mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 f5c54717bf
			
		
	
	
		f5c54717bf
		
	
	
	
	
		
			
			This helper doesn't add any real value over just calling iomap_zero_range directly, so remove it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
		
			
				
	
	
		
			1135 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1135 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_da_format.h"
 | |
| #include "xfs_da_btree.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_bmap_util.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_dir2_priv.h"
 | |
| #include "xfs_ioctl.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_pnfs.h"
 | |
| #include "xfs_iomap.h"
 | |
| #include "xfs_reflink.h"
 | |
| 
 | |
| #include <linux/dcache.h>
 | |
| #include <linux/falloc.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/mman.h>
 | |
| 
 | |
| static const struct vm_operations_struct xfs_file_vm_ops;
 | |
| 
 | |
| int
 | |
| xfs_update_prealloc_flags(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	enum xfs_prealloc_flags	flags)
 | |
| {
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
 | |
| 			0, 0, 0, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
 | |
| 		VFS_I(ip)->i_mode &= ~S_ISUID;
 | |
| 		if (VFS_I(ip)->i_mode & S_IXGRP)
 | |
| 			VFS_I(ip)->i_mode &= ~S_ISGID;
 | |
| 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & XFS_PREALLOC_SET)
 | |
| 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
 | |
| 	if (flags & XFS_PREALLOC_CLEAR)
 | |
| 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
 | |
| 
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 	if (flags & XFS_PREALLOC_SYNC)
 | |
| 		xfs_trans_set_sync(tp);
 | |
| 	return xfs_trans_commit(tp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fsync operations on directories are much simpler than on regular files,
 | |
|  * as there is no file data to flush, and thus also no need for explicit
 | |
|  * cache flush operations, and there are no non-transaction metadata updates
 | |
|  * on directories either.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_dir_fsync(
 | |
| 	struct file		*file,
 | |
| 	loff_t			start,
 | |
| 	loff_t			end,
 | |
| 	int			datasync)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	xfs_lsn_t		lsn = 0;
 | |
| 
 | |
| 	trace_xfs_dir_fsync(ip);
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_SHARED);
 | |
| 	if (xfs_ipincount(ip))
 | |
| 		lsn = ip->i_itemp->ili_last_lsn;
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 
 | |
| 	if (!lsn)
 | |
| 		return 0;
 | |
| 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_file_fsync(
 | |
| 	struct file		*file,
 | |
| 	loff_t			start,
 | |
| 	loff_t			end,
 | |
| 	int			datasync)
 | |
| {
 | |
| 	struct inode		*inode = file->f_mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	int			error = 0;
 | |
| 	int			log_flushed = 0;
 | |
| 	xfs_lsn_t		lsn = 0;
 | |
| 
 | |
| 	trace_xfs_file_fsync(ip);
 | |
| 
 | |
| 	error = file_write_and_wait_range(file, start, end);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have an RT and/or log subvolume we need to make sure to flush
 | |
| 	 * the write cache the device used for file data first.  This is to
 | |
| 	 * ensure newly written file data make it to disk before logging the new
 | |
| 	 * inode size in case of an extending write.
 | |
| 	 */
 | |
| 	if (XFS_IS_REALTIME_INODE(ip))
 | |
| 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 | |
| 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 | |
| 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 | |
| 
 | |
| 	/*
 | |
| 	 * All metadata updates are logged, which means that we just have to
 | |
| 	 * flush the log up to the latest LSN that touched the inode. If we have
 | |
| 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 | |
| 	 * log force before we clear the ili_fsync_fields field. This ensures
 | |
| 	 * that we don't get a racing sync operation that does not wait for the
 | |
| 	 * metadata to hit the journal before returning. If we race with
 | |
| 	 * clearing the ili_fsync_fields, then all that will happen is the log
 | |
| 	 * force will do nothing as the lsn will already be on disk. We can't
 | |
| 	 * race with setting ili_fsync_fields because that is done under
 | |
| 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 | |
| 	 * until after the ili_fsync_fields is cleared.
