mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-04 20:19:47 +08:00 
			
		
		
		
	 f82b376413
			
		
	
	
		f82b376413
		
	
	
	
	
		
			
			XFS currently contains a copy-and-paste of __set_page_dirty(). Export it from buffer.c instead. Link: http://lkml.kernel.org/r/20180313132639.17387-6-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Acked-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Dave Chinner <david@fromorbit.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1499 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1499 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_iomap.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_bmap_util.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_reflink.h"
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/writeback.h>
 | |
| 
 | |
| /*
 | |
|  * structure owned by writepages passed to individual writepage calls
 | |
|  */
 | |
| struct xfs_writepage_ctx {
 | |
| 	struct xfs_bmbt_irec    imap;
 | |
| 	bool			imap_valid;
 | |
| 	unsigned int		io_type;
 | |
| 	struct xfs_ioend	*ioend;
 | |
| 	sector_t		last_block;
 | |
| };
 | |
| 
 | |
| void
 | |
| xfs_count_page_state(
 | |
| 	struct page		*page,
 | |
| 	int			*delalloc,
 | |
| 	int			*unwritten)
 | |
| {
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 
 | |
| 	*delalloc = *unwritten = 0;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		if (buffer_unwritten(bh))
 | |
| 			(*unwritten) = 1;
 | |
| 		else if (buffer_delay(bh))
 | |
| 			(*delalloc) = 1;
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| }
 | |
| 
 | |
| struct block_device *
 | |
| xfs_find_bdev_for_inode(
 | |
| 	struct inode		*inode)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	if (XFS_IS_REALTIME_INODE(ip))
 | |
| 		return mp->m_rtdev_targp->bt_bdev;
 | |
| 	else
 | |
| 		return mp->m_ddev_targp->bt_bdev;
 | |
| }
 | |
| 
 | |
| struct dax_device *
 | |
| xfs_find_daxdev_for_inode(
 | |
| 	struct inode		*inode)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	if (XFS_IS_REALTIME_INODE(ip))
 | |
| 		return mp->m_rtdev_targp->bt_daxdev;
 | |
| 	else
 | |
| 		return mp->m_ddev_targp->bt_daxdev;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're now finished for good with this page.  Update the page state via the
 | |
|  * associated buffer_heads, paying attention to the start and end offsets that
 | |
|  * we need to process on the page.
 | |
|  *
 | |
|  * Note that we open code the action in end_buffer_async_write here so that we
 | |
|  * only have to iterate over the buffers attached to the page once.  This is not
 | |
|  * only more efficient, but also ensures that we only calls end_page_writeback
 | |
|  * at the end of the iteration, and thus avoids the pitfall of having the page
 | |
|  * and buffers potentially freed after every call to end_buffer_async_write.
 | |
|  */
 | |
| static void
 | |
| xfs_finish_page_writeback(
 | |
| 	struct inode		*inode,
 | |
| 	struct bio_vec		*bvec,
 | |
| 	int			error)
 | |
| {
 | |
| 	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
 | |
| 	bool			busy = false;
 | |
| 	unsigned int		off = 0;
 | |
| 	unsigned long		flags;
 | |
| 
 | |
| 	ASSERT(bvec->bv_offset < PAGE_SIZE);
 | |
| 	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
 | |
| 	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
 | |
| 	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
 | |
| 	do {
 | |
| 		if (off >= bvec->bv_offset &&
 | |
| 		    off < bvec->bv_offset + bvec->bv_len) {
 | |
| 			ASSERT(buffer_async_write(bh));
 | |
| 			ASSERT(bh->b_end_io == NULL);
 | |
| 
 | |
| 			if (error) {
 | |
| 				mark_buffer_write_io_error(bh);
 | |
| 				clear_buffer_uptodate(bh);
 | |
| 				SetPageError(bvec->bv_page);
 | |
| 			} else {
 | |
| 				set_buffer_uptodate(bh);
 | |
| 			}
 | |
| 			clear_buffer_async_write(bh);
 | |
| 			unlock_buffer(bh);
 | |
| 		} else if (buffer_async_write(bh)) {
 | |
| 			ASSERT(buffer_locked(bh));
 | |
| 			busy = true;
 | |
| 		}
 | |
| 		off += bh->b_size;
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| 	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (!busy)
 | |
| 		end_page_writeback(bvec->bv_page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're now finished for good with this ioend structure.  Update the page
 | |
|  * state, release holds on bios, and finally free up memory.  Do not use the
 | |
|  * ioend after this.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_destroy_ioend(
 | |
| 	struct xfs_ioend	*ioend,
 | |
| 	int			error)
 | |
| {
 | |
| 	struct inode		*inode = ioend->io_inode;
 | |
| 	struct bio		*bio = &ioend->io_inline_bio;
 | |
| 	struct bio		*last = ioend->io_bio, *next;
 | |
| 	u64			start = bio->bi_iter.bi_sector;
 | |
| 	bool			quiet = bio_flagged(bio, BIO_QUIET);
 | |
| 
 | |
| 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
 | |
| 		struct bio_vec	*bvec;
 | |
| 		int		i;
 | |
| 
 | |
| 		/*
 | |
| 		 * For the last bio, bi_private points to the ioend, so we
 | |
| 		 * need to explicitly end the iteration here.
 | |
| 		 */
 | |
| 		if (bio == last)
 | |
| 			next = NULL;
 | |
| 		else
 | |
| 			next = bio->bi_private;
 | |
| 
 | |
| 		/* walk each page on bio, ending page IO on them */
 | |
| 		bio_for_each_segment_all(bvec, bio, i)
 | |
| 			xfs_finish_page_writeback(inode, bvec, error);
 | |
| 
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(error && !quiet)) {
 | |
| 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
 | |
| 			"writeback error on sector %llu", start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast and loose check if this write could update the on-disk inode size.
