2
0
mirror of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-09-04 20:19:47 +08:00
linux/drivers/spi/spi-qpic-snand.c
Gabor Juhos d85d038029
spi: spi-qpic-snand: reallocate BAM transactions
Using the mtd_nandbiterrs module for testing the driver occasionally
results in weird things like below.

1. swiotlb mapping fails with the following message:

  [   85.926216] qcom_snand 79b0000.spi: swiotlb buffer is full (sz: 4294967294 bytes), total 512 (slots), used 0 (slots)
  [   85.932937] qcom_snand 79b0000.spi: failure in mapping desc
  [   87.999314] qcom_snand 79b0000.spi: failure to write raw page
  [   87.999352] mtd_nandbiterrs: error: write_oob failed (-110)

  Rebooting the board after this causes a panic due to a NULL pointer
  dereference.

2. If the swiotlb mapping does not fail, rebooting the board may result
   in a different panic due to a bad spinlock magic:

  [  256.104459] BUG: spinlock bad magic on CPU#3, procd/2241
  [  256.104488] Unable to handle kernel paging request at virtual address ffffffff0000049b
  ...

Investigating the issue revealed that these symptoms are results of
memory corruption which is caused by out of bounds access within the
driver.

The driver uses a dynamically allocated structure for BAM transactions,
which structure must have enough space for all possible variations of
different flash operations initiated by the driver. The required space
heavily depends on the actual number of 'codewords' which is calculated
from the pagesize of the actual NAND chip.

Although the qcom_nandc_alloc() function allocates memory for the BAM
transactions during probe, but since the actual number of 'codewords'
is not yet know the allocation is done for one 'codeword' only.

Because of this, whenever the driver does a flash operation, and the
number of the required transactions exceeds the size of the allocated
arrays the driver accesses memory out of the allocated range.

To avoid this, change the code to free the initially allocated BAM
transactions memory, and allocate a new one once the actual number of
'codewords' required for a given NAND chip is known.

Fixes: 7304d19090 ("spi: spi-qpic: add driver for QCOM SPI NAND flash Interface")
Reviewed-by: Md Sadre Alam <quic_mdalam@quicinc.com>
Signed-off-by: Gabor Juhos <j4g8y7@gmail.com>
Link: https://patch.msgid.link/20250618-qpic-snand-avoid-mem-corruption-v3-1-319c71296cda@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2025-06-29 22:10:46 +01:00

1676 lines
47 KiB
C

/*
* SPDX-License-Identifier: GPL-2.0
*
* Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved.
*
* Authors:
* Md Sadre Alam <quic_mdalam@quicinc.com>
* Sricharan R <quic_srichara@quicinc.com>
* Varadarajan Narayanan <quic_varada@quicinc.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/qcom_adm.h>
#include <linux/dma/qcom_bam_dma.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mtd/nand-qpic-common.h>
#include <linux/mtd/spinand.h>
#include <linux/bitfield.h>
#define NAND_FLASH_SPI_CFG 0xc0
#define NAND_NUM_ADDR_CYCLES 0xc4
#define NAND_BUSY_CHECK_WAIT_CNT 0xc8
#define NAND_FLASH_FEATURES 0xf64
/* QSPI NAND config reg bits */
#define LOAD_CLK_CNTR_INIT_EN BIT(28)
#define CLK_CNTR_INIT_VAL_VEC 0x924
#define CLK_CNTR_INIT_VAL_VEC_MASK GENMASK(27, 16)
#define FEA_STATUS_DEV_ADDR 0xc0
#define FEA_STATUS_DEV_ADDR_MASK GENMASK(15, 8)
#define SPI_CFG BIT(0)
#define SPI_NUM_ADDR 0xDA4DB
#define SPI_WAIT_CNT 0x10
#define QPIC_QSPI_NUM_CS 1
#define SPI_TRANSFER_MODE_x1 BIT(29)
#define SPI_TRANSFER_MODE_x4 (3 << 29)
#define SPI_WP BIT(28)
#define SPI_HOLD BIT(27)
#define QPIC_SET_FEATURE BIT(31)
#define SPINAND_RESET 0xff
#define SPINAND_READID 0x9f
#define SPINAND_GET_FEATURE 0x0f
#define SPINAND_SET_FEATURE 0x1f
#define SPINAND_READ 0x13
#define SPINAND_ERASE 0xd8
#define SPINAND_WRITE_EN 0x06
#define SPINAND_PROGRAM_EXECUTE 0x10
#define SPINAND_PROGRAM_LOAD 0x84
#define ACC_FEATURE 0xe
#define BAD_BLOCK_MARKER_SIZE 0x2
#define OOB_BUF_SIZE 128
#define ecceng_to_qspi(eng) container_of(eng, struct qpic_spi_nand, ecc_eng)
struct qpic_snand_op {
u32 cmd_reg;
u32 addr1_reg;
u32 addr2_reg;
};
struct snandc_read_status {
__le32 snandc_flash;
__le32 snandc_buffer;
__le32 snandc_erased_cw;
};
/*
* ECC state struct
* @corrected: ECC corrected
* @bitflips: Max bit flip
* @failed: ECC failed
*/
struct qcom_ecc_stats {
u32 corrected;
u32 bitflips;
u32 failed;
};
struct qpic_ecc {
struct device *dev;
int ecc_bytes_hw;
int spare_bytes;
int bbm_size;
int ecc_mode;
int bytes;
int steps;
int step_size;
int strength;
int cw_size;
int cw_data;
u32 cfg0;
u32 cfg1;
u32 cfg0_raw;
u32 cfg1_raw;
u32 ecc_buf_cfg;
u32 ecc_bch_cfg;
u32 clrflashstatus;
u32 clrreadstatus;
bool bch_enabled;
};
struct qpic_spi_nand {
struct qcom_nand_controller *snandc;
struct spi_controller *ctlr;
struct mtd_info *mtd;
struct clk *iomacro_clk;
struct qpic_ecc *ecc;
struct qcom_ecc_stats ecc_stats;
struct nand_ecc_engine ecc_eng;
u8 *data_buf;
u8 *oob_buf;
__le32 addr1;
__le32 addr2;
__le32 cmd;
u32 num_cw;
bool oob_rw;
bool page_rw;
bool raw_rw;
};
static void qcom_spi_set_read_loc_first(struct qcom_nand_controller *snandc,
int reg, int cw_offset, int read_size,
int is_last_read_loc)
