mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-04 20:19:47 +08:00

x86 already uses gcc-8 as the minimum version, this changes all other architectures to the same version. gcc-8 is used is Debian 10 and Red Hat Enterprise Linux 8, both of which are still supported, and binutils 2.30 is the oldest corresponding version on those. Ubuntu Pro 18.04 and SUSE Linux Enterprise Server 15 both use gcc-7 as the system compiler but additionally include toolchains that remain supported. With the new minimum toolchain versions, a number of workarounds for older versions can be dropped, in particular on x86_64 and arm64. Importantly, the updated compiler version allows removing two of the five remaining gcc plugins, as support for sancov and structeak features is already included in modern compiler versions. I tried collecting the known changes that are possible based on the new toolchain version, but expect that more cleanups will be possible. Since this touches multiple architectures, I merged the patches through the asm-generic tree. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmg6vNMACgkQmmx57+YA GNkOmg/+LtR9B2P27GPBeG8HnLTZ8hKELiyYeSk6ZFgQv5hevE37HV35Yru7e7gu wcF6CgYr8ff4CVcHM7y0790oGew1thkqq5CklFIH0EwCDJx/mWfZR1SS2jfZIEWM HSDOlQQd1S8oWia14tSnQos3nW3CB9/ABVTHH+Wvl3xn48WMRvgK2LJgGLuxJrt8 5DD9auHiLjchWB5tB4DU98IgWWgFUGMTsI6IayZ4dkF4CdWqd89h0Y3pjJYeBgHS mPxzR2q8WjEmG9hp7QuZQgn/pAYleJAwHvvkoLrkQ2ieqx3FjWiwFbQp4CG1Sc8L eBR1lnkqS2z/e7xJLfe86fOoKWWu4I0tZKhRan/0+UOGm5nXrGpqSxKS8ZDsRuAp 3fvyhIp1cYSa7Xkok8BFhLEFR0tguXJXnXBc3tWE5VXIfFNd0Ohh1GUYhXDAqWKh i0jN9dSNhokM3AqBi6qZl5kmBnRA3UsIaOg3QRrqN8IlBPp+u7i5xsrJIUWvD95o TO06admmLcCJT8n6ZfNVfRjBgzu8+t54UVaDx9YYwxoNGOSFwqOb8CSPTWPxLmDr RKDUOvO8DBlP7uFz9neP+LxluA3DjurRZvb0z0AmCZ8/RXEmTMCyfP5a6esxquXt 0Bqo6hM9q+TeXTHNS1CNvqLSWWikw+AzS/ZPPvriYFn5lxtbq6c= =pdDC -----END PGP SIGNATURE----- Merge tag 'gcc-minimum-version-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull compiler version requirement update from Arnd Bergmann: "Require gcc-8 and binutils-2.30 x86 already uses gcc-8 as the minimum version, this changes all other architectures to the same version. gcc-8 is used is Debian 10 and Red Hat Enterprise Linux 8, both of which are still supported, and binutils 2.30 is the oldest corresponding version on those. Ubuntu Pro 18.04 and SUSE Linux Enterprise Server 15 both use gcc-7 as the system compiler but additionally include toolchains that remain supported. With the new minimum toolchain versions, a number of workarounds for older versions can be dropped, in particular on x86_64 and arm64. Importantly, the updated compiler version allows removing two of the five remaining gcc plugins, as support for sancov and structeak features is already included in modern compiler versions. I tried collecting the known changes that are possible based on the new toolchain version, but expect that more cleanups will be possible. Since this touches multiple architectures, I merged the patches through the asm-generic tree." * tag 'gcc-minimum-version-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: Makefile.kcov: apply needed compiler option unconditionally in CFLAGS_KCOV Documentation: update binutils-2.30 version reference gcc-plugins: remove SANCOV gcc plugin Kbuild: remove structleak gcc plugin arm64: drop binutils version checks raid6: skip avx512 checks kbuild: require gcc-8 and binutils-2.30
340 lines
13 KiB
Plaintext
340 lines
13 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
menu "Kernel hardening options"
|
|
|
|
menu "Memory initialization"
|
|
|
|
config CC_HAS_AUTO_VAR_INIT_PATTERN
|
|
def_bool $(cc-option,-ftrivial-auto-var-init=pattern)
|
|
|
|
config CC_HAS_AUTO_VAR_INIT_ZERO_BARE
|
|
def_bool $(cc-option,-ftrivial-auto-var-init=zero)