 | |
|  */
 | |
| static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 | |
| {
 | |
| 	return ioend->io_offset + ioend->io_size >
 | |
| 		XFS_I(ioend->io_inode)->i_d.di_size;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_setfilesize_trans_alloc(
 | |
| 	struct xfs_ioend	*ioend)
 | |
| {
 | |
| 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
 | |
| 				XFS_TRANS_NOFS, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	ioend->io_append_trans = tp;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may pass freeze protection with a transaction.  So tell lockdep
 | |
| 	 * we released it.
 | |
| 	 */
 | |
| 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 | |
| 	/*
 | |
| 	 * We hand off the transaction to the completion thread now, so
 | |
| 	 * clear the flag here.
 | |
| 	 */
 | |
| 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update on-disk file size now that data has been written to disk.
 | |
|  */
 | |
| STATIC int
 | |
| __xfs_setfilesize(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_trans	*tp,
 | |
| 	xfs_off_t		offset,
 | |
| 	size_t			size)
 | |
| {
 | |
| 	xfs_fsize_t		isize;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	isize = xfs_new_eof(ip, offset + size);
 | |
| 	if (!isize) {
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_setfilesize(ip, offset, size);
 | |
| 
 | |
| 	ip->i_d.di_size = isize;
 | |
| 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	return xfs_trans_commit(tp);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_setfilesize(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	xfs_off_t		offset,
 | |
| 	size_t			size)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	return __xfs_setfilesize(ip, tp, offset, size);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_setfilesize_ioend(
 | |
| 	struct xfs_ioend	*ioend,
 | |
| 	int			error)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 | |
| 	struct xfs_trans	*tp = ioend->io_append_trans;
 | |
| 
 | |
| 	/*
 | |
| 	 * The transaction may have been allocated in the I/O submission thread,
 | |
| 	 * thus we need to mark ourselves as being in a transaction manually.
 | |
| 	 * Similarly for freeze protection.
 | |
| 	 */
 | |
| 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 | |
| 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 | |
| 
 | |
| 	/* we abort the update if there was an IO error */
 | |
| 	if (error) {
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IO write completion.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_io(
 | |
| 	struct work_struct *work)
 | |
| {
 | |
| 	struct xfs_ioend	*ioend =
 | |
| 		container_of(work, struct xfs_ioend, io_work);
 | |
| 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 | |
| 	xfs_off_t		offset = ioend->io_offset;
 | |
| 	size_t			size = ioend->io_size;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Just clean up the in-memory strutures if the fs has been shut down.
 | |
| 	 */
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 		error = -EIO;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clean up any COW blocks on an I/O error.
 | |
| 	 */
 | |
| 	error = blk_status_to_errno(ioend->io_bio->bi_status);
 | |
| 	if (unlikely(error)) {
 | |
| 		switch (ioend->io_type) {
 | |
| 		case XFS_IO_COW:
 | |
| 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Success:  commit the COW or unwritten blocks if needed.
 | |
| 	 */
 | |
| 	switch (ioend->io_type) {
 | |
| 	case XFS_IO_COW:
 | |
| 		error = xfs_reflink_end_cow(ip, offset, size);
 | |
| 		break;
 | |
| 	case XFS_IO_UNWRITTEN:
 | |
| 		/* writeback should never update isize */
 | |
| 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (ioend->io_append_trans)
 | |
| 		error = xfs_setfilesize_ioend(ioend, error);
 | |
| 	xfs_destroy_ioend(ioend, error);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_end_bio(
 | |
| 	struct bio		*bio)
 | |
| {
 | |
| 	struct xfs_ioend	*ioend = bio->bi_private;
 | |
| 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 | |
| 
 | |
| 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
 | |
| 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 | |
| 	else if (ioend->io_append_trans)
 | |
| 		queue_work(mp->m_data_workqueue, &ioend->io_work);
 | |
| 	else
 | |
| 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_map_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	int			type)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	ssize_t			count = i_blocksize(inode);
 | |
| 	xfs_fileoff_t		offset_fsb, end_fsb;
 | |
| 	int			error = 0;
 | |
| 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 | |
| 	int			nimaps = 1;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Truncate can race with writeback since writeback doesn't take the
 | |
| 	 * iolock and truncate decreases the file size before it starts
 | |
| 	 * truncating the pages between new_size and old_size.  Therefore, we
 | |
| 	 * can end up in the situation where writeback gets a CoW fork mapping
 | |
| 	 * but the truncate makes the mapping invalid and we end up in here
 | |
| 	 * trying to get a new mapping.  Bail out here so that we simply never
 | |
| 	 * get a valid mapping and so we drop the write altogether.  The page
 | |
| 	 * truncation will kill the contents anyway.
 | |
| 	 */
 | |
| 	if (type == XFS_IO_COW && offset > i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	ASSERT(type != XFS_IO_COW);
 | |
| 	if (type == XFS_IO_UNWRITTEN)
 | |
| 		bmapi_flags |= XFS_BMAPI_IGSTATE;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_SHARED);
 | |
| 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 | |
| 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 | |
| 	ASSERT(offset <= mp->m_super->s_maxbytes);
 | |
| 
 | |
| 	if (offset > mp->m_super->s_maxbytes - count)
 | |
| 		count = mp->m_super->s_maxbytes - offset;
 | |
| 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 | |
| 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 | |
| 				imap, &nimaps, bmapi_flags);
 | |
| 	/*
 | |
| 	 * Truncate an overwrite extent if there's a pending CoW
 | |
| 	 * reservation before the end of this extent.  This forces us
 | |
| 	 * to come back to writepage to take care of the CoW.
 | |
| 	 */
 | |
| 	if (nimaps && type == XFS_IO_OVERWRITE)
 | |
| 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (type == XFS_IO_DELALLOC &&
 | |
| 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 | |
| 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
 | |
| 				imap);
 | |
| 		if (!error)
 | |
| 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	if (type == XFS_IO_UNWRITTEN) {
 | |
| 		ASSERT(nimaps);
 | |
| 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 | |
| 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 | |
| 	}
 | |
| #endif
 | |
| 	if (nimaps)
 | |
| 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC bool
 | |
| xfs_imap_valid(
 | |
| 	struct inode		*inode,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_off_t		offset)
 | |
| {
 | |
| 	offset >>= inode->i_blkbits;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to make sure the cached mapping is within EOF to protect
 | |
| 	 * against eofblocks trimming on file release leaving us with a stale
 | |
| 	 * mapping. Otherwise, a page for a subsequent file extending buffered
 | |
| 	 * write could get picked up by this writeback cycle and written to the
 | |
| 	 * wrong blocks.