{
__le32 locreg_val;
u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) |
FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) |
FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc);
locreg_val = cpu_to_le32(val);
if (reg == NAND_READ_LOCATION_0)
snandc->regs->read_location0 = locreg_val;
else if (reg == NAND_READ_LOCATION_1)
snandc->regs->read_location1 = locreg_val;
else if (reg == NAND_READ_LOCATION_2)
snandc->regs->read_location2 = locreg_val;
else if (reg == NAND_READ_LOCATION_3)
snandc->regs->read_location3 = locreg_val;
}
static void qcom_spi_set_read_loc_last(struct qcom_nand_controller *snandc,
int reg, int cw_offset, int read_size,
int is_last_read_loc)
{
__le32 locreg_val;
u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) |
FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) |
FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc);
locreg_val = cpu_to_le32(val);
if (reg == NAND_READ_LOCATION_LAST_CW_0)
snandc->regs->read_location_last0 = locreg_val;
else if (reg == NAND_READ_LOCATION_LAST_CW_1)
snandc->regs->read_location_last1 = locreg_val;
else if (reg == NAND_READ_LOCATION_LAST_CW_2)
snandc->regs->read_location_last2 = locreg_val;
else if (reg == NAND_READ_LOCATION_LAST_CW_3)
snandc->regs->read_location_last3 = locreg_val;
}
static struct qcom_nand_controller *nand_to_qcom_snand(struct nand_device *nand)
{
struct nand_ecc_engine *eng = nand->ecc.engine;
struct qpic_spi_nand *qspi = ecceng_to_qspi(eng);
return qspi->snandc;
}
static int qcom_spi_init(struct qcom_nand_controller *snandc)
{
u32 snand_cfg_val = 0x0;
int ret;
snand_cfg_val = FIELD_PREP(CLK_CNTR_INIT_VAL_VEC_MASK, CLK_CNTR_INIT_VAL_VEC) |
FIELD_PREP(LOAD_CLK_CNTR_INIT_EN, 0) |
FIELD_PREP(FEA_STATUS_DEV_ADDR_MASK, FEA_STATUS_DEV_ADDR) |
FIELD_PREP(SPI_CFG, 0);
snandc->regs->spi_cfg = cpu_to_le32(snand_cfg_val);
snandc->regs->num_addr_cycle = cpu_to_le32(SPI_NUM_ADDR);
snandc->regs->busy_wait_cnt = cpu_to_le32(SPI_WAIT_CNT);
qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0);
snand_cfg_val &= ~LOAD_CLK_CNTR_INIT_EN;
snandc->regs->spi_cfg = cpu_to_le32(snand_cfg_val);
qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->num_addr_cycle, NAND_NUM_ADDR_CYCLES, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->busy_wait_cnt, NAND_BUSY_CHECK_WAIT_CNT, 1,
NAND_BAM_NEXT_SGL);
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure in submitting spi init descriptor\n");
return ret;
}
return ret;
}
static int qcom_spi_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand);
struct qpic_ecc *qecc = snandc->qspi->ecc;
if (section > 1)
return -ERANGE;
oobregion->length = qecc->ecc_bytes_hw + qecc->spare_bytes;
oobregion->offset = mtd->oobsize - oobregion->length;
return 0;
}
static int qcom_spi_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand);
struct qpic_ecc *qecc = snandc->qspi->ecc;
if (section)
return -ERANGE;
oobregion->length = qecc->steps * 4;
oobregion->offset = ((qecc->steps - 1) * qecc->bytes) + qecc->bbm_size;
return 0;
}
static const struct mtd_ooblayout_ops qcom_spi_ooblayout = {
.ecc = qcom_spi_ooblayout_ecc,
.free = qcom_spi_ooblayout_free,
};
static int qcom_spi_ecc_init_ctx_pipelined(struct nand_device *nand)
{
struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand);
struct nand_ecc_props *reqs = &nand->ecc.requirements;
struct nand_ecc_props *user = &nand->ecc.user_conf;
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
struct mtd_info *mtd = nanddev_to_mtd(nand);
int cwperpage, bad_block_byte, ret;
struct qpic_ecc *ecc_cfg;
cwperpage = mtd->writesize / NANDC_STEP_SIZE;
snandc->qspi->num_cw = cwperpage;
ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
if (!ecc_cfg)
return -ENOMEM;
if (user->step_size && user->strength) {
ecc_cfg->step_size = user->step_size;
ecc_cfg->strength = user->strength;
} else if (reqs->step_size && reqs->strength) {
ecc_cfg->step_size = reqs->step_size;
ecc_cfg->strength = reqs->strength;
} else {
/* use defaults */
ecc_cfg->step_size = NANDC_STEP_SIZE;
ecc_cfg->strength = 4;
}
if (ecc_cfg->step_size != NANDC_STEP_SIZE) {
dev_err(snandc->dev,
"only %u bytes ECC step size is supported\n",
NANDC_STEP_SIZE);
ret = -EOPNOTSUPP;
goto err_free_ecc_cfg;
}
if (ecc_cfg->strength != 4) {
dev_err(snandc->dev,
"only 4 bits ECC strength is supported\n");
ret = -EOPNOTSUPP;
goto err_free_ecc_cfg;
}
snandc->qspi->oob_buf = kmalloc(mtd->writesize + mtd->oobsize,
GFP_KERNEL);
if (!snandc->qspi->oob_buf) {
ret = -ENOMEM;
goto err_free_ecc_cfg;
}
memset(snandc->qspi->oob_buf, 0xff, mtd->writesize + mtd->oobsize);
nand->ecc.ctx.priv = ecc_cfg;
snandc->qspi->mtd = mtd;
ecc_cfg->ecc_bytes_hw = 7;
ecc_cfg->spare_bytes = 4;
ecc_cfg->bbm_size = 1;
ecc_cfg->bch_enabled = true;
ecc_cfg->bytes = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes + ecc_cfg->bbm_size;
ecc_cfg->steps = 4;
ecc_cfg->cw_data = 516;
ecc_cfg->cw_size = ecc_cfg->cw_data + ecc_cfg->bytes;
bad_block_byte = mtd->writesize - ecc_cfg->cw_size * (cwperpage - 1) + 1;
mtd_set_ooblayout(mtd, &qcom_spi_ooblayout);
/*
* Free the temporary BAM transaction allocated initially by
* qcom_nandc_alloc(), and allocate a new one based on the
* updated max_cwperpage value.
