mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 d88bfe1d68
			
		
	
	
		d88bfe1d68
		
	
	
	
	
		
			
			Pull RAS updates from Ingo Molnar:
 "Various RAS updates:
   - AMD MCE support updates for future CPUs, fixes and 'SMCA' (Scalable
     MCA) error decoding support (Aravind Gopalakrishnan)
   - x86 memcpy_mcsafe() support, to enable smart(er) hardware error
     recovery in NVDIMM drivers, based on an extension of the x86
     exception handling code.  (Tony Luck)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  EDAC/sb_edac: Fix computation of channel address
  x86/mm, x86/mce: Add memcpy_mcsafe()
  x86/mce/AMD: Document some functionality
  x86/mce: Clarify comments regarding deferred error
  x86/mce/AMD: Fix logic to obtain block address
  x86/mce/AMD, EDAC: Enable error decoding of Scalable MCA errors
  x86/mce: Move MCx_CONFIG MSR definitions
  x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries
  x86/mm: Expand the exception table logic to allow new handling options
  x86/mce/AMD: Set MCAX Enable bit
  x86/mce/AMD: Carve out threshold block preparation
  x86/mce/AMD: Fix LVT offset configuration for thresholding
  x86/mce/AMD: Reduce number of blocks scanned per bank
  x86/mce/AMD: Do not perform shared bank check for future processors
  x86/mce: Fix order of AMD MCE init function call
		
	
			
		
			
				
	
	
		
			3613 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3613 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 | |
|  *
 | |
|  * This driver supports the memory controllers found on the Intel
 | |
|  * processor family Sandy Bridge.
 | |
|  *
 | |
|  * This file may be distributed under the terms of the
 | |
|  * GNU General Public License version 2 only.
 | |
|  *
 | |
|  * Copyright (c) 2011 by:
 | |
|  *	 Mauro Carvalho Chehab
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci_ids.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/edac.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/math64.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/mce.h>
 | |
| 
 | |
| #include "edac_core.h"
 | |
| 
 | |
| /* Static vars */
 | |
| static LIST_HEAD(sbridge_edac_list);
 | |
| static DEFINE_MUTEX(sbridge_edac_lock);
 | |
| static int probed;
 | |
| 
 | |
| /*
 | |
|  * Alter this version for the module when modifications are made
 | |
|  */
 | |
| #define SBRIDGE_REVISION    " Ver: 1.1.1 "
 | |
| #define EDAC_MOD_STR      "sbridge_edac"
 | |
| 
 | |
| /*
 | |
|  * Debug macros
 | |
|  */
 | |
| #define sbridge_printk(level, fmt, arg...)			\
 | |
| 	edac_printk(level, "sbridge", fmt, ##arg)
 | |
| 
 | |
| #define sbridge_mc_printk(mci, level, fmt, arg...)		\
 | |
| 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
 | |
| 
 | |
| /*
 | |
|  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 | |
|  */
 | |
| #define GET_BITFIELD(v, lo, hi)	\
 | |
| 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
 | |
| 
 | |
| /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
 | |
| static const u32 sbridge_dram_rule[] = {
 | |
| 	0x80, 0x88, 0x90, 0x98, 0xa0,
 | |
| 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
 | |
| };
 | |
| 
 | |
| static const u32 ibridge_dram_rule[] = {
 | |
| 	0x60, 0x68, 0x70, 0x78, 0x80,
 | |
| 	0x88, 0x90, 0x98, 0xa0,	0xa8,
 | |
| 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
 | |
| 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
 | |
| };
 | |
| 
 | |
| static const u32 knl_dram_rule[] = {
 | |
| 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
 | |
| 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
 | |
| 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
 | |
| 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
 | |
| 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
 | |
| };
 | |
| 
 | |
| #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
 | |
| #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
 | |
| 
 | |
| static char *show_dram_attr(u32 attr)
 | |
| {
 | |
| 	switch (attr) {
 | |
| 		case 0:
 | |
| 			return "DRAM";
 | |
| 		case 1:
 | |
| 			return "MMCFG";
 | |
| 		case 2:
 | |
| 			return "NXM";
 | |
| 		default:
 | |
| 			return "unknown";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const u32 sbridge_interleave_list[] = {
 | |
| 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
 | |
| 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
 | |
| };
 | |
| 
 | |
| static const u32 ibridge_interleave_list[] = {
 | |
| 	0x64, 0x6c, 0x74, 0x7c, 0x84,
 | |
| 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
 | |
| 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 | |
| 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 | |
| };
 | |
| 
 | |
| static const u32 knl_interleave_list[] = {
 | |
| 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 | |
| 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 | |
| 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 | |
| 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 | |
| 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 | |
| };
 | |
| 
 | |
| struct interleave_pkg {
 | |
| 	unsigned char start;
 | |
| 	unsigned char end;
 | |
| };
 | |
| 
 | |
| static const struct interleave_pkg sbridge_interleave_pkg[] = {
 | |
| 	{ 0, 2 },
 | |
| 	{ 3, 5 },
 | |
| 	{ 8, 10 },
 | |
| 	{ 11, 13 },
 | |
| 	{ 16, 18 },
 | |
| 	{ 19, 21 },
 | |
| 	{ 24, 26 },
 | |
| 	{ 27, 29 },
 | |
| };
 | |
| 
 | |
| static const struct interleave_pkg ibridge_interleave_pkg[] = {
 | |
| 	{ 0, 3 },
 | |
| 	{ 4, 7 },
 | |
| 	{ 8, 11 },
 | |
| 	{ 12, 15 },
 | |
| 	{ 16, 19 },
 | |
| 	{ 20, 23 },
 | |
| 	{ 24, 27 },
 | |
| 	{ 28, 31 },
 | |
| };
 | |
| 
 | |
| static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 | |
| 			  int interleave)
 | |
| {
 | |
| 	return GET_BITFIELD(reg, table[interleave].start,
 | |
| 			    table[interleave].end);
 | |
| }
 | |
| 
 | |
| /* Devices 12 Function 7 */
 | |
| 
 | |
| #define TOLM		0x80
 | |
| #define TOHM		0x84
 | |
| #define HASWELL_TOLM	0xd0
 | |
| #define HASWELL_TOHM_0	0xd4
 | |
| #define HASWELL_TOHM_1	0xd8
 | |
| #define KNL_TOLM	0xd0
 | |
| #define KNL_TOHM_0	0xd4
 | |
| #define KNL_TOHM_1	0xd8
 | |
| 
 | |
| #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 | |
| #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 | |
| 
 | |
| /* Device 13 Function 6 */
 | |
| 
 | |
| #define SAD_TARGET	0xf0
 | |
| 
 | |
| #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
 | |
| 
 | |
| #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
 | |
| 
 | |
| #define SAD_CONTROL	0xf4
 | |
| 
 | |
| /* Device 14 function 0 */
 | |
| 
 | |
| static const u32 tad_dram_rule[] = {
 | |
| 	0x40, 0x44, 0x48, 0x4c,
 | |
| 	0x50, 0x54, 0x58, 0x5c,
 | |
| 	0x60, 0x64, 0x68, 0x6c,
 | |
| };
 | |
| #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
 | |
| 
 | |
| #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 | |
| #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
 | |
| #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
 | |
| #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
 | |
| #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
 | |
| #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
 | |
| #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
 | |
| 
 | |
| /* Device 15, function 0 */
 | |
| 
 | |
| #define MCMTR			0x7c
 | |
| #define KNL_MCMTR		0x624
 | |
| 
 | |
| #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
 | |
| #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
 | |
| #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
 | |
| 
 | |
| /* Device 15, function 1 */
 | |
| 
 | |
| #define RASENABLES		0xac
 | |
| #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
 | |
| 
 | |
| /* Device 15, functions 2-5 */
 | |
| 
 | |
| static const int mtr_regs[] = {
 | |
| 	0x80, 0x84, 0x88,
 | |
| };
 | |
| 
 | |
| static const int knl_mtr_reg = 0xb60;
 | |
| 
 | |
| #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
 | |
| #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
 | |
| #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
 | |
| #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
 | |
| #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
 | |
| 
 | |
| static const u32 tad_ch_nilv_offset[] = {
 | |
| 	0x90, 0x94, 0x98, 0x9c,
 | |
| 	0xa0, 0xa4, 0xa8, 0xac,
 | |
| 	0xb0, 0xb4, 0xb8, 0xbc,
 | |
| };
 | |
| #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
 | |
| #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
 | |
| 
 | |
| static const u32 rir_way_limit[] = {
 | |
| 	0x108, 0x10c, 0x110, 0x114, 0x118,
 | |
| };
 | |
| #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 | |
| 
 | |
| #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
 | |
| #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
 | |
| 
 | |
| #define MAX_RIR_WAY	8
 | |
| 
 | |
| static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 | |
| 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 | |
| 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 | |
| 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 | |
| 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 | |
| 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 | |
| };
 | |
| 
 | |
| #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
 | |
| #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
 | |
| 
 | |
| /* Device 16, functions 2-7 */
 | |
| 
 | |
| /*
 | |
|  * FIXME: Implement the error count reads directly
 | |
|  */
 | |
| 
 | |
| static const u32 correrrcnt[] = {
 | |
| 	0x104, 0x108, 0x10c, 0x110,
 | |
| };
 | |
| 
 | |
| #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
 | |
| #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
 | |
| #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
 | |
| #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
 | |
| 
 | |
| static const u32 correrrthrsld[] = {
 | |
| 	0x11c, 0x120, 0x124, 0x128,
 | |
| };
 | |
| 
 | |
| #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
 | |
| #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
 | |
| 
 | |
| 
 | |
| /* Device 17, function 0 */
 | |
| 
 | |
| #define SB_RANK_CFG_A		0x0328
 | |
| 
 | |
| #define IB_RANK_CFG_A		0x0320
 | |
| 
 | |
| /*
 | |
|  * sbridge structs
 | |
|  */
 | |
| 
 | |
| #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
 | |
| #define MAX_DIMMS		3	/* Max DIMMS per channel */
 | |
| #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
 | |
| #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
 | |
| #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
 | |
| #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
 | |
| 
 | |
| enum type {
 | |
| 	SANDY_BRIDGE,
 | |
| 	IVY_BRIDGE,
 | |
| 	HASWELL,
 | |
| 	BROADWELL,
 | |
| 	KNIGHTS_LANDING,
 | |
| };
 | |
| 
 | |
| struct sbridge_pvt;
 | |
| struct sbridge_info {
 | |
| 	enum type	type;
 | |
| 	u32		mcmtr;
 | |
| 	u32		rankcfgr;
 | |
| 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
 | |
| 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
 | |
| 	u64		(*rir_limit)(u32 reg);
 | |
| 	u64		(*sad_limit)(u32 reg);
 | |
| 	u32		(*interleave_mode)(u32 reg);
 | |
| 	char*		(*show_interleave_mode)(u32 reg);
 | |
| 	u32		(*dram_attr)(u32 reg);
 | |
| 	const u32	*dram_rule;
 | |
| 	const u32	*interleave_list;
 | |
| 	const struct interleave_pkg *interleave_pkg;
 | |
| 	u8		max_sad;
 | |
| 	u8		max_interleave;
 | |
| 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
 | |
| 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
 | |
| 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 | |
| 	struct pci_dev	*pci_vtd;
 | |
| };
 | |
| 
 | |
| struct sbridge_channel {
 | |
| 	u32		ranks;
 | |
| 	u32		dimms;
 | |
| };
 | |
| 
 | |
| struct pci_id_descr {
 | |
| 	int			dev_id;
 | |
| 	int			optional;
 | |
| };
 | |
| 
 | |
| struct pci_id_table {
 | |
| 	const struct pci_id_descr	*descr;
 | |
| 	int				n_devs;
 | |
| };
 | |
| 
 | |
| struct sbridge_dev {
 | |
| 	struct list_head	list;
 | |
| 	u8			bus, mc;
 | |
| 	u8			node_id, source_id;
 | |
| 	struct pci_dev		**pdev;
 | |
| 	int			n_devs;
 | |
| 	struct mem_ctl_info	*mci;
 | |
| };
 | |
| 
 | |
| struct knl_pvt {
 | |
| 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 | |
| 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 | |
| 	struct pci_dev          *pci_mc0;
 | |
| 	struct pci_dev          *pci_mc1;
 | |
| 	struct pci_dev          *pci_mc0_misc;
 | |
| 	struct pci_dev          *pci_mc1_misc;
 | |
| 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
 | |
| };
 | |
| 
 | |
| struct sbridge_pvt {
 | |
| 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
 | |
| 	struct pci_dev		*pci_sad0, *pci_sad1;
 | |
| 	struct pci_dev		*pci_ha0, *pci_ha1;
 | |
| 	struct pci_dev		*pci_br0, *pci_br1;
 | |
| 	struct pci_dev		*pci_ha1_ta;
 | |
| 	struct pci_dev		*pci_tad[NUM_CHANNELS];
 | |
| 
 | |
| 	struct sbridge_dev	*sbridge_dev;
 | |
| 
 | |
| 	struct sbridge_info	info;
 | |
| 	struct sbridge_channel	channel[NUM_CHANNELS];
 | |
| 
 | |
| 	/* Memory type detection */
 | |
| 	bool			is_mirrored, is_lockstep, is_close_pg;
 | |
| 
 | |
| 	/* Fifo double buffers */
 | |
| 	struct mce		mce_entry[MCE_LOG_LEN];
 | |
| 	struct mce		mce_outentry[MCE_LOG_LEN];
 | |
| 
 | |
| 	/* Fifo in/out counters */
 | |
| 	unsigned		mce_in, mce_out;
 | |
| 
 | |
| 	/* Count indicator to show errors not got */
 | |
| 	unsigned		mce_overrun;
 | |
| 
 | |
| 	/* Memory description */
 | |
| 	u64			tolm, tohm;
 | |
| 	struct knl_pvt knl;
 | |
| };
 | |
| 
 | |
| #define PCI_DESCR(device_id, opt)	\
 | |
| 	.dev_id = (device_id),		\
 | |
| 	.optional = opt
 | |
| 
 | |
| static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 | |
| 		/* Processor Home Agent */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
 | |
| 
 | |
| 		/* Memory controller */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
 | |
| 
 | |
| 		/* System Address Decoder */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
 | |
| 
 | |
| 		/* Broadcast Registers */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
 | |
| };
 | |
| 
 | |
| #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
 | |
| static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 | |
| 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| /* This changes depending if 1HA or 2HA:
 | |
|  * 1HA:
 | |
|  *	0x0eb8 (17.0) is DDRIO0
 | |
|  * 2HA:
 | |
|  *	0x0ebc (17.4) is DDRIO0
 | |
|  */
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
 | |
| 
 | |
| /* pci ids */
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
 | |
| #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
 | |
| 
 | |
| static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 | |
| 		/* Processor Home Agent */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
 | |
| 
 | |
| 		/* Memory controller */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
 | |
| 
 | |
| 		/* System Address Decoder */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
 | |
| 
 | |
| 		/* Broadcast Registers */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
 | |
| 
 | |
| 		/* Optional, mode 2HA */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
 | |
| #if 0
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
 | |
| #endif
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
 | |
| };
 | |
| 
 | |
| static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 | |
| 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| /* Haswell support */
 | |
| /* EN processor:
 | |
|  *	- 1 IMC
 | |
|  *	- 3 DDR3 channels, 2 DPC per channel
 | |
|  * EP processor:
 | |
|  *	- 1 or 2 IMC
 | |
|  *	- 4 DDR4 channels, 3 DPC per channel
 | |
|  * EP 4S processor:
 | |
|  *	- 2 IMC
 | |
|  *	- 4 DDR4 channels, 3 DPC per channel
 | |
|  * EX processor:
 | |
|  *	- 2 IMC
 | |
|  *	- each IMC interfaces with a SMI 2 channel
 | |
|  *	- each SMI channel interfaces with a scalable memory buffer
 | |
|  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 | |
|  */
 | |
| #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 | |
| #define HASWELL_HASYSDEFEATURE2 0x84
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 | |
| #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 | |
| static const struct pci_id_descr pci_dev_descr_haswell[] = {
 | |
| 	/* first item must be the HA */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
 | |
| };
 | |
| 
 | |
| static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 | |
| 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| /* Knight's Landing Support */
 | |
| /*
 | |
|  * KNL's memory channels are swizzled between memory controllers.