 | |
| 	 *
 | |
| 	 * Note that what we really want here is a generic mapping invalidation
 | |
| 	 * mechanism to protect us from arbitrary extent modifying contexts, not
 | |
| 	 * just eofblocks.
 | |
| 	 */
 | |
| 	xfs_trim_extent_eof(imap, XFS_I(inode));
 | |
| 
 | |
| 	return offset >= imap->br_startoff &&
 | |
| 		offset < imap->br_startoff + imap->br_blockcount;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_start_buffer_writeback(
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	ASSERT(buffer_mapped(bh));
 | |
| 	ASSERT(buffer_locked(bh));
 | |
| 	ASSERT(!buffer_delay(bh));
 | |
| 	ASSERT(!buffer_unwritten(bh));
 | |
| 
 | |
| 	bh->b_end_io = NULL;
 | |
| 	set_buffer_async_write(bh);
 | |
| 	set_buffer_uptodate(bh);
 | |
| 	clear_buffer_dirty(bh);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_start_page_writeback(
 | |
| 	struct page		*page,
 | |
| 	int			clear_dirty)
 | |
| {
 | |
| 	ASSERT(PageLocked(page));
 | |
| 	ASSERT(!PageWriteback(page));
 | |
| 
 | |
| 	/*
 | |
| 	 * if the page was not fully cleaned, we need to ensure that the higher
 | |
| 	 * layers come back to it correctly. That means we need to keep the page
 | |
| 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
 | |
| 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
 | |
| 	 * write this page in this writeback sweep will be made.
 | |
| 	 */
 | |
| 	if (clear_dirty) {
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 		set_page_writeback(page);
 | |
| 	} else
 | |
| 		set_page_writeback_keepwrite(page);
 | |
| 
 | |
| 	unlock_page(page);
 | |
| }
 | |
| 
 | |
| static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 | |
| {
 | |
| 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 | |
|  * it, and we submit that bio. The ioend may be used for multiple bio
 | |
|  * submissions, so we only want to allocate an append transaction for the ioend
 | |
|  * once. In the case of multiple bio submission, each bio will take an IO
 | |
|  * reference to the ioend to ensure that the ioend completion is only done once
 | |
|  * all bios have been submitted and the ioend is really done.
 | |
|  *
 | |
|  * If @fail is non-zero, it means that we have a situation where some part of
 | |
|  * the submission process has failed after we have marked paged for writeback
 | |
|  * and unlocked them. In this situation, we need to fail the bio and ioend
 | |
|  * rather than submit it to IO. This typically only happens on a filesystem
 | |
|  * shutdown.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_submit_ioend(
 | |
| 	struct writeback_control *wbc,
 | |
| 	struct xfs_ioend	*ioend,
 | |
| 	int			status)
 | |
| {
 | |
| 	/* Convert CoW extents to regular */
 | |
| 	if (!status && ioend->io_type == XFS_IO_COW) {
 | |
| 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
 | |
| 				ioend->io_offset, ioend->io_size);
 | |
| 	}
 | |
| 
 | |
| 	/* Reserve log space if we might write beyond the on-disk inode size. */
 | |
| 	if (!status &&
 | |
| 	    ioend->io_type != XFS_IO_UNWRITTEN &&
 | |
| 	    xfs_ioend_is_append(ioend) &&
 | |
| 	    !ioend->io_append_trans)
 | |
| 		status = xfs_setfilesize_trans_alloc(ioend);
 | |
| 
 | |
| 	ioend->io_bio->bi_private = ioend;
 | |
| 	ioend->io_bio->bi_end_io = xfs_end_bio;
 | |
| 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are failing the IO now, just mark the ioend with an
 | |
| 	 * error and finish it. This will run IO completion immediately
 | |
| 	 * as there is only one reference to the ioend at this point in
 | |
| 	 * time.
 | |
| 	 */
 | |
| 	if (status) {
 | |
| 		ioend->io_bio->bi_status = errno_to_blk_status(status);
 | |
| 		bio_endio(ioend->io_bio);
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
 | |
| 	submit_bio(ioend->io_bio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_init_bio_from_bh(
 | |
| 	struct bio		*bio,
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 | |
| 	bio_set_dev(bio, bh->b_bdev);
 | |
| }
 | |
| 
 | |
| static struct xfs_ioend *
 | |
| xfs_alloc_ioend(
 | |
| 	struct inode		*inode,
 | |
| 	unsigned int		type,
 | |
| 	xfs_off_t		offset,
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	struct xfs_ioend	*ioend;
 | |
| 	struct bio		*bio;
 | |
| 
 | |
| 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
 | |
| 	xfs_init_bio_from_bh(bio, bh);
 | |
| 
 | |
| 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
 | |
| 	INIT_LIST_HEAD(&ioend->io_list);
 | |
| 	ioend->io_type = type;
 | |
| 	ioend->io_inode = inode;
 | |
| 	ioend->io_size = 0;
 | |
| 	ioend->io_offset = offset;
 | |
| 	INIT_WORK(&ioend->io_work, xfs_end_io);
 | |
| 	ioend->io_append_trans = NULL;
 | |
| 	ioend->io_bio = bio;
 | |
| 	return ioend;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new bio, and chain the old bio to the new one.
 | |
|  *
 | |
|  * Note that we have to do perform the chaining in this unintuitive order
 | |
|  * so that the bi_private linkage is set up in the right direction for the
 | |
|  * traversal in xfs_destroy_ioend().