*/
qcom_free_bam_transaction(snandc);
snandc->max_cwperpage = cwperpage;
snandc->bam_txn = qcom_alloc_bam_transaction(snandc);
if (!snandc->bam_txn) {
dev_err(snandc->dev, "failed to allocate BAM transaction\n");
ret = -ENOMEM;
goto err_free_ecc_cfg;
}
ecc_cfg->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) |
FIELD_PREP(UD_SIZE_BYTES_MASK, ecc_cfg->cw_data) |
FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 1) |
FIELD_PREP(NUM_ADDR_CYCLES_MASK, 3) |
FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, ecc_cfg->ecc_bytes_hw) |
FIELD_PREP(STATUS_BFR_READ, 0) |
FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) |
FIELD_PREP(SPARE_SIZE_BYTES_MASK, ecc_cfg->spare_bytes);
ecc_cfg->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 0) |
FIELD_PREP(CS_ACTIVE_BSY, 0) |
FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) |
FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) |
FIELD_PREP(WR_RD_BSY_GAP_MASK, 20) |
FIELD_PREP(WIDE_FLASH, 0) |
FIELD_PREP(ENABLE_BCH_ECC, ecc_cfg->bch_enabled);
ecc_cfg->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) |
FIELD_PREP(NUM_ADDR_CYCLES_MASK, 3) |
FIELD_PREP(UD_SIZE_BYTES_MASK, ecc_cfg->cw_size) |
FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0);
ecc_cfg->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 0) |
FIELD_PREP(CS_ACTIVE_BSY, 0) |
FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) |
FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) |
FIELD_PREP(WR_RD_BSY_GAP_MASK, 20) |
FIELD_PREP(WIDE_FLASH, 0) |
FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1);
ecc_cfg->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !ecc_cfg->bch_enabled) |
FIELD_PREP(ECC_SW_RESET, 0) |
FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, ecc_cfg->cw_data) |
FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) |
FIELD_PREP(ECC_MODE_MASK, 0) |
FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, ecc_cfg->ecc_bytes_hw);
ecc_cfg->ecc_buf_cfg = FIELD_PREP(NUM_STEPS_MASK, 0x203);
ecc_cfg->clrflashstatus = FS_READY_BSY_N;
ecc_cfg->clrreadstatus = 0xc0;
conf->step_size = ecc_cfg->step_size;
conf->strength = ecc_cfg->strength;
snandc->regs->erased_cw_detect_cfg_clr = cpu_to_le32(CLR_ERASED_PAGE_DET);
snandc->regs->erased_cw_detect_cfg_set = cpu_to_le32(SET_ERASED_PAGE_DET);
dev_dbg(snandc->dev, "ECC strength: %u bits per %u bytes\n",
ecc_cfg->strength, ecc_cfg->step_size);
return 0;
err_free_ecc_cfg:
kfree(ecc_cfg);
return ret;
}
static void qcom_spi_ecc_cleanup_ctx_pipelined(struct nand_device *nand)
{
struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand);
kfree(ecc_cfg);
}
static int qcom_spi_ecc_prepare_io_req_pipelined(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand);
struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand);
snandc->qspi->ecc = ecc_cfg;
snandc->qspi->raw_rw = false;
snandc->qspi->oob_rw = false;
snandc->qspi->page_rw = false;
if (req->datalen)
snandc->qspi->page_rw = true;
if (req->ooblen)
snandc->qspi->oob_rw = true;
if (req->mode == MTD_OPS_RAW)
snandc->qspi->raw_rw = true;
return 0;
}
static int qcom_spi_ecc_finish_io_req_pipelined(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
if (req->mode == MTD_OPS_RAW || req->type != NAND_PAGE_READ)
return 0;
if (snandc->qspi->ecc_stats.failed)
mtd->ecc_stats.failed += snandc->qspi->ecc_stats.failed;
else
mtd->ecc_stats.corrected += snandc->qspi->ecc_stats.corrected;
if (snandc->qspi->ecc_stats.failed)
return -EBADMSG;
else
return snandc->qspi->ecc_stats.bitflips;
}
static struct nand_ecc_engine_ops qcom_spi_ecc_engine_ops_pipelined = {
.init_ctx = qcom_spi_ecc_init_ctx_pipelined,
.cleanup_ctx = qcom_spi_ecc_cleanup_ctx_pipelined,
.prepare_io_req = qcom_spi_ecc_prepare_io_req_pipelined,
.finish_io_req = qcom_spi_ecc_finish_io_req_pipelined,
};
/* helper to configure location register values */
static void qcom_spi_set_read_loc(struct qcom_nand_controller *snandc, int cw, int reg,
int cw_offset, int read_size, int is_last_read_loc)
{
int reg_base = NAND_READ_LOCATION_0;
int num_cw = snandc->qspi->num_cw;
if (cw == (num_cw - 1))
reg_base = NAND_READ_LOCATION_LAST_CW_0;
reg_base += reg * 4;
if (cw == (num_cw - 1))
return qcom_spi_set_read_loc_last(snandc, reg_base, cw_offset,
read_size, is_last_read_loc);
else
return qcom_spi_set_read_loc_first(snandc, reg_base, cw_offset,
read_size, is_last_read_loc);
}
static void
qcom_spi_config_cw_read(struct qcom_nand_controller *snandc, bool use_ecc, int cw)
{
__le32 *reg = &snandc->regs->read_location0;
int num_cw = snandc->qspi->num_cw;
qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_0, 4, NAND_BAM_NEXT_SGL);
if (cw == (num_cw - 1)) {
reg = &snandc->regs->read_location_last0;
qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_LAST_CW_0, 4,
NAND_BAM_NEXT_SGL);
}
qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 2, 0);
qcom_read_reg_dma(snandc, NAND_ERASED_CW_DETECT_STATUS, 1,
NAND_BAM_NEXT_SGL);
}
static int qcom_spi_block_erase(struct qcom_nand_controller *snandc)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
int ret;
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->addr0 = snandc->qspi->addr1;
snandc->regs->addr1 = snandc->qspi->addr2;
snandc->regs->cfg0 = cpu_to_le32((ecc_cfg->cfg0_raw & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, 0));
snandc->regs->cfg1 = cpu_to_le32(ecc_cfg->cfg1_raw);
snandc->regs->exec = cpu_to_le32(1);
qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure to erase block\n");
return ret;
}
return 0;
}
static void qcom_spi_config_single_cw_page_read(struct qcom_nand_controller *snandc,
bool use_ecc, int cw)
{
__le32 *reg = &snandc->regs->read_location0;
int num_cw = snandc->qspi->num_cw;
qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0);
qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr,
NAND_ERASED_CW_DETECT_CFG, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set,
NAND_ERASED_CW_DETECT_CFG, 1,
NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
if (cw == (num_cw - 1)) {
reg = &snandc->regs->read_location_last0;
qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_LAST_CW_0, 4, NAND_BAM_NEXT_SGL);
}
qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, 0);
}
static int qcom_spi_check_raw_flash_errors(struct qcom_nand_controller *snandc, int cw_cnt)
{
int i;
qcom_nandc_dev_to_mem(snandc, true);
for (i = 0; i < cw_cnt; i++) {
u32 flash = le32_to_cpu(snandc->reg_read_buf[i]);
if (flash & (FS_OP_ERR | FS_MPU_ERR))
return -EIO;
}
return 0;
}
static int qcom_spi_read_last_cw(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
struct mtd_info *mtd = snandc->qspi->mtd;
int size, ret = 0;
int col, bbpos;
u32 cfg0, cfg1, ecc_bch_cfg;
u32 num_cw = snandc->qspi->num_cw;
qcom_clear_bam_transaction(snandc);
qcom_clear_read_regs(snandc);
size = ecc_cfg->cw_size;
col = ecc_cfg->cw_size * (num_cw - 1);
memset(snandc->data_buffer, 0xff, size);
snandc->regs->addr0 = (snandc->qspi->addr1 | cpu_to_le32(col));
snandc->regs->addr1 = snandc->qspi->addr2;
cfg0 = (ecc_cfg->cfg0_raw & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, 0);
cfg1 = ecc_cfg->cfg1_raw;
ecc_bch_cfg = ECC_CFG_ECC_DISABLE;
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->cfg0 = cpu_to_le32(cfg0);
snandc->regs->cfg1 = cpu_to_le32(cfg1);
snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg);
snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus);
snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus);
snandc->regs->exec = cpu_to_le32(1);
qcom_spi_set_read_loc(snandc, num_cw - 1, 0, 0, ecc_cfg->cw_size, 1);
qcom_spi_config_single_cw_page_read(snandc, false, num_cw - 1);
qcom_read_data_dma(snandc, FLASH_BUF_ACC, snandc->data_buffer, size, 0);
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failed to read last cw\n");
return ret;
}
ret = qcom_spi_check_raw_flash_errors(snandc, 1);
if (ret)
return ret;
bbpos = mtd->writesize - ecc_cfg->cw_size * (num_cw - 1);
if (snandc->data_buffer[bbpos] == 0xff)
snandc->data_buffer[bbpos + 1] = 0xff;
if (snandc->data_buffer[bbpos] != 0xff)
snandc->data_buffer[bbpos + 1] = snandc->data_buffer[bbpos];
memcpy(op->data.buf.in, snandc->data_buffer + bbpos, op->data.nbytes);
return ret;
}
static int qcom_spi_check_error(struct qcom_nand_controller *snandc)
{
struct snandc_read_status *buf;
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
int i, num_cw = snandc->qspi->num_cw;
bool flash_op_err = false, erased;
unsigned int max_bitflips = 0;
unsigned int uncorrectable_cws = 0;
snandc->qspi->ecc_stats.failed = 0;
snandc->qspi->ecc_stats.corrected = 0;
qcom_nandc_dev_to_mem(snandc, true);
buf = (struct snandc_read_status *)snandc->reg_read_buf;
for (i = 0; i < num_cw; i++, buf++) {
u32 flash, buffer, erased_cw;
flash = le32_to_cpu(buf->snandc_flash);
buffer = le32_to_cpu(buf->snandc_buffer);
erased_cw = le32_to_cpu(buf->snandc_erased_cw);
if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
if (ecc_cfg->bch_enabled)
erased = (erased_cw & ERASED_CW) == ERASED_CW;
else
erased = false;
if (!erased)
uncorrectable_cws |= BIT(i);
} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
flash_op_err = true;
} else {
unsigned int stat;
stat = buffer & BS_CORRECTABLE_ERR_MSK;
/*
* The exact number of the corrected bits is
* unknown because the hardware only reports the
* number of the corrected bytes.
*
* Since we have no better solution at the moment,
* report that value as the number of bit errors
* despite that it is inaccurate in most cases.
*/
if (stat && stat != ecc_cfg->strength)
dev_warn_once(snandc->dev,
"Warning: due to hw limitation, the reported number of the corrected bits may be inaccurate\n");
snandc->qspi->ecc_stats.corrected += stat;
max_bitflips = max(max_bitflips, stat);
}
}
if (flash_op_err)
return -EIO;
if (!uncorrectable_cws)
snandc->qspi->ecc_stats.bitflips = max_bitflips;
else
snandc->qspi->ecc_stats.failed++;
return 0;
}
static int qcom_spi_read_cw_raw(struct qcom_nand_controller *snandc, u8 *data_buf,
u8 *oob_buf, int cw)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
struct mtd_info *mtd = snandc->qspi->mtd;
int data_size1, data_size2, oob_size1, oob_size2;
int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
int raw_cw = cw;
u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw;
int col;
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
raw_cw = num_cw - 1;
cfg0 = (ecc_cfg->cfg0_raw & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, 0);
cfg1 = ecc_cfg->cfg1_raw;
ecc_bch_cfg = ECC_CFG_ECC_DISABLE;
col = ecc_cfg->cw_size * cw;
snandc->regs->addr0 = (snandc->qspi->addr1 | cpu_to_le32(col));
snandc->regs->addr1 = snandc->qspi->addr2;
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->cfg0 = cpu_to_le32(cfg0);
snandc->regs->cfg1 = cpu_to_le32(cfg1);
snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg);
snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus);
snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus);
snandc->regs->exec = cpu_to_le32(1);
qcom_spi_set_read_loc(snandc, raw_cw, 0, 0, ecc_cfg->cw_size, 1);
qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0);
qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr,
NAND_ERASED_CW_DETECT_CFG, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set,
NAND_ERASED_CW_DETECT_CFG, 1,
NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
data_size1 = mtd->writesize - ecc_cfg->cw_size * (num_cw - 1);
oob_size1 = ecc_cfg->bbm_size;
if (cw == (num_cw - 1)) {
data_size2 = NANDC_STEP_SIZE - data_size1 -
