2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/net/rxrpc/rxkad.c
David Howells 06ea2c9c41 rxrpc: Fix alteration of headers whilst zerocopy pending
rxrpc: Fix alteration of headers whilst zerocopy pending

AF_RXRPC now uses MSG_SPLICE_PAGES to do zerocopy of the DATA packets when
it transmits them, but to reduce the number of descriptors required in the
DMA ring, it allocates a space for the protocol header in the memory
immediately before the data content so that it can include both in a single
descriptor.  This is used for either the main RX header or the smaller
jumbo subpacket header as appropriate:

  +----+------+
  | RX |      |
  +-+--+DATA  |
    |JH|      |
    +--+------+

Now, when it stitches a large jumbo packet together from a number of
individual DATA packets (each of which is 1412 bytes of data), it uses the
full RX header from the first and then the jumbo subpacket header for the
rest of the components:

  +---+--+------+--+------+--+------+--+------+--+------+--+------+
  |UDP|RX|DATA  |JH|DATA  |JH|DATA  |JH|DATA  |JH|DATA  |JH|DATA  |
  +---+--+------+--+------+--+------+--+------+--+------+--+------+

As mentioned, the main RX header and the jumbo header overlay one another
in memory and the formats don't match, so switching from one to the other
means rearranging the fields and adjusting the flags.

However, now that TLP has been included, it wants to retransmit the last
subpacket as a new data packet on its own, which means switching between
the header formats... and if the transmission is still pending, because of
the MSG_SPLICE_PAGES, we end up corrupting the jumbo subheader.

This has a variety of effects, with the RX service number overwriting the
jumbo checksum/key number field and the RX checksum overwriting the jumbo
flags - resulting in, at the very least, a confused connection-level abort
from the peer.

Fix this by leaving the jumbo header in the allocation with the data, but
allocating the RX header from the page frag allocator and concocting it on
the fly at the point of transmission as it does for ACK packets.

Fixes: 7c48266593 ("rxrpc: Implement RACK/TLP to deal with transmission stalls [RFC8985]")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Simon Horman <horms@kernel.org>
cc: linux-afs@lists.infradead.org
Link: https://patch.msgid.link/2181712.1739131675@warthog.procyon.org.uk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-02-11 16:53:41 -08:00

1283 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Kerberos-based RxRPC security
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/skcipher.h>
#include <linux/module.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/udp.h>
#include <linux/scatterlist.h>
#include <linux/ctype.h>
#include <linux/slab.h>
#include <linux/key-type.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include <keys/rxrpc-type.h>
#include "ar-internal.h"
#define RXKAD_VERSION 2
#define MAXKRB5TICKETLEN 1024
#define RXKAD_TKT_TYPE_KERBEROS_V5 256
#define ANAME_SZ 40 /* size of authentication name */
#define INST_SZ 40 /* size of principal's instance */
#define REALM_SZ 40 /* size of principal's auth domain */
#define SNAME_SZ 40 /* size of service name */
#define RXKAD_ALIGN 8
struct rxkad_level1_hdr {
__be32 data_size; /* true data size (excluding padding) */
};
struct rxkad_level2_hdr {
__be32 data_size; /* true data size (excluding padding) */
__be32 checksum; /* decrypted data checksum */
};
static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
struct crypto_sync_skcipher *ci);
/*
* this holds a pinned cipher so that keventd doesn't get called by the cipher
* alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
* packets
*/
static struct crypto_sync_skcipher *rxkad_ci;
static struct skcipher_request *rxkad_ci_req;
static DEFINE_MUTEX(rxkad_ci_mutex);
/*
* Parse the information from a server key
*
* The data should be the 8-byte secret key.
