mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 97a32539b9
			
		
	
	
		97a32539b9
		
	
	
	
	
		
			
			The most notable change is DEFINE_SHOW_ATTRIBUTE macro split in seq_file.h. Conversion rule is: llseek => proc_lseek unlocked_ioctl => proc_ioctl xxx => proc_xxx delete ".owner = THIS_MODULE" line [akpm@linux-foundation.org: fix drivers/isdn/capi/kcapi_proc.c] [sfr@canb.auug.org.au: fix kernel/sched/psi.c] Link: http://lkml.kernel.org/r/20200122180545.36222f50@canb.auug.org.au Link: http://lkml.kernel.org/r/20191225172546.GB13378@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1793 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1793 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Slab allocator functions that are independent of the allocator strategy
 | |
|  *
 | |
|  * (C) 2012 Christoph Lameter <cl@linux.com>
 | |
|  */
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/page.h>
 | |
| #include <linux/memcontrol.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| #include "slab.h"
 | |
| 
 | |
| enum slab_state slab_state;
 | |
| LIST_HEAD(slab_caches);
 | |
| DEFINE_MUTEX(slab_mutex);
 | |
| struct kmem_cache *kmem_cache;
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| bool usercopy_fallback __ro_after_init =
 | |
| 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
 | |
| module_param(usercopy_fallback, bool, 0400);
 | |
| MODULE_PARM_DESC(usercopy_fallback,
 | |
| 		"WARN instead of reject usercopy whitelist violations");
 | |
| #endif
 | |
| 
 | |
| static LIST_HEAD(slab_caches_to_rcu_destroy);
 | |
| static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
 | |
| static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
 | |
| 		    slab_caches_to_rcu_destroy_workfn);
 | |
| 
 | |
| /*
 | |
|  * Set of flags that will prevent slab merging
 | |
|  */
 | |
| #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | |
| 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
 | |
| 		SLAB_FAILSLAB | SLAB_KASAN)
 | |
| 
 | |
| #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
 | |
| 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
 | |
| 
 | |
| /*
 | |
|  * Merge control. If this is set then no merging of slab caches will occur.
 | |
|  */
 | |
| static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
 | |
| 
 | |
| static int __init setup_slab_nomerge(char *str)
 | |
| {
 | |
| 	slab_nomerge = true;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB
 | |
| __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 | |
| #endif
 | |
| 
 | |
| __setup("slab_nomerge", setup_slab_nomerge);
 | |
| 
 | |
| /*
 | |
|  * Determine the size of a slab object
 | |
|  */
 | |
| unsigned int kmem_cache_size(struct kmem_cache *s)
 | |
| {
 | |
| 	return s->object_size;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_size);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static int kmem_cache_sanity_check(const char *name, unsigned int size)
 | |
| {
 | |
| 	if (!name || in_interrupt() || size < sizeof(void *) ||
 | |
| 		size > KMALLOC_MAX_SIZE) {
 | |
| 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		if (s)
 | |
| 			kmem_cache_free(s, p[i]);
 | |
| 		else
 | |
| 			kfree(p[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 | |
| 								void **p)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		void *x = p[i] = kmem_cache_alloc(s, flags);
 | |
| 		if (!x) {
 | |
| 			__kmem_cache_free_bulk(s, i, p);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 
 | |
| LIST_HEAD(slab_root_caches);
 | |
| static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
 | |
| 
 | |
| static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
 | |
| 
 | |
| void slab_init_memcg_params(struct kmem_cache *s)
 | |
| {
 | |
| 	s->memcg_params.root_cache = NULL;
 | |
| 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 | |
| 	INIT_LIST_HEAD(&s->memcg_params.children);
 | |
| 	s->memcg_params.dying = false;
 | |
| }
 | |
| 
 | |
| static int init_memcg_params(struct kmem_cache *s,
 | |
| 			     struct kmem_cache *root_cache)
 | |
| {
 | |
| 	struct memcg_cache_array *arr;
 | |
| 
 | |
| 	if (root_cache) {
 | |
| 		int ret = percpu_ref_init(&s->memcg_params.refcnt,
 | |
| 					  kmemcg_cache_shutdown,
 | |
| 					  0, GFP_KERNEL);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		s->memcg_params.root_cache = root_cache;
 | |
| 		INIT_LIST_HEAD(&s->memcg_params.children_node);
 | |
| 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	slab_init_memcg_params(s);
 | |
| 
 | |
| 	if (!memcg_nr_cache_ids)
 | |
| 		return 0;
 | |
| 
 | |
| 	arr = kvzalloc(sizeof(struct memcg_cache_array) +
 | |
| 		       memcg_nr_cache_ids * sizeof(void *),
 | |
| 		       GFP_KERNEL);
 | |
| 	if (!arr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void destroy_memcg_params(struct kmem_cache *s)
 | |
| {
 | |
| 	if (is_root_cache(s)) {
 | |
| 		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 | |
| 	} else {
 | |
| 		mem_cgroup_put(s->memcg_params.memcg);
 | |
| 		WRITE_ONCE(s->memcg_params.memcg, NULL);
 | |
| 		percpu_ref_exit(&s->memcg_params.refcnt);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_memcg_params(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct memcg_cache_array *old;
 | |
| 
 | |
| 	old = container_of(rcu, struct memcg_cache_array, rcu);
 | |
| 	kvfree(old);
 | |
| }
 | |
| 
 | |
| static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 | |
| {
 | |
| 	struct memcg_cache_array *old, *new;
 | |
| 
 | |
| 	new = kvzalloc(sizeof(struct memcg_cache_array) +
 | |
| 		       new_array_size * sizeof(void *), GFP_KERNEL);
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 | |
| 					lockdep_is_held(&slab_mutex));
 | |
| 	if (old)
 | |
| 		memcpy(new->entries, old->entries,
 | |
| 		       memcg_nr_cache_ids * sizeof(void *));
 | |
| 
 | |
| 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 | |
| 	if (old)
 | |
| 		call_rcu(&old->rcu, free_memcg_params);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int memcg_update_all_caches(int num_memcgs)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 | |
| 		ret = update_memcg_params(s, num_memcgs);
 | |
| 		/*
 | |
| 		 * Instead of freeing the memory, we'll just leave the caches
 | |
| 		 * up to this point in an updated state.
