2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/arch/x86/kvm/mmu.h
Paolo Bonzini 86eb1aef72 Merge branch 'kvm-mirror-page-tables' into HEAD
As part of enabling TDX virtual machines, support support separation of
private/shared EPT into separate roots.

Confidential computing solutions almost invariably have concepts of
private and shared memory, but they may different a lot in the details.
In SEV, for example, the bit is handled more like a permission bit as
far as the page tables are concerned: the private/shared bit is not
included in the physical address.

For TDX, instead, the bit is more like a physical address bit, with
the host mapping private memory in one half of the address space and
shared in another.  Furthermore, the two halves are mapped by different
EPT roots and only the shared half is managed by KVM; the private half
(also called Secure EPT in Intel documentation) gets managed by the
privileged TDX Module via SEAMCALLs.

As a result, the operations that actually change the private half of
the EPT are limited and relatively slow compared to reading a PTE. For
this reason the design for KVM is to keep a mirror of the private EPT in
host memory.  This allows KVM to quickly walk the EPT and only perform the
slower private EPT operations when it needs to actually modify mid-level
private PTEs.

There are thus three sets of EPT page tables: external, mirror and
direct.  In the case of TDX (the only user of this framework) the
first two cover private memory, whereas the third manages shared
memory:

  external EPT - Hidden within the TDX module, modified via TDX module
                 calls.

  mirror EPT   - Bookkeeping tree used as an optimization by KVM, not
                 used by the processor.

  direct EPT   - Normal EPT that maps unencrypted shared memory.
                 Managed like the EPT of a normal VM.

Modifying external EPT
----------------------

Modifications to the mirrored page tables need to also perform the
same operations to the private page tables, which will be handled via
kvm_x86_ops.  Although this prep series does not interact with the TDX
module at all to actually configure the private EPT, it does lay the
ground work for doing this.

In some ways updating the private EPT is as simple as plumbing PTE
modifications through to also call into the TDX module; however, the
locking is more complicated because inserting a single PTE cannot anymore
be done atomically with a single CMPXCHG.  For this reason, the existing
FROZEN_SPTE mechanism is used whenever a call to the TDX module updates the
private EPT.  FROZEN_SPTE acts basically as a spinlock on a PTE.  Besides
protecting operation of KVM, it limits the set of cases in which the
TDX module will encounter contention on its own PTE locks.

Zapping external EPT
--------------------
While the framework tries to be relatively generic, and to be
understandable without knowing TDX much in detail, some requirements of
TDX sometimes leak; for example the private page tables also cannot be
zapped while the range has anything mapped, so the mirrored/private page
tables need to be protected from KVM operations that zap any non-leaf
PTEs, for example kvm_mmu_reset_context() or kvm_mmu_zap_all_fast().

For normal VMs, guest memory is zapped for several reasons: user
memory getting paged out by the guest, memslots getting deleted,
passthrough of devices with non-coherent DMA.  Confidential computing
adds to these the conversion of memory between shared and privates. These
operations must not zap any private memory that is in use by the guest.

This is possible because the only zapping that is out of the control
of KVM/userspace is paging out userspace memory, which cannot apply to
guestmemfd operations.  Thus a TDX VM will only zap private memory from
memslot deletion and from conversion between private and shared memory
which is triggered by the guest.

To avoid zapping too much memory, enums are introduced so that operations
can choose to target only private or shared memory, and thus only
direct or mirror EPT.  For example:

  Memslot deletion           - Private and shared
  MMU notifier based zapping - Shared only
  Conversion to shared       - Private only
  Conversion to private      - Shared only

Other cases of zapping will not be supported for KVM, for example
APICv update or non-coherent DMA status update; for the latter, TDX will
simply require that the CPU supports self-snoop and honor guest PAT
unconditionally for shared memory.
2025-01-20 07:15:58 -05:00

