | |
| 				ext4_mb_add_n_trim(ac);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (pa->pa_type == MB_INODE_PA) {
 | |
| 			/*
 | |
| 			 * treat per-inode prealloc list as a lru list, then try
 | |
| 			 * to trim the least recently used PA.
 | |
| 			 */
 | |
| 			spin_lock(pa->pa_obj_lock);
 | |
| 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
 | |
| 			spin_unlock(pa->pa_obj_lock);
 | |
| 		}
 | |
| 
 | |
| 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
 | |
| 	}
 | |
| 	if (ac->ac_bitmap_page)
 | |
| 		put_page(ac->ac_bitmap_page);
 | |
| 	if (ac->ac_buddy_page)
 | |
| 		put_page(ac->ac_buddy_page);
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
 | |
| 		mutex_unlock(&ac->ac_lg->lg_mutex);
 | |
| 	ext4_mb_collect_stats(ac);
 | |
| 	ext4_mb_trim_inode_pa(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
 | |
| {
 | |
| 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
 | |
| 	int ret;
 | |
| 	int freed = 0;
 | |
| 
 | |
| 	trace_ext4_mb_discard_preallocations(sb, needed);
 | |
| 	for (i = 0; i < ngroups && needed > 0; i++) {
 | |
| 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
 | |
| 		freed += ret;
 | |
| 		needed -= ret;
 | |
| 	}
 | |
| 
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
 | |
| 			struct ext4_allocation_context *ac, u64 *seq)
 | |
| {
 | |
| 	int freed;
 | |
| 	u64 seq_retry = 0;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
 | |
| 	if (freed) {
 | |
| 		ret = true;
 | |
| 		goto out_dbg;
 | |
| 	}
 | |
| 	seq_retry = ext4_get_discard_pa_seq_sum();
 | |
| 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
 | |
| 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
 | |
| 		*seq = seq_retry;
 | |
| 		ret = true;
 | |
| 	}
 | |
| 
 | |
| out_dbg:
 | |
| 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
 | |
| 				struct ext4_allocation_request *ar, int *errp);
 | |
| 
 | |
| /*
 | |
|  * Main entry point into mballoc to allocate blocks
 | |
|  * it tries to use preallocation first, then falls back
 | |
|  * to usual allocation
 | |
|  */
 | |
| ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
 | |
| 				struct ext4_allocation_request *ar, int *errp)
 | |
| {
 | |
| 	struct ext4_allocation_context *ac = NULL;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct super_block *sb;
 | |
| 	ext4_fsblk_t block = 0;
 | |
| 	unsigned int inquota = 0;
 | |
| 	unsigned int reserv_clstrs = 0;
 | |
| 	u64 seq;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	sb = ar->inode->i_sb;
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	trace_ext4_request_blocks(ar);
 | |
| 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
 | |
| 		return ext4_mb_new_blocks_simple(handle, ar, errp);
 | |
| 
 | |
| 	/* Allow to use superuser reservation for quota file */
 | |
| 	if (ext4_is_quota_file(ar->inode))
 | |
| 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
 | |
| 
 | |
| 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
 | |
| 		/* Without delayed allocation we need to verify
 | |
| 		 * there is enough free blocks to do block allocation
 | |
| 		 * and verify allocation doesn't exceed the quota limits.
 | |
| 		 */
 | |
| 		while (ar->len &&
 | |
| 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
 | |
| 
 | |
| 			/* let others to free the space */
 | |
| 			cond_resched();
 | |
| 			ar->len = ar->len >> 1;
 | |
| 		}
 | |
| 		if (!ar->len) {
 | |
| 			ext4_mb_show_pa(sb);
 | |
| 			*errp = -ENOSPC;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		reserv_clstrs = ar->len;
 | |
| 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
 | |
| 			dquot_alloc_block_nofail(ar->inode,
 | |
| 						 EXT4_C2B(sbi, ar->len));
 | |
| 		} else {
 | |
| 			while (ar->len &&
 | |
| 				dquot_alloc_block(ar->inode,
 | |
| 						  EXT4_C2B(sbi, ar->len))) {
 | |
| 
 | |
| 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
 | |
| 				ar->len--;
 | |
| 			}
 | |
| 		}
 | |
| 		inquota = ar->len;
 | |
| 		if (ar->len == 0) {
 | |
| 			*errp = -EDQUOT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
 | |
| 	if (!ac) {
 | |
| 		ar->len = 0;
 | |
| 		*errp = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	*errp = ext4_mb_initialize_context(ac, ar);
 | |
| 	if (*errp) {
 | |
| 		ar->len = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
 | |
| 	seq = this_cpu_read(discard_pa_seq);
 | |
| 	if (!ext4_mb_use_preallocated(ac)) {
 | |
| 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
 | |
| 		ext4_mb_normalize_request(ac, ar);
 | |
| 
 | |
| 		*errp = ext4_mb_pa_alloc(ac);
 | |
| 		if (*errp)
 | |
| 			goto errout;
 | |
| repeat:
 | |
| 		/* allocate space in core */
 | |
| 		*errp = ext4_mb_regular_allocator(ac);
 | |
| 		/*
 | |
| 		 * pa allocated above is added to grp->bb_prealloc_list only
 | |
| 		 * when we were able to allocate some block i.e. when
 | |
| 		 * ac->ac_status == AC_STATUS_FOUND.