 | |
| 		 */
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (is_root_cache(s)) {
 | |
| 		list_add(&s->root_caches_node, &slab_root_caches);
 | |
| 	} else {
 | |
| 		css_get(&memcg->css);
 | |
| 		s->memcg_params.memcg = memcg;
 | |
| 		list_add(&s->memcg_params.children_node,
 | |
| 			 &s->memcg_params.root_cache->memcg_params.children);
 | |
| 		list_add(&s->memcg_params.kmem_caches_node,
 | |
| 			 &s->memcg_params.memcg->kmem_caches);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void memcg_unlink_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	if (is_root_cache(s)) {
 | |
| 		list_del(&s->root_caches_node);
 | |
| 	} else {
 | |
| 		list_del(&s->memcg_params.children_node);
 | |
| 		list_del(&s->memcg_params.kmem_caches_node);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline int init_memcg_params(struct kmem_cache *s,
 | |
| 				    struct kmem_cache *root_cache)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void destroy_memcg_params(struct kmem_cache *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void memcg_unlink_cache(struct kmem_cache *s)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| /*
 | |
|  * Figure out what the alignment of the objects will be given a set of
 | |
|  * flags, a user specified alignment and the size of the objects.
 | |
|  */
 | |
| static unsigned int calculate_alignment(slab_flags_t flags,
 | |
| 		unsigned int align, unsigned int size)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the user wants hardware cache aligned objects then follow that
 | |
| 	 * suggestion if the object is sufficiently large.
 | |
| 	 *
 | |
| 	 * The hardware cache alignment cannot override the specified
 | |
| 	 * alignment though. If that is greater then use it.
 | |
| 	 */
 | |
| 	if (flags & SLAB_HWCACHE_ALIGN) {
 | |
| 		unsigned int ralign;
 | |
| 
 | |
| 		ralign = cache_line_size();
 | |
| 		while (size <= ralign / 2)
 | |
| 			ralign /= 2;
 | |
| 		align = max(align, ralign);
 | |
| 	}
 | |
| 
 | |
| 	if (align < ARCH_SLAB_MINALIGN)
 | |
| 		align = ARCH_SLAB_MINALIGN;
 | |
| 
 | |
| 	return ALIGN(align, sizeof(void *));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a mergeable slab cache
 | |
|  */
 | |
| int slab_unmergeable(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!is_root_cache(s))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (s->ctor)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (s->usersize)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have set a slab to be unmergeable during bootstrap.
 | |
| 	 */
 | |
| 	if (s->refcount < 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 | |
| 		slab_flags_t flags, const char *name, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	if (slab_nomerge)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (ctor)
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = ALIGN(size, sizeof(void *));
 | |
| 	align = calculate_alignment(flags, align, size);
 | |
| 	size = ALIGN(size, align);
 | |
| 	flags = kmem_cache_flags(size, flags, name, NULL);
 | |
| 
 | |
| 	if (flags & SLAB_NEVER_MERGE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
 | |
| 		if (slab_unmergeable(s))
 | |
| 			continue;
 | |
| 
 | |
| 		if (size > s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Check if alignment is compatible.
 | |
| 		 * Courtesy of Adrian Drzewiecki
 | |
| 		 */
 | |
| 		if ((s->size & ~(align - 1)) != s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (s->size - size >= sizeof(void *))
 | |
| 			continue;
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_SLAB) && align &&
 | |
| 			(align > s->align || s->align % align))
 | |
| 			continue;
 | |
| 
 | |
| 		return s;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *create_cache(const char *name,
 | |
| 		unsigned int object_size, unsigned int align,
 | |
| 		slab_flags_t flags, unsigned int useroffset,
 | |
| 		unsigned int usersize, void (*ctor)(void *),
 | |
| 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	if (WARN_ON(useroffset + usersize > object_size))
 | |
| 		useroffset = usersize = 0;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 | |
| 	if (!s)
 | |
| 		goto out;
 | |
| 
 | |
| 	s->name = name;
 | |
| 	s->size = s->object_size = object_size;
 | |
| 	s->align = align;
 | |
| 	s->ctor = ctor;
 | |
| 	s->useroffset = useroffset;
 | |
| 	s->usersize = usersize;
 | |
| 
 | |
| 	err = init_memcg_params(s, root_cache);
 | |
| 	if (err)
 | |
| 		goto out_free_cache;
 | |
| 
 | |
| 	err = __kmem_cache_create(s, flags);
 | |
| 	if (err)
 | |
| 		goto out_free_cache;
 | |
| 
 | |
| 	s->refcount = 1;
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	memcg_link_cache(s, memcg);
 | |
| out:
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 	return s;
 | |
| 
 | |
| out_free_cache:
 | |
| 	destroy_memcg_params(s);
 | |
| 	kmem_cache_free(kmem_cache, s);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_create_usercopy - Create a cache with a region suitable
 | |
|  * for copying to userspace
 | |
|  * @name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @size: The size of objects to be created in this cache.
 | |
|  * @align: The required alignment for the objects.
 | |
|  * @flags: SLAB flags
 | |
|  * @useroffset: Usercopy region offset
 | |
|  * @usersize: Usercopy region size
 | |
|  * @ctor: A constructor for the objects.
 | |
|  *
 | |
|  * Cannot be called within a interrupt, but can be interrupted.
 | |
|  * The @ctor is run when new pages are allocated by the cache.
 | |
|  *
 | |
|  * The flags are
 | |
|  *
 | |
|  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | |
|  * to catch references to uninitialised memory.
 | |
|  *
 | |
|  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 | |
|  * for buffer overruns.
 | |
|  *
 | |
|  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | |
|  * cacheline.  This can be beneficial if you're counting cycles as closely
 | |
|  * as davem.
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure.
 | |
|  */
 | |
| struct kmem_cache *
 | |
| kmem_cache_create_usercopy(const char *name,
 | |
| 		  unsigned int size, unsigned int align,
 | |
| 		  slab_flags_t flags,
 | |
| 		  unsigned int useroffset, unsigned int usersize,
 | |
| 		  void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s = NULL;
 | |
| 	const char *cache_name;
 | |
| 	int err;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	get_online_mems();
 | |
| 	memcg_get_cache_ids();
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	err = kmem_cache_sanity_check(name, size);
 | |
| 	if (err) {
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Refuse requests with allocator specific flags */
 | |
| 	if (flags & ~SLAB_FLAGS_PERMITTED) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some allocators will constraint the set of valid flags to a subset
 | |
| 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 | |
| 	 * case, and we'll just provide them with a sanitized version of the
 | |
| 	 * passed flags.