322 lines
9.7 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __KVM_X86_MMU_H
#define __KVM_X86_MMU_H
#include <linux/kvm_host.h>
#include "kvm_cache_regs.h"
#include "x86.h"
#include "cpuid.h"
extern bool __read_mostly enable_mmio_caching;
#define PT_WRITABLE_SHIFT 1
#define PT_USER_SHIFT 2
#define PT_PRESENT_MASK (1ULL << 0)
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
#define PT_PWT_MASK (1ULL << 3)
#define PT_PCD_MASK (1ULL << 4)
#define PT_ACCESSED_SHIFT 5
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
#define PT_DIRTY_SHIFT 6
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
#define PT_PAGE_SIZE_SHIFT 7
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
#define PT_PAT_MASK (1ULL << 7)
#define PT_GLOBAL_MASK (1ULL << 8)
#define PT64_NX_SHIFT 63
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
#define PT_PAT_SHIFT 7
#define PT_DIR_PAT_SHIFT 12
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
#define PT64_ROOT_5LEVEL 5
#define PT64_ROOT_4LEVEL 4
#define PT32_ROOT_LEVEL 2
#define PT32E_ROOT_LEVEL 3
#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
static __always_inline u64 rsvd_bits(int s, int e)
{
BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
if (__builtin_constant_p(e))
BUILD_BUG_ON(e > 63);
else
e &= 63;
if (e < s)
return 0;
return ((2ULL << (e - s)) - 1) << s;
}
static inline gfn_t kvm_mmu_max_gfn(void)
{
/*
* Note that this uses the host MAXPHYADDR, not the guest's.
* EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
* assuming KVM is running on bare metal, guest accesses beyond
* host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
* (either EPT Violation/Misconfig or #NPF), and so KVM will never
* install a SPTE for such addresses. If KVM is running as a VM
* itself, on the other hand, it might see a MAXPHYADDR that is less
* than hardware's real MAXPHYADDR. Using the host MAXPHYADDR
* disallows such SPTEs entirely and simplifies the TDP MMU.
*/
int max_gpa_bits = likely(tdp_enabled) ? kvm_host.maxphyaddr : 52;
return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
}
u8 kvm_mmu_get_max_tdp_level(void);
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
void kvm_init_mmu(struct kvm_vcpu *vcpu);
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
unsigned long cr4, u64 efer, gpa_t nested_cr3);
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
int huge_page_level, bool accessed_dirty,
gpa_t new_eptp);
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
u64 fault_address, char *insn, int insn_len);
void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu);
int kvm_mmu_load(struct kvm_vcpu *vcpu);
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
int bytes);
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
{
/*
* Checking root.hpa is sufficient even when KVM has mirror root.
* We can have either:
* (1) mirror_root_hpa = INVALID_PAGE, root.hpa = INVALID_PAGE
* (2) mirror_root_hpa = root, root.hpa = INVALID_PAGE
* (3) mirror_root_hpa = root1, root.hpa = root2
* We don't ever have:
* mirror_root_hpa = INVALID_PAGE, root.hpa = root
*/
if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
return 0;
return kvm_mmu_load(vcpu);
}
static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
{
BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
return kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)
? cr3 & X86_CR3_PCID_MASK
: 0;
}
static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
{
return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
}
static inline unsigned long kvm_get_active_cr3_lam_bits(struct kvm_vcpu *vcpu)
{
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LAM))
return 0;
return kvm_read_cr3(vcpu) & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
}
static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
{
u64 root_hpa = vcpu->arch.mmu->root.hpa;
if (!VALID_PAGE(root_hpa))
return;
kvm_x86_call(load_mmu_pgd)(vcpu, root_hpa,
vcpu->arch.mmu->root_role.level);
}
static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu)
{
/*
* When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
* @mmu's snapshot of CR0.WP and thus all related paging metadata may
* be stale. Refresh CR0.WP and the metadata on-demand when checking