 | |
| 	 */
 | |
| 	xfs_ilock(ip, XFS_ILOCK_SHARED);
 | |
| 	if (xfs_ipincount(ip)) {
 | |
| 		if (!datasync ||
 | |
| 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 | |
| 			lsn = ip->i_itemp->ili_last_lsn;
 | |
| 	}
 | |
| 
 | |
| 	if (lsn) {
 | |
| 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 | |
| 		ip->i_itemp->ili_fsync_fields = 0;
 | |
| 	}
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we only have a single device, and the log force about was
 | |
| 	 * a no-op we might have to flush the data device cache here.
 | |
| 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 | |
| 	 * an already allocated file and thus do not have any metadata to
 | |
| 	 * commit.
 | |
| 	 */
 | |
| 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 | |
| 	    mp->m_logdev_targp == mp->m_ddev_targp)
 | |
| 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_file_dio_aio_read(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*to)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 | |
| 	size_t			count = iov_iter_count(to);
 | |
| 	ssize_t			ret;
 | |
| 
 | |
| 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 | |
| 
 | |
| 	if (!count)
 | |
| 		return 0; /* skip atime */
 | |
| 
 | |
| 	file_accessed(iocb->ki_filp);
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | |
| 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 | |
| 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline ssize_t
 | |
| xfs_file_dax_read(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*to)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 | |
| 	size_t			count = iov_iter_count(to);
 | |
| 	ssize_t			ret = 0;
 | |
| 
 | |
| 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 | |
| 
 | |
| 	if (!count)
 | |
| 		return 0; /* skip atime */
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | |
| 	}
 | |
| 
 | |
| 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 | |
| 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | |
| 
 | |
| 	file_accessed(iocb->ki_filp);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_file_buffered_aio_read(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*to)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 | |
| 	ssize_t			ret;
 | |
| 
 | |
| 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | |
| 	}
 | |
| 	ret = generic_file_read_iter(iocb, to);
 | |
| 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_file_read_iter(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*to)
 | |
| {
 | |
| 	struct inode		*inode = file_inode(iocb->ki_filp);
 | |
| 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 | |
| 	ssize_t			ret = 0;
 | |
| 
 | |
| 	XFS_STATS_INC(mp, xs_read_calls);
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (IS_DAX(inode))
 | |
| 		ret = xfs_file_dax_read(iocb, to);
 | |
| 	else if (iocb->ki_flags & IOCB_DIRECT)
 | |
| 		ret = xfs_file_dio_aio_read(iocb, to);
 | |
| 	else
 | |
| 		ret = xfs_file_buffered_aio_read(iocb, to);
 | |
| 
 | |
| 	if (ret > 0)
 | |
| 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common pre-write limit and setup checks.
 | |
|  *
 | |
|  * Called with the iolocked held either shared and exclusive according to
 | |
|  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 | |
|  * if called for a direct write beyond i_size.
 | |
|  */
 | |
| STATIC ssize_t
 | |
| xfs_file_aio_write_checks(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*from,
 | |
| 	int			*iolock)
 | |
| {
 | |
| 	struct file		*file = iocb->ki_filp;
 | |
| 	struct inode		*inode = file->f_mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	ssize_t			error = 0;
 | |
| 	size_t			count = iov_iter_count(from);
 | |
| 	bool			drained_dio = false;
 | |
| 	loff_t			isize;
 | |
| 
 | |
| restart:
 | |
| 	error = generic_write_checks(iocb, from);
 | |
| 	if (error <= 0)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_break_layouts(inode, iolock);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * For changing security info in file_remove_privs() we need i_rwsem
 | |
| 	 * exclusively.
 | |
| 	 */
 | |
| 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 | |
| 		xfs_iunlock(ip, *iolock);
 | |
| 		*iolock = XFS_IOLOCK_EXCL;
 | |
| 		xfs_ilock(ip, *iolock);
 | |
| 		goto restart;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If the offset is beyond the size of the file, we need to zero any
 | |
| 	 * blocks that fall between the existing EOF and the start of this
 | |
| 	 * write.  If zeroing is needed and we are currently holding the
 | |
| 	 * iolock shared, we need to update it to exclusive which implies
 | |
| 	 * having to redo all checks before.
 | |
| 	 *
 | |
| 	 * We need to serialise against EOF updates that occur in IO
 | |
| 	 * completions here. We want to make sure that nobody is changing the
 | |
| 	 * size while we do this check until we have placed an IO barrier (i.e.