 | |
|  */
 | |
| static void
 | |
| xfs_chain_bio(
 | |
| 	struct xfs_ioend	*ioend,
 | |
| 	struct writeback_control *wbc,
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	struct bio *new;
 | |
| 
 | |
| 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
 | |
| 	xfs_init_bio_from_bh(new, bh);
 | |
| 
 | |
| 	bio_chain(ioend->io_bio, new);
 | |
| 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
 | |
| 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 | |
| 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
 | |
| 	submit_bio(ioend->io_bio);
 | |
| 	ioend->io_bio = new;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test to see if we've been building up a completion structure for
 | |
|  * earlier buffers -- if so, we try to append to this ioend if we
 | |
|  * can, otherwise we finish off any current ioend and start another.
 | |
|  * Return the ioend we finished off so that the caller can submit it
 | |
|  * once it has finished processing the dirty page.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_add_to_ioend(
 | |
| 	struct inode		*inode,
 | |
| 	struct buffer_head	*bh,
 | |
| 	xfs_off_t		offset,
 | |
| 	struct xfs_writepage_ctx *wpc,
 | |
| 	struct writeback_control *wbc,
 | |
| 	struct list_head	*iolist)
 | |
| {
 | |
| 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
 | |
| 	    bh->b_blocknr != wpc->last_block + 1 ||
 | |
| 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 | |
| 		if (wpc->ioend)
 | |
| 			list_add(&wpc->ioend->io_list, iolist);
 | |
| 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the buffer doesn't fit into the bio we need to allocate a new
 | |
| 	 * one.  This shouldn't happen more than once for a given buffer.
 | |
| 	 */
 | |
| 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
 | |
| 		xfs_chain_bio(wpc->ioend, wbc, bh);
 | |
| 
 | |
| 	wpc->ioend->io_size += bh->b_size;
 | |
| 	wpc->last_block = bh->b_blocknr;
 | |
| 	xfs_start_buffer_writeback(bh);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_map_buffer(
 | |
| 	struct inode		*inode,
 | |
| 	struct buffer_head	*bh,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_off_t		offset)
 | |
| {
 | |
| 	sector_t		bn;
 | |
| 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 | |
| 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 | |
| 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 | |
| 
 | |
| 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 | |
| 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 | |
| 
 | |
| 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 | |
| 	      ((offset - iomap_offset) >> inode->i_blkbits);
 | |
| 
 | |
| 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 | |
| 
 | |
| 	bh->b_blocknr = bn;
 | |
| 	set_buffer_mapped(bh);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_map_at_offset(
 | |
| 	struct inode		*inode,
 | |
| 	struct buffer_head	*bh,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_off_t		offset)
 | |
| {
 | |
| 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 | |
| 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 | |
| 
 | |
| 	xfs_map_buffer(inode, bh, imap, offset);
 | |
| 	set_buffer_mapped(bh);
 | |
| 	clear_buffer_delay(bh);
 | |
| 	clear_buffer_unwritten(bh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if a given page contains at least one buffer of a given @type.
 | |
|  * If @check_all_buffers is true, then we walk all the buffers in the page to
 | |
|  * try to find one of the type passed in. If it is not set, then the caller only
 | |
|  * needs to check the first buffer on the page for a match.
 | |
|  */
 | |
| STATIC bool
 | |
| xfs_check_page_type(
 | |
| 	struct page		*page,
 | |
| 	unsigned int		type,
 | |
| 	bool			check_all_buffers)
 | |
| {
 | |
| 	struct buffer_head	*bh;
 | |
| 	struct buffer_head	*head;
 | |
| 
 | |
| 	if (PageWriteback(page))
 | |
| 		return false;
 | |
| 	if (!page->mapping)
 | |
| 		return false;
 | |
| 	if (!page_has_buffers(page))
 | |
| 		return false;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		if (buffer_unwritten(bh)) {
 | |
| 			if (type == XFS_IO_UNWRITTEN)
 | |
| 				return true;
 | |
| 		} else if (buffer_delay(bh)) {
 | |
| 			if (type == XFS_IO_DELALLOC)
 | |
| 				return true;
 | |
| 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 | |
| 			if (type == XFS_IO_OVERWRITE)
 | |
| 				return true;
 | |
| 		}
 | |
| 
 | |
| 		/* If we are only checking the first buffer, we are done now. */
 | |
| 		if (!check_all_buffers)
 | |
| 			break;
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_vm_invalidatepage(
 | |
| 	struct page		*page,
 | |
| 	unsigned int		offset,
 | |
| 	unsigned int		length)
 | |
| {
 | |
| 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
 | |
| 				 length);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are invalidating the entire page, clear the dirty state from it
 | |
| 	 * so that we can check for attempts to release dirty cached pages in
 | |
| 	 * xfs_vm_releasepage().
 | |
| 	 */
 | |
| 	if (offset == 0 && length >= PAGE_SIZE)
 | |
| 		cancel_dirty_page(page);
 | |
| 	block_invalidatepage(page, offset, length);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the page has delalloc buffers on it, we need to punch them out before we
 | |
|  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 | |
|  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 | |
|  * is done on that same region - the delalloc extent is returned when none is
 | |
|  * supposed to be there.
 | |
|  *
 | |
|  * We prevent this by truncating away the delalloc regions on the page before
 | |
|  * invalidating it. Because they are delalloc, we can do this without needing a
 | |
|  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 | |
|  * truncation without a transaction as there is no space left for block
 | |
|  * reservation (typically why we see a ENOSPC in writeback).