 | |
|  * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
 | |
|  */
 | |
| #define knl_channel_remap(channel) ((channel + 3) % 6)
 | |
| 
 | |
| /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 | |
| #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 | |
| /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 | |
| #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
 | |
| /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 | |
| #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 | |
| /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 | |
| #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 | |
| /* SAD target - 1-29-1 (1 of these) */
 | |
| #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 | |
| /* Caching / Home Agent */
 | |
| #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 | |
| /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 | |
| #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 | |
| 
 | |
| /*
 | |
|  * KNL differs from SB, IB, and Haswell in that it has multiple
 | |
|  * instances of the same device with the same device ID, so we handle that
 | |
|  * by creating as many copies in the table as we expect to find.
 | |
|  * (Like device ID must be grouped together.)
 | |
|  */
 | |
| 
 | |
| static const struct pci_id_descr pci_dev_descr_knl[] = {
 | |
| 	[0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
 | |
| 	[1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
 | |
| 	[2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
 | |
| 	[4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
 | |
| 	[42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
 | |
| 	[48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
 | |
| 	[49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
 | |
| };
 | |
| 
 | |
| static const struct pci_id_table pci_dev_descr_knl_table[] = {
 | |
| 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
 | |
| 	{0,}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Broadwell support
 | |
|  *
 | |
|  * DE processor:
 | |
|  *	- 1 IMC
 | |
|  *	- 2 DDR3 channels, 2 DPC per channel
 | |
|  * EP processor:
 | |
|  *	- 1 or 2 IMC
 | |
|  *	- 4 DDR4 channels, 3 DPC per channel
 | |
|  * EP 4S processor:
 | |
|  *	- 2 IMC
 | |
|  *	- 4 DDR4 channels, 3 DPC per channel
 | |
|  * EX processor:
 | |
|  *	- 2 IMC
 | |
|  *	- each IMC interfaces with a SMI 2 channel
 | |
|  *	- each SMI channel interfaces with a scalable memory buffer
 | |
|  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 | |
|  */
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 | |
| #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 | |
| 
 | |
| static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 | |
| 	/* first item must be the HA */
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
 | |
| 
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
 | |
| 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
 | |
| };
 | |
| 
 | |
| static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 | |
| 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	pci_device_id	table for which devices we are looking for
 | |
|  */
 | |
| static const struct pci_device_id sbridge_pci_tbl[] = {
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
 | |
| 	{0,}			/* 0 terminated list. */
 | |
| };
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
| 			Ancillary status routines
 | |
|  ****************************************************************************/
 | |
| 
 | |
| static inline int numrank(enum type type, u32 mtr)
 | |
| {
 | |
| 	int ranks = (1 << RANK_CNT_BITS(mtr));
 | |
| 	int max = 4;
 | |
| 
 | |
| 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 | |
| 		max = 8;
 | |
| 
 | |
| 	if (ranks > max) {
 | |
| 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 | |
| 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ranks;
 | |
| }
 | |
| 
 | |
| static inline int numrow(u32 mtr)
 | |
| {
 | |
| 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
 | |
| 
 | |
| 	if (rows < 13 || rows > 18) {
 | |
| 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 | |
| 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 1 << rows;
 | |
| }
 | |
| 
 | |
| static inline int numcol(u32 mtr)
 | |
| {
 | |
| 	int cols = (COL_WIDTH_BITS(mtr) + 10);
 | |
| 
 | |
| 	if (cols > 12) {
 | |
| 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 | |
| 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 1 << cols;
 | |
| }
 | |
| 
 | |
| static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have devices scattered across several busses that pertain
 | |
| 	 * to the same memory controller, we'll lump them all together.
 | |
| 	 */
 | |
| 	if (multi_bus) {
 | |
| 		return list_first_entry_or_null(&sbridge_edac_list,
 | |
| 				struct sbridge_dev, list);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 | |
| 		if (sbridge_dev->bus == bus)
 | |
| 			return sbridge_dev;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
 | |
| 					   const struct pci_id_table *table)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 | |
| 	if (!sbridge_dev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
 | |
| 				   GFP_KERNEL);
 | |
| 	if (!sbridge_dev->pdev) {
 | |
| 		kfree(sbridge_dev);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	sbridge_dev->bus = bus;
 | |
| 	sbridge_dev->n_devs = table->n_devs;
 | |
| 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 | |
| 
 | |
| 	return sbridge_dev;
 | |
| }
 | |
| 
 | |
| static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	list_del(&sbridge_dev->list);
 | |
| 	kfree(sbridge_dev->pdev);
 | |
| 	kfree(sbridge_dev);
 | |
| }
 | |
| 
 | |
| static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/* Address range is 32:28 */
 | |
| 	pci_read_config_dword(pvt->pci_sad1, TOLM, ®);
 | |
| 	return GET_TOLM(reg);
 | |
| }
 | |
| 
 | |
| static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_sad1, TOHM, ®);
 | |
| 	return GET_TOHM(reg);
 | |
| }
 | |
| 
 | |
| static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_br1, TOLM, ®);
 | |
| 
 | |
| 	return GET_TOLM(reg);
 | |
| }
 | |
| 
 | |
| static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_br1, TOHM, ®);
 | |
| 
 | |
| 	return GET_TOHM(reg);
 | |
| }
 | |
| 
 | |
| static u64 rir_limit(u32 reg)
 | |
| {
 | |
| 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 | |
| }
 | |
| 
 | |
| static u64 sad_limit(u32 reg)
 | |
| {
 | |
| 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 | |
| }
 | |
| 
 | |
| static u32 interleave_mode(u32 reg)
 | |
| {
 | |
| 	return GET_BITFIELD(reg, 1, 1);
 | |
| }
 | |
| 
 | |
| char *show_interleave_mode(u32 reg)
 | |
| {
 | |
| 	return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
 | |
| }
 | |
| 
 | |
| static u32 dram_attr(u32 reg)
 | |
| {
 | |
| 	return GET_BITFIELD(reg, 2, 3);
 | |
| }
 | |
| 
 | |
| static u64 knl_sad_limit(u32 reg)
 | |
| {
 | |
| 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 | |
| }
 | |
| 
 | |
| static u32 knl_interleave_mode(u32 reg)
 | |
| {
 | |
| 	return GET_BITFIELD(reg, 1, 2);
 | |
| }
 | |
| 
 | |
| static char *knl_show_interleave_mode(u32 reg)
 | |
| {
 | |
| 	char *s;
 | |
| 
 | |
| 	switch (knl_interleave_mode(reg)) {
 | |
| 	case 0:
 | |
| 		s = "use address bits [8:6]";
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		s = "use address bits [10:8]";
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		s = "use address bits [14:12]";
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		s = "use address bits [32:30]";
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static u32 dram_attr_knl(u32 reg)
 | |
| {
 | |
| 	return GET_BITFIELD(reg, 3, 4);
 | |
| }
 | |
| 
 | |
| 
 | |
| static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	enum mem_type mtype;
 | |
| 
 | |
| 	if (pvt->pci_ddrio) {
 | |
| 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 | |
| 				      ®);
 | |
| 		if (GET_BITFIELD(reg, 11, 11))
 | |
| 			/* FIXME: Can also be LRDIMM */
 | |
| 			mtype = MEM_RDDR3;
 | |
| 		else
 | |
| 			mtype = MEM_DDR3;
 | |
| 	} else
 | |
| 		mtype = MEM_UNKNOWN;
 | |
| 
 | |
| 	return mtype;
 | |
| }
 | |
| 
 | |
| static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	bool registered = false;
 | |
| 	enum mem_type mtype = MEM_UNKNOWN;
 | |
| 
 | |
| 	if (!pvt->pci_ddrio)
 | |
| 		goto out;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_ddrio,
 | |
| 			      HASWELL_DDRCRCLKCONTROLS, ®);
 | |
| 	/* Is_Rdimm */
 | |
| 	if (GET_BITFIELD(reg, 16, 16))
 | |
| 		registered = true;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_ta, MCMTR, ®);
 | |
| 	if (GET_BITFIELD(reg, 14, 14)) {
 | |
| 		if (registered)
 | |
| 			mtype = MEM_RDDR4;
 | |
| 		else
 | |
| 			mtype = MEM_DDR4;
 | |
| 	} else {
 | |
| 		if (registered)
 | |
| 			mtype = MEM_RDDR3;
 | |
| 		else
 | |
| 			mtype = MEM_DDR3;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return mtype;
 | |
| }
 | |
| 
 | |
| static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 | |
| {
 | |
| 	/* for KNL value is fixed */
 | |
| 	return DEV_X16;
 | |
| }
 | |
| 
 | |
| static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 | |
| {
 | |
| 	/* there's no way to figure out */
 | |
| 	return DEV_UNKNOWN;
 | |
| }
 | |
| 
 | |
| static enum dev_type __ibridge_get_width(u32 mtr)
 | |
| {
 | |
| 	enum dev_type type;
 | |
| 
 | |
| 	switch (mtr) {
 | |
| 	case 3:
 | |
| 		type = DEV_UNKNOWN;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		type = DEV_X16;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		type = DEV_X8;
 | |
| 		break;
 | |
| 	case 0:
 | |
| 		type = DEV_X4;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 | |
| {
 | |
| 	/*
 | |
| 	 * ddr3_width on the documentation but also valid for DDR4 on
 | |
| 	 * Haswell
 | |
| 	 */
 | |
| 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 | |
| }
 | |
| 
 | |
| static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 | |
| {
 | |
| 	/* ddr3_width on the documentation but also valid for DDR4 */
 | |
| 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 | |
| }
 | |
| 
 | |
| static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	/* DDR4 RDIMMS and LRDIMMS are supported */
 | |
| 	return MEM_RDDR4;
 | |
| }
 | |
| 
 | |
| static u8 get_node_id(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®);
 | |
| 	return GET_BITFIELD(reg, 0, 2);
 | |
| }
 | |
| 
 | |
| static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
 | |
| 	return GET_BITFIELD(reg, 0, 3);
 | |
| }
 | |
| 
 | |
| static u8 knl_get_node_id(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
 | |
| 	return GET_BITFIELD(reg, 0, 2);
 | |
| }
 | |
| 
 | |
| 
 | |
| static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®);
 | |
| 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
 | |
| }
 | |
| 
 | |
| static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u64 rc;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®);
 | |
| 	rc = GET_BITFIELD(reg, 26, 31);
 | |
| 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®);
 | |
| 	rc = ((reg << 6) | rc) << 26;
 | |
| 
 | |
| 	return rc | 0x1ffffff;
 | |
| }
 | |
| 
 | |
| static u64 knl_get_tolm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®);
 | |
| 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
 | |
| }
 | |
| 
 | |
| static u64 knl_get_tohm(struct sbridge_pvt *pvt)
 | |
| {
 | |
| 	u64 rc;
 | |
| 	u32 reg_lo, reg_hi;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo);
 | |
| 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi);
 | |
| 	rc = ((u64)reg_hi << 32) | reg_lo;
 | |
| 	return rc | 0x3ffffff;
 | |
| }
 | |
| 
 | |
| 
 | |
| static u64 haswell_rir_limit(u32 reg)
 | |
| {
 | |
| 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
 | |
| }
 | |
| 
 | |
| static inline u8 sad_pkg_socket(u8 pkg)
 | |
| {
 | |
| 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
 | |
| 	return ((pkg >> 3) << 2) | (pkg & 0x3);
 | |
| }
 | |
| 
 | |
| static inline u8 sad_pkg_ha(u8 pkg)
 | |
| {
 | |
| 	return (pkg >> 2) & 0x1;
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| 			Memory check routines
 | |
|  ****************************************************************************/
 | |
| static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
 | |
| {
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 
 | |
| 	do {
 | |
| 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
 | |
| 		if (pdev && pdev->bus->number == bus)
 | |
| 			break;
 | |
| 	} while (pdev);
 | |
| 
 | |
| 	return pdev;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_if_ecc_is_active() - Checks if ECC is active
 | |
|  * @bus:	Device bus
 | |
|  * @type:	Memory controller type
 | |
|  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
 | |
|  *	    disabled
 | |
|  */
 | |
| static int check_if_ecc_is_active(const u8 bus, enum type type)
 | |
| {
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 	u32 mcmtr, id;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case IVY_BRIDGE:
 | |
| 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
 | |
| 		break;
 | |
| 	case HASWELL:
 | |
| 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
 | |
| 		break;
 | |
| 	case SANDY_BRIDGE:
 | |
| 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
 | |
| 		break;
 | |
| 	case BROADWELL:
 | |
| 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
 | |
| 		break;
 | |
| 	case KNIGHTS_LANDING:
 | |
| 		/*
 | |
| 		 * KNL doesn't group things by bus the same way
 | |
| 		 * SB/IB/Haswell does.