 | |
| 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 | |
| 	 * The spinlock effectively forms a memory barrier once we have the
 | |
| 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 | |
| 	 * and hence be able to correctly determine if we need to run zeroing.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	isize = i_size_read(inode);
 | |
| 	if (iocb->ki_pos > isize) {
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		if (!drained_dio) {
 | |
| 			if (*iolock == XFS_IOLOCK_SHARED) {
 | |
| 				xfs_iunlock(ip, *iolock);
 | |
| 				*iolock = XFS_IOLOCK_EXCL;
 | |
| 				xfs_ilock(ip, *iolock);
 | |
| 				iov_iter_reexpand(from, count);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * We now have an IO submission barrier in place, but
 | |
| 			 * AIO can do EOF updates during IO completion and hence
 | |
| 			 * we now need to wait for all of them to drain. Non-AIO
 | |
| 			 * DIO will have drained before we are given the
 | |
| 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 | |
| 			 * no-op.
 | |
| 			 */
 | |
| 			inode_dio_wait(inode);
 | |
| 			drained_dio = true;
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	
 | |
| 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 | |
| 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 | |
| 				NULL, &xfs_iomap_ops);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	} else
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Updating the timestamps will grab the ilock again from
 | |
| 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 | |
| 	 * lock above.  Eventually we should look into a way to avoid
 | |
| 	 * the pointless lock roundtrip.
 | |
| 	 */
 | |
| 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 | |
| 		error = file_update_time(file);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're writing the file then make sure to clear the setuid and
 | |
| 	 * setgid bits if the process is not being run by root.  This keeps
 | |
| 	 * people from modifying setuid and setgid binaries.
 | |
| 	 */
 | |
| 	if (!IS_NOSEC(inode))
 | |
| 		return file_remove_privs(file);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_dio_write_end_io(
 | |
| 	struct kiocb		*iocb,
 | |
| 	ssize_t			size,
 | |
| 	unsigned		flags)
 | |
| {
 | |
| 	struct inode		*inode = file_inode(iocb->ki_filp);
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	loff_t			offset = iocb->ki_pos;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	trace_xfs_end_io_direct_write(ip, offset, size);
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (size <= 0)
 | |
| 		return size;
 | |
| 
 | |
| 	if (flags & IOMAP_DIO_COW) {
 | |
| 		error = xfs_reflink_end_cow(ip, offset, size);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unwritten conversion updates the in-core isize after extent
 | |
| 	 * conversion but before updating the on-disk size. Updating isize any
 | |
| 	 * earlier allows a racing dio read to find unwritten extents before
 | |
| 	 * they are converted.
 | |
| 	 */
 | |
| 	if (flags & IOMAP_DIO_UNWRITTEN)
 | |
| 		return xfs_iomap_write_unwritten(ip, offset, size, true);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to update the in-core inode size here so that we don't end up
 | |
| 	 * with the on-disk inode size being outside the in-core inode size. We
 | |
| 	 * have no other method of updating EOF for AIO, so always do it here
 | |
| 	 * if necessary.
 | |
| 	 *
 | |
| 	 * We need to lock the test/set EOF update as we can be racing with
 | |
| 	 * other IO completions here to update the EOF. Failing to serialise
 | |
| 	 * here can result in EOF moving backwards and Bad Things Happen when
 | |
| 	 * that occurs.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	if (offset + size > i_size_read(inode)) {
 | |
| 		i_size_write(inode, offset + size);
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		error = xfs_setfilesize(ip, offset, size);
 | |
| 	} else {
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_file_dio_aio_write - handle direct IO writes
 | |
|  *
 | |
|  * Lock the inode appropriately to prepare for and issue a direct IO write.
 | |
|  * By separating it from the buffered write path we remove all the tricky to
 | |
|  * follow locking changes and looping.
 | |
|  *
 | |
|  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 | |
|  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 | |
|  * pages are flushed out.
 | |
|  *
 | |
|  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 | |
|  * allowing them to be done in parallel with reads and other direct IO writes.