 | |
| 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
 | |
| 		 * So we have to free this pa here itself.
 | |
| 		 */
 | |
| 		if (*errp) {
 | |
| 			ext4_mb_pa_free(ac);
 | |
| 			ext4_discard_allocated_blocks(ac);
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		if (ac->ac_status == AC_STATUS_FOUND &&
 | |
| 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
 | |
| 			ext4_mb_pa_free(ac);
 | |
| 	}
 | |
| 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
 | |
| 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
 | |
| 		if (*errp) {
 | |
| 			ext4_discard_allocated_blocks(ac);
 | |
| 			goto errout;
 | |
| 		} else {
 | |
| 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 | |
| 			ar->len = ac->ac_b_ex.fe_len;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
 | |
| 			goto repeat;
 | |
| 		/*
 | |
| 		 * If block allocation fails then the pa allocated above
 | |
| 		 * needs to be freed here itself.
 | |
| 		 */
 | |
| 		ext4_mb_pa_free(ac);
 | |
| 		*errp = -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| errout:
 | |
| 	if (*errp) {
 | |
| 		ac->ac_b_ex.fe_len = 0;
 | |
| 		ar->len = 0;
 | |
| 		ext4_mb_show_ac(ac);
 | |
| 	}
 | |
| 	ext4_mb_release_context(ac);
 | |
| out:
 | |
| 	if (ac)
 | |
| 		kmem_cache_free(ext4_ac_cachep, ac);
 | |
| 	if (inquota && ar->len < inquota)
 | |
| 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
 | |
| 	if (!ar->len) {
 | |
| 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
 | |
| 			/* release all the reserved blocks if non delalloc */
 | |
| 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 | |
| 						reserv_clstrs);
 | |
| 	}
 | |
| 
 | |
| 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
 | |
| 
 | |
| 	return block;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can merge two free data extents only if the physical blocks
 | |
|  * are contiguous, AND the extents were freed by the same transaction,
 | |
|  * AND the blocks are associated with the same group.
 | |
|  */
 | |
| static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
 | |
| 					struct ext4_free_data *entry,
 | |
| 					struct ext4_free_data *new_entry,
 | |
| 					struct rb_root *entry_rb_root)
 | |
| {
 | |
| 	if ((entry->efd_tid != new_entry->efd_tid) ||
 | |
| 	    (entry->efd_group != new_entry->efd_group))
 | |
| 		return;
 | |
| 	if (entry->efd_start_cluster + entry->efd_count ==
 | |
| 	    new_entry->efd_start_cluster) {
 | |
| 		new_entry->efd_start_cluster = entry->efd_start_cluster;
 | |
| 		new_entry->efd_count += entry->efd_count;
 | |
| 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
 | |
| 		   entry->efd_start_cluster) {
 | |
| 		new_entry->efd_count += entry->efd_count;
 | |
| 	} else
 | |
| 		return;
 | |
| 	spin_lock(&sbi->s_md_lock);
 | |
| 	list_del(&entry->efd_list);
 | |
| 	spin_unlock(&sbi->s_md_lock);
 | |
| 	rb_erase(&entry->efd_node, entry_rb_root);
 | |
| 	kmem_cache_free(ext4_free_data_cachep, entry);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
 | |
| 		      struct ext4_free_data *new_entry)
 | |
| {
 | |
| 	ext4_group_t group = e4b->bd_group;
 | |
| 	ext4_grpblk_t cluster;
 | |
| 	ext4_grpblk_t clusters = new_entry->efd_count;
 | |
| 	struct ext4_free_data *entry;
 | |
| 	struct ext4_group_info *db = e4b->bd_info;
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
 | |
| 	struct rb_node *parent = NULL, *new_node;
 | |
| 
 | |
| 	BUG_ON(!ext4_handle_valid(handle));
 | |
| 	BUG_ON(e4b->bd_bitmap_page == NULL);
 | |
| 	BUG_ON(e4b->bd_buddy_page == NULL);
 | |
| 
 | |
| 	new_node = &new_entry->efd_node;
 | |
| 	cluster = new_entry->efd_start_cluster;
 | |
| 
 | |
| 	if (!*n) {
 | |
| 		/* first free block exent. We need to
 | |
| 		   protect buddy cache from being freed,
 | |
| 		 * otherwise we'll refresh it from
 | |
| 		 * on-disk bitmap and lose not-yet-available
 | |
| 		 * blocks */
 | |
| 		get_page(e4b->bd_buddy_page);
 | |
| 		get_page(e4b->bd_bitmap_page);
 | |
| 	}
 | |
| 	while (*n) {
 | |
| 		parent = *n;
 | |