 | |
| 		 */
 | |
| 		id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (type != KNIGHTS_LANDING)
 | |
| 		pdev = get_pdev_same_bus(bus, id);
 | |
| 	else
 | |
| 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
 | |
| 
 | |
| 	if (!pdev) {
 | |
| 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
 | |
| 					"%04x:%04x! on bus %02d\n",
 | |
| 					PCI_VENDOR_ID_INTEL, id, bus);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_dword(pdev,
 | |
| 			type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
 | |
| 	if (!IS_ECC_ENABLED(mcmtr)) {
 | |
| 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Low bits of TAD limit, and some metadata. */
 | |
| static const u32 knl_tad_dram_limit_lo[] = {
 | |
| 	0x400, 0x500, 0x600, 0x700,
 | |
| 	0x800, 0x900, 0xa00, 0xb00,
 | |
| };
 | |
| 
 | |
| /* Low bits of TAD offset. */
 | |
| static const u32 knl_tad_dram_offset_lo[] = {
 | |
| 	0x404, 0x504, 0x604, 0x704,
 | |
| 	0x804, 0x904, 0xa04, 0xb04,
 | |
| };
 | |
| 
 | |
| /* High 16 bits of TAD limit and offset. */
 | |
| static const u32 knl_tad_dram_hi[] = {
 | |
| 	0x408, 0x508, 0x608, 0x708,
 | |
| 	0x808, 0x908, 0xa08, 0xb08,
 | |
| };
 | |
| 
 | |
| /* Number of ways a tad entry is interleaved. */
 | |
| static const u32 knl_tad_ways[] = {
 | |
| 	8, 6, 4, 3, 2, 1,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Retrieve the n'th Target Address Decode table entry
 | |
|  * from the memory controller's TAD table.
 | |
|  *
 | |
|  * @pvt:	driver private data
 | |
|  * @entry:	which entry you want to retrieve
 | |
|  * @mc:		which memory controller (0 or 1)
 | |
|  * @offset:	output tad range offset
 | |
|  * @limit:	output address of first byte above tad range
 | |
|  * @ways:	output number of interleave ways
 | |
|  *
 | |
|  * The offset value has curious semantics.  It's a sort of running total
 | |
|  * of the sizes of all the memory regions that aren't mapped in this
 | |
|  * tad table.
 | |
|  */
 | |
| static int knl_get_tad(const struct sbridge_pvt *pvt,
 | |
| 		const int entry,
 | |
| 		const int mc,
 | |
| 		u64 *offset,
 | |
| 		u64 *limit,
 | |
| 		int *ways)
 | |
| {
 | |
| 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
 | |
| 	struct pci_dev *pci_mc;
 | |
| 	int way_id;
 | |
| 
 | |
| 	switch (mc) {
 | |
| 	case 0:
 | |
| 		pci_mc = pvt->knl.pci_mc0;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		pci_mc = pvt->knl.pci_mc1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_dword(pci_mc,
 | |
| 			knl_tad_dram_limit_lo[entry], ®_limit_lo);
 | |
| 	pci_read_config_dword(pci_mc,
 | |
| 			knl_tad_dram_offset_lo[entry], ®_offset_lo);
 | |
| 	pci_read_config_dword(pci_mc,
 | |
| 			knl_tad_dram_hi[entry], ®_hi);
 | |
| 
 | |
| 	/* Is this TAD entry enabled? */
 | |
| 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
 | |
| 
 | |
| 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
 | |
| 		*ways = knl_tad_ways[way_id];
 | |
| 	} else {
 | |
| 		*ways = 0;
 | |
| 		sbridge_printk(KERN_ERR,
 | |
| 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
 | |
| 				way_id);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The least significant 6 bits of base and limit are truncated.
 | |
| 	 * For limit, we fill the missing bits with 1s.
 | |
| 	 */
 | |
| 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
 | |
| 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
 | |
| 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
 | |
| 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Determine which memory controller is responsible for a given channel. */
 | |
| static int knl_channel_mc(int channel)
 | |
| {
 | |
| 	WARN_ON(channel < 0 || channel >= 6);
 | |
| 
 | |
| 	return channel < 3 ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the Nth entry from EDC_ROUTE_TABLE register.
 | |
|  * (This is the per-tile mapping of logical interleave targets to
 | |
|  *  physical EDC modules.)
 | |
|  *
 | |
|  * entry 0: 0:2
 | |
|  *       1: 3:5
 | |
|  *       2: 6:8
 | |
|  *       3: 9:11
 | |
|  *       4: 12:14
 | |
|  *       5: 15:17
 | |
|  *       6: 18:20
 | |
|  *       7: 21:23
 | |
|  * reserved: 24:31
 | |
|  */
 | |
| static u32 knl_get_edc_route(int entry, u32 reg)
 | |
| {
 | |
| 	WARN_ON(entry >= KNL_MAX_EDCS);
 | |
| 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the Nth entry from MC_ROUTE_TABLE register.
 | |
|  * (This is the per-tile mapping of logical interleave targets to
 | |
|  *  physical DRAM channels modules.)
 | |
|  *
 | |
|  * entry 0: mc 0:2   channel 18:19
 | |
|  *       1: mc 3:5   channel 20:21
 | |
|  *       2: mc 6:8   channel 22:23
 | |
|  *       3: mc 9:11  channel 24:25
 | |
|  *       4: mc 12:14 channel 26:27
 | |
|  *       5: mc 15:17 channel 28:29
 | |
|  * reserved: 30:31
 | |
|  *
 | |
|  * Though we have 3 bits to identify the MC, we should only see
 | |
|  * the values 0 or 1.
 | |
|  */
 | |
| 
 | |
| static u32 knl_get_mc_route(int entry, u32 reg)
 | |
| {
 | |
| 	int mc, chan;
 | |
| 
 | |
| 	WARN_ON(entry >= KNL_MAX_CHANNELS);
 | |
| 
 | |
| 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
 | |
| 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
 | |
| 
 | |
| 	return knl_channel_remap(mc*3 + chan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Render the EDC_ROUTE register in human-readable form.
 | |
|  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
 | |
|  */
 | |
| static void knl_show_edc_route(u32 reg, char *s)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KNL_MAX_EDCS; i++) {
 | |
| 		s[i*2] = knl_get_edc_route(i, reg) + '0';
 | |
| 		s[i*2+1] = '-';
 | |
| 	}
 | |
| 
 | |
| 	s[KNL_MAX_EDCS*2 - 1] = '\0';
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Render the MC_ROUTE register in human-readable form.
 | |
|  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
 | |
|  */
 | |
| static void knl_show_mc_route(u32 reg, char *s)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
 | |
| 		s[i*2] = knl_get_mc_route(i, reg) + '0';
 | |
| 		s[i*2+1] = '-';
 | |
| 	}
 | |
| 
 | |
| 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
 | |
| }
 | |
| 
 | |
| #define KNL_EDC_ROUTE 0xb8
 | |
| #define KNL_MC_ROUTE 0xb4
 | |
| 
 | |
| /* Is this dram rule backed by regular DRAM in flat mode? */
 | |
| #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
 | |
| 
 | |
| /* Is this dram rule cached? */
 | |
| #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
 | |
| 
 | |
| /* Is this rule backed by edc ? */
 | |
| #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
 | |
| 
 | |
| /* Is this rule backed by DRAM, cacheable in EDRAM? */
 | |
| #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
 | |
| 
 | |
| /* Is this rule mod3? */
 | |
| #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
 | |
| 
 | |
| /*
 | |
|  * Figure out how big our RAM modules are.
 | |
|  *
 | |
|  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
 | |
|  * have to figure this out from the SAD rules, interleave lists, route tables,
 | |
|  * and TAD rules.
 | |
|  *
 | |
|  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
 | |
|  * inspect the TAD rules to figure out how large the SAD regions really are.
 | |
|  *
 | |
|  * When we know the real size of a SAD region and how many ways it's
 | |
|  * interleaved, we know the individual contribution of each channel to
 | |
|  * TAD is size/ways.
 | |
|  *
 | |
|  * Finally, we have to check whether each channel participates in each SAD
 | |
|  * region.
 | |
|  *
 | |
|  * Fortunately, KNL only supports one DIMM per channel, so once we know how
 | |
|  * much memory the channel uses, we know the DIMM is at least that large.
 | |
|  * (The BIOS might possibly choose not to map all available memory, in which
 | |
|  * case we will underreport the size of the DIMM.)
 | |
|  *
 | |
|  * In theory, we could try to determine the EDC sizes as well, but that would
 | |
|  * only work in flat mode, not in cache mode.
 | |
|  *
 | |
|  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
 | |
|  *            elements)
 | |
|  */
 | |
| static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
 | |
| {
 | |
| 	u64 sad_base, sad_size, sad_limit = 0;
 | |
| 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
 | |
| 	int sad_rule = 0;
 | |
| 	int tad_rule = 0;
 | |
| 	int intrlv_ways, tad_ways;
 | |
| 	u32 first_pkg, pkg;
 | |
| 	int i;
 | |
| 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
 | |
| 	u32 dram_rule, interleave_reg;
 | |
| 	u32 mc_route_reg[KNL_MAX_CHAS];
 | |
| 	u32 edc_route_reg[KNL_MAX_CHAS];
 | |
| 	int edram_only;
 | |
| 	char edc_route_string[KNL_MAX_EDCS*2];
 | |
| 	char mc_route_string[KNL_MAX_CHANNELS*2];
 | |
| 	int cur_reg_start;
 | |
| 	int mc;
 | |
| 	int channel;
 | |
| 	int way;
 | |
| 	int participants[KNL_MAX_CHANNELS];
 | |
| 	int participant_count = 0;
 | |
| 
 | |
| 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
 | |
| 		mc_sizes[i] = 0;
 | |
| 
 | |
| 	/* Read the EDC route table in each CHA. */
 | |
| 	cur_reg_start = 0;
 | |
| 	for (i = 0; i < KNL_MAX_CHAS; i++) {
 | |
| 		pci_read_config_dword(pvt->knl.pci_cha[i],
 | |
| 				KNL_EDC_ROUTE, &edc_route_reg[i]);
 | |
| 
 | |
| 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
 | |
| 			knl_show_edc_route(edc_route_reg[i-1],
 | |
| 					edc_route_string);
 | |
| 			if (cur_reg_start == i-1)
 | |
| 				edac_dbg(0, "edc route table for CHA %d: %s\n",
 | |
| 					cur_reg_start, edc_route_string);
 | |
| 			else
 | |
| 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
 | |
| 					cur_reg_start, i-1, edc_route_string);
 | |
| 			cur_reg_start = i;
 | |
| 		}
 | |
| 	}
 | |
| 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
 | |
| 	if (cur_reg_start == i-1)
 | |
| 		edac_dbg(0, "edc route table for CHA %d: %s\n",
 | |
| 			cur_reg_start, edc_route_string);
 | |
| 	else
 | |
| 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
 | |
| 			cur_reg_start, i-1, edc_route_string);
 | |
| 
 | |
| 	/* Read the MC route table in each CHA. */
 | |
| 	cur_reg_start = 0;
 | |
| 	for (i = 0; i < KNL_MAX_CHAS; i++) {
 | |
| 		pci_read_config_dword(pvt->knl.pci_cha[i],
 | |
| 			KNL_MC_ROUTE, &mc_route_reg[i]);
 | |
| 
 | |
| 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
 | |
| 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
 | |
| 			if (cur_reg_start == i-1)
 | |
| 				edac_dbg(0, "mc route table for CHA %d: %s\n",
 | |
| 					cur_reg_start, mc_route_string);
 | |
| 			else
 | |
| 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
 | |
| 					cur_reg_start, i-1, mc_route_string);
 | |
| 			cur_reg_start = i;
 | |
| 		}
 | |
| 	}
 | |
| 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
 | |
| 	if (cur_reg_start == i-1)
 | |
| 		edac_dbg(0, "mc route table for CHA %d: %s\n",
 | |
| 			cur_reg_start, mc_route_string);
 | |
| 	else
 | |
| 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
 | |
| 			cur_reg_start, i-1, mc_route_string);
 | |
| 
 | |
| 	/* Process DRAM rules */
 | |
| 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
 | |
| 		/* previous limit becomes the new base */
 | |
| 		sad_base = sad_limit;
 | |
| 
 | |
| 		pci_read_config_dword(pvt->pci_sad0,
 | |
| 			pvt->info.dram_rule[sad_rule], &dram_rule);
 | |
| 
 | |
| 		if (!DRAM_RULE_ENABLE(dram_rule))
 | |
| 			break;
 | |
| 
 | |
| 		edram_only = KNL_EDRAM_ONLY(dram_rule);
 | |
| 
 | |
| 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
 | |
| 		sad_size = sad_limit - sad_base;
 | |
| 
 | |
| 		pci_read_config_dword(pvt->pci_sad0,
 | |
| 			pvt->info.interleave_list[sad_rule], &interleave_reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Find out how many ways this dram rule is interleaved.