 | |
|  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 | |
|  * needs to do sub-block zeroing and that requires serialisation against other
 | |
|  * direct IOs to the same block. In this case we need to serialise the
 | |
|  * submission of the unaligned IOs so that we don't get racing block zeroing in
 | |
|  * the dio layer.  To avoid the problem with aio, we also need to wait for
 | |
|  * outstanding IOs to complete so that unwritten extent conversion is completed
 | |
|  * before we try to map the overlapping block. This is currently implemented by
 | |
|  * hitting it with a big hammer (i.e. inode_dio_wait()).
 | |
|  *
 | |
|  * Returns with locks held indicated by @iolock and errors indicated by
 | |
|  * negative return values.
 | |
|  */
 | |
| STATIC ssize_t
 | |
| xfs_file_dio_aio_write(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*from)
 | |
| {
 | |
| 	struct file		*file = iocb->ki_filp;
 | |
| 	struct address_space	*mapping = file->f_mapping;
 | |
| 	struct inode		*inode = mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	ssize_t			ret = 0;
 | |
| 	int			unaligned_io = 0;
 | |
| 	int			iolock;
 | |
| 	size_t			count = iov_iter_count(from);
 | |
| 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 | |
| 					mp->m_rtdev_targp : mp->m_ddev_targp;
 | |
| 
 | |
| 	/* DIO must be aligned to device logical sector size */
 | |
| 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 | |
| 	 * the file system block size.  We don't need to consider the EOF
 | |
| 	 * extension case here because xfs_file_aio_write_checks() will relock
 | |
| 	 * the inode as necessary for EOF zeroing cases and fill out the new
 | |
| 	 * inode size as appropriate.
 | |
| 	 */
 | |
| 	if ((iocb->ki_pos & mp->m_blockmask) ||
 | |
| 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 | |
| 		unaligned_io = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't properly handle unaligned direct I/O to reflink
 | |
| 		 * files yet, as we can't unshare a partial block.
 | |
| 		 */
 | |
| 		if (xfs_is_reflink_inode(ip)) {
 | |
| 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 | |
| 			return -EREMCHG;
 | |
| 		}
 | |
| 		iolock = XFS_IOLOCK_EXCL;
 | |
| 	} else {
 | |
| 		iolock = XFS_IOLOCK_SHARED;
 | |
| 	}
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 		if (!xfs_ilock_nowait(ip, iolock))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		xfs_ilock(ip, iolock);
 | |
| 	}
 | |
| 
 | |
| 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	count = iov_iter_count(from);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing unaligned IO, wait for all other IO to drain,
 | |
| 	 * otherwise demote the lock if we had to take the exclusive lock
 | |
| 	 * for other reasons in xfs_file_aio_write_checks.
 | |
| 	 */
 | |
| 	if (unaligned_io) {
 | |
| 		/* If we are going to wait for other DIO to finish, bail */
 | |
| 		if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 			if (atomic_read(&inode->i_dio_count))
 | |
| 				return -EAGAIN;
 | |
| 		} else {
 | |
| 			inode_dio_wait(inode);
 | |
| 		}
 | |
| 	} else if (iolock == XFS_IOLOCK_EXCL) {
 | |
| 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 | |
| 		iolock = XFS_IOLOCK_SHARED;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 | |
| 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 | |
| out:
 | |
| 	xfs_iunlock(ip, iolock);
 | |
| 
 | |
| 	/*
 | |
| 	 * No fallback to buffered IO on errors for XFS, direct IO will either
 | |
| 	 * complete fully or fail.