*/
static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
{
struct crypto_skcipher *ci;
if (prep->datalen != 8)
return -EINVAL;
memcpy(&prep->payload.data[2], prep->data, 8);
ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(ci)) {
_leave(" = %ld", PTR_ERR(ci));
return PTR_ERR(ci);
}
if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
BUG();
prep->payload.data[0] = ci;
_leave(" = 0");
return 0;
}
static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
{
if (prep->payload.data[0])
crypto_free_skcipher(prep->payload.data[0]);
}
static void rxkad_destroy_server_key(struct key *key)
{
if (key->payload.data[0]) {
crypto_free_skcipher(key->payload.data[0]);
key->payload.data[0] = NULL;
}
}
/*
* initialise connection security
*/
static int rxkad_init_connection_security(struct rxrpc_connection *conn,
struct rxrpc_key_token *token)
{
struct crypto_sync_skcipher *ci;
int ret;
_enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
conn->security_ix = token->security_index;
ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
if (IS_ERR(ci)) {
_debug("no cipher");
ret = PTR_ERR(ci);
goto error;
}
if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
sizeof(token->kad->session_key)) < 0)
BUG();
switch (conn->security_level) {
case RXRPC_SECURITY_PLAIN:
case RXRPC_SECURITY_AUTH:
case RXRPC_SECURITY_ENCRYPT:
break;
default:
ret = -EKEYREJECTED;
goto error;
}
ret = rxkad_prime_packet_security(conn, ci);
if (ret < 0)
goto error_ci;
conn->rxkad.cipher = ci;
return 0;
error_ci:
crypto_free_sync_skcipher(ci);
error:
_leave(" = %d", ret);
return ret;
}
/*
* Work out how much data we can put in a packet.
*/
static struct rxrpc_txbuf *rxkad_alloc_txbuf(struct rxrpc_call *call, size_t remain, gfp_t gfp)
{
struct rxrpc_txbuf *txb;
size_t shdr, alloc, limit, part;
remain = umin(remain, 65535 - sizeof(struct rxrpc_wire_header));
switch (call->conn->security_level) {
default:
alloc = umin(remain, RXRPC_JUMBO_DATALEN);
return rxrpc_alloc_data_txbuf(call, alloc, 1, gfp);
case RXRPC_SECURITY_AUTH:
shdr = sizeof(struct rxkad_level1_hdr);
break;
case RXRPC_SECURITY_ENCRYPT:
shdr = sizeof(struct rxkad_level2_hdr);
break;
}
limit = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN) - shdr;
if (remain < limit) {
part = remain;
alloc = round_up(shdr + part, RXKAD_ALIGN);
} else {
part = limit;
alloc = RXRPC_JUMBO_DATALEN;
}
txb = rxrpc_alloc_data_txbuf(call, alloc, RXKAD_ALIGN, gfp);
if (!txb)
return NULL;
txb->offset += shdr;
txb->space = part;
return txb;
}
/*
* prime the encryption state with the invariant parts of a connection's
* description
*/
static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
struct crypto_sync_skcipher *ci)
{
struct skcipher_request *req;
struct rxrpc_key_token *token;
struct scatterlist sg;
struct rxrpc_crypt iv;
__be32 *tmpbuf;
size_t tmpsize = 4 * sizeof(__be32);
_enter("");
if (!conn->key)
return 0;
tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
if (!tmpbuf)
return -ENOMEM;
req = skcipher_request_alloc(&ci->base, GFP_NOFS);
if (!req) {
kfree(tmpbuf);
return -ENOMEM;
}
token = conn->key->payload.data[0];
memcpy(&iv, token->kad->session_key, sizeof(iv));
tmpbuf[0] = htonl(conn->proto.epoch);
tmpbuf[1] = htonl(conn->proto.cid);
tmpbuf[2] = 0;
tmpbuf[3] = htonl(conn->security_ix);
sg_init_one(&sg, tmpbuf, tmpsize);
skcipher_request_set_sync_tfm(req, ci);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
crypto_skcipher_encrypt(req);
skcipher_request_free(req);
memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
kfree(tmpbuf);
_leave(" = 0");
return 0;
}
/*
* Allocate and prepare the crypto request on a call. For any particular call,
* this is called serially for the packets, so no lock should be necessary.
*/
static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
{
struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
return skcipher_request_alloc(tfm, GFP_NOFS);
}
/*
* Clean up the crypto on a call.