 | |
| 	 */
 | |
| 	flags &= CACHE_CREATE_MASK;
 | |
| 
 | |
| 	/* Fail closed on bad usersize of useroffset values. */
 | |
| 	if (WARN_ON(!usersize && useroffset) ||
 | |
| 	    WARN_ON(size < usersize || size - usersize < useroffset))
 | |
| 		usersize = useroffset = 0;
 | |
| 
 | |
| 	if (!usersize)
 | |
| 		s = __kmem_cache_alias(name, size, align, flags, ctor);
 | |
| 	if (s)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cache_name = kstrdup_const(name, GFP_KERNEL);
 | |
| 	if (!cache_name) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	s = create_cache(cache_name, size,
 | |
| 			 calculate_alignment(flags, align, size),
 | |
| 			 flags, useroffset, usersize, ctor, NULL, NULL);
 | |
| 	if (IS_ERR(s)) {
 | |
| 		err = PTR_ERR(s);
 | |
| 		kfree_const(cache_name);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	memcg_put_cache_ids();
 | |
| 	put_online_mems();
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	if (err) {
 | |
| 		if (flags & SLAB_PANIC)
 | |
| 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 | |
| 				name, err);
 | |
| 		else {
 | |
| 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 | |
| 				name, err);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return s;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_create_usercopy);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_create - Create a cache.
 | |
|  * @name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @size: The size of objects to be created in this cache.
 | |
|  * @align: The required alignment for the objects.
 | |
|  * @flags: SLAB flags
 | |
|  * @ctor: A constructor for the objects.
 | |
|  *
 | |
|  * Cannot be called within a interrupt, but can be interrupted.
 | |
|  * The @ctor is run when new pages are allocated by the cache.
 | |
|  *
 | |
|  * The flags are
 | |
|  *
 | |
|  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | |
|  * to catch references to uninitialised memory.
 | |
|  *
 | |
|  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 | |
|  * for buffer overruns.
 | |
|  *
 | |
|  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | |
|  * cacheline.  This can be beneficial if you're counting cycles as closely
 | |
|  * as davem.
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure.
 | |
|  */
 | |
| struct kmem_cache *
 | |
| kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 | |
| 		slab_flags_t flags, void (*ctor)(void *))
 | |
| {
 | |
| 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 | |
| 					  ctor);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_create);
 | |
| 
 | |
| static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 | |
| {
 | |
| 	LIST_HEAD(to_destroy);
 | |
| 	struct kmem_cache *s, *s2;
 | |
| 
 | |
| 	/*
 | |
| 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 | |
| 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 | |
| 	 * through RCU and and the associated kmem_cache are dereferenced
 | |
| 	 * while freeing the pages, so the kmem_caches should be freed only
 | |
| 	 * after the pending RCU operations are finished.  As rcu_barrier()
 | |
| 	 * is a pretty slow operation, we batch all pending destructions
 | |
| 	 * asynchronously.
 | |
| 	 */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	if (list_empty(&to_destroy))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_barrier();
 | |
| 
 | |
| 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 | |
| #ifdef SLAB_SUPPORTS_SYSFS
 | |
| 		sysfs_slab_release(s);
 | |
| #else
 | |
| 		slab_kmem_cache_release(s);
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int shutdown_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	/* free asan quarantined objects */
 | |
| 	kasan_cache_shutdown(s);
 | |
| 
 | |
| 	if (__kmem_cache_shutdown(s) != 0)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	memcg_unlink_cache(s);
 | |
| 	list_del(&s->list);
 | |
| 
 | |
| 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 | |
| #ifdef SLAB_SUPPORTS_SYSFS
 | |
| 		sysfs_slab_unlink(s);
 | |
| #endif
 | |
| 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 | |
| 		schedule_work(&slab_caches_to_rcu_destroy_work);
 | |
| 	} else {
 | |
| #ifdef SLAB_SUPPORTS_SYSFS
 | |
| 		sysfs_slab_unlink(s);
 | |
| 		sysfs_slab_release(s);
 | |
| #else
 | |
| 		slab_kmem_cache_release(s);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| /*
 | |
|  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 | |
|  * @memcg: The memory cgroup the new cache is for.
 | |
|  * @root_cache: The parent of the new cache.
 | |
|  *
 | |
|  * This function attempts to create a kmem cache that will serve allocation
 | |
|  * requests going from @memcg to @root_cache. The new cache inherits properties
 | |
|  * from its parent.
 | |
|  */
 | |
| void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 | |
| 			     struct kmem_cache *root_cache)
 | |
| {
 | |
| 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 | |
| 	struct cgroup_subsys_state *css = &memcg->css;
 | |
| 	struct memcg_cache_array *arr;
 | |
| 	struct kmem_cache *s = NULL;
 | |
| 	char *cache_name;
 | |
| 	int idx;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	get_online_mems();
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * The memory cgroup could have been offlined while the cache
 | |
| 	 * creation work was pending.
 | |
| 	 */
 | |
| 	if (memcg->kmem_state != KMEM_ONLINE)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	idx = memcg_cache_id(memcg);
 | |
| 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 | |
| 					lockdep_is_held(&slab_mutex));
 | |
| 
 | |
| 	/*
 | |
| 	 * Since per-memcg caches are created asynchronously on first
 | |
| 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
 | |
| 	 * create the same cache, but only one of them may succeed.
 | |
| 	 */
 | |
| 	if (arr->entries[idx])
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 | |
| 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
 | |
| 			       css->serial_nr, memcg_name_buf);
 | |
| 	if (!cache_name)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	s = create_cache(cache_name, root_cache->object_size,
 | |
| 			 root_cache->align,
 | |
| 			 root_cache->flags & CACHE_CREATE_MASK,
 | |
| 			 root_cache->useroffset, root_cache->usersize,
 | |
| 			 root_cache->ctor, memcg, root_cache);
 | |
| 	/*
 | |
| 	 * If we could not create a memcg cache, do not complain, because
 | |
| 	 * that's not critical at all as we can always proceed with the root
 | |
| 	 * cache.
 | |
| 	 */
 | |
| 	if (IS_ERR(s)) {
 | |
| 		kfree(cache_name);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
 | |
| 	 * barrier here to ensure nobody will see the kmem_cache partially
 | |
| 	 * initialized.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	arr->entries[idx] = s;
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	put_online_mems();
 | |
| 	put_online_cpus();
 | |
| }
 | |
| 
 | |
| static void kmemcg_workfn(struct work_struct *work)
 | |
| {
 | |
| 	struct kmem_cache *s = container_of(work, struct kmem_cache,
 | |
| 					    memcg_params.work);
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	get_online_mems();
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	s->memcg_params.work_fn(s);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	put_online_mems();
 | |
| 	put_online_cpus();
 | |
| }
 | |
| 
 | |
| static void kmemcg_rcufn(struct rcu_head *head)
 | |
| {
 | |
| 	struct kmem_cache *s = container_of(head, struct kmem_cache,
 | |
| 					    memcg_params.rcu_head);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to grab blocking locks.  Bounce to ->work.  The
 | |
| 	 * work item shares the space with the RCU head and can't be
 | |
| 	 * initialized eariler.