 | |
| 	 */
 | |
| 	ASSERT(ret < 0 || ret == count);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline ssize_t
 | |
| xfs_file_dax_write(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*from)
 | |
| {
 | |
| 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	int			iolock = XFS_IOLOCK_EXCL;
 | |
| 	ssize_t			ret, error = 0;
 | |
| 	size_t			count;
 | |
| 	loff_t			pos;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 		if (!xfs_ilock_nowait(ip, iolock))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		xfs_ilock(ip, iolock);
 | |
| 	}
 | |
| 
 | |
| 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	pos = iocb->ki_pos;
 | |
| 	count = iov_iter_count(from);
 | |
| 
 | |
| 	trace_xfs_file_dax_write(ip, count, pos);
 | |
| 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 | |
| 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 | |
| 		i_size_write(inode, iocb->ki_pos);
 | |
| 		error = xfs_setfilesize(ip, pos, ret);
 | |
| 	}
 | |
| out:
 | |
| 	xfs_iunlock(ip, iolock);
 | |
| 	return error ? error : ret;
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_file_buffered_aio_write(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*from)
 | |
| {
 | |
| 	struct file		*file = iocb->ki_filp;
 | |
| 	struct address_space	*mapping = file->f_mapping;
 | |
| 	struct inode		*inode = mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	ssize_t			ret;
 | |
| 	int			enospc = 0;
 | |
| 	int			iolock;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| write_retry:
 | |
| 	iolock = XFS_IOLOCK_EXCL;
 | |
| 	xfs_ilock(ip, iolock);
 | |
| 
 | |
| 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* We can write back this queue in page reclaim */
 | |
| 	current->backing_dev_info = inode_to_bdi(inode);
 | |
| 
 | |
| 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 | |
| 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 | |
| 	if (likely(ret >= 0))
 | |
| 		iocb->ki_pos += ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we hit a space limit, try to free up some lingering preallocated
 | |
| 	 * space before returning an error. In the case of ENOSPC, first try to
 | |
| 	 * write back all dirty inodes to free up some of the excess reserved
 | |
| 	 * metadata space. This reduces the chances that the eofblocks scan
 | |
| 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 | |
| 	 * also behaves as a filter to prevent too many eofblocks scans from
 | |
| 	 * running at the same time.
 | |
| 	 */
 | |
| 	if (ret == -EDQUOT && !enospc) {
 | |
| 		xfs_iunlock(ip, iolock);
 | |
| 		enospc = xfs_inode_free_quota_eofblocks(ip);
 | |
| 		if (enospc)
 | |
| 			goto write_retry;
 | |
| 		enospc = xfs_inode_free_quota_cowblocks(ip);
 | |
| 		if (enospc)
 | |
| 			goto write_retry;
 | |
| 		iolock = 0;
 | |
| 	} else if (ret == -ENOSPC && !enospc) {
 | |
| 		struct xfs_eofblocks eofb = {0};
 | |
| 
 | |
| 		enospc = 1;
 | |
| 		xfs_flush_inodes(ip->i_mount);
 | |
| 
 | |
| 		xfs_iunlock(ip, iolock);
 | |
| 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 | |
| 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 | |
| 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 | |
| 		goto write_retry;
 | |
| 	}
 | |
| 
 | |
| 	current->backing_dev_info = NULL;
 | |
| out:
 | |
| 	if (iolock)
 | |
| 		xfs_iunlock(ip, iolock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_file_write_iter(
 | |
| 	struct kiocb		*iocb,
 | |
| 	struct iov_iter		*from)
 | |
| {
 | |
| 	struct file		*file = iocb->ki_filp;
 | |
| 	struct address_space	*mapping = file->f_mapping;
 | |
| 	struct inode		*inode = mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	ssize_t			ret;
 | |
| 	size_t			ocount = iov_iter_count(from);
 | |
| 
 | |
| 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 | |
| 
 | |
| 	if (ocount == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (IS_DAX(inode))
 | |
| 		ret = xfs_file_dax_write(iocb, from);
 | |
| 	else if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		/*
 | |
| 		 * Allow a directio write to fall back to a buffered
 | |
| 		 * write *only* in the case that we're doing a reflink
 | |
| 		 * CoW.  In all other directio scenarios we do not
 | |
| 		 * allow an operation to fall back to buffered mode.