*/
static void rxkad_free_call_crypto(struct rxrpc_call *call)
{
}
/*
* partially encrypt a packet (level 1 security)
*/
static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
struct rxrpc_txbuf *txb,
struct skcipher_request *req)
{
struct rxkad_level1_hdr *hdr = txb->data;
struct rxrpc_crypt iv;
struct scatterlist sg;
size_t pad;
u16 check;
_enter("");
check = txb->seq ^ call->call_id;
hdr->data_size = htonl((u32)check << 16 | txb->len);
txb->pkt_len = sizeof(struct rxkad_level1_hdr) + txb->len;
pad = txb->pkt_len;
pad = RXKAD_ALIGN - pad;
pad &= RXKAD_ALIGN - 1;
if (pad) {
memset(txb->data + txb->offset, 0, pad);
txb->pkt_len += pad;
}
/* start the encryption afresh */
memset(&iv, 0, sizeof(iv));
sg_init_one(&sg, hdr, 8);
skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
_leave(" = 0");
return 0;
}
/*
* wholly encrypt a packet (level 2 security)
*/
static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
struct rxrpc_txbuf *txb,
struct skcipher_request *req)
{
const struct rxrpc_key_token *token;
struct rxkad_level2_hdr *rxkhdr = txb->data;
struct rxrpc_crypt iv;
struct scatterlist sg;
size_t content, pad;
u16 check;
int ret;
_enter("");
check = txb->seq ^ call->call_id;
rxkhdr->data_size = htonl(txb->len | (u32)check << 16);
rxkhdr->checksum = 0;
content = sizeof(struct rxkad_level2_hdr) + txb->len;
txb->pkt_len = round_up(content, RXKAD_ALIGN);
pad = txb->pkt_len - content;
if (pad)
memset(txb->data + txb->offset, 0, pad);
/* encrypt from the session key */
token = call->conn->key->payload.data[0];
memcpy(&iv, token->kad->session_key, sizeof(iv));
sg_init_one(&sg, rxkhdr, txb->pkt_len);
skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, &sg, &sg, txb->pkt_len, iv.x);
ret = crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
return ret;
}
/*
* checksum an RxRPC packet header
*/
static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb)
{
struct skcipher_request *req;
struct rxrpc_crypt iv;
struct scatterlist sg;
union {
__be32 buf[2];
} crypto __aligned(8);
u32 x, y;
int ret;
_enter("{%d{%x}},{#%u},%u,",
call->debug_id, key_serial(call->conn->key),
txb->seq, txb->len);
if (!call->conn->rxkad.cipher)
return 0;
ret = key_validate(call->conn->key);
if (ret < 0)
return ret;
req = rxkad_get_call_crypto(call);
if (!req)
return -ENOMEM;
/* continue encrypting from where we left off */
memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
/* calculate the security checksum */
x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
x |= txb->seq & 0x3fffffff;
crypto.buf[0] = htonl(call->call_id);
crypto.buf[1] = htonl(x);
sg_init_one(&sg, crypto.buf, 8);
skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
y = ntohl(crypto.buf[1]);
y = (y >> 16) & 0xffff;
if (y == 0)
y = 1; /* zero checksums are not permitted */
txb->cksum = htons(y);
switch (call->conn->security_level) {
case RXRPC_SECURITY_PLAIN:
txb->pkt_len = txb->len;
ret = 0;
break;
case RXRPC_SECURITY_AUTH:
ret = rxkad_secure_packet_auth(call, txb, req);
if (txb->alloc_size == RXRPC_JUMBO_DATALEN)
txb->jumboable = true;
break;
case RXRPC_SECURITY_ENCRYPT:
ret = rxkad_secure_packet_encrypt(call, txb, req);
if (txb->alloc_size == RXRPC_JUMBO_DATALEN)
txb->jumboable = true;
break;
default:
ret = -EPERM;
break;
}
/* Clear excess space in the packet */
if (txb->pkt_len < txb->alloc_size) {
size_t gap = txb->alloc_size - txb->pkt_len;
void *p = txb->data;
memset(p + txb->pkt_len, 0, gap);
}
skcipher_request_free(req);
_leave(" = %d [set %x]", ret, y);
return ret;
}
/*
* decrypt partial encryption on a packet (level 1 security)
*/
static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
rxrpc_seq_t seq,
struct skcipher_request *req)
{
struct rxkad_level1_hdr sechdr;
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_crypt iv;
struct scatterlist sg[16];
u32 data_size, buf;
u16 check;
int ret;
_enter("");
if (sp->len < 8)
return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
rxkad_abort_1_short_header);
/* Decrypt the skbuff in-place. TODO: We really want to decrypt
* directly into the target buffer.