| 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
 | |
| 		if (cluster < entry->efd_start_cluster)
 | |
| 			n = &(*n)->rb_left;
 | |
| 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
 | |
| 			n = &(*n)->rb_right;
 | |
| 		else {
 | |
| 			ext4_grp_locked_error(sb, group, 0,
 | |
| 				ext4_group_first_block_no(sb, group) +
 | |
| 				EXT4_C2B(sbi, cluster),
 | |
| 				"Block already on to-be-freed list");
 | |
| 			kmem_cache_free(ext4_free_data_cachep, new_entry);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(new_node, parent, n);
 | |
| 	rb_insert_color(new_node, &db->bb_free_root);
 | |
| 
 | |
| 	/* Now try to see the extent can be merged to left and right */
 | |
| 	node = rb_prev(new_node);
 | |
| 	if (node) {
 | |
| 		entry = rb_entry(node, struct ext4_free_data, efd_node);
 | |
| 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
 | |
| 					    &(db->bb_free_root));
 | |
| 	}
 | |
| 
 | |
| 	node = rb_next(new_node);
 | |
| 	if (node) {
 | |
| 		entry = rb_entry(node, struct ext4_free_data, efd_node);
 | |
| 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
 | |
| 					    &(db->bb_free_root));
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&sbi->s_md_lock);
 | |
| 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
 | |
| 	sbi->s_mb_free_pending += clusters;
 | |
| 	spin_unlock(&sbi->s_md_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
 | |
|  * linearly starting at the goal block and also excludes the blocks which
 | |
|  * are going to be in use after fast commit replay.
 | |
|  */
 | |
| static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
 | |
| 				struct ext4_allocation_request *ar, int *errp)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh;
 | |
| 	struct super_block *sb = ar->inode->i_sb;
 | |
| 	ext4_group_t group;
 | |
| 	ext4_grpblk_t blkoff;
 | |
| 	int i = sb->s_blocksize;
 | |
| 	ext4_fsblk_t goal, block;
 | |
| 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 | |
| 
 | |
| 	goal = ar->goal;
 | |
| 	if (goal < le32_to_cpu(es->s_first_data_block) ||
 | |
| 			goal >= ext4_blocks_count(es))
 | |
| 		goal = le32_to_cpu(es->s_first_data_block);
 | |
| 
 | |
| 	ar->len = 0;
 | |
| 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
 | |
| 	for (; group < ext4_get_groups_count(sb); group++) {
 | |
| 		bitmap_bh = ext4_read_block_bitmap(sb, group);
 | |
| 		if (IS_ERR(bitmap_bh)) {
 | |
| 			*errp = PTR_ERR(bitmap_bh);
 | |
| 			pr_warn("Failed to read block bitmap\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		ext4_get_group_no_and_offset(sb,
 | |
| 			max(ext4_group_first_block_no(sb, group), goal),
 | |
| 			NULL, &blkoff);
 | |
| 		i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
 | |
| 						blkoff);
 | |
| 		brelse(bitmap_bh);
 | |
| 		if (i >= sb->s_blocksize)
 | |
| 			continue;
 | |
| 		if (ext4_fc_replay_check_excluded(sb,
 | |
| 			ext4_group_first_block_no(sb, group) + i))
 | |
| 			continue;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
 | |
| 		return 0;
 | |
| 
 | |
| 	block = ext4_group_first_block_no(sb, group) + i;
 | |
| 	ext4_mb_mark_bb(sb, block, 1, 1);
 | |
| 	ar->len = 1;
 | |
| 
 | |
| 	return block;
 | |
| }
 | |
| 
 | |
| static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
 | |
| 					unsigned long count)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh;
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct ext4_group_desc *gdp;
 | |
| 	struct buffer_head *gdp_bh;
 | |
| 	ext4_group_t group;
 | |
| 	ext4_grpblk_t blkoff;
 | |
| 	int already_freed = 0, err, i;
 | |
| 
 | |
| 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, group);
 | |
| 	if (IS_ERR(bitmap_bh)) {
 | |
| 		err = PTR_ERR(bitmap_bh);
 | |
| 		pr_warn("Failed to read block bitmap\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
 | |
| 	if (!gdp)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
 | |
| 			already_freed++;
 | |
| 	}
 | |
| 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
 | |
| 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
 | |