 | |
| 		 */
 | |
| 		ret = xfs_file_dio_aio_write(iocb, from);
 | |
| 		if (ret == -EREMCHG)
 | |
| 			goto buffered;
 | |
| 	} else {
 | |
| buffered:
 | |
| 		ret = xfs_file_buffered_aio_write(iocb, from);
 | |
| 	}
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 | |
| 
 | |
| 		/* Handle various SYNC-type writes */
 | |
| 		ret = generic_write_sync(iocb, ret);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define	XFS_FALLOC_FL_SUPPORTED						\
 | |
| 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 | |
| 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 | |
| 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 | |
| 
 | |
| STATIC long
 | |
| xfs_file_fallocate(
 | |
| 	struct file		*file,
 | |
| 	int			mode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			len)
 | |
| {
 | |
| 	struct inode		*inode = file_inode(file);
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	long			error;
 | |
| 	enum xfs_prealloc_flags	flags = 0;
 | |
| 	uint			iolock = XFS_IOLOCK_EXCL;
 | |
| 	loff_t			new_size = 0;
 | |
| 	bool			do_file_insert = false;
 | |
| 
 | |
| 	if (!S_ISREG(inode->i_mode))
 | |
| 		return -EINVAL;
 | |
| 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	xfs_ilock(ip, iolock);
 | |
| 	error = xfs_break_layouts(inode, &iolock);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 | |
| 	iolock |= XFS_MMAPLOCK_EXCL;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_PUNCH_HOLE) {
 | |
| 		error = xfs_free_file_space(ip, offset, len);
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 | |
| 		unsigned int blksize_mask = i_blocksize(inode) - 1;
 | |
| 
 | |
| 		if (offset & blksize_mask || len & blksize_mask) {
 | |
| 			error = -EINVAL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * There is no need to overlap collapse range with EOF,
 | |
| 		 * in which case it is effectively a truncate operation
 | |
| 		 */
 | |
| 		if (offset + len >= i_size_read(inode)) {
 | |
| 			error = -EINVAL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		new_size = i_size_read(inode) - len;
 | |
| 
 | |
| 		error = xfs_collapse_file_space(ip, offset, len);
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 | |
| 		unsigned int blksize_mask = i_blocksize(inode) - 1;
 | |
| 
 | |
| 		new_size = i_size_read(inode) + len;
 | |
| 		if (offset & blksize_mask || len & blksize_mask) {
 | |
| 			error = -EINVAL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/* check the new inode size does not wrap through zero */
 | |
| 		if (new_size > inode->i_sb->s_maxbytes) {
 | |
| 			error = -EFBIG;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/* Offset should be less than i_size */
 | |
| 		if (offset >= i_size_read(inode)) {
 | |
| 			error = -EINVAL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		do_file_insert = true;
 | |
| 	} else {
 | |
| 		flags |= XFS_PREALLOC_SET;
 | |
| 
 | |
| 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 | |
| 		    offset + len > i_size_read(inode)) {
 | |
| 			new_size = offset + len;
 | |
| 			error = inode_newsize_ok(inode, new_size);
 | |
| 			if (error)
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (mode & FALLOC_FL_ZERO_RANGE)
 | |
| 			error = xfs_zero_file_space(ip, offset, len);
 | |
| 		else {
 | |
| 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
 | |
| 				error = xfs_reflink_unshare(ip, offset, len);
 | |
| 				if (error)
 | |
| 					goto out_unlock;
 | |
| 			}
 | |
| 			error = xfs_alloc_file_space(ip, offset, len,
 | |
| 						     XFS_BMAPI_PREALLOC);
 | |
| 		}
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (file->f_flags & O_DSYNC)
 | |
| 		flags |= XFS_PREALLOC_SYNC;
 | |
| 
 | |
| 	error = xfs_update_prealloc_flags(ip, flags);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Change file size if needed */
 | |
| 	if (new_size) {
 | |
| 		struct iattr iattr;
 | |
| 
 | |
| 		iattr.ia_valid = ATTR_SIZE;
 | |
| 		iattr.ia_size = new_size;
 | |
| 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform hole insertion now that the file size has been
 | |
| 	 * updated so that if we crash during the operation we don't
 | |
| 	 * leave shifted extents past EOF and hence losing access to
 | |
| 	 * the data that is contained within them.