 | |
|  *
 | |
|  * This is not a performance critical path, so for now just do the punching a
 | |
|  * buffer head at a time.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_aops_discard_page(
 | |
| 	struct page		*page)
 | |
| {
 | |
| 	struct inode		*inode = page->mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 	loff_t			offset = page_offset(page);
 | |
| 
 | |
| 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 | |
| 		goto out_invalidate;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 | |
| 		goto out_invalidate;
 | |
| 
 | |
| 	xfs_alert(ip->i_mount,
 | |
| 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
 | |
| 			page, ip->i_ino, offset);
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		int		error;
 | |
| 		xfs_fileoff_t	start_fsb;
 | |
| 
 | |
| 		if (!buffer_delay(bh))
 | |
| 			goto next_buffer;
 | |
| 
 | |
| 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 | |
| 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 | |
| 		if (error) {
 | |
| 			/* something screwed, just bail */
 | |
| 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 				xfs_alert(ip->i_mount,
 | |
| 			"page discard unable to remove delalloc mapping.");
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| next_buffer:
 | |
| 		offset += i_blocksize(inode);
 | |
| 
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| 
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| out_invalidate:
 | |
| 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_map_cow(
 | |
| 	struct xfs_writepage_ctx *wpc,
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	unsigned int		*new_type)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_bmbt_irec	imap;
 | |
| 	bool			is_cow = false;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we already have a valid COW mapping keep using it.
 | |
| 	 */
 | |
| 	if (wpc->io_type == XFS_IO_COW) {
 | |
| 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
 | |
| 		if (wpc->imap_valid) {
 | |
| 			*new_type = XFS_IO_COW;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Else we need to check if there is a COW mapping at this offset.
 | |
| 	 */
 | |
| 	xfs_ilock(ip, XFS_ILOCK_SHARED);
 | |
| 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 
 | |
| 	if (!is_cow)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * And if the COW mapping has a delayed extent here we need to
 | |
| 	 * allocate real space for it now.
 | |
| 	 */
 | |
| 	if (isnullstartblock(imap.br_startblock)) {
 | |
| 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
 | |
| 				&imap);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	wpc->io_type = *new_type = XFS_IO_COW;
 | |
| 	wpc->imap_valid = true;
 | |
| 	wpc->imap = imap;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We implement an immediate ioend submission policy here to avoid needing to
 | |
|  * chain multiple ioends and hence nest mempool allocations which can violate
 | |
|  * forward progress guarantees we need to provide. The current ioend we are
 | |
|  * adding buffers to is cached on the writepage context, and if the new buffer
 | |
|  * does not append to the cached ioend it will create a new ioend and cache that
 | |
|  * instead.
 | |
|  *
 | |
|  * If a new ioend is created and cached, the old ioend is returned and queued
 | |
|  * locally for submission once the entire page is processed or an error has been
 | |
|  * detected.  While ioends are submitted immediately after they are completed,
 | |
|  * batching optimisations are provided by higher level block plugging.
 | |
|  *
 | |
|  * At the end of a writeback pass, there will be a cached ioend remaining on the
 | |
|  * writepage context that the caller will need to submit.
 | |
|  */
 | |
| static int
 | |
| xfs_writepage_map(
 | |
| 	struct xfs_writepage_ctx *wpc,
 | |
| 	struct writeback_control *wbc,
 | |
| 	struct inode		*inode,
 | |
| 	struct page		*page,
 | |
| 	uint64_t		end_offset)
 | |
| {
 | |
| 	LIST_HEAD(submit_list);
 | |
| 	struct xfs_ioend	*ioend, *next;
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 	ssize_t			len = i_blocksize(inode);
 | |
| 	uint64_t		offset;
 | |
| 	int			error = 0;
 | |
| 	int			count = 0;
 | |
| 	int			uptodate = 1;
 | |
| 	unsigned int		new_type;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	offset = page_offset(page);
 | |
| 	do {
 | |
| 		if (offset >= end_offset)
 | |
| 			break;
 | |
| 		if (!buffer_uptodate(bh))
 | |
| 			uptodate = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * set_page_dirty dirties all buffers in a page, independent
 | |
| 		 * of their state.  The dirty state however is entirely
 | |
| 		 * meaningless for holes (!mapped && uptodate), so skip
 | |
| 		 * buffers covering holes here.
 | |
| 		 */
 | |
| 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 | |
| 			wpc->imap_valid = false;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (buffer_unwritten(bh))
 | |
| 			new_type = XFS_IO_UNWRITTEN;
 | |
| 		else if (buffer_delay(bh))
 | |
| 			new_type = XFS_IO_DELALLOC;
 | |
| 		else if (buffer_uptodate(bh))
 | |
| 			new_type = XFS_IO_OVERWRITE;
 | |
| 		else {
 | |
| 			if (PageUptodate(page))
 | |
| 				ASSERT(buffer_mapped(bh));
 | |
| 			/*
 | |
| 			 * This buffer is not uptodate and will not be
 | |
| 			 * written to disk.  Ensure that we will put any
 | |
| 			 * subsequent writeable buffers into a new
 | |
| 			 * ioend.
 | |
| 			 */
 | |
| 			wpc->imap_valid = false;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (xfs_is_reflink_inode(XFS_I(inode))) {
 | |
| 			error = xfs_map_cow(wpc, inode, offset, &new_type);
 | |
| 			if (error)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (wpc->io_type != new_type) {
 | |
| 			wpc->io_type = new_type;
 | |
| 			wpc->imap_valid = false;
 | |
| 		}
 | |
| 
 | |
| 		if (wpc->imap_valid)
 | |
| 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 | |
| 							 offset);
 | |
| 		if (!wpc->imap_valid) {
 | |
| 			error = xfs_map_blocks(inode, offset, &wpc->imap,
 | |
| 					     wpc->io_type);
 | |
| 			if (error)
 | |
| 				goto out;
 | |
| 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 | |
| 							 offset);
 | |
| 		}
 | |
| 		if (wpc->imap_valid) {
 | |
| 			lock_buffer(bh);
 | |
| 			if (wpc->io_type != XFS_IO_OVERWRITE)
 | |
| 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
 | |
| 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
 | |
| 			count++;
 | |
| 		}
 | |
| 
 | |
| 	} while (offset += len, ((bh = bh->b_this_page) != head));
 | |
| 
 | |
| 	if (uptodate && bh == head)
 | |
| 		SetPageUptodate(page);
 | |
| 
 | |
| 	ASSERT(wpc->ioend || list_empty(&submit_list));
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * On error, we have to fail the ioend here because we have locked
 | |
| 	 * buffers in the ioend. If we don't do this, we'll deadlock
 | |
| 	 * invalidating the page as that tries to lock the buffers on the page.