| 	if (err)
 | |
| 		return;
 | |
| 	ext4_free_group_clusters_set(
 | |
| 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
 | |
| 		count - already_freed);
 | |
| 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
 | |
| 	ext4_group_desc_csum_set(sb, group, gdp);
 | |
| 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
 | |
| 	sync_dirty_buffer(bitmap_bh);
 | |
| 	sync_dirty_buffer(gdp_bh);
 | |
| 	brelse(bitmap_bh);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_free_blocks() -- Free given blocks and update quota
 | |
|  * @handle:		handle for this transaction
 | |
|  * @inode:		inode
 | |
|  * @bh:			optional buffer of the block to be freed
 | |
|  * @block:		starting physical block to be freed
 | |
|  * @count:		number of blocks to be freed
 | |
|  * @flags:		flags used by ext4_free_blocks
 | |
|  */
 | |
| void ext4_free_blocks(handle_t *handle, struct inode *inode,
 | |
| 		      struct buffer_head *bh, ext4_fsblk_t block,
 | |
| 		      unsigned long count, int flags)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct ext4_group_desc *gdp;
 | |
| 	unsigned int overflow;
 | |
| 	ext4_grpblk_t bit;
 | |
| 	struct buffer_head *gd_bh;
 | |
| 	ext4_group_t block_group;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	unsigned int count_clusters;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
 | |
| 		ext4_free_blocks_simple(inode, block, count);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	might_sleep();
 | |
| 	if (bh) {
 | |
| 		if (block)
 | |
| 			BUG_ON(block != bh->b_blocknr);
 | |
| 		else
 | |
| 			block = bh->b_blocknr;
 | |
| 	}
 | |
| 
 | |
| 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
 | |
| 	    !ext4_inode_block_valid(inode, block, count)) {
 | |
| 		ext4_error(sb, "Freeing blocks not in datazone - "
 | |
| 			   "block = %llu, count = %lu", block, count);
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	ext4_debug("freeing block %llu\n", block);
 | |
| 	trace_ext4_free_blocks(inode, block, count, flags);
 | |
| 
 | |
| 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
 | |
| 		BUG_ON(count > 1);
 | |
| 
 | |
| 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
 | |
| 			    inode, bh, block);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the extent to be freed does not begin on a cluster
 | |
| 	 * boundary, we need to deal with partial clusters at the
 | |
| 	 * beginning and end of the extent.  Normally we will free
 | |
| 	 * blocks at the beginning or the end unless we are explicitly
 | |
| 	 * requested to avoid doing so.
 | |
| 	 */
 | |
| 	overflow = EXT4_PBLK_COFF(sbi, block);
 | |
| 	if (overflow) {
 | |
| 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
 | |
| 			overflow = sbi->s_cluster_ratio - overflow;
 | |
| 			block += overflow;
 | |
| 			if (count > overflow)
 | |
| 				count -= overflow;
 | |
| 			else
 | |
| 				return;
 | |
| 		} else {
 | |
| 			block -= overflow;
 | |
| 			count += overflow;
 | |
| 		}
 | |
| 	}
 | |
| 	overflow = EXT4_LBLK_COFF(sbi, count);
 | |
| 	if (overflow) {
 | |
| 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
 | |
| 			if (count > overflow)
 | |
| 				count -= overflow;
 | |
| 			else
 | |
| 				return;
 | |
| 		} else
 | |
| 			count += sbi->s_cluster_ratio - overflow;
 | |
| 	}
 | |
| 
 | |
| 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
 | |
| 		int i;
 | |
| 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
 | |
| 
 | |
| 		for (i = 0; i < count; i++) {
 | |
| 			cond_resched();
 | |
| 			if (is_metadata)
 | |
| 				bh = sb_find_get_block(inode->i_sb, block + i);
 | |
| 			ext4_forget(handle, is_metadata, inode, bh, block + i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| do_more:
 | |
| 	overflow = 0;
 | |
| 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
 | |
| 
 | |
| 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
 | |
| 			ext4_get_group_info(sb, block_group))))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if we are freeing blocks across a group
 | |
| 	 * boundary.