 | |
| 	 */
 | |
| 	if (do_file_insert)
 | |
| 		error = xfs_insert_file_space(ip, offset, len);
 | |
| 
 | |
| out_unlock:
 | |
| 	xfs_iunlock(ip, iolock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_file_clone_range(
 | |
| 	struct file	*file_in,
 | |
| 	loff_t		pos_in,
 | |
| 	struct file	*file_out,
 | |
| 	loff_t		pos_out,
 | |
| 	u64		len)
 | |
| {
 | |
| 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
 | |
| 				     len, false);
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_file_dedupe_range(
 | |
| 	struct file	*src_file,
 | |
| 	u64		loff,
 | |
| 	u64		len,
 | |
| 	struct file	*dst_file,
 | |
| 	u64		dst_loff)
 | |
| {
 | |
| 	int		error;
 | |
| 
 | |
| 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
 | |
| 				     len, true);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_file_open(
 | |
| 	struct inode	*inode,
 | |
| 	struct file	*file)
 | |
| {
 | |
| 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 | |
| 		return -EFBIG;
 | |
| 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 | |
| 		return -EIO;
 | |
| 	file->f_mode |= FMODE_NOWAIT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_dir_open(
 | |
| 	struct inode	*inode,
 | |
| 	struct file	*file)
 | |
| {
 | |
| 	struct xfs_inode *ip = XFS_I(inode);
 | |
| 	int		mode;
 | |
| 	int		error;
 | |
| 
 | |
| 	error = xfs_file_open(inode, file);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are any blocks, read-ahead block 0 as we're almost
 | |
| 	 * certain to have the next operation be a read there.
 | |
| 	 */
 | |
| 	mode = xfs_ilock_data_map_shared(ip);
 | |
| 	if (ip->i_d.di_nextents > 0)
 | |
| 		error = xfs_dir3_data_readahead(ip, 0, -1);
 | |
| 	xfs_iunlock(ip, mode);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_file_release(
 | |
| 	struct inode	*inode,
 | |
| 	struct file	*filp)
 | |
| {
 | |
| 	return xfs_release(XFS_I(inode));
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_file_readdir(
 | |
| 	struct file	*file,
 | |
| 	struct dir_context *ctx)
 | |
| {
 | |
| 	struct inode	*inode = file_inode(file);
 | |
| 	xfs_inode_t	*ip = XFS_I(inode);
 | |
| 	size_t		bufsize;
 | |
| 
 | |
| 	/*
 | |
| 	 * The Linux API doesn't pass down the total size of the buffer
 | |
| 	 * we read into down to the filesystem.  With the filldir concept
 | |
| 	 * it's not needed for correct information, but the XFS dir2 leaf
 | |
| 	 * code wants an estimate of the buffer size to calculate it's
 | |
| 	 * readahead window and size the buffers used for mapping to
 | |
| 	 * physical blocks.
 | |
| 	 *
 | |
| 	 * Try to give it an estimate that's good enough, maybe at some
 | |
| 	 * point we can change the ->readdir prototype to include the
 | |
| 	 * buffer size.  For now we use the current glibc buffer size.
 | |
| 	 */
 | |
| 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
 | |
| 
 | |
| 	return xfs_readdir(NULL, ip, ctx, bufsize);
 | |
| }
 | |
| 
 | |
| STATIC loff_t
 | |
| xfs_file_llseek(
 | |
| 	struct file	*file,
 | |
| 	loff_t		offset,
 | |
| 	int		whence)
 | |
| {
 | |
| 	struct inode		*inode = file->f_mapping->host;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	switch (whence) {
 | |
| 	default:
 | |
| 		return generic_file_llseek(file, offset, whence);
 | |
| 	case SEEK_HOLE:
 | |
| 		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
 | |
| 		break;
 | |
| 	case SEEK_DATA:
 | |
| 		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return offset;
 | |
| 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locking for serialisation of IO during page faults. This results in a lock
 | |
|  * ordering of:
 | |
|  *
 | |
|  * mmap_sem (MM)
 | |
|  *   sb_start_pagefault(vfs, freeze)
 | |
|  *     i_mmaplock (XFS - truncate serialisation)
 | |
|  *       page_lock (MM)
 | |
|  *         i_lock (XFS - extent map serialisation)
 | |
|  */
 | |
| static int
 | |
| __xfs_filemap_fault(
 | |
| 	struct vm_fault		*vmf,
 | |
| 	enum page_entry_size	pe_size,
 | |
| 	bool			write_fault)
 | |
| {
 | |
| 	struct inode		*inode = file_inode(vmf->vma->vm_file);