*/
sg_init_table(sg, ARRAY_SIZE(sg));
ret = skb_to_sgvec(skb, sg, sp->offset, 8);
if (unlikely(ret < 0))
return ret;
/* start the decryption afresh */
memset(&iv, 0, sizeof(iv));
skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
crypto_skcipher_decrypt(req);
skcipher_request_zero(req);
/* Extract the decrypted packet length */
if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
rxkad_abort_1_short_encdata);
sp->offset += sizeof(sechdr);
sp->len -= sizeof(sechdr);
buf = ntohl(sechdr.data_size);
data_size = buf & 0xffff;
check = buf >> 16;
check ^= seq ^ call->call_id;
check &= 0xffff;
if (check != 0)
return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
rxkad_abort_1_short_check);
if (data_size > sp->len)
return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
rxkad_abort_1_short_data);
sp->len = data_size;
_leave(" = 0 [dlen=%x]", data_size);
return 0;
}
/*
* wholly decrypt a packet (level 2 security)
*/
static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
rxrpc_seq_t seq,
struct skcipher_request *req)
{
const struct rxrpc_key_token *token;
struct rxkad_level2_hdr sechdr;
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_crypt iv;
struct scatterlist _sg[4], *sg;
u32 data_size, buf;
u16 check;
int nsg, ret;
_enter(",{%d}", sp->len);
if (sp->len < 8)
return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
rxkad_abort_2_short_header);
/* Decrypt the skbuff in-place. TODO: We really want to decrypt
* directly into the target buffer.
*/
sg = _sg;
nsg = skb_shinfo(skb)->nr_frags + 1;
if (nsg <= 4) {
nsg = 4;
} else {
sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
if (!sg)
return -ENOMEM;
}
sg_init_table(sg, nsg);
ret = skb_to_sgvec(skb, sg, sp->offset, sp->len);
if (unlikely(ret < 0)) {
if (sg != _sg)
kfree(sg);
return ret;
}
/* decrypt from the session key */
token = call->conn->key->payload.data[0];
memcpy(&iv, token->kad->session_key, sizeof(iv));
skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x);
crypto_skcipher_decrypt(req);
skcipher_request_zero(req);
if (sg != _sg)
kfree(sg);
/* Extract the decrypted packet length */
if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
rxkad_abort_2_short_len);
sp->offset += sizeof(sechdr);
sp->len -= sizeof(sechdr);
buf = ntohl(sechdr.data_size);
data_size = buf & 0xffff;
check = buf >> 16;
check ^= seq ^ call->call_id;
check &= 0xffff;
if (check != 0)
return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
rxkad_abort_2_short_check);
if (data_size > sp->len)
return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
rxkad_abort_2_short_data);
sp->len = data_size;
_leave(" = 0 [dlen=%x]", data_size);
return 0;
}
/*
* Verify the security on a received packet and the subpackets therein.