 | |
| 		 * We stop when we see the first channel again.
 | |
| 		 */
 | |
| 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
 | |
| 						interleave_reg, 0);
 | |
| 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
 | |
| 			pkg = sad_pkg(pvt->info.interleave_pkg,
 | |
| 						interleave_reg, intrlv_ways);
 | |
| 
 | |
| 			if ((pkg & 0x8) == 0) {
 | |
| 				/*
 | |
| 				 * 0 bit means memory is non-local,
 | |
| 				 * which KNL doesn't support
 | |
| 				 */
 | |
| 				edac_dbg(0, "Unexpected interleave target %d\n",
 | |
| 					pkg);
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			if (pkg == first_pkg)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (KNL_MOD3(dram_rule))
 | |
| 			intrlv_ways *= 3;
 | |
| 
 | |
| 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
 | |
| 			sad_rule,
 | |
| 			sad_base,
 | |
| 			sad_limit,
 | |
| 			intrlv_ways,
 | |
| 			edram_only ? ", EDRAM" : "");
 | |
| 
 | |
| 		/*
 | |
| 		 * Find out how big the SAD region really is by iterating
 | |
| 		 * over TAD tables (SAD regions may contain holes).
 | |
| 		 * Each memory controller might have a different TAD table, so
 | |
| 		 * we have to look at both.
 | |
| 		 *
 | |
| 		 * Livespace is the memory that's mapped in this TAD table,
 | |
| 		 * deadspace is the holes (this could be the MMIO hole, or it
 | |
| 		 * could be memory that's mapped by the other TAD table but
 | |
| 		 * not this one).
 | |
| 		 */
 | |
| 		for (mc = 0; mc < 2; mc++) {
 | |
| 			sad_actual_size[mc] = 0;
 | |
| 			tad_livespace = 0;
 | |
| 			for (tad_rule = 0;
 | |
| 					tad_rule < ARRAY_SIZE(
 | |
| 						knl_tad_dram_limit_lo);
 | |
| 					tad_rule++) {
 | |
| 				if (knl_get_tad(pvt,
 | |
| 						tad_rule,
 | |
| 						mc,
 | |
| 						&tad_deadspace,
 | |
| 						&tad_limit,
 | |
| 						&tad_ways))
 | |
| 					break;
 | |
| 
 | |
| 				tad_size = (tad_limit+1) -
 | |
| 					(tad_livespace + tad_deadspace);
 | |
| 				tad_livespace += tad_size;
 | |
| 				tad_base = (tad_limit+1) - tad_size;
 | |
| 
 | |
| 				if (tad_base < sad_base) {
 | |
| 					if (tad_limit > sad_base)
 | |
| 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
 | |
| 				} else if (tad_base < sad_limit) {
 | |
| 					if (tad_limit+1 > sad_limit) {
 | |
| 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
 | |
| 					} else {
 | |
| 						/* TAD region is completely inside SAD region */
 | |
| 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
 | |
| 							tad_rule, tad_base,
 | |
| 							tad_limit, tad_size,
 | |
| 							mc);
 | |
| 						sad_actual_size[mc] += tad_size;
 | |
| 					}
 | |
| 				}
 | |
| 				tad_base = tad_limit+1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (mc = 0; mc < 2; mc++) {
 | |
| 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
 | |
| 				mc, sad_actual_size[mc], sad_actual_size[mc]);
 | |
| 		}
 | |
| 
 | |
| 		/* Ignore EDRAM rule */
 | |
| 		if (edram_only)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Figure out which channels participate in interleave. */
 | |
| 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
 | |
| 			participants[channel] = 0;
 | |
| 
 | |
| 		/* For each channel, does at least one CHA have
 | |
| 		 * this channel mapped to the given target?
 | |
| 		 */
 | |
| 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
 | |
| 			for (way = 0; way < intrlv_ways; way++) {
 | |
| 				int target;
 | |
| 				int cha;
 | |
| 
 | |
| 				if (KNL_MOD3(dram_rule))
 | |
| 					target = way;
 | |
| 				else
 | |
| 					target = 0x7 & sad_pkg(
 | |
| 				pvt->info.interleave_pkg, interleave_reg, way);
 | |
| 
 | |
| 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
 | |
| 					if (knl_get_mc_route(target,
 | |
| 						mc_route_reg[cha]) == channel
 | |
| 						&& !participants[channel]) {
 | |
| 						participant_count++;
 | |
| 						participants[channel] = 1;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (participant_count != intrlv_ways)
 | |
| 			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
 | |
| 				participant_count, intrlv_ways);
 | |
| 
 | |
| 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
 | |
| 			mc = knl_channel_mc(channel);
 | |
| 			if (participants[channel]) {
 | |
| 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
 | |
| 					channel,
 | |
| 					sad_actual_size[mc]/intrlv_ways,
 | |
| 					sad_rule);
 | |
| 				mc_sizes[channel] +=
 | |
| 					sad_actual_size[mc]/intrlv_ways;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_dimm_config(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct dimm_info *dimm;
 | |
| 	unsigned i, j, banks, ranks, rows, cols, npages;
 | |
| 	u64 size;
 | |
| 	u32 reg;
 | |
| 	enum edac_type mode;
 | |
| 	enum mem_type mtype;
 | |
| 	int channels = pvt->info.type == KNIGHTS_LANDING ?
 | |
| 		KNL_MAX_CHANNELS : NUM_CHANNELS;
 | |
| 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
 | |
| 
 | |
| 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
 | |
| 			pvt->info.type == KNIGHTS_LANDING)
 | |
| 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®);
 | |
| 	else
 | |
| 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®);
 | |
| 
 | |
| 	if (pvt->info.type == KNIGHTS_LANDING)
 | |
| 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
 | |
| 	else
 | |
| 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
 | |
| 
 | |
| 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
 | |
| 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
 | |
| 		 pvt->sbridge_dev->mc,
 | |
| 		 pvt->sbridge_dev->node_id,
 | |
| 		 pvt->sbridge_dev->source_id);
 | |
| 
 | |
| 	/* KNL doesn't support mirroring or lockstep,
 | |
| 	 * and is always closed page
 | |
| 	 */
 | |
| 	if (pvt->info.type == KNIGHTS_LANDING) {
 | |
| 		mode = EDAC_S4ECD4ED;
 | |
| 		pvt->is_mirrored = false;
 | |
| 
 | |
| 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
 | |
| 			return -1;
 | |
| 	} else {
 | |
| 		pci_read_config_dword(pvt->pci_ras, RASENABLES, ®);
 | |
| 		if (IS_MIRROR_ENABLED(reg)) {
 | |
| 			edac_dbg(0, "Memory mirror is enabled\n");
 | |
| 			pvt->is_mirrored = true;
 | |
| 		} else {
 | |
| 			edac_dbg(0, "Memory mirror is disabled\n");
 | |
| 			pvt->is_mirrored = false;
 | |
| 		}
 | |
| 
 | |
| 		pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
 | |
| 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
 | |
| 			edac_dbg(0, "Lockstep is enabled\n");
 | |
| 			mode = EDAC_S8ECD8ED;
 | |
| 			pvt->is_lockstep = true;
 | |
| 		} else {
 | |
| 			edac_dbg(0, "Lockstep is disabled\n");
 | |
| 			mode = EDAC_S4ECD4ED;
 | |
| 			pvt->is_lockstep = false;
 | |
| 		}
 | |
| 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
 | |
| 			edac_dbg(0, "address map is on closed page mode\n");
 | |
| 			pvt->is_close_pg = true;
 | |
| 		} else {
 | |
| 			edac_dbg(0, "address map is on open page mode\n");
 | |
| 			pvt->is_close_pg = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mtype = pvt->info.get_memory_type(pvt);
 | |
| 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
 | |
| 		edac_dbg(0, "Memory is registered\n");
 | |
| 	else if (mtype == MEM_UNKNOWN)
 | |
| 		edac_dbg(0, "Cannot determine memory type\n");
 | |
| 	else
 | |
| 		edac_dbg(0, "Memory is unregistered\n");
 | |
| 
 | |
| 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
 | |
| 		banks = 16;
 | |
| 	else
 | |
| 		banks = 8;
 | |
| 
 | |
| 	for (i = 0; i < channels; i++) {
 | |
| 		u32 mtr;
 | |
| 
 | |
| 		int max_dimms_per_channel;
 | |
| 
 | |
| 		if (pvt->info.type == KNIGHTS_LANDING) {
 | |
| 			max_dimms_per_channel = 1;
 | |
| 			if (!pvt->knl.pci_channel[i])
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
 | |
| 			if (!pvt->pci_tad[i])
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < max_dimms_per_channel; j++) {
 | |
| 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
 | |
| 				       i, j, 0);
 | |
| 			if (pvt->info.type == KNIGHTS_LANDING) {
 | |
| 				pci_read_config_dword(pvt->knl.pci_channel[i],
 | |
| 					knl_mtr_reg, &mtr);
 | |
| 			} else {
 | |
| 				pci_read_config_dword(pvt->pci_tad[i],
 | |
| 					mtr_regs[j], &mtr);
 | |
| 			}
 | |
| 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
 | |
| 			if (IS_DIMM_PRESENT(mtr)) {
 | |
| 				pvt->channel[i].dimms++;
 | |
| 
 | |
| 				ranks = numrank(pvt->info.type, mtr);
 | |
| 
 | |
| 				if (pvt->info.type == KNIGHTS_LANDING) {
 | |
| 					/* For DDR4, this is fixed. */
 | |
| 					cols = 1 << 10;
 | |
| 					rows = knl_mc_sizes[i] /
 | |
| 						((u64) cols * ranks * banks * 8);
 | |
| 				} else {
 | |
| 					rows = numrow(mtr);
 | |
| 					cols = numcol(mtr);
 | |
| 				}
 | |
| 
 | |
| 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
 | |
| 				npages = MiB_TO_PAGES(size);
 | |
| 
 | |
| 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
 | |
| 					 pvt->sbridge_dev->mc, i/4, i%4, j,
 | |
| 					 size, npages,
 | |
| 					 banks, ranks, rows, cols);
 | |
| 
 | |
| 				dimm->nr_pages = npages;
 | |
| 				dimm->grain = 32;
 | |
| 				dimm->dtype = pvt->info.get_width(pvt, mtr);
 | |
| 				dimm->mtype = mtype;
 | |
| 				dimm->edac_mode = mode;
 | |
| 				snprintf(dimm->label, sizeof(dimm->label),
 | |
| 					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
 | |
| 					 pvt->sbridge_dev->source_id, i/4, i%4, j);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void get_memory_layout(const struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	int i, j, k, n_sads, n_tads, sad_interl;
 | |
| 	u32 reg;
 | |
| 	u64 limit, prv = 0;
 | |
| 	u64 tmp_mb;
 | |
| 	u32 gb, mb;
 | |
| 	u32 rir_way;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1) Get TOLM/TOHM ranges
 | |
| 	 */
 | |
| 
 | |
| 	pvt->tolm = pvt->info.get_tolm(pvt);
 | |
| 	tmp_mb = (1 + pvt->tolm) >> 20;
 | |
| 
 | |
| 	gb = div_u64_rem(tmp_mb, 1024, &mb);
 | |
| 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
 | |
| 		gb, (mb*1000)/1024, (u64)pvt->tolm);
 | |
| 
 | |
| 	/* Address range is already 45:25 */
 | |
| 	pvt->tohm = pvt->info.get_tohm(pvt);
 | |
| 	tmp_mb = (1 + pvt->tohm) >> 20;
 | |
| 
 | |
| 	gb = div_u64_rem(tmp_mb, 1024, &mb);
 | |
| 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
 | |
| 		gb, (mb*1000)/1024, (u64)pvt->tohm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2) Get SAD range and SAD Interleave list
 | |
| 	 * TAD registers contain the interleave wayness. However, it
 | |
| 	 * seems simpler to just discover it indirectly, with the
 | |
| 	 * algorithm bellow.