 | |
| 	 */
 | |
| 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
 | |
| 		overflow = EXT4_C2B(sbi, bit) + count -
 | |
| 			EXT4_BLOCKS_PER_GROUP(sb);
 | |
| 		count -= overflow;
 | |
| 	}
 | |
| 	count_clusters = EXT4_NUM_B2C(sbi, count);
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
 | |
| 	if (IS_ERR(bitmap_bh)) {
 | |
| 		err = PTR_ERR(bitmap_bh);
 | |
| 		bitmap_bh = NULL;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
 | |
| 	if (!gdp) {
 | |
| 		err = -EIO;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
 | |
| 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
 | |
| 	    in_range(block, ext4_inode_table(sb, gdp),
 | |
| 		     sbi->s_itb_per_group) ||
 | |
| 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
 | |
| 		     sbi->s_itb_per_group)) {
 | |
| 
 | |
| 		ext4_error(sb, "Freeing blocks in system zone - "
 | |
| 			   "Block = %llu, count = %lu", block, count);
 | |
| 		/* err = 0. ext4_std_error should be a no op */
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	BUFFER_TRACE(bitmap_bh, "getting write access");
 | |
| 	err = ext4_journal_get_write_access(handle, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are about to modify some metadata.  Call the journal APIs
 | |
| 	 * to unshare ->b_data if a currently-committing transaction is
 | |
| 	 * using it
 | |
| 	 */
 | |
| 	BUFFER_TRACE(gd_bh, "get_write_access");
 | |
| 	err = ext4_journal_get_write_access(handle, gd_bh);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| #ifdef AGGRESSIVE_CHECK
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < count_clusters; i++)
 | |
| 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
 | |
| 	}
 | |
| #endif
 | |
| 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
 | |
| 
 | |
| 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
 | |
| 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
 | |
| 				     GFP_NOFS|__GFP_NOFAIL);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to make sure we don't reuse the freed block until after the
 | |
| 	 * transaction is committed. We make an exception if the inode is to be
 | |
| 	 * written in writeback mode since writeback mode has weak data
 | |
| 	 * consistency guarantees.
 | |
| 	 */
 | |
| 	if (ext4_handle_valid(handle) &&
 | |
| 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
 | |
| 	     !ext4_should_writeback_data(inode))) {
 | |
| 		struct ext4_free_data *new_entry;
 | |
| 		/*
 | |
| 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
 | |
| 		 * to fail.
 | |
| 		 */
 | |
| 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
 | |
| 				GFP_NOFS|__GFP_NOFAIL);
 | |
| 		new_entry->efd_start_cluster = bit;
 | |
| 		new_entry->efd_group = block_group;
 | |
| 		new_entry->efd_count = count_clusters;
 | |
| 		new_entry->efd_tid = handle->h_transaction->t_tid;
 | |
| 
 | |
| 		ext4_lock_group(sb, block_group);
 | |
| 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
 | |
| 		ext4_mb_free_metadata(handle, &e4b, new_entry);
 | |
| 	} else {
 | |
| 		/* need to update group_info->bb_free and bitmap
 | |
| 		 * with group lock held. generate_buddy look at
 | |
| 		 * them with group lock_held
 | |
| 		 */
 | |
| 		if (test_opt(sb, DISCARD)) {
 | |
| 			err = ext4_issue_discard(sb, block_group, bit, count,
 | |
| 						 NULL);
 | |
| 			if (err && err != -EOPNOTSUPP)
 | |
| 				ext4_msg(sb, KERN_WARNING, "discard request in"
 | |
| 					 " group:%d block:%d count:%lu failed"
 | |
| 					 " with %d", block_group, bit, count,
 | |
| 					 err);
 | |
| 		} else
 | |
| 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
 | |
| 
 | |
| 		ext4_lock_group(sb, block_group);
 | |
| 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
 | |
| 		mb_free_blocks(inode, &e4b, bit, count_clusters);
 | |
| 	}
 | |
| 
 | |
| 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
 | |
| 	ext4_free_group_clusters_set(sb, gdp, ret);
 | |
| 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
 | |
| 	ext4_group_desc_csum_set(sb, block_group, gdp);
 | |
| 	ext4_unlock_group(sb, block_group);
 | |
| 
 | |
| 	if (sbi->s_log_groups_per_flex) {
 | |
| 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
 | |
| 		atomic64_add(count_clusters,
 | |
| 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
 | |
| 						  flex_group)->free_clusters);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * on a bigalloc file system, defer the s_freeclusters_counter
 | |
| 	 * update to the caller (ext4_remove_space and friends) so they
 | |
| 	 * can determine if a cluster freed here should be rereserved
 | |
| 	 */
 | |
| 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
 | |
| 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
 | |
| 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
 | |
| 		percpu_counter_add(&sbi->s_freeclusters_counter,
 | |
| 				   count_clusters);
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_unload_buddy(&e4b);
 | |
| 
 | |
| 	/* We dirtied the bitmap block */
 | |
| 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
 | |
| 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 | |
| 
 | |
| 	/* And the group descriptor block */
 | |
| 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
 | |
| 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
 | |
| 	if (!err)
 | |
| 		err = ret;
 | |
| 
 | |
| 	if (overflow && !err) {
 | |
| 		block += count;
 | |
| 		count = overflow;
 | |
| 		put_bh(bitmap_bh);
 | |
| 		goto do_more;
 | |
| 	}
 | |
| error_return:
 | |
| 	brelse(bitmap_bh);
 | |
| 	ext4_std_error(sb, err);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_group_add_blocks() -- Add given blocks to an existing group
 | |
|  * @handle:			handle to this transaction
 | |
|  * @sb:				super block
 | |
|  * @block:			start physical block to add to the block group
 | |
|  * @count:			number of blocks to free
 | |
|  *
 | |
|  * This marks the blocks as free in the bitmap and buddy.