((num_cw - 1) * 4);
oob_size2 = (num_cw * 4) + ecc_cfg->ecc_bytes_hw +
ecc_cfg->spare_bytes;
} else {
data_size2 = ecc_cfg->cw_data - data_size1;
oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes;
}
qcom_spi_set_read_loc(snandc, cw, 0, read_loc, data_size1, 0);
read_loc += data_size1;
qcom_spi_set_read_loc(snandc, cw, 1, read_loc, oob_size1, 0);
read_loc += oob_size1;
qcom_spi_set_read_loc(snandc, cw, 2, read_loc, data_size2, 0);
read_loc += data_size2;
qcom_spi_set_read_loc(snandc, cw, 3, read_loc, oob_size2, 1);
qcom_spi_config_cw_read(snandc, false, raw_cw);
qcom_read_data_dma(snandc, reg_off, data_buf, data_size1, 0);
reg_off += data_size1;
qcom_read_data_dma(snandc, reg_off, oob_buf, oob_size1, 0);
reg_off += oob_size1;
qcom_read_data_dma(snandc, reg_off, data_buf + data_size1, data_size2, 0);
reg_off += data_size2;
qcom_read_data_dma(snandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure to read raw cw %d\n", cw);
return ret;
}
return qcom_spi_check_raw_flash_errors(snandc, 1);
}
static int qcom_spi_read_page_raw(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
u8 *data_buf = NULL, *oob_buf = NULL;
int ret, cw;
u32 num_cw = snandc->qspi->num_cw;
if (snandc->qspi->page_rw)
data_buf = op->data.buf.in;
oob_buf = snandc->qspi->oob_buf;
memset(oob_buf, 0xff, OOB_BUF_SIZE);
for (cw = 0; cw < num_cw; cw++) {
ret = qcom_spi_read_cw_raw(snandc, data_buf, oob_buf, cw);
if (ret)
return ret;
if (data_buf)
data_buf += ecc_cfg->cw_data;
if (oob_buf)
oob_buf += ecc_cfg->bytes;
}
return 0;
}
static int qcom_spi_read_page_ecc(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
u8 *data_buf = NULL, *oob_buf = NULL;
int ret, i;
u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw;
data_buf = op->data.buf.in;
oob_buf = snandc->qspi->oob_buf;
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
cfg0 = (ecc_cfg->cfg0 & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, num_cw - 1);
cfg1 = ecc_cfg->cfg1;
ecc_bch_cfg = ecc_cfg->ecc_bch_cfg;
snandc->regs->addr0 = snandc->qspi->addr1;
snandc->regs->addr1 = snandc->qspi->addr2;
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->cfg0 = cpu_to_le32(cfg0);
snandc->regs->cfg1 = cpu_to_le32(cfg1);
snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg);
snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus);
snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus);
snandc->regs->exec = cpu_to_le32(1);
qcom_spi_set_read_loc(snandc, 0, 0, 0, ecc_cfg->cw_data, 1);
qcom_clear_bam_transaction(snandc);
qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0);
qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr,
NAND_ERASED_CW_DETECT_CFG, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set,
NAND_ERASED_CW_DETECT_CFG, 1,
NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
for (i = 0; i < num_cw; i++) {
int data_size, oob_size;
if (i == (num_cw - 1)) {
data_size = 512 - ((num_cw - 1) << 2);
oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw +
ecc_cfg->spare_bytes;
} else {
data_size = ecc_cfg->cw_data;
oob_size = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes;
}
if (data_buf && oob_buf) {
qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 0);
qcom_spi_set_read_loc(snandc, i, 1, data_size, oob_size, 1);
} else if (data_buf) {
qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 1);
} else {
qcom_spi_set_read_loc(snandc, i, 0, data_size, oob_size, 1);
}
qcom_spi_config_cw_read(snandc, true, i);
if (data_buf)
qcom_read_data_dma(snandc, FLASH_BUF_ACC, data_buf,
data_size, 0);
if (oob_buf) {
int j;
for (j = 0; j < ecc_cfg->bbm_size; j++)
*oob_buf++ = 0xff;
qcom_read_data_dma(snandc, FLASH_BUF_ACC + data_size,
oob_buf, oob_size, 0);
}
if (data_buf)
data_buf += data_size;
if (oob_buf)
oob_buf += oob_size;
}
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure to read page\n");
return ret;
}
return qcom_spi_check_error(snandc);
}
static int qcom_spi_read_page_oob(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
u8 *oob_buf = NULL;
int ret, i;
u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw;
oob_buf = op->data.buf.in;
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
cfg0 = (ecc_cfg->cfg0 & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, num_cw - 1);
cfg1 = ecc_cfg->cfg1;
ecc_bch_cfg = ecc_cfg->ecc_bch_cfg;
snandc->regs->addr0 = snandc->qspi->addr1;
snandc->regs->addr1 = snandc->qspi->addr2;
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->cfg0 = cpu_to_le32(cfg0);
snandc->regs->cfg1 = cpu_to_le32(cfg1);
snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg);
snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus);
snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus);
snandc->regs->exec = cpu_to_le32(1);
qcom_spi_set_read_loc(snandc, 0, 0, 0, ecc_cfg->cw_data, 1);
qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0);
qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr,
NAND_ERASED_CW_DETECT_CFG, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set,
NAND_ERASED_CW_DETECT_CFG, 1,
NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
for (i = 0; i < num_cw; i++) {
int data_size, oob_size;
if (i == (num_cw - 1)) {
data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2);
oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw +
ecc_cfg->spare_bytes;
} else {
data_size = ecc_cfg->cw_data;
oob_size = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes;
}
qcom_spi_set_read_loc(snandc, i, 0, data_size, oob_size, 1);
qcom_spi_config_cw_read(snandc, true, i);
if (oob_buf) {
int j;
for (j = 0; j < ecc_cfg->bbm_size; j++)
*oob_buf++ = 0xff;
qcom_read_data_dma(snandc, FLASH_BUF_ACC + data_size,
oob_buf, oob_size, 0);
}
if (oob_buf)
oob_buf += oob_size;
}