 | |
| 	 */
 | |
| 	prv = 0;
 | |
| 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
 | |
| 		/* SAD_LIMIT Address range is 45:26 */
 | |
| 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
 | |
| 				      ®);
 | |
| 		limit = pvt->info.sad_limit(reg);
 | |
| 
 | |
| 		if (!DRAM_RULE_ENABLE(reg))
 | |
| 			continue;
 | |
| 
 | |
| 		if (limit <= prv)
 | |
| 			break;
 | |
| 
 | |
| 		tmp_mb = (limit + 1) >> 20;
 | |
| 		gb = div_u64_rem(tmp_mb, 1024, &mb);
 | |
| 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
 | |
| 			 n_sads,
 | |
| 			 show_dram_attr(pvt->info.dram_attr(reg)),
 | |
| 			 gb, (mb*1000)/1024,
 | |
| 			 ((u64)tmp_mb) << 20L,
 | |
| 			 pvt->info.show_interleave_mode(reg),
 | |
| 			 reg);
 | |
| 		prv = limit;
 | |
| 
 | |
| 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
 | |
| 				      ®);
 | |
| 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
 | |
| 		for (j = 0; j < 8; j++) {
 | |
| 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
 | |
| 			if (j > 0 && sad_interl == pkg)
 | |
| 				break;
 | |
| 
 | |
| 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
 | |
| 				 n_sads, j, pkg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pvt->info.type == KNIGHTS_LANDING)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 3) Get TAD range
 | |
| 	 */
 | |
| 	prv = 0;
 | |
| 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
 | |
| 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
 | |
| 				      ®);
 | |
| 		limit = TAD_LIMIT(reg);
 | |
| 		if (limit <= prv)
 | |
| 			break;
 | |
| 		tmp_mb = (limit + 1) >> 20;
 | |
| 
 | |
| 		gb = div_u64_rem(tmp_mb, 1024, &mb);
 | |
| 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
 | |
| 			 n_tads, gb, (mb*1000)/1024,
 | |
| 			 ((u64)tmp_mb) << 20L,
 | |
| 			 (u32)(1 << TAD_SOCK(reg)),
 | |
| 			 (u32)TAD_CH(reg) + 1,
 | |
| 			 (u32)TAD_TGT0(reg),
 | |
| 			 (u32)TAD_TGT1(reg),
 | |
| 			 (u32)TAD_TGT2(reg),
 | |
| 			 (u32)TAD_TGT3(reg),
 | |
| 			 reg);
 | |
| 		prv = limit;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 4) Get TAD offsets, per each channel
 | |
| 	 */
 | |
| 	for (i = 0; i < NUM_CHANNELS; i++) {
 | |
| 		if (!pvt->channel[i].dimms)
 | |
| 			continue;
 | |
| 		for (j = 0; j < n_tads; j++) {
 | |
| 			pci_read_config_dword(pvt->pci_tad[i],
 | |
| 					      tad_ch_nilv_offset[j],
 | |
| 					      ®);
 | |
| 			tmp_mb = TAD_OFFSET(reg) >> 20;
 | |
| 			gb = div_u64_rem(tmp_mb, 1024, &mb);
 | |
| 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
 | |
| 				 i, j,
 | |
| 				 gb, (mb*1000)/1024,
 | |
| 				 ((u64)tmp_mb) << 20L,
 | |
| 				 reg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 6) Get RIR Wayness/Limit, per each channel
 | |
| 	 */
 | |
| 	for (i = 0; i < NUM_CHANNELS; i++) {
 | |
| 		if (!pvt->channel[i].dimms)
 | |
| 			continue;
 | |
| 		for (j = 0; j < MAX_RIR_RANGES; j++) {
 | |
| 			pci_read_config_dword(pvt->pci_tad[i],
 | |
| 					      rir_way_limit[j],
 | |
| 					      ®);
 | |
| 
 | |
| 			if (!IS_RIR_VALID(reg))
 | |
| 				continue;
 | |
| 
 | |
| 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
 | |
| 			rir_way = 1 << RIR_WAY(reg);
 | |
| 			gb = div_u64_rem(tmp_mb, 1024, &mb);
 | |
| 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
 | |
| 				 i, j,
 | |
| 				 gb, (mb*1000)/1024,
 | |
| 				 ((u64)tmp_mb) << 20L,
 | |
| 				 rir_way,
 | |
| 				 reg);
 | |
| 
 | |
| 			for (k = 0; k < rir_way; k++) {
 | |
| 				pci_read_config_dword(pvt->pci_tad[i],
 | |
| 						      rir_offset[j][k],
 | |
| 						      ®);
 | |
| 				tmp_mb = RIR_OFFSET(reg) << 6;
 | |
| 
 | |
| 				gb = div_u64_rem(tmp_mb, 1024, &mb);
 | |
| 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
 | |
| 					 i, j, k,
 | |
| 					 gb, (mb*1000)/1024,
 | |
| 					 ((u64)tmp_mb) << 20L,
 | |
| 					 (u32)RIR_RNK_TGT(reg),
 | |
| 					 reg);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 | |
| 		if (sbridge_dev->node_id == node_id)
 | |
| 			return sbridge_dev->mci;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int get_memory_error_data(struct mem_ctl_info *mci,
 | |
| 				 u64 addr,
 | |
| 				 u8 *socket, u8 *ha,
 | |
| 				 long *channel_mask,
 | |
| 				 u8 *rank,
 | |
| 				 char **area_type, char *msg)
 | |
| {
 | |
| 	struct mem_ctl_info	*new_mci;
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct pci_dev		*pci_ha;
 | |
| 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
 | |
| 	int			sad_interl, idx, base_ch;
 | |
| 	int			interleave_mode, shiftup = 0;
 | |
| 	unsigned		sad_interleave[pvt->info.max_interleave];
 | |
| 	u32			reg, dram_rule;
 | |
| 	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
 | |
| 	u32			tad_offset;
 | |
| 	u32			rir_way;
 | |
| 	u32			mb, gb;
 | |
| 	u64			ch_addr, offset, limit = 0, prv = 0;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 0) Check if the address is at special memory ranges
 | |
| 	 * The check bellow is probably enough to fill all cases where
 | |
| 	 * the error is not inside a memory, except for the legacy
 | |
| 	 * range (e. g. VGA addresses). It is unlikely, however, that the
 | |
| 	 * memory controller would generate an error on that range.
 | |
| 	 */
 | |
| 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
 | |
| 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (addr >= (u64)pvt->tohm) {
 | |
| 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1) Get socket
 | |
| 	 */
 | |
| 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
 | |
| 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
 | |
| 				      ®);
 | |
| 
 | |
| 		if (!DRAM_RULE_ENABLE(reg))
 | |
| 			continue;
 | |
| 
 | |
| 		limit = pvt->info.sad_limit(reg);
 | |
| 		if (limit <= prv) {
 | |
| 			sprintf(msg, "Can't discover the memory socket");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if  (addr <= limit)
 | |
| 			break;
 | |
| 		prv = limit;
 | |
| 	}
 | |
| 	if (n_sads == pvt->info.max_sad) {
 | |
| 		sprintf(msg, "Can't discover the memory socket");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	dram_rule = reg;
 | |
| 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
 | |
| 	interleave_mode = pvt->info.interleave_mode(dram_rule);
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
 | |
| 			      ®);
 | |
| 
 | |
| 	if (pvt->info.type == SANDY_BRIDGE) {
 | |
| 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
 | |
| 		for (sad_way = 0; sad_way < 8; sad_way++) {
 | |
| 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
 | |
| 			if (sad_way > 0 && sad_interl == pkg)
 | |
| 				break;
 | |
| 			sad_interleave[sad_way] = pkg;
 | |
| 			edac_dbg(0, "SAD interleave #%d: %d\n",
 | |
| 				 sad_way, sad_interleave[sad_way]);
 | |
| 		}
 | |
| 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
 | |
| 			 pvt->sbridge_dev->mc,
 | |
| 			 n_sads,
 | |
| 			 addr,
 | |
| 			 limit,
 | |
| 			 sad_way + 7,
 | |
| 			 !interleave_mode ? "" : "XOR[18:16]");
 | |
| 		if (interleave_mode)
 | |
| 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
 | |
| 		else
 | |
| 			idx = (addr >> 6) & 7;
 | |
| 		switch (sad_way) {
 | |
| 		case 1:
 | |
| 			idx = 0;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			idx = idx & 1;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			idx = idx & 3;
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			break;
 | |
| 		default:
 | |
| 			sprintf(msg, "Can't discover socket interleave");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		*socket = sad_interleave[idx];
 | |
| 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
 | |
| 			 idx, sad_way, *socket);
 | |
| 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
 | |
| 		int bits, a7mode = A7MODE(dram_rule);
 | |
| 
 | |
| 		if (a7mode) {
 | |
| 			/* A7 mode swaps P9 with P6 */
 | |
| 			bits = GET_BITFIELD(addr, 7, 8) << 1;
 | |
| 			bits |= GET_BITFIELD(addr, 9, 9);
 | |
| 		} else
 | |
| 			bits = GET_BITFIELD(addr, 6, 8);
 | |
| 
 | |
| 		if (interleave_mode == 0) {
 | |
| 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
 | |
| 			idx = GET_BITFIELD(addr, 16, 18);
 | |
| 			idx ^= bits;
 | |
| 		} else
 | |
| 			idx = bits;
 | |
| 
 | |
| 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
 | |
| 		*socket = sad_pkg_socket(pkg);
 | |
| 		sad_ha = sad_pkg_ha(pkg);
 | |
| 		if (sad_ha)
 | |
| 			ch_add = 4;
 | |
| 
 | |
| 		if (a7mode) {
 | |
| 			/* MCChanShiftUpEnable */
 | |
| 			pci_read_config_dword(pvt->pci_ha0,
 | |
| 					      HASWELL_HASYSDEFEATURE2, ®);
 | |
| 			shiftup = GET_BITFIELD(reg, 22, 22);
 | |
| 		}
 | |
| 
 | |
| 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
 | |
| 			 idx, *socket, sad_ha, shiftup);
 | |
| 	} else {
 | |
| 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
 | |
| 		idx = (addr >> 6) & 7;
 | |
| 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
 | |
| 		*socket = sad_pkg_socket(pkg);
 | |
| 		sad_ha = sad_pkg_ha(pkg);
 | |
| 		if (sad_ha)
 | |
| 			ch_add = 4;
 | |
| 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
 | |
| 			 idx, *socket, sad_ha);
 | |
| 	}
 | |
| 
 | |
| 	*ha = sad_ha;
 | |
| 
 | |
| 	/*
 | |
| 	 * Move to the proper node structure, in order to access the
 | |
| 	 * right PCI registers
 | |
| 	 */
 | |
| 	new_mci = get_mci_for_node_id(*socket);
 | |
| 	if (!new_mci) {
 | |
| 		sprintf(msg, "Struct for socket #%u wasn't initialized",
 | |
| 			*socket);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	mci = new_mci;
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2) Get memory channel
 | |
| 	 */
 | |
| 	prv = 0;
 | |
| 	if (pvt->info.type == SANDY_BRIDGE)
 | |
| 		pci_ha = pvt->pci_ha0;
 | |
| 	else {
 | |
| 		if (sad_ha)
 | |
| 			pci_ha = pvt->pci_ha1;
 | |
| 		else
 | |
| 			pci_ha = pvt->pci_ha0;
 | |
| 	}
 | |
| 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
 | |
| 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®);
 | |
| 		limit = TAD_LIMIT(reg);
 | |
| 		if (limit <= prv) {
 | |
| 			sprintf(msg, "Can't discover the memory channel");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if  (addr <= limit)
 | |
| 			break;
 | |
| 		prv = limit;
 | |
| 	}
 | |
| 	if (n_tads == MAX_TAD) {
 | |
| 		sprintf(msg, "Can't discover the memory channel");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ch_way = TAD_CH(reg) + 1;
 | |
| 	sck_way = 1 << TAD_SOCK(reg);
 | |
| 
 | |
| 	if (ch_way == 3)
 | |
| 		idx = addr >> 6;
 | |
| 	else
 | |
| 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
 | |
| 	idx = idx % ch_way;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
 | |
| 	 */
 | |
| 	switch (idx) {
 | |
| 	case 0:
 | |
| 		base_ch = TAD_TGT0(reg);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		base_ch = TAD_TGT1(reg);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		base_ch = TAD_TGT2(reg);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		base_ch = TAD_TGT3(reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		sprintf(msg, "Can't discover the TAD target");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	*channel_mask = 1 << base_ch;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
 | |
| 				tad_ch_nilv_offset[n_tads],
 | |
| 				&tad_offset);
 | |
| 
 | |
| 	if (pvt->is_mirrored) {
 | |
| 		*channel_mask |= 1 << ((base_ch + 2) % 4);
 | |
| 		switch(ch_way) {
 | |
| 		case 2:
 | |
| 		case 4:
 | |
| 			sck_xch = 1 << sck_way * (ch_way >> 1);
 | |
| 			break;
 | |
| 		default:
 | |
| 			sprintf(msg, "Invalid mirror set. Can't decode addr");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else
 | |
| 		sck_xch = (1 << sck_way) * ch_way;
 | |
| 
 | |
| 	if (pvt->is_lockstep)
 | |
| 		*channel_mask |= 1 << ((base_ch + 1) % 4);
 | |
| 
 | |
| 	offset = TAD_OFFSET(tad_offset);
 | |
| 
 | |
| 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
 | |
| 		 n_tads,
 | |
| 		 addr,
 | |
| 		 limit,
 | |
| 		 sck_way,
 | |
| 		 ch_way,
 | |
| 		 offset,
 | |
| 		 idx,
 | |
| 		 base_ch,
 | |
| 		 *channel_mask);
 | |
| 
 | |
| 	/* Calculate channel address */
 | |
| 	/* Remove the TAD offset */
 | |
| 
 | |
| 	if (offset > addr) {
 | |
| 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
 | |
| 			offset, addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ch_addr = addr - offset;
 | |
| 	ch_addr >>= (6 + shiftup);
 | |
| 	ch_addr /= ch_way * sck_way;
 | |
| 	ch_addr <<= (6 + shiftup);
 | |
| 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 3) Decode rank
 | |
| 	 */
 | |
| 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
 | |
| 		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
 | |
| 				      rir_way_limit[n_rir],
 | |
| 				      ®);
 | |
| 
 | |
| 		if (!IS_RIR_VALID(reg))
 | |
| 			continue;
 | |
| 
 | |
| 		limit = pvt->info.rir_limit(reg);
 | |
| 		gb = div_u64_rem(limit >> 20, 1024, &mb);
 | |
| 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
 | |
| 			 n_rir,
 | |
| 			 gb, (mb*1000)/1024,
 | |
| 			 limit,
 | |
| 			 1 << RIR_WAY(reg));
 | |
| 		if  (ch_addr <= limit)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (n_rir == MAX_RIR_RANGES) {
 | |
| 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
 | |
| 			ch_addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	rir_way = RIR_WAY(reg);
 | |
| 
 | |
| 	if (pvt->is_close_pg)
 | |
| 		idx = (ch_addr >> 6);
 | |
| 	else
 | |
| 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
 | |
| 	idx %= 1 << rir_way;
 | |
| 
 | |
| 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
 | |
| 			      rir_offset[n_rir][idx],
 | |
| 			      ®);
 | |
| 	*rank = RIR_RNK_TGT(reg);
 | |
| 
 | |
| 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
 | |
| 		 n_rir,
 | |
| 		 ch_addr,
 | |
| 		 limit,
 | |
| 		 rir_way,
 | |
| 		 idx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| 	Device initialization routines: put/get, init/exit
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  *	sbridge_put_all_devices	'put' all the devices that we have
 | |
|  *				reserved via 'get'
 | |
|  */
 | |
| static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	edac_dbg(0, "\n");
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		struct pci_dev *pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
 | |
| 			 pdev->bus->number,
 | |
| 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 | |
| 		pci_dev_put(pdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sbridge_put_all_devices(void)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
 | |
| 		sbridge_put_devices(sbridge_dev);
 | |
| 		free_sbridge_dev(sbridge_dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int sbridge_get_onedevice(struct pci_dev **prev,
 | |
| 				 u8 *num_mc,
 | |
| 				 const struct pci_id_table *table,
 | |
| 				 const unsigned devno,
 | |
| 				 const int multi_bus)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 	const struct pci_id_descr *dev_descr = &table->descr[devno];
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 	u8 bus = 0;
 | |
| 
 | |
| 	sbridge_printk(KERN_DEBUG,
 | |
| 		"Seeking for: PCI ID %04x:%04x\n",
 | |
| 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 
 | |
| 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 			      dev_descr->dev_id, *prev);
 | |
| 
 | |
| 	if (!pdev) {
 | |
| 		if (*prev) {
 | |
| 			*prev = pdev;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (dev_descr->optional)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* if the HA wasn't found */
 | |
| 		if (devno == 0)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		sbridge_printk(KERN_INFO,
 | |
| 			"Device not found: %04x:%04x\n",
 | |
| 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 
 | |
| 		/* End of list, leave */
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	bus = pdev->bus->number;
 | |
| 
 | |
| 	sbridge_dev = get_sbridge_dev(bus, multi_bus);
 | |
| 	if (!sbridge_dev) {
 | |
| 		sbridge_dev = alloc_sbridge_dev(bus, table);
 | |
| 		if (!sbridge_dev) {
 | |
| 			pci_dev_put(pdev);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		(*num_mc)++;
 | |
| 	}
 | |
| 
 | |
| 	if (sbridge_dev->pdev[devno]) {
 | |
| 		sbridge_printk(KERN_ERR,
 | |
| 			"Duplicated device for %04x:%04x\n",
 | |
| 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 		pci_dev_put(pdev);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	sbridge_dev->pdev[devno] = pdev;
 | |
| 
 | |
| 	/* Be sure that the device is enabled */
 | |
| 	if (unlikely(pci_enable_device(pdev) < 0)) {
 | |
| 		sbridge_printk(KERN_ERR,
 | |
| 			"Couldn't enable %04x:%04x\n",
 | |
| 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(0, "Detected %04x:%04x\n",
 | |
| 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
 | |
| 
 | |
| 	/*
 | |
| 	 * As stated on drivers/pci/search.c, the reference count for
 | |
| 	 * @from is always decremented if it is not %NULL. So, as we need
 | |
| 	 * to get all devices up to null, we need to do a get for the device
 | |
| 	 */
 | |
| 	pci_dev_get(pdev);
 | |
| 
 | |
| 	*prev = pdev;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
 | |
|  *			     devices we want to reference for this driver.