 | |
|  */
 | |
| int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
 | |
| 			 ext4_fsblk_t block, unsigned long count)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct buffer_head *gd_bh;
 | |
| 	ext4_group_t block_group;
 | |
| 	ext4_grpblk_t bit;
 | |
| 	unsigned int i;
 | |
| 	struct ext4_group_desc *desc;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int err = 0, ret, free_clusters_count;
 | |
| 	ext4_grpblk_t clusters_freed;
 | |
| 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
 | |
| 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
 | |
| 	unsigned long cluster_count = last_cluster - first_cluster + 1;
 | |
| 
 | |
| 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
 | |
| 
 | |
| 	if (count == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
 | |
| 	/*
 | |
| 	 * Check to see if we are freeing blocks across a group
 | |
| 	 * boundary.
 | |
| 	 */
 | |
| 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
 | |
| 		ext4_warning(sb, "too many blocks added to group %u",
 | |
| 			     block_group);
 | |
| 		err = -EINVAL;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
 | |
| 	if (IS_ERR(bitmap_bh)) {
 | |
| 		err = PTR_ERR(bitmap_bh);
 | |
| 		bitmap_bh = NULL;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
 | |
| 	if (!desc) {
 | |
| 		err = -EIO;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
 | |
| 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
 | |
| 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
 | |
| 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
 | |
| 		     sbi->s_itb_per_group)) {
 | |
| 		ext4_error(sb, "Adding blocks in system zones - "
 | |
| 			   "Block = %llu, count = %lu",
 | |
| 			   block, count);
 | |
| 		err = -EINVAL;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	BUFFER_TRACE(bitmap_bh, "getting write access");
 | |
| 	err = ext4_journal_get_write_access(handle, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are about to modify some metadata.  Call the journal APIs
 | |
| 	 * to unshare ->b_data if a currently-committing transaction is
 | |
| 	 * using it
 | |
| 	 */
 | |
| 	BUFFER_TRACE(gd_bh, "get_write_access");
 | |
| 	err = ext4_journal_get_write_access(handle, gd_bh);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
 | |
| 		BUFFER_TRACE(bitmap_bh, "clear bit");
 | |
| 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
 | |
| 			ext4_error(sb, "bit already cleared for block %llu",
 | |
| 				   (ext4_fsblk_t)(block + i));
 | |
| 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
 | |
| 		} else {
 | |
| 			clusters_freed++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	/*
 | |
| 	 * need to update group_info->bb_free and bitmap
 | |
| 	 * with group lock held. generate_buddy look at
 | |
| 	 * them with group lock_held
 | |
| 	 */
 | |
| 	ext4_lock_group(sb, block_group);
 | |
| 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
 | |
| 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
 | |
| 	free_clusters_count = clusters_freed +
 | |
| 		ext4_free_group_clusters(sb, desc);
 | |
| 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
 | |
| 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
 | |
| 	ext4_group_desc_csum_set(sb, block_group, desc);
 | |
| 	ext4_unlock_group(sb, block_group);
 | |
| 	percpu_counter_add(&sbi->s_freeclusters_counter,
 | |
| 			   clusters_freed);
 | |
| 
 | |
| 	if (sbi->s_log_groups_per_flex) {
 | |
| 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
 | |
| 		atomic64_add(clusters_freed,
 | |
| 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
 | |
| 						  flex_group)->free_clusters);
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_unload_buddy(&e4b);
 | |
| 
 | |
| 	/* We dirtied the bitmap block */
 | |
| 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
 | |
| 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 | |
| 
 | |
| 	/* And the group descriptor block */
 | |
| 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
 | |
| 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
 | |
| 	if (!err)
 | |
| 		err = ret;
 | |
| 
 | |
| error_return:
 | |
| 	brelse(bitmap_bh);
 | |
| 	ext4_std_error(sb, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_trim_extent -- function to TRIM one single free extent in the group
 | |
|  * @sb:		super block for the file system
 | |
|  * @start:	starting block of the free extent in the alloc. group
 | |
|  * @count:	number of blocks to TRIM
 | |
|  * @group:	alloc. group we are working with
 | |
|  * @e4b:	ext4 buddy for the group
 | |
|  *
 | |
|  * Trim "count" blocks starting at "start" in the "group". To assure that no
 | |
|  * one will allocate those blocks, mark it as used in buddy bitmap. This must
 | |
|  * be called with under the group lock.