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	int			ret;
 | |
| 
 | |
| 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
 | |
| 
 | |
| 	if (write_fault) {
 | |
| 		sb_start_pagefault(inode->i_sb);
 | |
| 		file_update_time(vmf->vma->vm_file);
 | |
| 	}
 | |
| 
 | |
| 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | |
| 	if (IS_DAX(inode)) {
 | |
| 		pfn_t pfn;
 | |
| 
 | |
| 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
 | |
| 		if (ret & VM_FAULT_NEEDDSYNC)
 | |
| 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
 | |
| 	} else {
 | |
| 		if (write_fault)
 | |
| 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
 | |
| 		else
 | |
| 			ret = filemap_fault(vmf);
 | |
| 	}
 | |
| 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 | |
| 
 | |
| 	if (write_fault)
 | |
| 		sb_end_pagefault(inode->i_sb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_filemap_fault(
 | |
| 	struct vm_fault		*vmf)
 | |
| {
 | |
| 	/* DAX can shortcut the normal fault path on write faults! */
 | |
| 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
 | |
| 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
 | |
| 			(vmf->flags & FAULT_FLAG_WRITE));
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_filemap_huge_fault(
 | |
| 	struct vm_fault		*vmf,
 | |
| 	enum page_entry_size	pe_size)
 | |
| {
 | |
| 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 
 | |
| 	/* DAX can shortcut the normal fault path on write faults! */
 | |
| 	return __xfs_filemap_fault(vmf, pe_size,
 | |
| 			(vmf->flags & FAULT_FLAG_WRITE));
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_filemap_page_mkwrite(
 | |
| 	struct vm_fault		*vmf)
 | |
| {
 | |
| 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
 | |
|  * on write faults. In reality, it needs to serialise against truncate and
 | |
|  * prepare memory for writing so handle is as standard write fault.
 | |
|  */
 | |
| static int
 | |
| xfs_filemap_pfn_mkwrite(
 | |
| 	struct vm_fault		*vmf)
 | |
| {
 | |
| 
 | |
| 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct xfs_file_vm_ops = {
 | |
| 	.fault		= xfs_filemap_fault,
 | |
| 	.huge_fault	= xfs_filemap_huge_fault,
 | |
| 	.map_pages	= filemap_map_pages,
 | |
| 	.page_mkwrite	= xfs_filemap_page_mkwrite,
 | |
| 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
 | |
| };
 | |
| 
 | |
| STATIC int
 | |
| xfs_file_mmap(
 | |
| 	struct file	*filp,
 | |
| 	struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * We don't support synchronous mappings for non-DAX files. At least
 | |
| 	 * until someone comes with a sensible use case.
 | |
| 	 */
 | |
| 	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	file_accessed(filp);
 | |
| 	vma->vm_ops = &xfs_file_vm_ops;
 | |
| 	if (IS_DAX(file_inode(filp)))
 | |
| 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct file_operations xfs_file_operations = {
 | |
| 	.llseek		= xfs_file_llseek,
 | |
| 	.read_iter	= xfs_file_read_iter,
 | |
| 	.write_iter	= xfs_file_write_iter,
 | |
| 	.splice_read	= generic_file_splice_read,
 | |
| 	.splice_write	= iter_file_splice_write,
 | |
| 	.unlocked_ioctl	= xfs_file_ioctl,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_ioctl	= xfs_file_compat_ioctl,
 | |
| #endif
 | |
| 	.mmap		= xfs_file_mmap,
 | |
| 	.mmap_supported_flags = MAP_SYNC,
 | |
| 	.open		= xfs_file_open,
 | |
| 	.release	= xfs_file_release,
 | |
| 	.fsync		= xfs_file_fsync,
 | |
| 	.get_unmapped_area = thp_get_unmapped_area,
 | |
| 	.fallocate	= xfs_file_fallocate,
 | |
| 	.clone_file_range = xfs_file_clone_range,
 | |
| 	.dedupe_file_range = xfs_file_dedupe_range,
 | |
| };
 | |
| 
 | |
| const struct file_operations xfs_dir_file_operations = {
 | |
| 	.open		= xfs_dir_open,
 | |
| 	.read		= generic_read_dir,
 | |
| 	.iterate_shared	= xfs_file_readdir,
 | |
| 	.llseek		= generic_file_llseek,
 | |
| 	.unlocked_ioctl	= xfs_file_ioctl,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_ioctl	= xfs_file_compat_ioctl,
 | |
| #endif
 | |
| 	.fsync		= xfs_dir_fsync,
 | |
| };
 |