 | |
| 	 */
 | |
| 	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
 | |
| 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
 | |
| }
 | |
| 
 | |
| static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
 | |
| {
 | |
| 	WARN_ON(shutdown_cache(s));
 | |
| }
 | |
| 
 | |
| static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
 | |
| {
 | |
| 	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
 | |
| 					    memcg_params.refcnt);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
 | |
| 	if (s->memcg_params.root_cache->memcg_params.dying)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
 | |
| 	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
 | |
| 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
 | |
| 
 | |
| unlock:
 | |
| 	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
 | |
| }
 | |
| 
 | |
| static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
 | |
| {
 | |
| 	__kmemcg_cache_deactivate_after_rcu(s);
 | |
| 	percpu_ref_kill(&s->memcg_params.refcnt);
 | |
| }
 | |
| 
 | |
| static void kmemcg_cache_deactivate(struct kmem_cache *s)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(is_root_cache(s)))
 | |
| 		return;
 | |
| 
 | |
| 	__kmemcg_cache_deactivate(s);
 | |
| 	s->flags |= SLAB_DEACTIVATED;
 | |
| 
 | |
| 	/*
 | |
| 	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
 | |
| 	 * flag and make sure that no new kmem_cache deactivation tasks
 | |
| 	 * are queued (see flush_memcg_workqueue() ).
 | |
| 	 */
 | |
| 	spin_lock_irq(&memcg_kmem_wq_lock);
 | |
| 	if (s->memcg_params.root_cache->memcg_params.dying)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
 | |
| 	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
 | |
| unlock:
 | |
| 	spin_unlock_irq(&memcg_kmem_wq_lock);
 | |
| }
 | |
| 
 | |
| void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
 | |
| 				  struct mem_cgroup *parent)
 | |
| {
 | |
| 	int idx;
 | |
| 	struct memcg_cache_array *arr;
 | |
| 	struct kmem_cache *s, *c;
 | |
| 	unsigned int nr_reparented;
 | |
| 
 | |
| 	idx = memcg_cache_id(memcg);
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	get_online_mems();
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 | |
| 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 | |
| 						lockdep_is_held(&slab_mutex));
 | |
| 		c = arr->entries[idx];
 | |
| 		if (!c)
 | |
| 			continue;
 | |
| 
 | |
| 		kmemcg_cache_deactivate(c);
 | |
| 		arr->entries[idx] = NULL;
 | |
| 	}
 | |
| 	nr_reparented = 0;
 | |
| 	list_for_each_entry(s, &memcg->kmem_caches,
 | |
| 			    memcg_params.kmem_caches_node) {
 | |
| 		WRITE_ONCE(s->memcg_params.memcg, parent);
 | |
| 		css_put(&memcg->css);
 | |
| 		nr_reparented++;
 | |
| 	}
 | |
| 	if (nr_reparented) {
 | |
| 		list_splice_init(&memcg->kmem_caches,
 | |
| 				 &parent->kmem_caches);
 | |
| 		css_get_many(&parent->css, nr_reparented);
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	put_online_mems();
 | |
| 	put_online_cpus();
 | |
| }
 | |
| 
 | |
| static int shutdown_memcg_caches(struct kmem_cache *s)
 | |
| {
 | |
| 	struct memcg_cache_array *arr;
 | |
| 	struct kmem_cache *c, *c2;
 | |
| 	LIST_HEAD(busy);
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(!is_root_cache(s));
 | |
| 
 | |
| 	/*
 | |
| 	 * First, shutdown active caches, i.e. caches that belong to online
 | |
| 	 * memory cgroups.
 | |
| 	 */
 | |
| 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 | |
| 					lockdep_is_held(&slab_mutex));
 | |
| 	for_each_memcg_cache_index(i) {
 | |
| 		c = arr->entries[i];
 | |
| 		if (!c)
 | |
| 			continue;
 | |
| 		if (shutdown_cache(c))
 | |
| 			/*
 | |
| 			 * The cache still has objects. Move it to a temporary
 | |
| 			 * list so as not to try to destroy it for a second
 | |
| 			 * time while iterating over inactive caches below.
 | |
| 			 */
 | |
| 			list_move(&c->memcg_params.children_node, &busy);
 | |
| 		else
 | |
| 			/*
 | |
| 			 * The cache is empty and will be destroyed soon. Clear
 | |
| 			 * the pointer to it in the memcg_caches array so that
 | |
| 			 * it will never be accessed even if the root cache
 | |
| 			 * stays alive.
 | |
| 			 */
 | |
| 			arr->entries[i] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Second, shutdown all caches left from memory cgroups that are now
 | |
| 	 * offline.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
 | |
| 				 memcg_params.children_node)
 | |
| 		shutdown_cache(c);
 | |
| 
 | |
| 	list_splice(&busy, &s->memcg_params.children);
 | |
| 
 | |
| 	/*
 | |
| 	 * A cache being destroyed must be empty. In particular, this means
 | |
| 	 * that all per memcg caches attached to it must be empty too.
 | |
| 	 */
 | |
| 	if (!list_empty(&s->memcg_params.children))
 | |
| 		return -EBUSY;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void flush_memcg_workqueue(struct kmem_cache *s)
 | |
| {
 | |
| 	spin_lock_irq(&memcg_kmem_wq_lock);
 | |
| 	s->memcg_params.dying = true;
 | |
| 	spin_unlock_irq(&memcg_kmem_wq_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
 | |
| 	 * sure all registered rcu callbacks have been invoked.
 | |
| 	 */
 | |
| 	rcu_barrier();
 | |
| 
 | |
| 	/*
 | |
| 	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
 | |
| 	 * deactivates the memcg kmem_caches through workqueue. Make sure all
 | |
| 	 * previous workitems on workqueue are processed.
 | |
| 	 */
 | |
| 	if (likely(memcg_kmem_cache_wq))
 | |
| 		flush_workqueue(memcg_kmem_cache_wq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're racing with children kmem_cache deactivation, it might
 | |
| 	 * take another rcu grace period to complete their destruction.
 | |
| 	 * At this moment the corresponding percpu_ref_kill() call should be
 | |
| 	 * done, but it might take another rcu grace period to complete
 | |
| 	 * switching to the atomic mode.
 | |
| 	 * Please, note that we check without grabbing the slab_mutex. It's safe
 | |
| 	 * because at this moment the children list can't grow.