 | |
| 	 * Also, because we may have set pages under writeback, we have to make
 | |
| 	 * sure we run IO completion to mark the error state of the IO
 | |
| 	 * appropriately, so we can't cancel the ioend directly here. That means
 | |
| 	 * we have to mark this page as under writeback if we included any
 | |
| 	 * buffers from it in the ioend chain so that completion treats it
 | |
| 	 * correctly.
 | |
| 	 *
 | |
| 	 * If we didn't include the page in the ioend, the on error we can
 | |
| 	 * simply discard and unlock it as there are no other users of the page
 | |
| 	 * or it's buffers right now. The caller will still need to trigger
 | |
| 	 * submission of outstanding ioends on the writepage context so they are
 | |
| 	 * treated correctly on error.
 | |
| 	 */
 | |
| 	if (count) {
 | |
| 		xfs_start_page_writeback(page, !error);
 | |
| 
 | |
| 		/*
 | |
| 		 * Preserve the original error if there was one, otherwise catch
 | |
| 		 * submission errors here and propagate into subsequent ioend
 | |
| 		 * submissions.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
 | |
| 			int error2;
 | |
| 
 | |
| 			list_del_init(&ioend->io_list);
 | |
| 			error2 = xfs_submit_ioend(wbc, ioend, error);
 | |
| 			if (error2 && !error)
 | |
| 				error = error2;
 | |
| 		}
 | |
| 	} else if (error) {
 | |
| 		xfs_aops_discard_page(page);
 | |
| 		ClearPageUptodate(page);
 | |
| 		unlock_page(page);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We can end up here with no error and nothing to write if we
 | |
| 		 * race with a partial page truncate on a sub-page block sized
 | |
| 		 * filesystem. In that case we need to mark the page clean.
 | |
| 		 */
 | |
| 		xfs_start_page_writeback(page, 1);
 | |
| 		end_page_writeback(page);
 | |
| 	}
 | |
| 
 | |
| 	mapping_set_error(page->mapping, error);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out a dirty page.
 | |
|  *
 | |
|  * For delalloc space on the page we need to allocate space and flush it.
 | |
|  * For unwritten space on the page we need to start the conversion to
 | |
|  * regular allocated space.
 | |
|  * For any other dirty buffer heads on the page we should flush them.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_do_writepage(
 | |
| 	struct page		*page,
 | |
| 	struct writeback_control *wbc,
 | |
| 	void			*data)
 | |
| {
 | |
| 	struct xfs_writepage_ctx *wpc = data;
 | |
| 	struct inode		*inode = page->mapping->host;
 | |
| 	loff_t			offset;
 | |
| 	uint64_t              end_offset;
 | |
| 	pgoff_t                 end_index;
 | |
| 
 | |
| 	trace_xfs_writepage(inode, page, 0, 0);
 | |
| 
 | |
| 	ASSERT(page_has_buffers(page));
 | |
| 
 | |
| 	/*
 | |
| 	 * Refuse to write the page out if we are called from reclaim context.
 | |
| 	 *
 | |
| 	 * This avoids stack overflows when called from deeply used stacks in
 | |
| 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 | |
| 	 * allow reclaim from kswapd as the stack usage there is relatively low.
 | |
| 	 *
 | |
| 	 * This should never happen except in the case of a VM regression so
 | |
| 	 * warn about it.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
 | |
| 			PF_MEMALLOC))
 | |
| 		goto redirty;
 | |
| 
 | |
| 	/*
 | |
| 	 * Given that we do not allow direct reclaim to call us, we should
 | |
| 	 * never be called while in a filesystem transaction.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
 | |
| 		goto redirty;
 | |
| 
 | |
| 	/*
 | |
| 	 * Is this page beyond the end of the file?
 | |
| 	 *
 | |
| 	 * The page index is less than the end_index, adjust the end_offset
 | |
| 	 * to the highest offset that this page should represent.
 | |
| 	 * -----------------------------------------------------
 | |
| 	 * |			file mapping	       | <EOF> |
 | |
| 	 * -----------------------------------------------------
 | |
| 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
 | |
| 	 * ^--------------------------------^----------|--------
 | |
| 	 * |     desired writeback range    |      see else    |
 | |
| 	 * ---------------------------------^------------------|
 | |
| 	 */
 | |
| 	offset = i_size_read(inode);
 | |
| 	end_index = offset >> PAGE_SHIFT;
 | |
| 	if (page->index < end_index)
 | |
| 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Check whether the page to write out is beyond or straddles
 | |
| 		 * i_size or not.
 | |
| 		 * -------------------------------------------------------
 | |
| 		 * |		file mapping		        | <EOF>  |
 | |
| 		 * -------------------------------------------------------
 | |
| 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
 | |
| 		 * ^--------------------------------^-----------|---------
 | |
| 		 * |				    |      Straddles     |
 | |
| 		 * ---------------------------------^-----------|--------|
 | |
| 		 */
 | |
| 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip the page if it is fully outside i_size, e.g. due to a
 | |
| 		 * truncate operation that is in progress. We must redirty the
 | |
| 		 * page so that reclaim stops reclaiming it. Otherwise
 | |
| 		 * xfs_vm_releasepage() is called on it and gets confused.
 | |
| 		 *
 | |
| 		 * Note that the end_index is unsigned long, it would overflow
 | |
| 		 * if the given offset is greater than 16TB on 32-bit system
 | |
| 		 * and if we do check the page is fully outside i_size or not
 | |
| 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
 | |
| 		 * will be evaluated to 0.  Hence this page will be redirtied
 | |
| 		 * and be written out repeatedly which would result in an
 | |
| 		 * infinite loop, the user program that perform this operation
 | |
| 		 * will hang.  Instead, we can verify this situation by checking
 | |
| 		 * if the page to write is totally beyond the i_size or if it's
 | |
| 		 * offset is just equal to the EOF.