*/
static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct skcipher_request *req;
struct rxrpc_crypt iv;
struct scatterlist sg;
union {
__be32 buf[2];
} crypto __aligned(8);
rxrpc_seq_t seq = sp->hdr.seq;
int ret;
u16 cksum;
u32 x, y;
_enter("{%d{%x}},{#%u}",
call->debug_id, key_serial(call->conn->key), seq);
if (!call->conn->rxkad.cipher)
return 0;
req = rxkad_get_call_crypto(call);
if (!req)
return -ENOMEM;
/* continue encrypting from where we left off */
memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
/* validate the security checksum */
x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
x |= seq & 0x3fffffff;
crypto.buf[0] = htonl(call->call_id);
crypto.buf[1] = htonl(x);
sg_init_one(&sg, crypto.buf, 8);
skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
y = ntohl(crypto.buf[1]);
cksum = (y >> 16) & 0xffff;
if (cksum == 0)
cksum = 1; /* zero checksums are not permitted */
if (cksum != sp->hdr.cksum) {
ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
rxkad_abort_bad_checksum);
goto out;
}
switch (call->conn->security_level) {
case RXRPC_SECURITY_PLAIN:
ret = 0;
break;
case RXRPC_SECURITY_AUTH:
ret = rxkad_verify_packet_1(call, skb, seq, req);
break;
case RXRPC_SECURITY_ENCRYPT:
ret = rxkad_verify_packet_2(call, skb, seq, req);
break;
default:
ret = -ENOANO;
break;
}
out:
skcipher_request_free(req);
return ret;
}
/*
* issue a challenge
*/
static int rxkad_issue_challenge(struct rxrpc_connection *conn)
{
struct rxkad_challenge challenge;
struct rxrpc_wire_header whdr;
struct msghdr msg;
struct kvec iov[2];
size_t len;
u32 serial;
int ret;
_enter("{%d}", conn->debug_id);
get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
challenge.version = htonl(2);
challenge.nonce = htonl(conn->rxkad.nonce);
challenge.min_level = htonl(0);
challenge.__padding = 0;
msg.msg_name = &conn->peer->srx.transport;
msg.msg_namelen = conn->peer->srx.transport_len;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
whdr.epoch = htonl(conn->proto.epoch);
whdr.cid = htonl(conn->proto.cid);
whdr.callNumber = 0;
whdr.seq = 0;
whdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
whdr.flags = conn->out_clientflag;
whdr.userStatus = 0;
whdr.securityIndex = conn->security_ix;
whdr._rsvd = 0;
whdr.serviceId = htons(conn->service_id);
iov[0].iov_base = &whdr;
iov[0].iov_len = sizeof(whdr);
iov[1].iov_base = &challenge;
iov[1].iov_len = sizeof(challenge);
len = iov[0].iov_len + iov[1].iov_len;
serial = rxrpc_get_next_serial(conn);
whdr.serial = htonl(serial);
ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len);
if (ret < 0) {
trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
rxrpc_tx_point_rxkad_challenge);
return -EAGAIN;
}
conn->peer->last_tx_at = ktime_get_seconds();
trace_rxrpc_tx_packet(conn->debug_id, &whdr,
rxrpc_tx_point_rxkad_challenge);
_leave(" = 0");
return 0;
}
/*
* send a Kerberos security response
*/
static int rxkad_send_response(struct rxrpc_connection *conn,
struct rxrpc_host_header *hdr,
struct rxkad_response *resp,
const struct rxkad_key *s2)
{
struct rxrpc_wire_header whdr;
struct msghdr msg;
struct kvec iov[3];
size_t len;
u32 serial;
int ret;
_enter("");
msg.msg_name = &conn->peer->srx.transport;
msg.msg_namelen = conn->peer->srx.transport_len;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
memset(&whdr, 0, sizeof(whdr));
whdr.epoch = htonl(hdr->epoch);
whdr.cid = htonl(hdr->cid);
whdr.type = RXRPC_PACKET_TYPE_RESPONSE;
whdr.flags = conn->out_clientflag;
whdr.securityIndex = hdr->securityIndex;
whdr.serviceId = htons(hdr->serviceId);
iov[0].iov_base = &whdr;
iov[0].iov_len = sizeof(whdr);
iov[1].iov_base = resp;
iov[1].iov_len = sizeof(*resp);
iov[2].iov_base = (void *)s2->ticket;
iov[2].iov_len = s2->ticket_len;
len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
serial = rxrpc_get_next_serial(conn);
whdr.serial = htonl(serial);
rxrpc_local_dont_fragment(conn->local, false);
ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len);
if (ret < 0) {
trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
rxrpc_tx_point_rxkad_response);
return -EAGAIN;
}
conn->peer->last_tx_at = ktime_get_seconds();
_leave(" = 0");
return 0;
}
/*
* calculate the response checksum
*/
static void rxkad_calc_response_checksum(struct rxkad_response *response)
{
u32 csum = 1000003;