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure to read oob\n");
return ret;
}
return qcom_spi_check_error(snandc);
}
static int qcom_spi_read_page(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
if (snandc->qspi->page_rw && snandc->qspi->raw_rw)
return qcom_spi_read_page_raw(snandc, op);
if (snandc->qspi->page_rw)
return qcom_spi_read_page_ecc(snandc, op);
if (snandc->qspi->oob_rw && snandc->qspi->raw_rw)
return qcom_spi_read_last_cw(snandc, op);
if (snandc->qspi->oob_rw)
return qcom_spi_read_page_oob(snandc, op);
return 0;
}
static void qcom_spi_config_page_write(struct qcom_nand_controller *snandc)
{
qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0);
qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG,
1, NAND_BAM_NEXT_SGL);
}
static void qcom_spi_config_cw_write(struct qcom_nand_controller *snandc)
{
qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(snandc, &snandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0);
qcom_write_reg_dma(snandc, &snandc->regs->clrreadstatus, NAND_READ_STATUS, 1,
NAND_BAM_NEXT_SGL);
}
static int qcom_spi_program_raw(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
struct mtd_info *mtd = snandc->qspi->mtd;
u8 *data_buf = NULL, *oob_buf = NULL;
int i, ret;
int num_cw = snandc->qspi->num_cw;
u32 cfg0, cfg1, ecc_bch_cfg;
cfg0 = (ecc_cfg->cfg0_raw & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, num_cw - 1);
cfg1 = ecc_cfg->cfg1_raw;
ecc_bch_cfg = ECC_CFG_ECC_DISABLE;
data_buf = snandc->qspi->data_buf;
oob_buf = snandc->qspi->oob_buf;
memset(oob_buf, 0xff, OOB_BUF_SIZE);
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
snandc->regs->addr0 = snandc->qspi->addr1;
snandc->regs->addr1 = snandc->qspi->addr2;
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->cfg0 = cpu_to_le32(cfg0);
snandc->regs->cfg1 = cpu_to_le32(cfg1);
snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg);
snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus);
snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus);
snandc->regs->exec = cpu_to_le32(1);
qcom_spi_config_page_write(snandc);
for (i = 0; i < num_cw; i++) {
int data_size1, data_size2, oob_size1, oob_size2;
int reg_off = FLASH_BUF_ACC;
data_size1 = mtd->writesize - ecc_cfg->cw_size * (num_cw - 1);
oob_size1 = ecc_cfg->bbm_size;
if (i == (num_cw - 1)) {
data_size2 = NANDC_STEP_SIZE - data_size1 -
((num_cw - 1) << 2);
oob_size2 = (num_cw << 2) + ecc_cfg->ecc_bytes_hw +
ecc_cfg->spare_bytes;
} else {
data_size2 = ecc_cfg->cw_data - data_size1;
oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes;
}
qcom_write_data_dma(snandc, reg_off, data_buf, data_size1,
NAND_BAM_NO_EOT);
reg_off += data_size1;
data_buf += data_size1;
qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size1,
NAND_BAM_NO_EOT);
oob_buf += oob_size1;
reg_off += oob_size1;
qcom_write_data_dma(snandc, reg_off, data_buf, data_size2,
NAND_BAM_NO_EOT);
reg_off += data_size2;
data_buf += data_size2;
qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size2, 0);
oob_buf += oob_size2;
qcom_spi_config_cw_write(snandc);
}
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure to write raw page\n");
return ret;
}
return 0;
}
static int qcom_spi_program_ecc(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
u8 *data_buf = NULL, *oob_buf = NULL;
int i, ret;
int num_cw = snandc->qspi->num_cw;
u32 cfg0, cfg1, ecc_bch_cfg, ecc_buf_cfg;
cfg0 = (ecc_cfg->cfg0 & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, num_cw - 1);
cfg1 = ecc_cfg->cfg1;
ecc_bch_cfg = ecc_cfg->ecc_bch_cfg;
ecc_buf_cfg = ecc_cfg->ecc_buf_cfg;
if (snandc->qspi->data_buf)
data_buf = snandc->qspi->data_buf;
oob_buf = snandc->qspi->oob_buf;
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
snandc->regs->addr0 = snandc->qspi->addr1;
snandc->regs->addr1 = snandc->qspi->addr2;
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->cfg0 = cpu_to_le32(cfg0);
snandc->regs->cfg1 = cpu_to_le32(cfg1);
snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg);
snandc->regs->ecc_buf_cfg = cpu_to_le32(ecc_buf_cfg);
snandc->regs->exec = cpu_to_le32(1);
qcom_spi_config_page_write(snandc);
for (i = 0; i < num_cw; i++) {
int data_size, oob_size;
if (i == (num_cw - 1)) {
data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2);
oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw +
ecc_cfg->spare_bytes;
} else {
data_size = ecc_cfg->cw_data;
oob_size = ecc_cfg->bytes;
}
if (data_buf)
qcom_write_data_dma(snandc, FLASH_BUF_ACC, data_buf, data_size,
i == (num_cw - 1) ? NAND_BAM_NO_EOT : 0);
if (i == (num_cw - 1)) {
if (oob_buf) {
oob_buf += ecc_cfg->bbm_size;
qcom_write_data_dma(snandc, FLASH_BUF_ACC + data_size,
oob_buf, oob_size, 0);
}
}
qcom_spi_config_cw_write(snandc);
if (data_buf)
data_buf += data_size;
if (oob_buf)
oob_buf += oob_size;
}
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure to write page\n");
return ret;
}
return 0;
}
static int qcom_spi_program_oob(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_ecc *ecc_cfg = snandc->qspi->ecc;
u8 *oob_buf = NULL;
int ret, col, data_size, oob_size;
int num_cw = snandc->qspi->num_cw;
u32 cfg0, cfg1, ecc_bch_cfg, ecc_buf_cfg;
cfg0 = (ecc_cfg->cfg0 & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, num_cw - 1);
cfg1 = ecc_cfg->cfg1;
ecc_bch_cfg = ecc_cfg->ecc_bch_cfg;
ecc_buf_cfg = ecc_cfg->ecc_buf_cfg;
col = ecc_cfg->cw_size * (num_cw - 1);
oob_buf = snandc->qspi->data_buf;
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
snandc->regs->addr0 = (snandc->qspi->addr1 | cpu_to_le32(col));
snandc->regs->addr1 = snandc->qspi->addr2;
snandc->regs->cmd = snandc->qspi->cmd;
snandc->regs->cfg0 = cpu_to_le32(cfg0);
snandc->regs->cfg1 = cpu_to_le32(cfg1);
snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg);