 | |
| 		 */
 | |
| 		if (page->index > end_index ||
 | |
| 		    (page->index == end_index && offset_into_page == 0))
 | |
| 			goto redirty;
 | |
| 
 | |
| 		/*
 | |
| 		 * The page straddles i_size.  It must be zeroed out on each
 | |
| 		 * and every writepage invocation because it may be mmapped.
 | |
| 		 * "A file is mapped in multiples of the page size.  For a file
 | |
| 		 * that is not a multiple of the page size, the remaining
 | |
| 		 * memory is zeroed when mapped, and writes to that region are
 | |
| 		 * not written out to the file."
 | |
| 		 */
 | |
| 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
 | |
| 
 | |
| 		/* Adjust the end_offset to the end of file */
 | |
| 		end_offset = offset;
 | |
| 	}
 | |
| 
 | |
| 	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
 | |
| 
 | |
| redirty:
 | |
| 	redirty_page_for_writepage(wbc, page);
 | |
| 	unlock_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_writepage(
 | |
| 	struct page		*page,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	struct xfs_writepage_ctx wpc = {
 | |
| 		.io_type = XFS_IO_INVALID,
 | |
| 	};
 | |
| 	int			ret;
 | |
| 
 | |
| 	ret = xfs_do_writepage(page, wbc, &wpc);
 | |
| 	if (wpc.ioend)
 | |
| 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_writepages(
 | |
| 	struct address_space	*mapping,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	struct xfs_writepage_ctx wpc = {
 | |
| 		.io_type = XFS_IO_INVALID,
 | |
| 	};
 | |
| 	int			ret;
 | |
| 
 | |
| 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
 | |
| 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
 | |
| 	if (wpc.ioend)
 | |
| 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_dax_writepages(
 | |
| 	struct address_space	*mapping,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
 | |
| 	return dax_writeback_mapping_range(mapping,
 | |
| 			xfs_find_bdev_for_inode(mapping->host), wbc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called to move a page into cleanable state - and from there
 | |
|  * to be released. The page should already be clean. We always
 | |
|  * have buffer heads in this call.
 | |
|  *
 | |
|  * Returns 1 if the page is ok to release, 0 otherwise.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_vm_releasepage(
 | |
| 	struct page		*page,
 | |
| 	gfp_t			gfp_mask)
 | |
| {
 | |
| 	int			delalloc, unwritten;
 | |
| 
 | |
| 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * mm accommodates an old ext3 case where clean pages might not have had
 | |
| 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
 | |
| 	 * ->releasepage() via shrink_active_list(). Conversely,
 | |
| 	 * block_invalidatepage() can send pages that are still marked dirty but
 | |
| 	 * otherwise have invalidated buffers.
 | |
| 	 *
 | |
| 	 * We want to release the latter to avoid unnecessary buildup of the
 | |
| 	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
 | |
| 	 * that are entirely invalidated and need to be released.  Hence the
 | |
| 	 * only time we should get dirty pages here is through
 | |
| 	 * shrink_active_list() and so we can simply skip those now.
 | |
| 	 *
 | |
| 	 * warn if we've left any lingering delalloc/unwritten buffers on clean
 | |
| 	 * or invalidated pages we are about to release.
 | |
| 	 */
 | |
| 	if (PageDirty(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	xfs_count_page_state(page, &delalloc, &unwritten);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(delalloc))
 | |
| 		return 0;
 | |
| 	if (WARN_ON_ONCE(unwritten))
 | |
| 		return 0;
 | |
| 
 | |
| 	return try_to_free_buffers(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
 | |
|  * is, so that we can avoid repeated get_blocks calls.
 | |
|  *
 | |
|  * If the mapping spans EOF, then we have to break the mapping up as the mapping
 | |
|  * for blocks beyond EOF must be marked new so that sub block regions can be
 | |
|  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
 | |
|  * was just allocated or is unwritten, otherwise the callers would overwrite
 | |
|  * existing data with zeros. Hence we have to split the mapping into a range up
 | |
|  * to and including EOF, and a second mapping for beyond EOF.
 | |
|  */
 | |
| static void
 | |
| xfs_map_trim_size(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_off_t		offset,
 | |
| 	ssize_t			size)
 | |
| {
 | |
| 	xfs_off_t		mapping_size;
 | |
| 
 | |
| 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
 | |
| 	mapping_size <<= inode->i_blkbits;
 | |
| 
 | |
| 	ASSERT(mapping_size > 0);
 | |
| 	if (mapping_size > size)
 | |
| 		mapping_size = size;
 | |
| 	if (offset < i_size_read(inode) &&
 | |
| 	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
 | |
| 		/* limit mapping to block that spans EOF */
 | |
| 		mapping_size = roundup_64(i_size_read(inode) - offset,
 | |
| 					  i_blocksize(inode));
 | |
| 	}
 | |
| 	if (mapping_size > LONG_MAX)
 | |
| 		mapping_size = LONG_MAX;
 | |
| 
 | |
| 	bh_result->b_size = mapping_size;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_get_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	int			create)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	xfs_fileoff_t		offset_fsb, end_fsb;
 | |
| 	int			error = 0;
 | |
| 	int			lockmode = 0;
 | |
| 	struct xfs_bmbt_irec	imap;
 | |
| 	int			nimaps = 1;
 | |
| 	xfs_off_t		offset;
 | |
| 	ssize_t			size;
 | |
| 
 | |
| 	BUG_ON(create);
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	offset = (xfs_off_t)iblock << inode->i_blkbits;
 | |
| 	ASSERT(bh_result->b_size >= i_blocksize(inode));
 | |
| 	size = bh_result->b_size;
 | |
| 
 | |
| 	if (offset >= i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Direct I/O is usually done on preallocated files, so try getting
 | |
| 	 * a block mapping without an exclusive lock first.
 | |
| 	 */
 | |
| 	lockmode = xfs_ilock_data_map_shared(ip);
 | |
| 
 | |
| 	ASSERT(offset <= mp->m_super->s_maxbytes);
 | |
| 	if (offset > mp->m_super->s_maxbytes - size)
 | |
| 		size = mp->m_super->s_maxbytes - offset;
 | |
| 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
 | |
| 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 
 | |
| 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
 | |
| 			&nimaps, 0);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 	if (!nimaps) {
 | |
| 		trace_xfs_get_blocks_notfound(ip, offset, size);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_get_blocks_found(ip, offset, size,
 | |
| 		imap.br_state == XFS_EXT_UNWRITTEN ?