|
|
|
|
config CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER
|
|
# Clang 16 and later warn about using the -enable flag, but it
|
|
# is required before then.
|
|
def_bool $(cc-option,-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang)
|
|
depends on !CC_HAS_AUTO_VAR_INIT_ZERO_BARE
|
|
|
|
config CC_HAS_AUTO_VAR_INIT_ZERO
|
|
def_bool CC_HAS_AUTO_VAR_INIT_ZERO_BARE || CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER
|
|
|
|
choice
|
|
prompt "Initialize kernel stack variables at function entry"
|
|
default INIT_STACK_ALL_PATTERN if COMPILE_TEST && CC_HAS_AUTO_VAR_INIT_PATTERN
|
|
default INIT_STACK_ALL_ZERO if CC_HAS_AUTO_VAR_INIT_ZERO
|
|
default INIT_STACK_NONE
|
|
help
|
|
This option enables initialization of stack variables at
|
|
function entry time. This has the possibility to have the
|
|
greatest coverage (since all functions can have their
|
|
variables initialized), but the performance impact depends
|
|
on the function calling complexity of a given workload's
|
|
syscalls.
|
|
|
|
This chooses the level of coverage over classes of potentially
|
|
uninitialized variables. The selected class of variable will be
|
|
initialized before use in a function.
|
|
|
|
config INIT_STACK_NONE
|
|
bool "no automatic stack variable initialization (weakest)"
|
|
help
|
|
Disable automatic stack variable initialization.
|
|
This leaves the kernel vulnerable to the standard
|
|
classes of uninitialized stack variable exploits
|
|
and information exposures.
|
|
|
|
config INIT_STACK_ALL_PATTERN
|
|
bool "pattern-init everything (strongest)"
|
|
depends on CC_HAS_AUTO_VAR_INIT_PATTERN
|
|
depends on !KMSAN
|
|
help
|
|
Initializes everything on the stack (including padding)
|
|
with a specific debug value. This is intended to eliminate
|
|
all classes of uninitialized stack variable exploits and
|
|
information exposures, even variables that were warned about
|
|
having been left uninitialized.
|
|
|
|
Pattern initialization is known to provoke many existing bugs
|
|
related to uninitialized locals, e.g. pointers receive
|
|
non-NULL values, buffer sizes and indices are very big. The
|
|
pattern is situation-specific; Clang on 64-bit uses 0xAA
|
|
repeating for all types and padding except float and double
|
|
which use 0xFF repeating (-NaN). Clang on 32-bit uses 0xFF
|
|
repeating for all types and padding.
|
|
GCC uses 0xFE repeating for all types, and zero for padding.
|
|
|
|
config INIT_STACK_ALL_ZERO
|
|
bool "zero-init everything (strongest and safest)"
|
|
depends on CC_HAS_AUTO_VAR_INIT_ZERO
|
|
depends on !KMSAN
|
|
help
|
|
Initializes everything on the stack (including padding)
|
|
with a zero value. This is intended to eliminate all
|
|
classes of uninitialized stack variable exploits and
|
|
information exposures, even variables that were warned
|
|
about having been left uninitialized.
|
|
|
|
Zero initialization provides safe defaults for strings
|
|
(immediately NUL-terminated), pointers (NULL), indices
|
|
(index 0), and sizes (0 length), so it is therefore more
|
|
suitable as a production security mitigation than pattern
|
|
initialization.