 | |
|  * @num_mc: pointer to the memory controllers count, to be incremented in case
 | |
|  *	    of success.
 | |
|  * @table: model specific table
 | |
|  * @allow_dups: allow for multiple devices to exist with the same device id
 | |
|  *              (as implemented, this isn't expected to work correctly in the
 | |
|  *              multi-socket case).
 | |
|  * @multi_bus: don't assume devices on different buses belong to different
 | |
|  *             memory controllers.
 | |
|  *
 | |
|  * returns 0 in case of success or error code
 | |
|  */
 | |
| static int sbridge_get_all_devices_full(u8 *num_mc,
 | |
| 					const struct pci_id_table *table,
 | |
| 					int allow_dups,
 | |
| 					int multi_bus)
 | |
| {
 | |
| 	int i, rc;
 | |
| 	struct pci_dev *pdev = NULL;
 | |
| 
 | |
| 	while (table && table->descr) {
 | |
| 		for (i = 0; i < table->n_devs; i++) {
 | |
| 			if (!allow_dups || i == 0 ||
 | |
| 					table->descr[i].dev_id !=
 | |
| 						table->descr[i-1].dev_id) {
 | |
| 				pdev = NULL;
 | |
| 			}
 | |
| 			do {
 | |
| 				rc = sbridge_get_onedevice(&pdev, num_mc,
 | |
| 							   table, i, multi_bus);
 | |
| 				if (rc < 0) {
 | |
| 					if (i == 0) {
 | |
| 						i = table->n_devs;
 | |
| 						break;
 | |
| 					}
 | |
| 					sbridge_put_all_devices();
 | |
| 					return -ENODEV;
 | |
| 				}
 | |
| 			} while (pdev && !allow_dups);
 | |
| 		}
 | |
| 		table++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define sbridge_get_all_devices(num_mc, table) \
 | |
| 		sbridge_get_all_devices_full(num_mc, table, 0, 0)
 | |
| #define sbridge_get_all_devices_knl(num_mc, table) \
 | |
| 		sbridge_get_all_devices_full(num_mc, table, 1, 1)
 | |
| 
 | |
| static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
 | |
| 				 struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct pci_dev *pdev;
 | |
| 	u8 saw_chan_mask = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (pdev->device) {
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
 | |
| 			pvt->pci_sad0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
 | |
| 			pvt->pci_sad1 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
 | |
| 			pvt->pci_br0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
 | |
| 			pvt->pci_ha0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
 | |
| 			pvt->pci_ta = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
 | |
| 			pvt->pci_ras = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
 | |
| 		{
 | |
| 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
 | |
| 			pvt->pci_tad[id] = pdev;
 | |
| 			saw_chan_mask |= 1 << id;
 | |
| 		}
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
 | |
| 			pvt->pci_ddrio = pdev;
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
 | |
| 			 pdev->vendor, pdev->device,
 | |
| 			 sbridge_dev->bus,
 | |
| 			 pdev);
 | |
| 	}
 | |
| 
 | |
| 	/* Check if everything were registered */
 | |
| 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
 | |
| 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
 | |
| 		goto enodev;
 | |
| 
 | |
| 	if (saw_chan_mask != 0x0f)
 | |
| 		goto enodev;
 | |
| 	return 0;
 | |
| 
 | |
| enodev:
 | |
| 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
 | |
| 	return -ENODEV;
 | |
| 
 | |
| error:
 | |
| 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
 | |
| 		       PCI_VENDOR_ID_INTEL, pdev->device);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
 | |
| 				 struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct pci_dev *pdev;
 | |
| 	u8 saw_chan_mask = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (pdev->device) {
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
 | |
| 			pvt->pci_ha0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
 | |
| 			pvt->pci_ta = pdev;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
 | |
| 			pvt->pci_ras = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
 | |
| 		{
 | |
| 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
 | |
| 			pvt->pci_tad[id] = pdev;
 | |
| 			saw_chan_mask |= 1 << id;
 | |
| 		}
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
 | |
| 			pvt->pci_ddrio = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
 | |
| 			pvt->pci_ddrio = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
 | |
| 			pvt->pci_sad0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
 | |
| 			pvt->pci_br0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
 | |
| 			pvt->pci_br1 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
 | |
| 			pvt->pci_ha1 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
 | |
| 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
 | |
| 		{
 | |
| 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
 | |
| 			pvt->pci_tad[id] = pdev;
 | |
| 			saw_chan_mask |= 1 << id;
 | |
| 		}
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
 | |
| 			 sbridge_dev->bus,
 | |
| 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
 | |
| 			 pdev);
 | |
| 	}
 | |
| 
 | |
| 	/* Check if everything were registered */
 | |
| 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
 | |
| 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
 | |
| 	    !pvt->pci_ta)
 | |
| 		goto enodev;
 | |
| 
 | |
| 	if (saw_chan_mask != 0x0f && /* -EN */
 | |
| 	    saw_chan_mask != 0x33 && /* -EP */
 | |
| 	    saw_chan_mask != 0xff)   /* -EX */
 | |
| 		goto enodev;
 | |
| 	return 0;
 | |
| 
 | |
| enodev:
 | |
| 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
 | |
| 	return -ENODEV;
 | |
| 
 | |
| error:
 | |
| 	sbridge_printk(KERN_ERR,
 | |
| 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
 | |
| 			pdev->device);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
 | |
| 				 struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct pci_dev *pdev;
 | |
| 	u8 saw_chan_mask = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* there's only one device per system; not tied to any bus */
 | |
| 	if (pvt->info.pci_vtd == NULL)
 | |
| 		/* result will be checked later */
 | |
| 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
 | |
| 						   NULL);
 | |
| 
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (pdev->device) {
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
 | |
| 			pvt->pci_sad0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
 | |
| 			pvt->pci_sad1 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
 | |
| 			pvt->pci_ha0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
 | |
| 			pvt->pci_ta = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
 | |
| 			pvt->pci_ras = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
 | |
| 		{
 | |
| 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
 | |
| 
 | |
| 			pvt->pci_tad[id] = pdev;
 | |
| 			saw_chan_mask |= 1 << id;
 | |
| 		}
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
 | |
| 		{
 | |
| 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
 | |
| 
 | |
| 			pvt->pci_tad[id] = pdev;
 | |
| 			saw_chan_mask |= 1 << id;
 | |
| 		}
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
 | |
| 			if (!pvt->pci_ddrio)
 | |
| 				pvt->pci_ddrio = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
 | |
| 			pvt->pci_ha1 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
 | |
| 			pvt->pci_ha1_ta = pdev;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
 | |
| 			 sbridge_dev->bus,
 | |
| 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
 | |
| 			 pdev);
 | |
| 	}
 | |
| 
 | |
| 	/* Check if everything were registered */
 | |
| 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
 | |
| 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
 | |
| 		goto enodev;
 | |
| 
 | |
| 	if (saw_chan_mask != 0x0f && /* -EN */
 | |
| 	    saw_chan_mask != 0x33 && /* -EP */
 | |
| 	    saw_chan_mask != 0xff)   /* -EX */
 | |
| 		goto enodev;
 | |
| 	return 0;
 | |
| 
 | |
| enodev:
 | |
| 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
 | |
| 				 struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct pci_dev *pdev;
 | |
| 	u8 saw_chan_mask = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* there's only one device per system; not tied to any bus */
 | |
| 	if (pvt->info.pci_vtd == NULL)
 | |
| 		/* result will be checked later */
 | |
| 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
 | |
| 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
 | |
| 						   NULL);
 | |
| 
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (pdev->device) {
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
 | |
| 			pvt->pci_sad0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
 | |
| 			pvt->pci_sad1 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
 | |
| 			pvt->pci_ha0 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
 | |
| 			pvt->pci_ta = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
 | |
| 			pvt->pci_ras = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
 | |
| 		{
 | |
| 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
 | |
| 			pvt->pci_tad[id] = pdev;
 | |
| 			saw_chan_mask |= 1 << id;
 | |
| 		}
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
 | |
| 		{
 | |
| 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
 | |
| 			pvt->pci_tad[id] = pdev;
 | |
| 			saw_chan_mask |= 1 << id;
 | |
| 		}
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
 | |
| 			pvt->pci_ddrio = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
 | |
| 			pvt->pci_ha1 = pdev;
 | |
| 			break;
 | |
| 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
 | |
| 			pvt->pci_ha1_ta = pdev;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
 | |
| 			 sbridge_dev->bus,
 | |
| 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
 | |
| 			 pdev);
 | |
| 	}
 | |
| 
 | |
| 	/* Check if everything were registered */
 | |
| 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
 | |
| 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
 | |
| 		goto enodev;
 | |
| 
 | |
| 	if (saw_chan_mask != 0x0f && /* -EN */
 | |
| 	    saw_chan_mask != 0x33 && /* -EP */
 | |
| 	    saw_chan_mask != 0xff)   /* -EX */
 | |
| 		goto enodev;
 | |
| 	return 0;
 | |
| 
 | |
| enodev:
 | |
| 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int knl_mci_bind_devs(struct mem_ctl_info *mci,
 | |
| 			struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	struct pci_dev *pdev;
 | |
| 	int dev, func;
 | |
| 
 | |
| 	int i;
 | |
| 	int devidx;
 | |
| 
 | |
| 	for (i = 0; i < sbridge_dev->n_devs; i++) {
 | |
| 		pdev = sbridge_dev->pdev[i];
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Extract PCI device and function. */
 | |
| 		dev = (pdev->devfn >> 3) & 0x1f;
 | |
| 		func = pdev->devfn & 0x7;
 | |
| 
 | |
| 		switch (pdev->device) {
 | |
| 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
 | |
| 			if (dev == 8)
 | |
| 				pvt->knl.pci_mc0 = pdev;
 | |
| 			else if (dev == 9)
 | |
| 				pvt->knl.pci_mc1 = pdev;
 | |
| 			else {
 | |
| 				sbridge_printk(KERN_ERR,
 | |
| 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
 | |
| 					dev, func);
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
 | |
| 			pvt->pci_sad0 = pdev;
 | |
| 			break;
 | |
| 
 | |
| 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
 | |
| 			pvt->pci_sad1 = pdev;
 | |
| 			break;
 | |
| 
 | |
| 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
 | |
| 			/* There are one of these per tile, and range from
 | |
| 			 * 1.14.0 to 1.18.5.