 | |
| 			XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 
 | |
| 	/* trim mapping down to size requested */
 | |
| 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * For unwritten extents do not report a disk address in the buffered
 | |
| 	 * read case (treat as if we're reading into a hole).
 | |
| 	 */
 | |
| 	if (xfs_bmap_is_real_extent(&imap))
 | |
| 		xfs_map_buffer(inode, bh_result, &imap, offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a realtime file, data may be on a different device.
 | |
| 	 * to that pointed to from the buffer_head b_bdev currently.
 | |
| 	 */
 | |
| 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
 | |
| 	return 0;
 | |
| 
 | |
| out_unlock:
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC sector_t
 | |
| xfs_vm_bmap(
 | |
| 	struct address_space	*mapping,
 | |
| 	sector_t		block)
 | |
| {
 | |
| 	struct inode		*inode = (struct inode *)mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 
 | |
| 	trace_xfs_vm_bmap(XFS_I(inode));
 | |
| 
 | |
| 	/*
 | |
| 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 | |
| 	 * bypasses the file system for actual I/O.  We really can't allow
 | |
| 	 * that on reflinks inodes, so we have to skip out here.  And yes,
 | |
| 	 * 0 is the magic code for a bmap error.
 | |
| 	 *
 | |
| 	 * Since we don't pass back blockdev info, we can't return bmap
 | |
| 	 * information for rt files either.
 | |
| 	 */
 | |
| 	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
 | |
| 		return 0;
 | |
| 
 | |
| 	filemap_write_and_wait(mapping);
 | |
| 	return generic_block_bmap(mapping, block, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_readpage(
 | |
| 	struct file		*unused,
 | |
| 	struct page		*page)
 | |
| {
 | |
| 	trace_xfs_vm_readpage(page->mapping->host, 1);
 | |
| 	return mpage_readpage(page, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_readpages(
 | |
| 	struct file		*unused,
 | |
| 	struct address_space	*mapping,
 | |
| 	struct list_head	*pages,
 | |
| 	unsigned		nr_pages)
 | |
| {
 | |
| 	trace_xfs_vm_readpages(mapping->host, nr_pages);
 | |
| 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is basically a copy of __set_page_dirty_buffers() with one
 | |
|  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
 | |
|  * dirty, we'll never be able to clean them because we don't write buffers
 | |
|  * beyond EOF, and that means we can't invalidate pages that span EOF
 | |
|  * that have been marked dirty. Further, the dirty state can leak into
 | |
|  * the file interior if the file is extended, resulting in all sorts of
 | |
|  * bad things happening as the state does not match the underlying data.
 | |
|  *
 | |
|  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
 | |
|  * this only exist because of bufferheads and how the generic code manages them.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_vm_set_page_dirty(
 | |
| 	struct page		*page)
 | |
| {
 | |
| 	struct address_space	*mapping = page->mapping;
 | |
| 	struct inode		*inode = mapping->host;
 | |
| 	loff_t			end_offset;
 | |
| 	loff_t			offset;
 | |
| 	int			newly_dirty;
 | |
| 
 | |
| 	if (unlikely(!mapping))
 | |
| 		return !TestSetPageDirty(page);
 | |
| 
 | |
| 	end_offset = i_size_read(inode);
 | |
| 	offset = page_offset(page);
 | |
| 
 | |
| 	spin_lock(&mapping->private_lock);
 | |
| 	if (page_has_buffers(page)) {
 | |
| 		struct buffer_head *head = page_buffers(page);
 | |
| 		struct buffer_head *bh = head;
 | |
| 
 | |
| 		do {
 | |
| 			if (offset < end_offset)
 | |
| 				set_buffer_dirty(bh);
 | |
| 			bh = bh->b_this_page;
 | |
| 			offset += i_blocksize(inode);
 | |
| 		} while (bh != head);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Lock out page->mem_cgroup migration to keep PageDirty
 | |
| 	 * synchronized with per-memcg dirty page counters.
 | |
| 	 */
 | |
| 	lock_page_memcg(page);
 | |
| 	newly_dirty = !TestSetPageDirty(page);
 | |
| 	spin_unlock(&mapping->private_lock);
 | |
| 
 | |
| 	if (newly_dirty)
 | |
| 		__set_page_dirty(page, mapping, 1);
 | |
| 	unlock_page_memcg(page);
 | |
| 	if (newly_dirty)
 | |
| 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 | |
| 	return newly_dirty;
 | |
| }
 | |
| 
 | |
| const struct address_space_operations xfs_address_space_operations = {
 | |
| 	.readpage		= xfs_vm_readpage,
 | |
| 	.readpages		= xfs_vm_readpages,
 | |
| 	.writepage		= xfs_vm_writepage,
 | |
| 	.writepages		= xfs_vm_writepages,
 | |
| 	.set_page_dirty		= xfs_vm_set_page_dirty,
 | |
| 	.releasepage		= xfs_vm_releasepage,
 | |
| 	.invalidatepage		= xfs_vm_invalidatepage,
 | |
| 	.bmap			= xfs_vm_bmap,
 | |
| 	.direct_IO		= noop_direct_IO,
 | |
| 	.migratepage		= buffer_migrate_page,
 | |
| 	.is_partially_uptodate  = block_is_partially_uptodate,
 | |
| 	.error_remove_page	= generic_error_remove_page,
 | |
| };
 | |
| 
 | |
| const struct address_space_operations xfs_dax_aops = {
 | |
| 	.writepages		= xfs_dax_writepages,
 | |
| 	.direct_IO		= noop_direct_IO,
 | |
| 	.set_page_dirty		= noop_set_page_dirty,
 | |
| 	.invalidatepage		= noop_invalidatepage,
 | |
| };
 |