|
|
|
|
endchoice
|
|
|
|
config GCC_PLUGIN_STACKLEAK
|
|
bool "Poison kernel stack before returning from syscalls"
|
|
depends on GCC_PLUGINS
|
|
depends on HAVE_ARCH_STACKLEAK
|
|
help
|
|
This option makes the kernel erase the kernel stack before
|
|
returning from system calls. This has the effect of leaving
|
|
the stack initialized to the poison value, which both reduces
|
|
the lifetime of any sensitive stack contents and reduces
|
|
potential for uninitialized stack variable exploits or information
|
|
exposures (it does not cover functions reaching the same stack
|
|
depth as prior functions during the same syscall). This blocks
|
|
most uninitialized stack variable attacks, with the performance
|
|
impact being driven by the depth of the stack usage, rather than
|
|
the function calling complexity.
|
|
|
|
The performance impact on a single CPU system kernel compilation
|
|
sees a 1% slowdown, other systems and workloads may vary and you
|
|
are advised to test this feature on your expected workload before
|
|
deploying it.
|
|
|
|
This plugin was ported from grsecurity/PaX. More information at:
|
|
* https://grsecurity.net/
|
|
* https://pax.grsecurity.net/
|
|
|
|
config GCC_PLUGIN_STACKLEAK_VERBOSE
|
|
bool "Report stack depth analysis instrumentation" if EXPERT
|
|
depends on GCC_PLUGIN_STACKLEAK
|
|
depends on !COMPILE_TEST # too noisy
|
|
help
|
|
This option will cause a warning to be printed each time the
|
|
stackleak plugin finds a function it thinks needs to be
|
|
instrumented. This is useful for comparing coverage between
|
|
builds.
|
|
|
|
config STACKLEAK_TRACK_MIN_SIZE
|
|
int "Minimum stack frame size of functions tracked by STACKLEAK"
|
|
default 100
|
|
range 0 4096
|
|
depends on GCC_PLUGIN_STACKLEAK
|
|
help
|
|
The STACKLEAK gcc plugin instruments the kernel code for tracking
|
|
the lowest border of the kernel stack (and for some other purposes).
|
|
It inserts the stackleak_track_stack() call for the functions with
|
|
a stack frame size greater than or equal to this parameter.
|
|
If unsure, leave the default value 100.
|
|
|
|
config STACKLEAK_METRICS
|
|
bool "Show STACKLEAK metrics in the /proc file system"
|
|
depends on GCC_PLUGIN_STACKLEAK
|
|
depends on PROC_FS
|
|
help
|
|
If this is set, STACKLEAK metrics for every task are available in
|
|
the /proc file system. In particular, /proc/<pid>/stack_depth
|
|
shows the maximum kernel stack consumption for the current and
|
|
previous syscalls. Although this information is not precise, it
|
|
can be useful for estimating the STACKLEAK performance impact for
|
|
your workloads.
|
|
|
|
config STACKLEAK_RUNTIME_DISABLE
|
|
bool "Allow runtime disabling of kernel stack erasing"
|
|
depends on GCC_PLUGIN_STACKLEAK
|
|
help
|
|
This option provides 'stack_erasing' sysctl, which can be used in
|
|
runtime to control kernel stack erasing for kernels built with
|
|
CONFIG_GCC_PLUGIN_STACKLEAK.
|
|
|
|
config INIT_ON_ALLOC_DEFAULT_ON
|
|
bool "Enable heap memory zeroing on allocation by default"
|
|
depends on !KMSAN
|
|
help
|
|
This has the effect of setting "init_on_alloc=1" on the kernel
|
|
command line. This can be disabled with "init_on_alloc=0".
|
|
When "init_on_alloc" is enabled, all page allocator and slab
|
|
allocator memory will be zeroed when allocated, eliminating
|
|
many kinds of "uninitialized heap memory" flaws, especially
|
|
heap content exposures. The performance impact varies by
|
|
workload, but most cases see <1% impact. Some synthetic
|
|
workloads have measured as high as 7%.
|
|
|
|
config INIT_ON_FREE_DEFAULT_ON
|
|
bool "Enable heap memory zeroing on free by default"
|
|
depends on !KMSAN
|
|
help
|
|
This has the effect of setting "init_on_free=1" on the kernel
|
|
command line. This can be disabled with "init_on_free=0".