 | |
|  */
 | |
| static int ext4_trim_extent(struct super_block *sb, int start, int count,
 | |
| 			     ext4_group_t group, struct ext4_buddy *e4b)
 | |
| __releases(bitlock)
 | |
| __acquires(bitlock)
 | |
| {
 | |
| 	struct ext4_free_extent ex;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	trace_ext4_trim_extent(sb, group, start, count);
 | |
| 
 | |
| 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
 | |
| 
 | |
| 	ex.fe_start = start;
 | |
| 	ex.fe_group = group;
 | |
| 	ex.fe_len = count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark blocks used, so no one can reuse them while
 | |
| 	 * being trimmed.
 | |
| 	 */
 | |
| 	mb_mark_used(e4b, &ex);
 | |
| 	ext4_unlock_group(sb, group);
 | |
| 	ret = ext4_issue_discard(sb, group, start, count, NULL);
 | |
| 	ext4_lock_group(sb, group);
 | |
| 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_trim_all_free -- function to trim all free space in alloc. group
 | |
|  * @sb:			super block for file system
 | |
|  * @group:		group to be trimmed
 | |
|  * @start:		first group block to examine
 | |
|  * @max:		last group block to examine
 | |
|  * @minblocks:		minimum extent block count
 | |
|  *
 | |
|  * ext4_trim_all_free walks through group's buddy bitmap searching for free
 | |
|  * extents. When the free block is found, ext4_trim_extent is called to TRIM
 | |
|  * the extent.
 | |
|  *
 | |
|  *
 | |
|  * ext4_trim_all_free walks through group's block bitmap searching for free
 | |
|  * extents. When the free extent is found, mark it as used in group buddy
 | |
|  * bitmap. Then issue a TRIM command on this extent and free the extent in
 | |
|  * the group buddy bitmap. This is done until whole group is scanned.
 | |
|  */
 | |
| static ext4_grpblk_t
 | |
| ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
 | |
| 		   ext4_grpblk_t start, ext4_grpblk_t max,
 | |
| 		   ext4_grpblk_t minblocks)
 | |
| {
 | |
| 	void *bitmap;
 | |
| 	ext4_grpblk_t next, count = 0, free_count = 0;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	trace_ext4_trim_all_free(sb, group, start, max);
 | |
| 
 | |
| 	ret = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 	if (ret) {
 | |
| 		ext4_warning(sb, "Error %d loading buddy information for %u",
 | |
| 			     ret, group);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	bitmap = e4b.bd_bitmap;
 | |
| 
 | |
| 	ext4_lock_group(sb, group);
 | |
| 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
 | |
| 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
 | |
| 		goto out;
 | |
| 
 | |
| 	start = (e4b.bd_info->bb_first_free > start) ?
 | |
| 		e4b.bd_info->bb_first_free : start;
 | |
| 
 | |
| 	while (start <= max) {
 | |
| 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
 | |
| 		if (start > max)
 | |
| 			break;
 | |
| 		next = mb_find_next_bit(bitmap, max + 1, start);
 | |
| 
 | |
| 		if ((next - start) >= minblocks) {
 | |
| 			ret = ext4_trim_extent(sb, start,
 | |
| 					       next - start, group, &e4b);
 | |
| 			if (ret && ret != -EOPNOTSUPP)
 | |
| 				break;
 | |
| 			ret = 0;
 | |
| 			count += next - start;
 | |
| 		}
 | |
| 		free_count += next - start;
 | |
| 		start = next + 1;
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			count = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (need_resched()) {
 | |
| 			ext4_unlock_group(sb, group);
 | |
| 			cond_resched();
 | |
| 			ext4_lock_group(sb, group);
 | |
| 		}
 | |
| 
 | |
| 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		ret = count;
 | |
| 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
 | |
| 	}
 | |
| out:
 | |
| 	ext4_unlock_group(sb, group);
 | |
| 	ext4_mb_unload_buddy(&e4b);
 | |
| 
 | |
| 	ext4_debug("trimmed %d blocks in the group %d\n",
 | |
| 		count, group);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_trim_fs() -- trim ioctl handle function
 | |
|  * @sb:			superblock for filesystem
 | |
|  * @range:		fstrim_range structure
 | |
|  *
 | |
|  * start:	First Byte to trim
 | |
|  * len:		number of Bytes to trim from start
 | |
|  * minlen:	minimum extent length in Bytes
 | |
|  * ext4_trim_fs goes through all allocation groups containing Bytes from
 | |
|  * start to start+len. For each such a group ext4_trim_all_free function
 | |
|  * is invoked to trim all free space.