int loop;
u8 *p = (u8 *) response;
for (loop = sizeof(*response); loop > 0; loop--)
csum = csum * 0x10204081 + *p++;
response->encrypted.checksum = htonl(csum);
}
/*
* encrypt the response packet
*/
static int rxkad_encrypt_response(struct rxrpc_connection *conn,
struct rxkad_response *resp,
const struct rxkad_key *s2)
{
struct skcipher_request *req;
struct rxrpc_crypt iv;
struct scatterlist sg[1];
req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
if (!req)
return -ENOMEM;
/* continue encrypting from where we left off */
memcpy(&iv, s2->session_key, sizeof(iv));
sg_init_table(sg, 1);
sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
crypto_skcipher_encrypt(req);
skcipher_request_free(req);
return 0;
}
/*
* respond to a challenge packet
*/
static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
struct sk_buff *skb)
{
const struct rxrpc_key_token *token;
struct rxkad_challenge challenge;
struct rxkad_response *resp;
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
u32 version, nonce, min_level;
int ret = -EPROTO;
_enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
if (!conn->key)
return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO,
rxkad_abort_chall_no_key);
ret = key_validate(conn->key);
if (ret < 0)
return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
rxkad_abort_chall_key_expired);
if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
&challenge, sizeof(challenge)) < 0)
return rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
rxkad_abort_chall_short);
version = ntohl(challenge.version);
nonce = ntohl(challenge.nonce);
min_level = ntohl(challenge.min_level);
trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level);
if (version != RXKAD_VERSION)
return rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
rxkad_abort_chall_version);
if (conn->security_level < min_level)
return rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES,
rxkad_abort_chall_level);
token = conn->key->payload.data[0];
/* build the response packet */
resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
if (!resp)
return -ENOMEM;
resp->version = htonl(RXKAD_VERSION);
resp->encrypted.epoch = htonl(conn->proto.epoch);
resp->encrypted.cid = htonl(conn->proto.cid);
resp->encrypted.securityIndex = htonl(conn->security_ix);
resp->encrypted.inc_nonce = htonl(nonce + 1);
resp->encrypted.level = htonl(conn->security_level);
resp->kvno = htonl(token->kad->kvno);
resp->ticket_len = htonl(token->kad->ticket_len);
resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter);
resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter);
resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter);
resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter);
/* calculate the response checksum and then do the encryption */
rxkad_calc_response_checksum(resp);
ret = rxkad_encrypt_response(conn, resp, token->kad);
if (ret == 0)
ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
kfree(resp);
return ret;
}
/*
* decrypt the kerberos IV ticket in the response
*/
static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
struct key *server_key,
struct sk_buff *skb,
void *ticket, size_t ticket_len,
struct rxrpc_crypt *_session_key,
time64_t *_expiry)
{
struct skcipher_request *req;
struct rxrpc_crypt iv, key;
struct scatterlist sg[1];
struct in_addr addr;
unsigned int life;
time64_t issue, now;
bool little_endian;
u8 *p, *q, *name, *end;
_enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
*_expiry = 0;
ASSERT(server_key->payload.data[0] != NULL);
ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
if (!req)
return -ENOMEM;
sg_init_one(&sg[0], ticket, ticket_len);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
crypto_skcipher_decrypt(req);
skcipher_request_free(req);
p = ticket;
end = p + ticket_len;
#define Z(field, fieldl) \
({ \
u8 *__str = p; \
q = memchr(p, 0, end - p); \
if (!q || q - p > field##_SZ) \
return rxrpc_abort_conn( \
conn, skb, RXKADBADTICKET, -EPROTO, \
rxkad_abort_resp_tkt_##fieldl); \
for (; p < q; p++) \
if (!isprint(*p)) \
return rxrpc_abort_conn( \
conn, skb, RXKADBADTICKET, -EPROTO, \
rxkad_abort_resp_tkt_##fieldl); \
p++; \
__str; \
})
/* extract the ticket flags */
_debug("KIV FLAGS: %x", *p);
little_endian = *p & 1;
p++;
/* extract the authentication name */