|
|
Similar to "init_on_alloc", when "init_on_free" is enabled,
|
|
all page allocator and slab allocator memory will be zeroed
|
|
when freed, eliminating many kinds of "uninitialized heap memory"
|
|
flaws, especially heap content exposures. The primary difference
|
|
with "init_on_free" is that data lifetime in memory is reduced,
|
|
as anything freed is wiped immediately, making live forensics or
|
|
cold boot memory attacks unable to recover freed memory contents.
|
|
The performance impact varies by workload, but is more expensive
|
|
than "init_on_alloc" due to the negative cache effects of
|
|
touching "cold" memory areas. Most cases see 3-5% impact. Some
|
|
synthetic workloads have measured as high as 8%.
|
|
|
|
config CC_HAS_ZERO_CALL_USED_REGS
|
|
def_bool $(cc-option,-fzero-call-used-regs=used-gpr)
|
|
# https://github.com/ClangBuiltLinux/linux/issues/1766
|
|
# https://github.com/llvm/llvm-project/issues/59242
|
|
depends on !CC_IS_CLANG || CLANG_VERSION > 150006
|
|
|
|
config ZERO_CALL_USED_REGS
|
|
bool "Enable register zeroing on function exit"
|
|
depends on CC_HAS_ZERO_CALL_USED_REGS
|
|
help
|
|
At the end of functions, always zero any caller-used register
|
|
contents. This helps ensure that temporary values are not
|
|
leaked beyond the function boundary. This means that register
|
|
contents are less likely to be available for side channels
|
|
and information exposures. Additionally, this helps reduce the
|
|
number of useful ROP gadgets by about 20% (and removes compiler
|
|
generated "write-what-where" gadgets) in the resulting kernel
|
|
image. This has a less than 1% performance impact on most
|
|
workloads. Image size growth depends on architecture, and should
|
|
be evaluated for suitability. For example, x86_64 grows by less
|
|
than 1%, and arm64 grows by about 5%.
|
|
|
|
endmenu
|
|
|
|
menu "Bounds checking"
|
|
|
|
config FORTIFY_SOURCE
|
|
bool "Harden common str/mem functions against buffer overflows"
|
|
depends on ARCH_HAS_FORTIFY_SOURCE
|
|
# https://github.com/llvm/llvm-project/issues/53645
|
|
depends on !X86_32 || !CC_IS_CLANG || CLANG_VERSION >= 160000
|
|
help
|
|
Detect overflows of buffers in common string and memory functions
|
|
where the compiler can determine and validate the buffer sizes.
|
|
|
|
config HARDENED_USERCOPY
|
|
bool "Harden memory copies between kernel and userspace"
|
|
imply STRICT_DEVMEM
|
|
help
|
|
This option checks for obviously wrong memory regions when
|
|
copying memory to/from the kernel (via copy_to_user() and
|
|
copy_from_user() functions) by rejecting memory ranges that
|
|
are larger than the specified heap object, span multiple
|
|
separately allocated pages, are not on the process stack,
|
|
or are part of the kernel text. This prevents entire classes
|
|
of heap overflow exploits and similar kernel memory exposures.
|
|
|
|
config HARDENED_USERCOPY_DEFAULT_ON
|
|
bool "Harden memory copies by default"
|
|
depends on HARDENED_USERCOPY
|
|
default HARDENED_USERCOPY
|
|
help
|
|
This has the effect of setting "hardened_usercopy=on" on the kernel
|
|
command line. This can be disabled with "hardened_usercopy=off".
|
|
|
|
endmenu
|
|
|
|
menu "Hardening of kernel data structures"
|
|
|
|
config LIST_HARDENED
|
|
bool "Check integrity of linked list manipulation"
|
|
help
|
|
Minimal integrity checking in the linked-list manipulation routines
|
|
to catch memory corruptions that are not guaranteed to result in an
|
|
immediate access fault.
|
|
|
|
If unsure, say N.