snandc->regs->ecc_buf_cfg = cpu_to_le32(ecc_buf_cfg);
snandc->regs->exec = cpu_to_le32(1);
/* calculate the data and oob size for the last codeword/step */
data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2);
oob_size = snandc->qspi->mtd->oobavail;
memset(snandc->data_buffer, 0xff, ecc_cfg->cw_data);
/* override new oob content to last codeword */
mtd_ooblayout_get_databytes(snandc->qspi->mtd, snandc->data_buffer + data_size,
oob_buf, 0, snandc->qspi->mtd->oobavail);
qcom_spi_config_page_write(snandc);
qcom_write_data_dma(snandc, FLASH_BUF_ACC, snandc->data_buffer, data_size + oob_size, 0);
qcom_spi_config_cw_write(snandc);
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure to write oob\n");
return ret;
}
return 0;
}
static int qcom_spi_program_execute(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
if (snandc->qspi->page_rw && snandc->qspi->raw_rw)
return qcom_spi_program_raw(snandc, op);
if (snandc->qspi->page_rw)
return qcom_spi_program_ecc(snandc, op);
if (snandc->qspi->oob_rw)
return qcom_spi_program_oob(snandc, op);
return 0;
}
static int qcom_spi_cmd_mapping(struct qcom_nand_controller *snandc, u32 opcode, u32 *cmd)
{
switch (opcode) {
case SPINAND_RESET:
*cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_RESET_DEVICE);
break;
case SPINAND_READID:
*cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_FETCH_ID);
break;
case SPINAND_GET_FEATURE:
*cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE);
break;
case SPINAND_SET_FEATURE:
*cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE |
QPIC_SET_FEATURE);
break;
case SPINAND_READ:
if (snandc->qspi->raw_rw) {
*cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 |
SPI_WP | SPI_HOLD | OP_PAGE_READ);
} else {
*cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 |
SPI_WP | SPI_HOLD | OP_PAGE_READ_WITH_ECC);
}
break;
case SPINAND_ERASE:
*cmd = OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE | SPI_WP |
SPI_HOLD | SPI_TRANSFER_MODE_x1;
break;
case SPINAND_WRITE_EN:
*cmd = SPINAND_WRITE_EN;
break;
case SPINAND_PROGRAM_EXECUTE:
*cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 |
SPI_WP | SPI_HOLD | OP_PROGRAM_PAGE);
break;
case SPINAND_PROGRAM_LOAD:
*cmd = SPINAND_PROGRAM_LOAD;
break;
default:
dev_err(snandc->dev, "Opcode not supported: %u\n", opcode);
return -EOPNOTSUPP;
}
return 0;
}
static int qcom_spi_write_page(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
int ret;
u32 cmd;
ret = qcom_spi_cmd_mapping(snandc, op->cmd.opcode, &cmd);
if (ret < 0)
return ret;
if (op->cmd.opcode == SPINAND_PROGRAM_LOAD)
snandc->qspi->data_buf = (u8 *)op->data.buf.out;
return 0;
}
static int qcom_spi_send_cmdaddr(struct qcom_nand_controller *snandc,
const struct spi_mem_op *op)
{
struct qpic_snand_op s_op = {};
u32 cmd;
int ret, opcode;
ret = qcom_spi_cmd_mapping(snandc, op->cmd.opcode, &cmd);
if (ret < 0)
return ret;
s_op.cmd_reg = cmd;
s_op.addr1_reg = op->addr.val;
s_op.addr2_reg = 0;
opcode = op->cmd.opcode;
switch (opcode) {
case SPINAND_WRITE_EN:
return 0;
case SPINAND_PROGRAM_EXECUTE:
s_op.addr1_reg = op->addr.val << 16;
s_op.addr2_reg = op->addr.val >> 16 & 0xff;
snandc->qspi->addr1 = cpu_to_le32(s_op.addr1_reg);
snandc->qspi->addr2 = cpu_to_le32(s_op.addr2_reg);
snandc->qspi->cmd = cpu_to_le32(cmd);
return qcom_spi_program_execute(snandc, op);
case SPINAND_READ:
s_op.addr1_reg = (op->addr.val << 16);
s_op.addr2_reg = op->addr.val >> 16 & 0xff;
snandc->qspi->addr1 = cpu_to_le32(s_op.addr1_reg);
snandc->qspi->addr2 = cpu_to_le32(s_op.addr2_reg);
snandc->qspi->cmd = cpu_to_le32(cmd);
return 0;
case SPINAND_ERASE:
s_op.addr2_reg = (op->addr.val >> 16) & 0xffff;
s_op.addr1_reg = op->addr.val;
snandc->qspi->addr1 = cpu_to_le32(s_op.addr1_reg << 16);
snandc->qspi->addr2 = cpu_to_le32(s_op.addr2_reg);
snandc->qspi->cmd = cpu_to_le32(cmd);
return qcom_spi_block_erase(snandc);
default:
break;
}
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
snandc->regs->cmd = cpu_to_le32(s_op.cmd_reg);
snandc->regs->exec = cpu_to_le32(1);
snandc->regs->addr0 = cpu_to_le32(s_op.addr1_reg);
snandc->regs->addr1 = cpu_to_le32(s_op.addr2_reg);
qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
ret = qcom_submit_descs(snandc);
if (ret)
dev_err(snandc->dev, "failure in submitting cmd descriptor\n");
return ret;
}
static int qcom_spi_io_op(struct qcom_nand_controller *snandc, const struct spi_mem_op *op)
{
int ret, val, opcode;
bool copy = false, copy_ftr = false;
ret = qcom_spi_send_cmdaddr(snandc, op);
if (ret)
return ret;
snandc->buf_count = 0;
snandc->buf_start = 0;
qcom_clear_read_regs(snandc);
qcom_clear_bam_transaction(snandc);
opcode = op->cmd.opcode;
switch (opcode) {
case SPINAND_READID:
snandc->buf_count = 4;
qcom_read_reg_dma(snandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
copy = true;
break;
case SPINAND_GET_FEATURE:
snandc->buf_count = 4;
qcom_read_reg_dma(snandc, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL);
copy_ftr = true;
break;
case SPINAND_SET_FEATURE:
snandc->regs->flash_feature = cpu_to_le32(*(u32 *)op->data.buf.out);
qcom_write_reg_dma(snandc, &snandc->regs->flash_feature,
NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL);
break;
case SPINAND_PROGRAM_EXECUTE:
case SPINAND_WRITE_EN:
case SPINAND_RESET:
case SPINAND_ERASE:
case SPINAND_READ:
return 0;
default:
return -EOPNOTSUPP;
}
ret = qcom_submit_descs(snandc);
if (ret) {
dev_err(snandc->dev, "failure in submitting descriptor for:%d\n", opcode);
return ret;
}
if (copy) {
qcom_nandc_dev_to_mem(snandc, true);
memcpy(op->data.buf.in, snandc->reg_read_buf, snandc->buf_count);
}
if (copy_ftr) {
qcom_nandc_dev_to_mem(snandc, true);
val = le32_to_cpu(*(__le32 *)snandc->reg_read_buf);
val >>= 8;
memcpy(op->data.buf.in, &val, snandc->buf_count);
}
return 0;
}