 | |
| 	 */
 | |
| 	if (!list_empty(&s->memcg_params.children))
 | |
| 		rcu_barrier();
 | |
| }
 | |
| #else
 | |
| static inline int shutdown_memcg_caches(struct kmem_cache *s)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void flush_memcg_workqueue(struct kmem_cache *s)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| void slab_kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	__kmem_cache_release(s);
 | |
| 	destroy_memcg_params(s);
 | |
| 	kfree_const(s->name);
 | |
| 	kmem_cache_free(kmem_cache, s);
 | |
| }
 | |
| 
 | |
| void kmem_cache_destroy(struct kmem_cache *s)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(!s))
 | |
| 		return;
 | |
| 
 | |
| 	flush_memcg_workqueue(s);
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	get_online_mems();
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	s->refcount--;
 | |
| 	if (s->refcount)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = shutdown_memcg_caches(s);
 | |
| 	if (!err)
 | |
| 		err = shutdown_cache(s);
 | |
| 
 | |
| 	if (err) {
 | |
| 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 | |
| 		       s->name);
 | |
| 		dump_stack();
 | |
| 	}
 | |
| out_unlock:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	put_online_mems();
 | |
| 	put_online_cpus();
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_destroy);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_shrink - Shrink a cache.
 | |
|  * @cachep: The cache to shrink.
 | |
|  *
 | |
|  * Releases as many slabs as possible for a cache.
 | |
|  * To help debugging, a zero exit status indicates all slabs were released.
 | |
|  *
 | |
|  * Return: %0 if all slabs were released, non-zero otherwise
 | |
|  */
 | |
| int kmem_cache_shrink(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	get_online_mems();
 | |
| 	kasan_cache_shrink(cachep);
 | |
| 	ret = __kmem_cache_shrink(cachep);
 | |
| 	put_online_mems();
 | |
| 	put_online_cpus();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_shrink);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
 | |
|  * @s: The cache pointer
 | |
|  */
 | |
| void kmem_cache_shrink_all(struct kmem_cache *s)
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
 | |
| 		kmem_cache_shrink(s);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	get_online_mems();
 | |
| 	kasan_cache_shrink(s);
 | |
| 	__kmem_cache_shrink(s);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to take the slab_mutex to protect from the memcg list
 | |
| 	 * modification.
 | |
| 	 */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	for_each_memcg_cache(c, s) {
 | |
| 		/*
 | |
| 		 * Don't need to shrink deactivated memcg caches.
 | |
| 		 */
 | |
| 		if (s->flags & SLAB_DEACTIVATED)
 | |
| 			continue;
 | |
| 		kasan_cache_shrink(c);
 | |
| 		__kmem_cache_shrink(c);
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	put_online_mems();
 | |
| 	put_online_cpus();
 | |
| }
 | |
| 
 | |
| bool slab_is_available(void)
 | |
| {
 | |
| 	return slab_state >= UP;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLOB
 | |
| /* Create a cache during boot when no slab services are available yet */
 | |
| void __init create_boot_cache(struct kmem_cache *s, const char *name,
 | |
| 		unsigned int size, slab_flags_t flags,
 | |
| 		unsigned int useroffset, unsigned int usersize)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int align = ARCH_KMALLOC_MINALIGN;
 | |
| 
 | |
| 	s->name = name;
 | |
| 	s->size = s->object_size = size;
 | |
| 
 | |
| 	/*
 | |
| 	 * For power of two sizes, guarantee natural alignment for kmalloc
 | |
| 	 * caches, regardless of SL*B debugging options.
 | |
| 	 */
 | |
| 	if (is_power_of_2(size))
 | |
| 		align = max(align, size);
 | |
| 	s->align = calculate_alignment(flags, align, size);
 | |
| 
 | |
| 	s->useroffset = useroffset;
 | |
| 	s->usersize = usersize;
 | |
| 
 | |
| 	slab_init_memcg_params(s);
 | |
| 
 | |
| 	err = __kmem_cache_create(s, flags);
 | |
| 
 | |
| 	if (err)
 | |
| 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 | |
| 					name, size, err);
 | |
| 
 | |
| 	s->refcount = -1;	/* Exempt from merging for now */
 | |
| }
 | |
| 
 | |
| struct kmem_cache *__init create_kmalloc_cache(const char *name,
 | |
| 		unsigned int size, slab_flags_t flags,
 | |
| 		unsigned int useroffset, unsigned int usersize)
 | |
| {
 | |
| 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 | |
| 
 | |
| 	if (!s)
 | |
| 		panic("Out of memory when creating slab %s\n", name);
 | |
| 
 | |
| 	create_boot_cache(s, name, size, flags, useroffset, usersize);
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	memcg_link_cache(s, NULL);
 | |
| 	s->refcount = 1;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *
 | |
| kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 | |
| { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 | |
| EXPORT_SYMBOL(kmalloc_caches);
 | |
| 
 | |
| /*
 | |
|  * Conversion table for small slabs sizes / 8 to the index in the
 | |
|  * kmalloc array. This is necessary for slabs < 192 since we have non power
 | |
|  * of two cache sizes there. The size of larger slabs can be determined using
 | |
|  * fls.
 | |
|  */
 | |
| static u8 size_index[24] __ro_after_init = {
 | |
| 	3,	/* 8 */
 | |
| 	4,	/* 16 */
 | |
| 	5,	/* 24 */
 | |
| 	5,	/* 32 */
 | |
| 	6,	/* 40 */
 | |
| 	6,	/* 48 */
 | |
| 	6,	/* 56 */
 | |
| 	6,	/* 64 */
 | |
| 	1,	/* 72 */
 | |
| 	1,	/* 80 */
 | |
| 	1,	/* 88 */
 | |
| 	1,	/* 96 */
 | |
| 	7,	/* 104 */
 | |
| 	7,	/* 112 */
 | |
| 	7,	/* 120 */
 | |
| 	7,	/* 128 */
 | |
| 	2,	/* 136 */
 | |
| 	2,	/* 144 */
 | |
| 	2,	/* 152 */
 | |
| 	2,	/* 160 */
 | |
| 	2,	/* 168 */
 | |
| 	2,	/* 176 */
 | |
| 	2,	/* 184 */
 | |
| 	2	/* 192 */
 | |
| };
 | |
| 
 | |
| static inline unsigned int size_index_elem(unsigned int bytes)
 | |
| {
 | |
| 	return (bytes - 1) / 8;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the kmem_cache structure that serves a given size of
 | |
|  * allocation
 | |
|  */
 | |
| struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 | |
| {
 | |
| 	unsigned int index;
 | |
| 
 | |
| 	if (size <= 192) {
 | |
| 		if (!size)
 | |
| 			return ZERO_SIZE_PTR;
 | |
| 
 | |
| 		index = size_index[size_index_elem(size)];
 | |
| 	} else {
 | |
| 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 | |
| 			return NULL;
 | |
| 		index = fls(size - 1);
 | |
| 	}
 | |
| 
 | |
| 	return kmalloc_caches[kmalloc_type(flags)][index];
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| #define INIT_KMALLOC_INFO(__size, __short_size)			\
 | |
| {								\
 | |
| 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 | |
| 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 | |
| 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
 | |
| 	.size = __size,						\
 | |
| }
 | |
| #else
 | |
| #define INIT_KMALLOC_INFO(__size, __short_size)			\
 | |
| {								\
 | |
| 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 | |
| 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 | |
| 	.size = __size,						\
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 | |
|  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 | |
|  * kmalloc-67108864.