 | |
|  */
 | |
| int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
 | |
| {
 | |
| 	struct ext4_group_info *grp;
 | |
| 	ext4_group_t group, first_group, last_group;
 | |
| 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
 | |
| 	uint64_t start, end, minlen, trimmed = 0;
 | |
| 	ext4_fsblk_t first_data_blk =
 | |
| 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
 | |
| 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	start = range->start >> sb->s_blocksize_bits;
 | |
| 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
 | |
| 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
 | |
| 			      range->minlen >> sb->s_blocksize_bits);
 | |
| 
 | |
| 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
 | |
| 	    start >= max_blks ||
 | |
| 	    range->len < sb->s_blocksize)
 | |
| 		return -EINVAL;
 | |
| 	if (end >= max_blks)
 | |
| 		end = max_blks - 1;
 | |
| 	if (end <= first_data_blk)
 | |
| 		goto out;
 | |
| 	if (start < first_data_blk)
 | |
| 		start = first_data_blk;
 | |
| 
 | |
| 	/* Determine first and last group to examine based on start and end */
 | |
| 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
 | |
| 				     &first_group, &first_cluster);
 | |
| 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
 | |
| 				     &last_group, &last_cluster);
 | |
| 
 | |
| 	/* end now represents the last cluster to discard in this group */
 | |
| 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
 | |
| 
 | |
| 	for (group = first_group; group <= last_group; group++) {
 | |
| 		grp = ext4_get_group_info(sb, group);
 | |
| 		/* We only do this if the grp has never been initialized */
 | |
| 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
 | |
| 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For all the groups except the last one, last cluster will
 | |
| 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
 | |
| 		 * change it for the last group, note that last_cluster is
 | |
| 		 * already computed earlier by ext4_get_group_no_and_offset()
 | |
| 		 */
 | |
| 		if (group == last_group)
 | |
| 			end = last_cluster;
 | |
| 
 | |
| 		if (grp->bb_free >= minlen) {
 | |
| 			cnt = ext4_trim_all_free(sb, group, first_cluster,
 | |
| 						end, minlen);
 | |
| 			if (cnt < 0) {
 | |
| 				ret = cnt;
 | |
| 				break;
 | |
| 			}
 | |
| 			trimmed += cnt;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For every group except the first one, we are sure
 | |
| 		 * that the first cluster to discard will be cluster #0.
 | |
| 		 */
 | |
| 		first_cluster = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
 | |
| 
 | |
| out:
 | |
| 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Iterate all the free extents in the group. */
 | |
| int
 | |
| ext4_mballoc_query_range(
 | |
| 	struct super_block		*sb,
 | |
| 	ext4_group_t			group,
 | |
| 	ext4_grpblk_t			start,
 | |
| 	ext4_grpblk_t			end,
 | |
| 	ext4_mballoc_query_range_fn	formatter,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	void				*bitmap;
 | |
| 	ext4_grpblk_t			next;
 | |
| 	struct ext4_buddy		e4b;
 | |
| 	int				error;
 | |
| 
 | |
| 	error = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	bitmap = e4b.bd_bitmap;
 | |
| 
 | |
| 	ext4_lock_group(sb, group);
 | |
| 
 | |
| 	start = (e4b.bd_info->bb_first_free > start) ?
 | |
| 		e4b.bd_info->bb_first_free : start;
 | |
| 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
 | |
| 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
 | |
| 		if (start > end)
 | |
| 			break;
 | |
| 		next = mb_find_next_bit(bitmap, end + 1, start);
 | |
| 
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 		error = formatter(sb, group, start, next - start, priv);
 | |
| 		if (error)
 | |
| 			goto out_unload;
 | |
| 		ext4_lock_group(sb, group);
 | |
| 
 | |
| 		start = next + 1;
 | |
| 	}
 | |
| 
 | |
| 	ext4_unlock_group(sb, group);
 | |
| out_unload:
 | |
| 	ext4_mb_unload_buddy(&e4b);
 | |
| 
 | |
| 	return error;
 | |
| }
 |