name = Z(ANAME, aname);
_debug("KIV ANAME: %s", name);
/* extract the principal's instance */
name = Z(INST, inst);
_debug("KIV INST : %s", name);
/* extract the principal's authentication domain */
name = Z(REALM, realm);
_debug("KIV REALM: %s", name);
if (end - p < 4 + 8 + 4 + 2)
return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO,
rxkad_abort_resp_tkt_short);
/* get the IPv4 address of the entity that requested the ticket */
memcpy(&addr, p, sizeof(addr));
p += 4;
_debug("KIV ADDR : %pI4", &addr);
/* get the session key from the ticket */
memcpy(&key, p, sizeof(key));
p += 8;
_debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
memcpy(_session_key, &key, sizeof(key));
/* get the ticket's lifetime */
life = *p++ * 5 * 60;
_debug("KIV LIFE : %u", life);
/* get the issue time of the ticket */
if (little_endian) {
__le32 stamp;
memcpy(&stamp, p, 4);
issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
} else {
__be32 stamp;
memcpy(&stamp, p, 4);
issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
}
p += 4;
now = ktime_get_real_seconds();
_debug("KIV ISSUE: %llx [%llx]", issue, now);
/* check the ticket is in date */
if (issue > now)
return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED,
rxkad_abort_resp_tkt_future);
if (issue < now - life)
return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED,
rxkad_abort_resp_tkt_expired);
*_expiry = issue + life;
/* get the service name */
name = Z(SNAME, sname);
_debug("KIV SNAME: %s", name);
/* get the service instance name */
name = Z(INST, sinst);
_debug("KIV SINST: %s", name);
return 0;
}
/*
* decrypt the response packet
*/
static void rxkad_decrypt_response(struct rxrpc_connection *conn,
struct rxkad_response *resp,
const struct rxrpc_crypt *session_key)
{
struct skcipher_request *req = rxkad_ci_req;
struct scatterlist sg[1];
struct rxrpc_crypt iv;
_enter(",,%08x%08x",
ntohl(session_key->n[0]), ntohl(session_key->n[1]));
mutex_lock(&rxkad_ci_mutex);
if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
sizeof(*session_key)) < 0)
BUG();
memcpy(&iv, session_key, sizeof(iv));
sg_init_table(sg, 1);
sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
skcipher_request_set_sync_tfm(req, rxkad_ci);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
crypto_skcipher_decrypt(req);
skcipher_request_zero(req);
mutex_unlock(&rxkad_ci_mutex);
_leave("");
}
/*
* verify a response
*/
static int rxkad_verify_response(struct rxrpc_connection *conn,
struct sk_buff *skb)
{
struct rxkad_response *response;
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_crypt session_key;
struct key *server_key;
time64_t expiry;
void *ticket;
u32 version, kvno, ticket_len, level;
__be32 csum;
int ret, i;
_enter("{%d}", conn->debug_id);
server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
if (IS_ERR(server_key)) {
ret = PTR_ERR(server_key);
switch (ret) {
case -ENOKEY:
return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret,
rxkad_abort_resp_nokey);
case -EKEYEXPIRED:
return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
rxkad_abort_resp_key_expired);
default:
return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret,
rxkad_abort_resp_key_rejected);
}
}
ret = -ENOMEM;
response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
if (!response)
goto temporary_error;
if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
response, sizeof(*response)) < 0) {
rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
rxkad_abort_resp_short);
goto protocol_error;
}
version = ntohl(response->version);
ticket_len = ntohl(response->ticket_len);
kvno = ntohl(response->kvno);
trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len);
if (version != RXKAD_VERSION) {
rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
rxkad_abort_resp_version);
goto protocol_error;
}
if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) {
rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO,
rxkad_abort_resp_tkt_len);
goto protocol_error;
}
if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) {
rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO,
rxkad_abort_resp_unknown_tkt);
goto protocol_error;
}
/* extract the kerberos ticket and decrypt and decode it */
ret = -ENOMEM;
ticket = kmalloc(ticket_len, GFP_NOFS);
if (!ticket)
goto temporary_error_free_resp;