 | |
|  */
 | |
| const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 | |
| 	INIT_KMALLOC_INFO(0, 0),
 | |
| 	INIT_KMALLOC_INFO(96, 96),
 | |
| 	INIT_KMALLOC_INFO(192, 192),
 | |
| 	INIT_KMALLOC_INFO(8, 8),
 | |
| 	INIT_KMALLOC_INFO(16, 16),
 | |
| 	INIT_KMALLOC_INFO(32, 32),
 | |
| 	INIT_KMALLOC_INFO(64, 64),
 | |
| 	INIT_KMALLOC_INFO(128, 128),
 | |
| 	INIT_KMALLOC_INFO(256, 256),
 | |
| 	INIT_KMALLOC_INFO(512, 512),
 | |
| 	INIT_KMALLOC_INFO(1024, 1k),
 | |
| 	INIT_KMALLOC_INFO(2048, 2k),
 | |
| 	INIT_KMALLOC_INFO(4096, 4k),
 | |
| 	INIT_KMALLOC_INFO(8192, 8k),
 | |
| 	INIT_KMALLOC_INFO(16384, 16k),
 | |
| 	INIT_KMALLOC_INFO(32768, 32k),
 | |
| 	INIT_KMALLOC_INFO(65536, 64k),
 | |
| 	INIT_KMALLOC_INFO(131072, 128k),
 | |
| 	INIT_KMALLOC_INFO(262144, 256k),
 | |
| 	INIT_KMALLOC_INFO(524288, 512k),
 | |
| 	INIT_KMALLOC_INFO(1048576, 1M),
 | |
| 	INIT_KMALLOC_INFO(2097152, 2M),
 | |
| 	INIT_KMALLOC_INFO(4194304, 4M),
 | |
| 	INIT_KMALLOC_INFO(8388608, 8M),
 | |
| 	INIT_KMALLOC_INFO(16777216, 16M),
 | |
| 	INIT_KMALLOC_INFO(33554432, 32M),
 | |
| 	INIT_KMALLOC_INFO(67108864, 64M)
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Patch up the size_index table if we have strange large alignment
 | |
|  * requirements for the kmalloc array. This is only the case for
 | |
|  * MIPS it seems. The standard arches will not generate any code here.
 | |
|  *
 | |
|  * Largest permitted alignment is 256 bytes due to the way we
 | |
|  * handle the index determination for the smaller caches.
 | |
|  *
 | |
|  * Make sure that nothing crazy happens if someone starts tinkering
 | |
|  * around with ARCH_KMALLOC_MINALIGN
 | |
|  */
 | |
| void __init setup_kmalloc_cache_index_table(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 | |
| 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 | |
| 
 | |
| 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 | |
| 		unsigned int elem = size_index_elem(i);
 | |
| 
 | |
| 		if (elem >= ARRAY_SIZE(size_index))
 | |
| 			break;
 | |
| 		size_index[elem] = KMALLOC_SHIFT_LOW;
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 64) {
 | |
| 		/*
 | |
| 		 * The 96 byte size cache is not used if the alignment
 | |
| 		 * is 64 byte.
 | |
| 		 */
 | |
| 		for (i = 64 + 8; i <= 96; i += 8)
 | |
| 			size_index[size_index_elem(i)] = 7;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 128) {
 | |
| 		/*
 | |
| 		 * The 192 byte sized cache is not used if the alignment
 | |
| 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		for (i = 128 + 8; i <= 192; i += 8)
 | |
| 			size_index[size_index_elem(i)] = 8;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 | |
| {
 | |
| 	if (type == KMALLOC_RECLAIM)
 | |
| 		flags |= SLAB_RECLAIM_ACCOUNT;
 | |
| 
 | |
| 	kmalloc_caches[type][idx] = create_kmalloc_cache(
 | |
| 					kmalloc_info[idx].name[type],
 | |
| 					kmalloc_info[idx].size, flags, 0,
 | |
| 					kmalloc_info[idx].size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the kmalloc array. Some of the regular kmalloc arrays
 | |
|  * may already have been created because they were needed to
 | |
|  * enable allocations for slab creation.
 | |
|  */
 | |
| void __init create_kmalloc_caches(slab_flags_t flags)
 | |
| {
 | |
| 	int i;
 | |
| 	enum kmalloc_cache_type type;
 | |
| 
 | |
| 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 | |
| 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 | |
| 			if (!kmalloc_caches[type][i])
 | |
| 				new_kmalloc_cache(i, type, flags);
 | |
| 
 | |
| 			/*
 | |
| 			 * Caches that are not of the two-to-the-power-of size.
 | |
| 			 * These have to be created immediately after the
 | |
| 			 * earlier power of two caches
 | |
| 			 */
 | |
| 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 | |
| 					!kmalloc_caches[type][1])
 | |
| 				new_kmalloc_cache(1, type, flags);
 | |
| 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 | |
| 					!kmalloc_caches[type][2])
 | |
| 				new_kmalloc_cache(2, type, flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Kmalloc array is now usable */
 | |
| 	slab_state = UP;
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 | |
| 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 | |
| 
 | |
| 		if (s) {
 | |
| 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 | |
| 				kmalloc_info[i].name[KMALLOC_DMA],
 | |
| 				kmalloc_info[i].size,
 | |
| 				SLAB_CACHE_DMA | flags, 0, 0);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| #endif /* !CONFIG_SLOB */
 | |
| 
 | |
| /*
 | |
|  * To avoid unnecessary overhead, we pass through large allocation requests
 | |
|  * directly to the page allocator. We use __GFP_COMP, because we will need to
 | |
|  * know the allocation order to free the pages properly in kfree.