 | |
| 			 */
 | |
| 			devidx = ((dev-14)*8)+func;
 | |
| 
 | |
| 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
 | |
| 				sbridge_printk(KERN_ERR,
 | |
| 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
 | |
| 					dev, func);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
 | |
| 
 | |
| 			pvt->knl.pci_cha[devidx] = pdev;
 | |
| 			break;
 | |
| 
 | |
| 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
 | |
| 			devidx = -1;
 | |
| 
 | |
| 			/*
 | |
| 			 *  MC0 channels 0-2 are device 9 function 2-4,
 | |
| 			 *  MC1 channels 3-5 are device 8 function 2-4.
 | |
| 			 */
 | |
| 
 | |
| 			if (dev == 9)
 | |
| 				devidx = func-2;
 | |
| 			else if (dev == 8)
 | |
| 				devidx = 3 + (func-2);
 | |
| 
 | |
| 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
 | |
| 				sbridge_printk(KERN_ERR,
 | |
| 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
 | |
| 					dev, func);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
 | |
| 			pvt->knl.pci_channel[devidx] = pdev;
 | |
| 			break;
 | |
| 
 | |
| 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
 | |
| 			pvt->knl.pci_mc_info = pdev;
 | |
| 			break;
 | |
| 
 | |
| 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
 | |
| 			pvt->pci_ta = pdev;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
 | |
| 				pdev->device);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
 | |
| 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
 | |
| 	    !pvt->pci_ta) {
 | |
| 		goto enodev;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
 | |
| 		if (!pvt->knl.pci_channel[i]) {
 | |
| 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
 | |
| 			goto enodev;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < KNL_MAX_CHAS; i++) {
 | |
| 		if (!pvt->knl.pci_cha[i]) {
 | |
| 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
 | |
| 			goto enodev;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| enodev:
 | |
| 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| 			Error check routines
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * While Sandy Bridge has error count registers, SMI BIOS read values from
 | |
|  * and resets the counters. So, they are not reliable for the OS to read
 | |
|  * from them. So, we have no option but to just trust on whatever MCE is
 | |
|  * telling us about the errors.
 | |
|  */
 | |
| static void sbridge_mce_output_error(struct mem_ctl_info *mci,
 | |
| 				    const struct mce *m)
 | |
| {
 | |
| 	struct mem_ctl_info *new_mci;
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	enum hw_event_mc_err_type tp_event;
 | |
| 	char *type, *optype, msg[256];
 | |
| 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
 | |
| 	bool overflow = GET_BITFIELD(m->status, 62, 62);
 | |
| 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
 | |
| 	bool recoverable;
 | |
| 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
 | |
| 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
 | |
| 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
 | |
| 	u32 channel = GET_BITFIELD(m->status, 0, 3);
 | |
| 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
 | |
| 	long channel_mask, first_channel;
 | |
| 	u8  rank, socket, ha;
 | |
| 	int rc, dimm;
 | |
| 	char *area_type = NULL;
 | |
| 
 | |
| 	if (pvt->info.type != SANDY_BRIDGE)
 | |
| 		recoverable = true;
 | |
| 	else
 | |
| 		recoverable = GET_BITFIELD(m->status, 56, 56);
 | |
| 
 | |
| 	if (uncorrected_error) {
 | |
| 		if (ripv) {
 | |
| 			type = "FATAL";
 | |
| 			tp_event = HW_EVENT_ERR_FATAL;
 | |
| 		} else {
 | |
| 			type = "NON_FATAL";
 | |
| 			tp_event = HW_EVENT_ERR_UNCORRECTED;
 | |
| 		}
 | |
| 	} else {
 | |
| 		type = "CORRECTED";
 | |
| 		tp_event = HW_EVENT_ERR_CORRECTED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
 | |
| 	 * memory errors should fit in this mask:
 | |
| 	 *	000f 0000 1mmm cccc (binary)
 | |
| 	 * where:
 | |
| 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
 | |
| 	 *	    won't be shown
 | |
| 	 *	mmm = error type
 | |
| 	 *	cccc = channel
 | |
| 	 * If the mask doesn't match, report an error to the parsing logic
 | |
| 	 */
 | |
| 	if (! ((errcode & 0xef80) == 0x80)) {
 | |
| 		optype = "Can't parse: it is not a mem";
 | |
| 	} else {
 | |
| 		switch (optypenum) {
 | |
| 		case 0:
 | |
| 			optype = "generic undef request error";
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			optype = "memory read error";
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			optype = "memory write error";
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			optype = "addr/cmd error";
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			optype = "memory scrubbing error";
 | |
| 			break;
 | |
| 		default:
 | |
| 			optype = "reserved";
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Only decode errors with an valid address (ADDRV) */
 | |
| 	if (!GET_BITFIELD(m->status, 58, 58))
 | |
| 		return;
 | |
| 
 | |
| 	if (pvt->info.type == KNIGHTS_LANDING) {
 | |
| 		if (channel == 14) {
 | |
| 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
 | |
| 				overflow ? " OVERFLOW" : "",
 | |
| 				(uncorrected_error && recoverable)
 | |
| 				? " recoverable" : "",
 | |
| 				mscod, errcode,
 | |
| 				m->bank);
 | |
| 		} else {
 | |
| 			char A = *("A");
 | |
| 
 | |
| 			channel = knl_channel_remap(channel);
 | |
| 			channel_mask = 1 << channel;
 | |
| 			snprintf(msg, sizeof(msg),
 | |
| 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
 | |
| 				overflow ? " OVERFLOW" : "",
 | |
| 				(uncorrected_error && recoverable)
 | |
| 				? " recoverable" : " ",
 | |
| 				mscod, errcode, channel, A + channel);
 | |
| 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
 | |
| 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
 | |
| 				channel, 0, -1,
 | |
| 				optype, msg);
 | |
| 		}
 | |
| 		return;
 | |
| 	} else {
 | |
| 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
 | |
| 				&channel_mask, &rank, &area_type, msg);
 | |
| 	}
 | |
| 
 | |
| 	if (rc < 0)
 | |
| 		goto err_parsing;
 | |
| 	new_mci = get_mci_for_node_id(socket);
 | |
| 	if (!new_mci) {
 | |
| 		strcpy(msg, "Error: socket got corrupted!");
 | |
| 		goto err_parsing;
 | |
| 	}
 | |
| 	mci = new_mci;
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
 | |
| 
 | |
| 	if (rank < 4)
 | |
| 		dimm = 0;
 | |
| 	else if (rank < 8)
 | |
| 		dimm = 1;
 | |
| 	else
 | |
| 		dimm = 2;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: On some memory configurations (mirror, lockstep), the
 | |
| 	 * Memory Controller can't point the error to a single DIMM. The
 | |
| 	 * EDAC core should be handling the channel mask, in order to point
 | |
| 	 * to the group of dimm's where the error may be happening.
 | |
| 	 */
 | |
| 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
 | |
| 		channel = first_channel;
 | |
| 
 | |
| 	snprintf(msg, sizeof(msg),
 | |
| 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
 | |
| 		 overflow ? " OVERFLOW" : "",
 | |
| 		 (uncorrected_error && recoverable) ? " recoverable" : "",
 | |
| 		 area_type,
 | |
| 		 mscod, errcode,
 | |
| 		 socket, ha,
 | |
| 		 channel_mask,
 | |
| 		 rank);
 | |
| 
 | |
| 	edac_dbg(0, "%s\n", msg);
 | |
| 
 | |
| 	/* FIXME: need support for channel mask */
 | |
| 
 | |
| 	if (channel == CHANNEL_UNSPECIFIED)
 | |
| 		channel = -1;
 | |
| 
 | |
| 	/* Call the helper to output message */
 | |
| 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
 | |
| 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
 | |
| 			     4*ha+channel, dimm, -1,
 | |
| 			     optype, msg);
 | |
| 	return;
 | |
| err_parsing:
 | |
| 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
 | |
| 			     -1, -1, -1,
 | |
| 			     msg, "");
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_check_error	Retrieve and process errors reported by the
 | |
|  *				hardware. Called by the Core module.
 | |
|  */
 | |
| static void sbridge_check_error(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct sbridge_pvt *pvt = mci->pvt_info;
 | |
| 	int i;
 | |
| 	unsigned count = 0;
 | |
| 	struct mce *m;
 | |
| 
 | |
| 	/*
 | |
| 	 * MCE first step: Copy all mce errors into a temporary buffer
 | |
| 	 * We use a double buffering here, to reduce the risk of
 | |
| 	 * loosing an error.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
 | |
| 		% MCE_LOG_LEN;
 | |
| 	if (!count)
 | |
| 		return;
 | |
| 
 | |
| 	m = pvt->mce_outentry;
 | |
| 	if (pvt->mce_in + count > MCE_LOG_LEN) {
 | |
| 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
 | |
| 
 | |
| 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
 | |
| 		smp_wmb();
 | |
| 		pvt->mce_in = 0;
 | |
| 		count -= l;
 | |
| 		m += l;
 | |
| 	}
 | |
| 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
 | |
| 	smp_wmb();
 | |
| 	pvt->mce_in += count;
 | |
| 
 | |
| 	smp_rmb();
 | |
| 	if (pvt->mce_overrun) {
 | |
| 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
 | |
| 			      pvt->mce_overrun);
 | |
| 		smp_wmb();
 | |
| 		pvt->mce_overrun = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * MCE second step: parse errors and display
 | |
| 	 */
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sbridge_mce_check_error	Replicates mcelog routine to get errors
 | |
|  *				This routine simply queues mcelog errors, and
 | |
|  *				return. The error itself should be handled later
 | |
|  *				by sbridge_check_error.
 | |
|  * WARNING: As this routine should be called at NMI time, extra care should
 | |
|  * be taken to avoid deadlocks, and to be as fast as possible.
 | |
|  */
 | |
| static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct mce *mce = (struct mce *)data;
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct sbridge_pvt *pvt;
 | |
| 	char *type;
 | |
| 
 | |
| 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	mci = get_mci_for_node_id(mce->socketid);
 | |
| 	if (!mci)
 | |
| 		return NOTIFY_BAD;
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Just let mcelog handle it if the error is
 | |
| 	 * outside the memory controller. A memory error
 | |
| 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
 | |
| 	 * bit 12 has an special meaning.
 | |
| 	 */
 | |
| 	if ((mce->status & 0xefff) >> 7 != 1)
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	if (mce->mcgstatus & MCG_STATUS_MCIP)
 | |
| 		type = "Exception";
 | |
| 	else
 | |
| 		type = "Event";
 | |
| 
 | |
| 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
 | |
| 
 | |
| 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
 | |
| 			  "Bank %d: %016Lx\n", mce->extcpu, type,
 | |
| 			  mce->mcgstatus, mce->bank, mce->status);
 | |
| 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
 | |
| 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
 | |
| 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
 | |
| 
 | |
| 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
 | |
| 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
 | |
| 			  mce->time, mce->socketid, mce->apicid);
 | |
| 
 | |
| 	smp_rmb();
 | |
| 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
 | |
| 		smp_wmb();
 | |
| 		pvt->mce_overrun++;
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy memory error at the ringbuffer */
 | |
| 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
 | |
| 	smp_wmb();
 | |
| 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
 | |
| 
 | |
| 	/* Handle fatal errors immediately */
 | |
| 	if (mce->mcgstatus & 1)
 | |
| 		sbridge_check_error(mci);
 | |
| 
 | |
| 	/* Advice mcelog that the error were handled */
 | |
| 	return NOTIFY_STOP;
 | |
| }
 | |
| 
 | |
| static struct notifier_block sbridge_mce_dec = {
 | |
| 	.notifier_call      = sbridge_mce_check_error,
 | |
| };
 | |
| 
 | |
| /****************************************************************************
 | |
| 			EDAC register/unregister logic
 | |
|  ****************************************************************************/
 | |
| 
 | |
| static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci = sbridge_dev->mci;
 | |
| 	struct sbridge_pvt *pvt;
 | |
| 
 | |
| 	if (unlikely(!mci || !mci->pvt_info)) {
 | |
| 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
 | |
| 
 | |
| 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 
 | |
| 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
 | |
| 		 mci, &sbridge_dev->pdev[0]->dev);
 | |
| 
 | |
| 	/* Remove MC sysfs nodes */
 | |
| 	edac_mc_del_mc(mci->pdev);
 | |
| 
 | |
| 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
 | |
| 	kfree(mci->ctl_name);
 | |
| 	edac_mc_free(mci);
 | |
| 	sbridge_dev->mci = NULL;
 | |
| }
 | |
| 
 | |
| static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct edac_mc_layer layers[2];
 | |
| 	struct sbridge_pvt *pvt;
 | |
| 	struct pci_dev *pdev = sbridge_dev->pdev[0];
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Check the number of active and not disabled channels */
 | |
| 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
 | |
| 	if (unlikely(rc < 0))
 | |
| 		return rc;
 | |
| 
 | |
| 	/* allocate a new MC control structure */
 | |
| 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
 | |
| 	layers[0].size = type == KNIGHTS_LANDING ?
 | |
| 		KNL_MAX_CHANNELS : NUM_CHANNELS;
 | |
| 	layers[0].is_virt_csrow = false;
 | |
| 	layers[1].type = EDAC_MC_LAYER_SLOT;
 | |
| 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
 | |
| 	layers[1].is_virt_csrow = true;
 | |
| 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
 | |
| 			    sizeof(*pvt));
 | |
| 
 | |
| 	if (unlikely(!mci))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
 | |
| 		 mci, &pdev->dev);
 | |
| 
 | |
| 	pvt = mci->pvt_info;
 | |
| 	memset(pvt, 0, sizeof(*pvt));
 | |
| 
 | |
| 	/* Associate sbridge_dev and mci for future usage */
 | |
| 	pvt->sbridge_dev = sbridge_dev;
 | |
| 	sbridge_dev->mci = mci;
 | |
| 
 | |
| 	mci->mtype_cap = type == KNIGHTS_LANDING ?