static bool qcom_spi_is_page_op(const struct spi_mem_op *op)
{
if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && op->addr.buswidth != 4)
return false;
if (op->data.dir == SPI_MEM_DATA_IN) {
if (op->addr.buswidth == 4 && op->data.buswidth == 4)
return true;
if (op->addr.nbytes == 2 && op->addr.buswidth == 1)
return true;
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.buswidth == 4)
return true;
if (op->addr.nbytes == 2 && op->addr.buswidth == 1)
return true;
}
return false;
}
static bool qcom_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
return false;
if (qcom_spi_is_page_op(op))
return true;
return ((!op->addr.nbytes || op->addr.buswidth == 1) &&
(!op->dummy.nbytes || op->dummy.buswidth == 1) &&
(!op->data.nbytes || op->data.buswidth == 1));
}
static int qcom_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct qcom_nand_controller *snandc = spi_controller_get_devdata(mem->spi->controller);
dev_dbg(snandc->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
op->addr.val, op->addr.buswidth, op->addr.nbytes,
op->data.buswidth, op->data.nbytes);
if (qcom_spi_is_page_op(op)) {
if (op->data.dir == SPI_MEM_DATA_IN)
return qcom_spi_read_page(snandc, op);
if (op->data.dir == SPI_MEM_DATA_OUT)
return qcom_spi_write_page(snandc, op);
} else {
return qcom_spi_io_op(snandc, op);
}
return 0;
}
static const struct spi_controller_mem_ops qcom_spi_mem_ops = {
.supports_op = qcom_spi_supports_op,
.exec_op = qcom_spi_exec_op,
};
static const struct spi_controller_mem_caps qcom_spi_mem_caps = {
.ecc = true,
};
static int qcom_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_controller *ctlr;
struct qcom_nand_controller *snandc;
struct qpic_spi_nand *qspi;
struct qpic_ecc *ecc;
struct resource *res;
const void *dev_data;
int ret;
ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
if (!ecc)
return -ENOMEM;
qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL);
if (!qspi)
return -ENOMEM;
ctlr = __devm_spi_alloc_controller(dev, sizeof(*snandc), false);
if (!ctlr)
return -ENOMEM;
platform_set_drvdata(pdev, ctlr);
snandc = spi_controller_get_devdata(ctlr);
qspi->snandc = snandc;
snandc->dev = dev;
snandc->qspi = qspi;
snandc->qspi->ctlr = ctlr;
snandc->qspi->ecc = ecc;
dev_data = of_device_get_match_data(dev);
if (!dev_data) {
dev_err(&pdev->dev, "failed to get device data\n");
return -ENODEV;
}
snandc->props = dev_data;
snandc->dev = &pdev->dev;
snandc->core_clk = devm_clk_get(dev, "core");
if (IS_ERR(snandc->core_clk))
return PTR_ERR(snandc->core_clk);
snandc->aon_clk = devm_clk_get(dev, "aon");
if (IS_ERR(snandc->aon_clk))
return PTR_ERR(snandc->aon_clk);
snandc->qspi->iomacro_clk = devm_clk_get(dev, "iom");
if (IS_ERR(snandc->qspi->iomacro_clk))
return PTR_ERR(snandc->qspi->iomacro_clk);
snandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(snandc->base))
return PTR_ERR(snandc->base);
snandc->base_phys = res->start;
snandc->base_dma = dma_map_resource(dev, res->start, resource_size(res),
DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(dev, snandc->base_dma))
return -ENXIO;
ret = clk_prepare_enable(snandc->core_clk);
if (ret)
goto err_dis_core_clk;
ret = clk_prepare_enable(snandc->aon_clk);
if (ret)
goto err_dis_aon_clk;
ret = clk_prepare_enable(snandc->qspi->iomacro_clk);
if (ret)
goto err_dis_iom_clk;
ret = qcom_nandc_alloc(snandc);
if (ret)
goto err_snand_alloc;
ret = qcom_spi_init(snandc);
if (ret)
goto err_spi_init;
/* setup ECC engine */
snandc->qspi->ecc_eng.dev = &pdev->dev;
snandc->qspi->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
snandc->qspi->ecc_eng.ops = &qcom_spi_ecc_engine_ops_pipelined;
snandc->qspi->ecc_eng.priv = snandc;
ret = nand_ecc_register_on_host_hw_engine(&snandc->qspi->ecc_eng);
if (ret) {
dev_err(&pdev->dev, "failed to register ecc engine:%d\n", ret);
goto err_spi_init;
}
ctlr->num_chipselect = QPIC_QSPI_NUM_CS;
ctlr->mem_ops = &qcom_spi_mem_ops;
ctlr->mem_caps = &qcom_spi_mem_caps;
ctlr->dev.of_node = pdev->dev.of_node;
ctlr->mode_bits = SPI_TX_DUAL | SPI_RX_DUAL |
SPI_TX_QUAD | SPI_RX_QUAD;
ret = spi_register_controller(ctlr);
if (ret) {
dev_err(&pdev->dev, "spi_register_controller failed.\n");
goto err_spi_init;
}
return 0;
err_spi_init:
qcom_nandc_unalloc(snandc);
err_snand_alloc:
clk_disable_unprepare(snandc->qspi->iomacro_clk);
err_dis_iom_clk:
clk_disable_unprepare(snandc->aon_clk);
err_dis_aon_clk:
clk_disable_unprepare(snandc->core_clk);
err_dis_core_clk:
dma_unmap_resource(dev, res->start, resource_size(res),
DMA_BIDIRECTIONAL, 0);
return ret;
}
static void qcom_spi_remove(struct platform_device *pdev)
{
struct spi_controller *ctlr = platform_get_drvdata(pdev);
struct qcom_nand_controller *snandc = spi_controller_get_devdata(ctlr);
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
spi_unregister_controller(ctlr);
qcom_nandc_unalloc(snandc);
clk_disable_unprepare(snandc->aon_clk);
clk_disable_unprepare(snandc->core_clk);
clk_disable_unprepare(snandc->qspi->iomacro_clk);
dma_unmap_resource(&pdev->dev, snandc->base_dma, resource_size(res),
DMA_BIDIRECTIONAL, 0);
}
static const struct qcom_nandc_props ipq9574_snandc_props = {
.dev_cmd_reg_start = 0x7000,
.bam_offset = 0x30000,
.supports_bam = true,
};
static const struct of_device_id qcom_snandc_of_match[] = {
{
.compatible = "qcom,ipq9574-snand",
.data = &ipq9574_snandc_props,
},
{}
};
MODULE_DEVICE_TABLE(of, qcom_snandc_of_match);
static struct platform_driver qcom_spi_driver = {
.driver = {
.name = "qcom_snand",
.of_match_table = qcom_snandc_of_match,
},
.probe = qcom_spi_probe,
.remove = qcom_spi_remove,
};
module_platform_driver(qcom_spi_driver);
MODULE_DESCRIPTION("SPI driver for QPIC QSPI cores");
MODULE_AUTHOR("Md Sadre Alam <quic_mdalam@quicinc.com>");
MODULE_LICENSE("GPL");