 | |
|  */
 | |
| void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 | |
| {
 | |
| 	void *ret = NULL;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	flags |= __GFP_COMP;
 | |
| 	page = alloc_pages(flags, order);
 | |
| 	if (likely(page)) {
 | |
| 		ret = page_address(page);
 | |
| 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
 | |
| 				    1 << order);
 | |
| 	}
 | |
| 	ret = kasan_kmalloc_large(ret, size, flags);
 | |
| 	/* As ret might get tagged, call kmemleak hook after KASAN. */
 | |
| 	kmemleak_alloc(ret, size, 1, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_order);
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 | |
| {
 | |
| 	void *ret = kmalloc_order(size, flags, order);
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_order_trace);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| /* Randomize a generic freelist */
 | |
| static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 | |
| 			       unsigned int count)
 | |
| {
 | |
| 	unsigned int rand;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		list[i] = i;
 | |
| 
 | |
| 	/* Fisher-Yates shuffle */
 | |
| 	for (i = count - 1; i > 0; i--) {
 | |
| 		rand = prandom_u32_state(state);
 | |
| 		rand %= (i + 1);
 | |
| 		swap(list[i], list[rand]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Create a random sequence per cache */
 | |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 | |
| 				    gfp_t gfp)
 | |
| {
 | |
| 	struct rnd_state state;
 | |
| 
 | |
| 	if (count < 2 || cachep->random_seq)
 | |
| 		return 0;
 | |
| 
 | |
| 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
 | |
| 	if (!cachep->random_seq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Get best entropy at this stage of boot */
 | |
| 	prandom_seed_state(&state, get_random_long());
 | |
| 
 | |
| 	freelist_randomize(&state, cachep->random_seq, count);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Destroy the per-cache random freelist sequence */
 | |
| void cache_random_seq_destroy(struct kmem_cache *cachep)
 | |
| {
 | |
| 	kfree(cachep->random_seq);
 | |
| 	cachep->random_seq = NULL;
 | |
| }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 | |
| #ifdef CONFIG_SLAB
 | |
| #define SLABINFO_RIGHTS (0600)
 | |
| #else
 | |
| #define SLABINFO_RIGHTS (0400)
 | |
| #endif
 | |
| 
 | |
| static void print_slabinfo_header(struct seq_file *m)
 | |
| {
 | |
| 	/*
 | |
| 	 * Output format version, so at least we can change it
 | |
| 	 * without _too_ many complaints.
 | |
| 	 */
 | |
| #ifdef CONFIG_DEBUG_SLAB
 | |
| 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 | |
| #else
 | |
| 	seq_puts(m, "slabinfo - version: 2.1\n");
 | |
| #endif
 | |
| 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
 | |
| 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 | |
| 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 | |
| #ifdef CONFIG_DEBUG_SLAB
 | |
| 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
 | |
| 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 | |
| #endif
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| void *slab_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	return seq_list_start(&slab_root_caches, *pos);
 | |
| }
 | |
| 
 | |
| void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	return seq_list_next(p, &slab_root_caches, pos);
 | |
| }
 | |
| 
 | |
| void slab_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| static void
 | |
| memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	if (!is_root_cache(s))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_memcg_cache(c, s) {
 | |
| 		memset(&sinfo, 0, sizeof(sinfo));
 | |
| 		get_slabinfo(c, &sinfo);
 | |
| 
 | |
| 		info->active_slabs += sinfo.active_slabs;
 | |
| 		info->num_slabs += sinfo.num_slabs;
 | |
| 		info->shared_avail += sinfo.shared_avail;
 | |
| 		info->active_objs += sinfo.active_objs;
 | |
| 		info->num_objs += sinfo.num_objs;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cache_show(struct kmem_cache *s, struct seq_file *m)
 | |
| {
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	memset(&sinfo, 0, sizeof(sinfo));
 | |
| 	get_slabinfo(s, &sinfo);
 | |
| 
 | |
| 	memcg_accumulate_slabinfo(s, &sinfo);
 | |
| 
 | |
| 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 | |
| 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
 | |
| 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 | |
| 
 | |
| 	seq_printf(m, " : tunables %4u %4u %4u",
 | |
| 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
 | |
| 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
 | |
| 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 | |
| 	slabinfo_show_stats(m, s);
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static int slab_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
 | |
| 
 | |
| 	if (p == slab_root_caches.next)
 | |
| 		print_slabinfo_header(m);
 | |
| 	cache_show(s, m);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dump_unreclaimable_slab(void)
 | |
| {
 | |
| 	struct kmem_cache *s, *s2;
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here acquiring slab_mutex is risky since we don't prefer to get
 | |
| 	 * sleep in oom path. But, without mutex hold, it may introduce a
 | |
| 	 * risk of crash.
 | |
| 	 * Use mutex_trylock to protect the list traverse, dump nothing
 | |
| 	 * without acquiring the mutex.
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&slab_mutex)) {
 | |
| 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Unreclaimable slab info:\n");
 | |
| 	pr_info("Name                      Used          Total\n");
 | |
| 
 | |
| 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
 | |
| 		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
 | |
| 			continue;
 | |
| 
 | |
| 		get_slabinfo(s, &sinfo);
 | |
| 
 | |
| 		if (sinfo.num_objs > 0)
 | |
| 			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
 | |
| 				(sinfo.active_objs * s->size) / 1024,
 | |
| 				(sinfo.num_objs * s->size) / 1024);
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_MEMCG)
 | |
| void *memcg_slab_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	return seq_list_start(&memcg->kmem_caches, *pos);
 | |
| }
 | |
| 
 | |
| void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	return seq_list_next(p, &memcg->kmem_caches, pos);
 | |
| }
 | |
| 
 | |
| void memcg_slab_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| int memcg_slab_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
 | |
| 					  memcg_params.kmem_caches_node);
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	if (p == memcg->kmem_caches.next)
 | |
| 		print_slabinfo_header(m);
 | |
| 	cache_show(s, m);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * slabinfo_op - iterator that generates /proc/slabinfo
 | |
|  *
 | |
|  * Output layout:
 | |
|  * cache-name
 | |
|  * num-active-objs
 | |
|  * total-objs
 | |
|  * object size
 | |
|  * num-active-slabs
 | |
|  * total-slabs
 | |
|  * num-pages-per-slab
 | |
|  * + further values on SMP and with statistics enabled
 | |
|  */
 | |
| static const struct seq_operations slabinfo_op = {
 | |
| 	.start = slab_start,
 | |
| 	.next = slab_next,
 | |
| 	.stop = slab_stop,
 | |
| 	.show = slab_show,
 | |
| };
 | |
| 
 | |
| static int slabinfo_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &slabinfo_op);
 | |
| }
 | |
| 
 | |
| static const struct proc_ops slabinfo_proc_ops = {
 | |
| 	.proc_open	= slabinfo_open,
 | |
| 	.proc_read	= seq_read,
 | |
| 	.proc_write	= slabinfo_write,
 | |
| 	.proc_lseek	= seq_lseek,
 | |
| 	.proc_release	= seq_release,
 | |
| };
 | |
| 
 | |
| static int __init slab_proc_init(void)
 | |
| {
 | |
| 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(slab_proc_init);
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
 | |
| /*
 | |
|  * Display information about kmem caches that have child memcg caches.