 | |
| 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
 | |
| 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
 | |
| 	mci->edac_cap = EDAC_FLAG_NONE;
 | |
| 	mci->mod_name = "sbridge_edac.c";
 | |
| 	mci->mod_ver = SBRIDGE_REVISION;
 | |
| 	mci->dev_name = pci_name(pdev);
 | |
| 	mci->ctl_page_to_phys = NULL;
 | |
| 
 | |
| 	/* Set the function pointer to an actual operation function */
 | |
| 	mci->edac_check = sbridge_check_error;
 | |
| 
 | |
| 	pvt->info.type = type;
 | |
| 	switch (type) {
 | |
| 	case IVY_BRIDGE:
 | |
| 		pvt->info.rankcfgr = IB_RANK_CFG_A;
 | |
| 		pvt->info.get_tolm = ibridge_get_tolm;
 | |
| 		pvt->info.get_tohm = ibridge_get_tohm;
 | |
| 		pvt->info.dram_rule = ibridge_dram_rule;
 | |
| 		pvt->info.get_memory_type = get_memory_type;
 | |
| 		pvt->info.get_node_id = get_node_id;
 | |
| 		pvt->info.rir_limit = rir_limit;
 | |
| 		pvt->info.sad_limit = sad_limit;
 | |
| 		pvt->info.interleave_mode = interleave_mode;
 | |
| 		pvt->info.show_interleave_mode = show_interleave_mode;
 | |
| 		pvt->info.dram_attr = dram_attr;
 | |
| 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
 | |
| 		pvt->info.interleave_list = ibridge_interleave_list;
 | |
| 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
 | |
| 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
 | |
| 		pvt->info.get_width = ibridge_get_width;
 | |
| 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
 | |
| 
 | |
| 		/* Store pci devices at mci for faster access */
 | |
| 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
 | |
| 		if (unlikely(rc < 0))
 | |
| 			goto fail0;
 | |
| 		break;
 | |
| 	case SANDY_BRIDGE:
 | |
| 		pvt->info.rankcfgr = SB_RANK_CFG_A;
 | |
| 		pvt->info.get_tolm = sbridge_get_tolm;
 | |
| 		pvt->info.get_tohm = sbridge_get_tohm;
 | |
| 		pvt->info.dram_rule = sbridge_dram_rule;
 | |
| 		pvt->info.get_memory_type = get_memory_type;
 | |
| 		pvt->info.get_node_id = get_node_id;
 | |
| 		pvt->info.rir_limit = rir_limit;
 | |
| 		pvt->info.sad_limit = sad_limit;
 | |
| 		pvt->info.interleave_mode = interleave_mode;
 | |
| 		pvt->info.show_interleave_mode = show_interleave_mode;
 | |
| 		pvt->info.dram_attr = dram_attr;
 | |
| 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
 | |
| 		pvt->info.interleave_list = sbridge_interleave_list;
 | |
| 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
 | |
| 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
 | |
| 		pvt->info.get_width = sbridge_get_width;
 | |
| 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
 | |
| 
 | |
| 		/* Store pci devices at mci for faster access */
 | |
| 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
 | |
| 		if (unlikely(rc < 0))
 | |
| 			goto fail0;
 | |
| 		break;
 | |
| 	case HASWELL:
 | |
| 		/* rankcfgr isn't used */
 | |
| 		pvt->info.get_tolm = haswell_get_tolm;
 | |
| 		pvt->info.get_tohm = haswell_get_tohm;
 | |
| 		pvt->info.dram_rule = ibridge_dram_rule;
 | |
| 		pvt->info.get_memory_type = haswell_get_memory_type;
 | |
| 		pvt->info.get_node_id = haswell_get_node_id;
 | |
| 		pvt->info.rir_limit = haswell_rir_limit;
 | |
| 		pvt->info.sad_limit = sad_limit;
 | |
| 		pvt->info.interleave_mode = interleave_mode;
 | |
| 		pvt->info.show_interleave_mode = show_interleave_mode;
 | |
| 		pvt->info.dram_attr = dram_attr;
 | |
| 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
 | |
| 		pvt->info.interleave_list = ibridge_interleave_list;
 | |
| 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
 | |
| 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
 | |
| 		pvt->info.get_width = ibridge_get_width;
 | |
| 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
 | |
| 
 | |
| 		/* Store pci devices at mci for faster access */
 | |
| 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
 | |
| 		if (unlikely(rc < 0))
 | |
| 			goto fail0;
 | |
| 		break;
 | |
| 	case BROADWELL:
 | |
| 		/* rankcfgr isn't used */
 | |
| 		pvt->info.get_tolm = haswell_get_tolm;
 | |
| 		pvt->info.get_tohm = haswell_get_tohm;
 | |
| 		pvt->info.dram_rule = ibridge_dram_rule;
 | |
| 		pvt->info.get_memory_type = haswell_get_memory_type;
 | |
| 		pvt->info.get_node_id = haswell_get_node_id;
 | |
| 		pvt->info.rir_limit = haswell_rir_limit;
 | |
| 		pvt->info.sad_limit = sad_limit;
 | |
| 		pvt->info.interleave_mode = interleave_mode;
 | |
| 		pvt->info.show_interleave_mode = show_interleave_mode;
 | |
| 		pvt->info.dram_attr = dram_attr;
 | |
| 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
 | |
| 		pvt->info.interleave_list = ibridge_interleave_list;
 | |
| 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
 | |
| 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
 | |
| 		pvt->info.get_width = broadwell_get_width;
 | |
| 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
 | |
| 
 | |
| 		/* Store pci devices at mci for faster access */
 | |
| 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
 | |
| 		if (unlikely(rc < 0))
 | |
| 			goto fail0;
 | |
| 		break;
 | |
| 	case KNIGHTS_LANDING:
 | |
| 		/* pvt->info.rankcfgr == ??? */
 | |
| 		pvt->info.get_tolm = knl_get_tolm;
 | |
| 		pvt->info.get_tohm = knl_get_tohm;
 | |
| 		pvt->info.dram_rule = knl_dram_rule;
 | |
| 		pvt->info.get_memory_type = knl_get_memory_type;
 | |
| 		pvt->info.get_node_id = knl_get_node_id;
 | |
| 		pvt->info.rir_limit = NULL;
 | |
| 		pvt->info.sad_limit = knl_sad_limit;
 | |
| 		pvt->info.interleave_mode = knl_interleave_mode;
 | |
| 		pvt->info.show_interleave_mode = knl_show_interleave_mode;
 | |
| 		pvt->info.dram_attr = dram_attr_knl;
 | |
| 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
 | |
| 		pvt->info.interleave_list = knl_interleave_list;
 | |
| 		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
 | |
| 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
 | |
| 		pvt->info.get_width = knl_get_width;
 | |
| 		mci->ctl_name = kasprintf(GFP_KERNEL,
 | |
| 			"Knights Landing Socket#%d", mci->mc_idx);
 | |
| 
 | |
| 		rc = knl_mci_bind_devs(mci, sbridge_dev);
 | |
| 		if (unlikely(rc < 0))
 | |
| 			goto fail0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Get dimm basic config and the memory layout */
 | |
| 	get_dimm_config(mci);
 | |
| 	get_memory_layout(mci);
 | |
| 
 | |
| 	/* record ptr to the generic device */
 | |
| 	mci->pdev = &pdev->dev;
 | |
| 
 | |
| 	/* add this new MC control structure to EDAC's list of MCs */
 | |
| 	if (unlikely(edac_mc_add_mc(mci))) {
 | |
| 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
 | |
| 		rc = -EINVAL;
 | |
| 		goto fail0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail0:
 | |
| 	kfree(mci->ctl_name);
 | |
| 	edac_mc_free(mci);
 | |
| 	sbridge_dev->mci = NULL;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_probe	Probe for ONE instance of device to see if it is
 | |
|  *			present.
 | |
|  *	return:
 | |
|  *		0 for FOUND a device
 | |
|  *		< 0 for error code
 | |
|  */
 | |
| 
 | |
| static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
 | |
| {
 | |
| 	int rc = -ENODEV;
 | |
| 	u8 mc, num_mc = 0;
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 	enum type type = SANDY_BRIDGE;
 | |
| 
 | |
| 	/* get the pci devices we want to reserve for our use */
 | |
| 	mutex_lock(&sbridge_edac_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * All memory controllers are allocated at the first pass.
 | |
| 	 */
 | |
| 	if (unlikely(probed >= 1)) {
 | |
| 		mutex_unlock(&sbridge_edac_lock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	probed++;
 | |
| 
 | |
| 	switch (pdev->device) {
 | |
| 	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
 | |
| 		rc = sbridge_get_all_devices(&num_mc,
 | |
| 					pci_dev_descr_ibridge_table);
 | |
| 		type = IVY_BRIDGE;
 | |
| 		break;
 | |
| 	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
 | |
| 		rc = sbridge_get_all_devices(&num_mc,
 | |
| 					pci_dev_descr_sbridge_table);
 | |
| 		type = SANDY_BRIDGE;
 | |
| 		break;
 | |
| 	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
 | |
| 		rc = sbridge_get_all_devices(&num_mc,
 | |
| 					pci_dev_descr_haswell_table);
 | |
| 		type = HASWELL;
 | |
| 		break;
 | |
| 	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
 | |
| 		rc = sbridge_get_all_devices(&num_mc,
 | |
| 					pci_dev_descr_broadwell_table);
 | |
| 		type = BROADWELL;
 | |
| 	    break;
 | |
| 	case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
 | |
| 		rc = sbridge_get_all_devices_knl(&num_mc,
 | |
| 					pci_dev_descr_knl_table);
 | |
| 		type = KNIGHTS_LANDING;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (unlikely(rc < 0)) {
 | |
| 		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
 | |
| 		goto fail0;
 | |
| 	}
 | |
| 
 | |
| 	mc = 0;
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 | |
| 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
 | |
| 			 mc, mc + 1, num_mc);
 | |
| 
 | |
| 		sbridge_dev->mc = mc++;
 | |
| 		rc = sbridge_register_mci(sbridge_dev, type);
 | |
| 		if (unlikely(rc < 0))
 | |
| 			goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
 | |
| 
 | |
| 	mutex_unlock(&sbridge_edac_lock);
 | |
| 	return 0;
 | |
| 
 | |
| fail1:
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
 | |
| 		sbridge_unregister_mci(sbridge_dev);
 | |
| 
 | |
| 	sbridge_put_all_devices();
 | |
| fail0:
 | |
| 	mutex_unlock(&sbridge_edac_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_remove	destructor for one instance of device
 | |
|  *
 | |
|  */
 | |
| static void sbridge_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct sbridge_dev *sbridge_dev;
 | |
| 
 | |
| 	edac_dbg(0, "\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * we have a trouble here: pdev value for removal will be wrong, since
 | |
| 	 * it will point to the X58 register used to detect that the machine
 | |
| 	 * is a Nehalem or upper design. However, due to the way several PCI
 | |
| 	 * devices are grouped together to provide MC functionality, we need
 | |
| 	 * to use a different method for releasing the devices
 | |
| 	 */
 | |
| 
 | |
| 	mutex_lock(&sbridge_edac_lock);
 | |
| 
 | |
| 	if (unlikely(!probed)) {
 | |
| 		mutex_unlock(&sbridge_edac_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
 | |
| 		sbridge_unregister_mci(sbridge_dev);
 | |
| 
 | |
| 	/* Release PCI resources */
 | |
| 	sbridge_put_all_devices();
 | |
| 
 | |
| 	probed--;
 | |
| 
 | |
| 	mutex_unlock(&sbridge_edac_lock);
 | |
| }
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
 | |
| 
 | |
| /*
 | |
|  *	sbridge_driver	pci_driver structure for this module
 | |
|  *
 | |
|  */
 | |
| static struct pci_driver sbridge_driver = {
 | |
| 	.name     = "sbridge_edac",
 | |
| 	.probe    = sbridge_probe,
 | |
| 	.remove   = sbridge_remove,
 | |
| 	.id_table = sbridge_pci_tbl,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	sbridge_init		Module entry function
 | |
|  *			Try to initialize this module for its devices
 | |
|  */
 | |
| static int __init sbridge_init(void)
 | |
| {
 | |
| 	int pci_rc;
 | |
| 
 | |
| 	edac_dbg(2, "\n");
 | |
| 
 | |
| 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
 | |
| 	opstate_init();
 | |
| 
 | |
| 	pci_rc = pci_register_driver(&sbridge_driver);
 | |
| 	if (pci_rc >= 0) {
 | |
| 		mce_register_decode_chain(&sbridge_mce_dec);
 | |
| 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
 | |
| 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
 | |
| 		      pci_rc);
 | |
| 
 | |
| 	return pci_rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	sbridge_exit()	Module exit function
 | |
|  *			Unregister the driver
 | |
|  */
 | |
| static void __exit sbridge_exit(void)
 | |
| {
 | |
| 	edac_dbg(2, "\n");
 | |
| 	pci_unregister_driver(&sbridge_driver);
 | |
| 	mce_unregister_decode_chain(&sbridge_mce_dec);
 | |
| }
 | |
| 
 | |
| module_init(sbridge_init);
 | |
| module_exit(sbridge_exit);
 | |
| 
 | |
| module_param(edac_op_state, int, 0444);
 | |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Mauro Carvalho Chehab");
 | |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
 | |
| MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
 | |
| 		   SBRIDGE_REVISION);
 |