* for permission faults. Exempt nested MMUs, i.e. MMUs for shadowing
* nEPT and nNPT, as CR0.WP is ignored in both cases. Note, KVM does
* need to refresh nested_mmu, a.k.a. the walker used to translate L2
* GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
*/
if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
return;
__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
}
/*
* Check if a given access (described through the I/D, W/R and U/S bits of a
* page fault error code pfec) causes a permission fault with the given PTE
* access rights (in ACC_* format).
*
* Return zero if the access does not fault; return the page fault error code
* if the access faults.
*/
static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
unsigned pte_access, unsigned pte_pkey,
u64 access)
{
/* strip nested paging fault error codes */
unsigned int pfec = access;
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
/*
* For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
* For implicit supervisor accesses, SMAP cannot be overridden.
*
* SMAP works on supervisor accesses only, and not_smap can
* be set or not set when user access with neither has any bearing
* on the result.
*
* We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
* this bit will always be zero in pfec, but it will be one in index
* if SMAP checks are being disabled.
*/
u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
int index = (pfec | (not_smap ? PFERR_RSVD_MASK : 0)) >> 1;
u32 errcode = PFERR_PRESENT_MASK;
bool fault;
kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
fault = (mmu->permissions[index] >> pte_access) & 1;
WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
if (unlikely(mmu->pkru_mask)) {
u32 pkru_bits, offset;
/*
* PKRU defines 32 bits, there are 16 domains and 2
* attribute bits per domain in pkru. pte_pkey is the
* index of the protection domain, so pte_pkey * 2 is
* is the index of the first bit for the domain.
*/
pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
offset = (pfec & ~1) | ((pte_access & PT_USER_MASK) ? PFERR_RSVD_MASK : 0);
pkru_bits &= mmu->pkru_mask >> offset;
errcode |= -pkru_bits & PFERR_PK_MASK;
fault |= (pkru_bits != 0);
}
return -(u32)fault & errcode;
}
bool kvm_mmu_may_ignore_guest_pat(void);
int kvm_mmu_post_init_vm(struct kvm *kvm);
void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
{
/*
* Read shadow_root_allocated before related pointers. Hence, threads
* reading shadow_root_allocated in any lock context are guaranteed to
* see the pointers. Pairs with smp_store_release in
* mmu_first_shadow_root_alloc.
*/
return smp_load_acquire(&kvm->arch.shadow_root_allocated);
}
#ifdef CONFIG_X86_64
extern bool tdp_mmu_enabled;
#else
#define tdp_mmu_enabled false
#endif
static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
{
return !tdp_mmu_enabled || kvm_shadow_root_allocated(kvm);
}
static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
{
/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
}
static inline unsigned long
__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
int level)
{
return gfn_to_index(slot->base_gfn + npages - 1,
slot->base_gfn, level) + 1;
}
static inline unsigned long
kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
{
return __kvm_mmu_slot_lpages(slot, slot->npages, level);
}
static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
{
atomic64_add(count, &kvm->stat.pages[level - 1]);
}
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
struct x86_exception *exception);
static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu,
gpa_t gpa, u64 access,
struct x86_exception *exception)
{
if (mmu != &vcpu->arch.nested_mmu)
return gpa;
return translate_nested_gpa(vcpu, gpa, access, exception);
}
static inline bool kvm_has_mirrored_tdp(const struct kvm *kvm)
{
return kvm->arch.vm_type == KVM_X86_TDX_VM;
}
static inline gfn_t kvm_gfn_direct_bits(const struct kvm *kvm)
{
return kvm->arch.gfn_direct_bits;
}
static inline bool kvm_is_addr_direct(struct kvm *kvm, gpa_t gpa)
{
gpa_t gpa_direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(kvm));
return !gpa_direct_bits || (gpa & gpa_direct_bits);
}
static inline bool kvm_is_gfn_alias(struct kvm *kvm, gfn_t gfn)
{
return gfn & kvm_gfn_direct_bits(kvm);
}
#endif