if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
ticket, ticket_len) < 0) {
rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
rxkad_abort_resp_short_tkt);
goto protocol_error;
}
ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
&session_key, &expiry);
if (ret < 0)
goto temporary_error_free_ticket;
/* use the session key from inside the ticket to decrypt the
* response */
rxkad_decrypt_response(conn, response, &session_key);
if (ntohl(response->encrypted.epoch) != conn->proto.epoch ||
ntohl(response->encrypted.cid) != conn->proto.cid ||
ntohl(response->encrypted.securityIndex) != conn->security_ix) {
rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
rxkad_abort_resp_bad_param);
goto protocol_error_free;
}
csum = response->encrypted.checksum;
response->encrypted.checksum = 0;
rxkad_calc_response_checksum(response);
if (response->encrypted.checksum != csum) {
rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
rxkad_abort_resp_bad_checksum);
goto protocol_error_free;
}
for (i = 0; i < RXRPC_MAXCALLS; i++) {
u32 call_id = ntohl(response->encrypted.call_id[i]);
u32 counter = READ_ONCE(conn->channels[i].call_counter);
if (call_id > INT_MAX) {
rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
rxkad_abort_resp_bad_callid);
goto protocol_error_free;
}
if (call_id < counter) {
rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
rxkad_abort_resp_call_ctr);
goto protocol_error_free;
}
if (call_id > counter) {
if (conn->channels[i].call) {
rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
rxkad_abort_resp_call_state);
goto protocol_error_free;
}
conn->channels[i].call_counter = call_id;
}
}
if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) {
rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO,
rxkad_abort_resp_ooseq);
goto protocol_error_free;
}
level = ntohl(response->encrypted.level);
if (level > RXRPC_SECURITY_ENCRYPT) {
rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO,
rxkad_abort_resp_level);
goto protocol_error_free;
}
conn->security_level = level;
/* create a key to hold the security data and expiration time - after
* this the connection security can be handled in exactly the same way
* as for a client connection */
ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
if (ret < 0)
goto temporary_error_free_ticket;
kfree(ticket);
kfree(response);
_leave(" = 0");
return 0;
protocol_error_free:
kfree(ticket);
protocol_error:
kfree(response);
key_put(server_key);
return -EPROTO;
temporary_error_free_ticket:
kfree(ticket);
temporary_error_free_resp:
kfree(response);
temporary_error:
/* Ignore the response packet if we got a temporary error such as
* ENOMEM. We just want to send the challenge again. Note that we
* also come out this way if the ticket decryption fails.
*/
key_put(server_key);
return ret;
}
/*
* clear the connection security
*/
static void rxkad_clear(struct rxrpc_connection *conn)
{
_enter("");
if (conn->rxkad.cipher)
crypto_free_sync_skcipher(conn->rxkad.cipher);
}
/*
* Initialise the rxkad security service.
*/
static int rxkad_init(void)
{
struct crypto_sync_skcipher *tfm;
struct skcipher_request *req;
/* pin the cipher we need so that the crypto layer doesn't invoke
* keventd to go get it */
tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
if (!req)
goto nomem_tfm;
rxkad_ci_req = req;
rxkad_ci = tfm;
return 0;
nomem_tfm:
crypto_free_sync_skcipher(tfm);
return -ENOMEM;
}
/*
* Clean up the rxkad security service.
*/
static void rxkad_exit(void)
{
crypto_free_sync_skcipher(rxkad_ci);
skcipher_request_free(rxkad_ci_req);
}
/*
* RxRPC Kerberos-based security
*/
const struct rxrpc_security rxkad = {
.name = "rxkad",
.security_index = RXRPC_SECURITY_RXKAD,
.no_key_abort = RXKADUNKNOWNKEY,
.init = rxkad_init,
.exit = rxkad_exit,
.preparse_server_key = rxkad_preparse_server_key,
.free_preparse_server_key = rxkad_free_preparse_server_key,
.destroy_server_key = rxkad_destroy_server_key,
.init_connection_security = rxkad_init_connection_security,
.alloc_txbuf = rxkad_alloc_txbuf,
.secure_packet = rxkad_secure_packet,
.verify_packet = rxkad_verify_packet,
.free_call_crypto = rxkad_free_call_crypto,
.issue_challenge = rxkad_issue_challenge,
.respond_to_challenge = rxkad_respond_to_challenge,
.verify_response = rxkad_verify_response,
.clear = rxkad_clear,
};