 | |
|  */
 | |
| static int memcg_slabinfo_show(struct seq_file *m, void *unused)
 | |
| {
 | |
| 	struct kmem_cache *s, *c;
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
 | |
| 	seq_puts(m, " <active_slabs> <num_slabs>\n");
 | |
| 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 | |
| 		/*
 | |
| 		 * Skip kmem caches that don't have any memcg children.
 | |
| 		 */
 | |
| 		if (list_empty(&s->memcg_params.children))
 | |
| 			continue;
 | |
| 
 | |
| 		memset(&sinfo, 0, sizeof(sinfo));
 | |
| 		get_slabinfo(s, &sinfo);
 | |
| 		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
 | |
| 			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
 | |
| 			   sinfo.active_slabs, sinfo.num_slabs);
 | |
| 
 | |
| 		for_each_memcg_cache(c, s) {
 | |
| 			struct cgroup_subsys_state *css;
 | |
| 			char *status = "";
 | |
| 
 | |
| 			css = &c->memcg_params.memcg->css;
 | |
| 			if (!(css->flags & CSS_ONLINE))
 | |
| 				status = ":dead";
 | |
| 			else if (c->flags & SLAB_DEACTIVATED)
 | |
| 				status = ":deact";
 | |
| 
 | |
| 			memset(&sinfo, 0, sizeof(sinfo));
 | |
| 			get_slabinfo(c, &sinfo);
 | |
| 			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
 | |
| 				   cache_name(c), css->id, status,
 | |
| 				   sinfo.active_objs, sinfo.num_objs,
 | |
| 				   sinfo.active_slabs, sinfo.num_slabs);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
 | |
| 
 | |
| static int __init memcg_slabinfo_init(void)
 | |
| {
 | |
| 	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
 | |
| 			    NULL, NULL, &memcg_slabinfo_fops);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| late_initcall(memcg_slabinfo_init);
 | |
| #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
 | |
| #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| static __always_inline void *__do_krealloc(const void *p, size_t new_size,
 | |
| 					   gfp_t flags)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t ks = 0;
 | |
| 
 | |
| 	if (p)
 | |
| 		ks = ksize(p);
 | |
| 
 | |
| 	if (ks >= new_size) {
 | |
| 		p = kasan_krealloc((void *)p, new_size, flags);
 | |
| 		return (void *)p;
 | |
| 	}
 | |
| 
 | |
| 	ret = kmalloc_track_caller(new_size, flags);
 | |
| 	if (ret && p)
 | |
| 		memcpy(ret, p, ks);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * krealloc - reallocate memory. The contents will remain unchanged.
 | |
|  * @p: object to reallocate memory for.
 | |
|  * @new_size: how many bytes of memory are required.
 | |
|  * @flags: the type of memory to allocate.
 | |
|  *
 | |
|  * The contents of the object pointed to are preserved up to the
 | |
|  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 | |
|  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 | |
|  * %NULL pointer, the object pointed to is freed.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL in case of error
 | |
|  */
 | |
| void *krealloc(const void *p, size_t new_size, gfp_t flags)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(!new_size)) {
 | |
| 		kfree(p);
 | |
| 		return ZERO_SIZE_PTR;
 | |
| 	}
 | |
| 
 | |
| 	ret = __do_krealloc(p, new_size, flags);
 | |
| 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
 | |
| 		kfree(p);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(krealloc);
 | |
| 
 | |
| /**
 | |
|  * kzfree - like kfree but zero memory
 | |
|  * @p: object to free memory of
 | |
|  *
 | |
|  * The memory of the object @p points to is zeroed before freed.
 | |
|  * If @p is %NULL, kzfree() does nothing.
 | |
|  *
 | |
|  * Note: this function zeroes the whole allocated buffer which can be a good
 | |
|  * deal bigger than the requested buffer size passed to kmalloc(). So be
 | |
|  * careful when using this function in performance sensitive code.
 | |
|  */
 | |
| void kzfree(const void *p)
 | |
| {
 | |
| 	size_t ks;
 | |
| 	void *mem = (void *)p;
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
 | |
| 		return;
 | |
| 	ks = ksize(mem);
 | |
| 	memset(mem, 0, ks);
 | |
| 	kfree(mem);
 | |
| }
 | |
| EXPORT_SYMBOL(kzfree);
 | |
| 
 | |
| /**
 | |
|  * ksize - get the actual amount of memory allocated for a given object
 | |
|  * @objp: Pointer to the object
 | |
|  *
 | |
|  * kmalloc may internally round up allocations and return more memory
 | |
|  * than requested. ksize() can be used to determine the actual amount of
 | |
|  * memory allocated. The caller may use this additional memory, even though
 | |
|  * a smaller amount of memory was initially specified with the kmalloc call.
 | |
|  * The caller must guarantee that objp points to a valid object previously
 | |
|  * allocated with either kmalloc() or kmem_cache_alloc(). The object
 | |
|  * must not be freed during the duration of the call.
 | |
|  *
 | |
|  * Return: size of the actual memory used by @objp in bytes
 | |
|  */
 | |
| size_t ksize(const void *objp)
 | |
| {
 | |
| 	size_t size;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!objp))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We need to check that the pointed to object is valid, and only then
 | |
| 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
 | |
| 	 * generate a more useful report at the time ksize() is called (rather
 | |
| 	 * than later where behaviour is undefined due to potential
 | |
| 	 * use-after-free or double-free).
 | |
| 	 *
 | |
| 	 * If the pointed to memory is invalid we return 0, to avoid users of
 | |
| 	 * ksize() writing to and potentially corrupting the memory region.
 | |
| 	 *
 | |
| 	 * We want to perform the check before __ksize(), to avoid potentially
 | |
| 	 * crashing in __ksize() due to accessing invalid metadata.
 | |
| 	 */
 | |
| 	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	size = __ksize(objp);
 | |
| 	/*
 | |
| 	 * We assume that ksize callers could use whole allocated area,
 | |
| 	 * so we need to unpoison this area.
 | |
| 	 */
 | |
| 	kasan_unpoison_shadow(objp, size);
 | |
| 	return size;
 | |
| }
 | |
| EXPORT_SYMBOL(ksize);
 | |
| 
 | |
| /* Tracepoints definitions. */
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmalloc);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kfree);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
 | |
| {
 | |
| 	if (__should_failslab(s, gfpflags))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
 |