|
|
|
|
config BUG_ON_DATA_CORRUPTION
|
|
bool "Trigger a BUG when data corruption is detected"
|
|
select LIST_HARDENED
|
|
help
|
|
Select this option if the kernel should BUG when it encounters
|
|
data corruption in kernel memory structures when they get checked
|
|
for validity.
|
|
|
|
If unsure, say N.
|
|
|
|
endmenu
|
|
|
|
config CC_HAS_RANDSTRUCT
|
|
def_bool $(cc-option,-frandomize-layout-seed-file=/dev/null)
|
|
# Randstruct was first added in Clang 15, but it isn't safe to use until
|
|
# Clang 16 due to https://github.com/llvm/llvm-project/issues/60349
|
|
depends on !CC_IS_CLANG || CLANG_VERSION >= 160000
|
|
|
|
choice
|
|
prompt "Randomize layout of sensitive kernel structures"
|
|
default RANDSTRUCT_FULL if COMPILE_TEST && (GCC_PLUGINS || CC_HAS_RANDSTRUCT)
|
|
default RANDSTRUCT_NONE
|
|
help
|
|
If you enable this, the layouts of structures that are entirely
|
|
function pointers (and have not been manually annotated with
|
|
__no_randomize_layout), or structures that have been explicitly
|
|
marked with __randomize_layout, will be randomized at compile-time.
|
|
This can introduce the requirement of an additional information
|
|
exposure vulnerability for exploits targeting these structure
|
|
types.
|
|
|
|
Enabling this feature will introduce some performance impact,
|
|
slightly increase memory usage, and prevent the use of forensic
|
|
tools like Volatility against the system (unless the kernel
|
|
source tree isn't cleaned after kernel installation).
|
|
|
|
The seed used for compilation is in scripts/basic/randomize.seed.
|
|
It remains after a "make clean" to allow for external modules to
|
|
be compiled with the existing seed and will be removed by a
|
|
"make mrproper" or "make distclean". This file should not be made
|
|
public, or the structure layout can be determined.
|
|
|
|
config RANDSTRUCT_NONE
|
|
bool "Disable structure layout randomization"
|
|
help
|
|
Build normally: no structure layout randomization.
|
|
|
|
config RANDSTRUCT_FULL
|
|
bool "Fully randomize structure layout"
|
|
depends on CC_HAS_RANDSTRUCT || GCC_PLUGINS
|
|
select MODVERSIONS if MODULES && !COMPILE_TEST
|
|
help
|
|
Fully randomize the member layout of sensitive
|
|
structures as much as possible, which may have both a
|
|
memory size and performance impact.
|
|
|
|
One difference between the Clang and GCC plugin
|
|
implementations is the handling of bitfields. The GCC
|
|
plugin treats them as fully separate variables,
|
|
introducing sometimes significant padding. Clang tries
|
|
to keep adjacent bitfields together, but with their bit
|
|
ordering randomized.
|
|
|
|
config RANDSTRUCT_PERFORMANCE
|
|
bool "Limit randomization of structure layout to cache-lines"
|
|
depends on GCC_PLUGINS
|
|
select MODVERSIONS if MODULES && !COMPILE_TEST
|
|
help
|
|
Randomization of sensitive kernel structures will make a
|
|
best effort at restricting randomization to cacheline-sized
|
|
groups of members. It will further not randomize bitfields
|
|
in structures. This reduces the performance hit of RANDSTRUCT
|
|
at the cost of weakened randomization.
|
|
endchoice
|
|
|
|
config RANDSTRUCT
|
|
def_bool !RANDSTRUCT_NONE
|
|
|
|
config GCC_PLUGIN_RANDSTRUCT
|
|
def_bool GCC_PLUGINS && RANDSTRUCT
|
|
help
|
|
Use GCC plugin to randomize structure layout.
|
|
|
|
This plugin was ported from grsecurity/PaX. More
|
|
information at:
|
|
* https://grsecurity.net/
|
|
* https://pax.grsecurity.net/
|
|
|
|
endmenu
|